IIHE people

 

Experiments

 

Directions

IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.

IceCube

Dark matter searches with IceCube

According to the most recent observations and based on the standard model of cosmology, dark matter makes up 26.8% of the energy density in our Universe The argument that yet to be detected Weakly Interacting Massive Particles (WIMPs) make up the dark matter is compelling. Over time, WIMPs may accumulate in the center of the Sun and Earth, and annihilate with each other. The decay products may vary, and most of them will interact and decay in the massive body. If neutrinos are created from those secondaries, they will escape and provide a neutrino flux. This neutrino flux could be measured by the IceCube Neutrino Detector. Data taken by AMANDA and IceCube have been analysed at the IIHE to search for WIMPs in the centre of the Sun and Earth; no significant excess above background was observed so far.

IceCube

The IceCube neutrino observatory at the South Pole is the world's largest neutrino telescope, completed in 2011 and taking data since 2005!

The detector is composed of 80 strings of 60 sensors deployed in the Antarctic glacier, between 1500 and 2500 m of depth. As its name suggests, IceCube covers an instrumented volume of one cubic kilometer. The DeepCore extension of IceCube is composed of 6 additional string in the center of the IceCube array, where the puriest ice can be found. At the surface, the IceTop air shower array equiped each IceCube string with 2 pairs of sensors in an ice tank of 3 square-meter.

IceCube

IceCube observes first hint of astrophysical high-energy neutrinos

Two neutrino candidate events detected at the IceCube Neutrino Observatory, dubbed "Bert and Ernie", are the two highest energy neutrinos ever observed so far, with an estimated deposited energy of about 1 PeV. The IceCube event displays of these two events are shown in the figures below, where for comparison one should realize that a single event covers an area comparable with the Maracana football stadium in Rio de Janeiro! The probability that these two events are not background, i.e. anything else in the detector besides astrophysical neutrinos, is at the 2.8 sigma level and does not allow claiming a first observation of astrophysical neutrinos. Further details may be found in Physical Review Letters 111 (2013) 081801. To improve the detection sensitivity, a follow-up search on the same data period has been conducted. The new analysis selects high-energy neutrino events with vertices well contained in the detector volume and exploits veto algorithms by using the outer layers of IceCube sensors. By means of this new analysis method 26 new events have been detected. The entire sample of 28 events has properties consistent in flavour, arrival direction and energy with generic expectations for neutrinos of extraterrestrial origin.

Phenomenology

The pheno group — A hint for supersymmetry?

Particle physics phenomenology studies the implications of a theoretical model on experiments in high-energy particle physics and the other way round. From the experimental side, the CMS Collaboration observed in a certain search region 12 events more than expected based on the Standard Model of Particle Physics. Can this be explained by theories that go beyond the Standard Model like supersymmetry? Scientists from the pheno group at the IIHE as well as from the theory group at the ULB collaborated to answer this question. The figure shows how the number of events predicted by a simple supersymmetric model depends on the parameters of the model. The two free parameters, the mass of the stau and the selectron, are shown on the x- and y-axis while the number of events is indicated by the colours. Since we are looking for 12 events coming from new physics, we see from the figure that the model with selectron mass 145 GeV and stau mass 90 GeV can account for the observation of CMS.

CMS

Here you see the installation of the the Compact Muon Solenoid forward tracker,

which was partly built at the IIHE. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector every built. Contributions were made to the assembly of detectors and their support structures, and the assembly of the detectors on a wheel such as you can see here. The tracker was installed inside the Compact Muon Solenoid detector in December 2007.

CMS

LHC reaches record energy - first test collisions recorded by CMS experiment

On Thursday 21 May 2015, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors from particles that stray from the edges of the beam. This set-up will give the accelerator team the data they need to ensure that the LHC magnets and detectors are fully protected. The LHC Operations team will continue to monitor beam quality and optimisation of the set-up, while the detectors will use these 'free' testing collisions for calibration and testing. This is an important part of the process that will allow the experimental teams running the detectors ALICE, ATLAS, CMS and LHCb to switch on their experiments fully. Data taking and the start of the LHC's second run is planned for June 2015.

CMS

The needle in the haystack

Physicists working in the CMS experiment regularly have to spend their time searching for a needle in a haystack. In other words we look for the rarest of rare collisions that represent very unlikely physics processes. An example of work done at the IIHE is the search for the production of four top quarks (the needle) in the huge dataset recorded by CMS in 2012 (the haystack). Our results put an extremely tight limit on the production of four top quarks, indeed the tightest limit at the LHC so far. As four top quarks are also produced in many new theories of physics such as supersymmetry, this limit can tell us a lot about the validity of these theories.

CMS

Candidate top quark +W boson collision event at CERN

Shown is a candidate collision event from the 2010 LHC run that was selected in the search for one top quark associated with a W boson at the Compact Muon Solenoid experiment at CERN. IIHE scientists are leading the analysis effort in the detailed study of these kind of collisions. Understanding single top production is relevant both for the detailed understanding of the physics of top quark production but also in the context of the Standard Model Quantum Chromodynamics in general as this process is special because of the production of a single heavy quark in association with a gauge boson. This event topology is very similar to that expected for new physics or the elusive Higgs boson, for which this kind of events are a background.

  IIHE - Copyright © 2010-2015