IIHE people





IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.


The IIHE is a diverse institute

At the last count, the IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals. The numbers vary over time with people graduating etc, but the IIHE is a diverse institute: Approximately half of the people here are not from Belgian background and at any time we have tens of different nationalities. Many languages are spoken and the working language is mostly English. Typically, between 25 and 30% of the people working at our lab identifies as female.


IceCube results challenge current understanding of Gamma Ray Bursts

Favoured candidates for the emission of Ultra High-Energy Cosmic Rays are Active Galactic Nuclei (AGN) and Gamma Ray Bursts (GRB), both spectacular emitters of high-energy gamma rays arising from particle acceleration in relativistic jets. However, the composition of the particles involved in these processes as well as the acceleration mechanism are very uncertain. The IceCube Neutrino Observatory at the South Pole is honing in on how the most energetic cosmic rays might be produced. IceCube is performing a search for cosmic high-energy neutrinos, which are believed to accompany cosmic ray production, and as such explores the possible sources for cosmic ray production. In a paper published in the 2012 April 19 issue of the journal Nature (Volume 484, Number 7394), the IceCube collaboration describes a search for neutrino emission related to 300 gamma ray bursts observed between May 2008 and April 2010 by the SWIFT and Fermi satellites. Surprisingly, no related neutrino events were found - a result that contradicts 15 years of predictions and challenges most of the leading models for the origin of the highest energy cosmic rays, as shown in the figure.


Candidate top quark +W boson collision event at CERN

Shown is a candidate collision event from the 2010 LHC run that was selected in the search for one top quark associated with a W boson at the Compact Muon Solenoid experiment at CERN. IIHE scientists are leading the analysis effort in the detailed study of these kind of collisions. Understanding single top production is relevant both for the detailed understanding of the physics of top quark production but also in the context of the Standard Model Quantum Chromodynamics in general as this process is special because of the production of a single heavy quark in association with a gauge boson. This event topology is very similar to that expected for new physics or the elusive Higgs boson, for which this kind of events are a background.


Pinning down the bottom, charm and top quark

The bottom quark, discovered in 1977, is special, as in LHC collisions it usually lives in unstable particles that travel a few millimeters before they transition into particles that physicists can identify with our very accurate tracking detectors. At the IIHE we are leading the effort in the CMS experiment to identify bottom (or beauty) quarks. Bottom quarks are also extremely useful to identify top quarks, the heaviest known elementary particle, and Brout-Englert-Higgs bosons. At the IIHE we are also developing the tools to distinguish collisions containing bottom quarks from those where charm quarks are produced. This will be extremely useful to study how often top quarks decay to charm quarks instead of b-quarks, a very rare process in the Standard Model that if larger than expected would be a convincing sign for new physics!


Here you see the installation of the the Compact Muon Solenoid forward tracker,

which was partly built at the IIHE. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector every built. Contributions were made to the assembly of detectors and their support structures, and the assembly of the detectors on a wheel such as you can see here. The tracker was installed inside the Compact Muon Solenoid detector in December 2007.


Dark matter searches with IceCube

According to the most recent observations and based on the standard model of cosmology, dark matter makes up 26.8% of the energy density in our Universe The argument that yet to be detected Weakly Interacting Massive Particles (WIMPs) make up the dark matter is compelling. Over time, WIMPs may accumulate in the center of the Sun and Earth, and annihilate with each other. The decay products may vary, and most of them will interact and decay in the massive body. If neutrinos are created from those secondaries, they will escape and provide a neutrino flux. This neutrino flux could be measured by the IceCube Neutrino Detector. Data taken by AMANDA and IceCube have been analysed at the IIHE to search for WIMPs in the centre of the Sun and Earth; no significant excess above background was observed so far.


Shown here is a record breaking event from the 2010 LHC run at the Compact Muon Solenoid,

a collision event with both an electron and very high missing transverse energy. The electron is represented by the red trapezoid (the length is proportional to the electron's energy), while the transverse energy is represented by the red arrow. Missing transverse energy is a quantity used to identify particles that did not leave a detectable signature. The IIHE is actively involved in the study of this kind of collisions, in collaboration with other groups of the CMS experiment. If the rate of these kind of collisions would be unexpectedly high, it would be a hint of the existence of, for example, extra dimensions.

CMS experiment

CMS reaches new record: highest ever energy dilepton collision recorded at 3280 GeV.

Highest dielectron mass event recorded by CMS ever in the data taking of 2018 June the 9th! The mass of the dielectron system is 3280 GeV, that is 36 times the mass of the Z boson! Wenxing Fang is a student from IIHE and Beihang University (China) who workes on searching for new particles decaying to an electron and positron

  IIHE - Copyright © 2010-2015