IIHE people





IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.


The IceCube neutrino observatory at the South Pole is the world's largest neutrino telescope, completed in 2011 and taking data since 2005!

The detector is composed of 80 strings of 60 sensors deployed in the Antarctic glacier, between 1500 and 2500 m of depth. As its name suggests, IceCube covers an instrumented volume of one cubic kilometer. The DeepCore extension of IceCube is composed of 6 additional string in the center of the IceCube array, where the puriest ice can be found. At the surface, the IceTop air shower array equiped each IceCube string with 2 pairs of sensors in an ice tank of 3 square-meter.


IIHE at the ICRC!

The 34th International Cosmic-Ray Conference took place in The Hague, The Netherlands from July 30 to August 6, 2015. More than 800 physicists attended the conference to discuss the latest progress in cosmic-ray and solar physics. Furthermore, recent developments in gamma-ray and neutrino astronomy as well as the hunt for dark matter were covered. The IIHE was clearly represented with 8 posters and 3 talks. Our members presented their results on the Earth WIMP (Weakly Interactive Massive Particles) searches, a possible dark matter candidate, and on multiple analyses that aim to find the sources of neutrinos emission with the IceCube Neutrino Observatory. We focus our attention on: sources with spatial extension in the sky (from 1° to 5°), Gamma-Ray Bursts - extremely energetic explosion possibly associated with the death of a star, Dust Obscured Blazars - a special type of galaxies - and solar flares. The Askaryan Radio Array (ARA) as well as a totally new way to observe high energy neutrinos using radar detection were the subject of two talks! Also, two of our new members presented their previous work on the Cherenkov Telescope Array (CTA) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The 35th ICRC will take place in Busan, South Korea, where we hope the IIHE will be even better represented!


South Pole tuning in on "Skyradio"

The Askaryan Radio Array (ARA) is one of the future South Pole neutrino observatories focusing on the detection of neutrinos with energies beyond 10^17 eV. It utilizes radio waves, emitted from neutrino induced cascades in the South Pole ice sheet, to detect neutrino interactions. The detector is currently in the construction phase as is shown in the picture below. A grid of 37 antenna clusters, spaced by 2 km, is planned to be deployed in the South Pole ice at a depth of 200 m. By this, the full ARA detector will cover an instrumented area of about 100 km^2 and represent a state of the art detector for cosmic neutrinos in the energy range between 10^17 eV and 10^19 eV.


Pinning down the bottom, charm and top quark

The bottom quark, discovered in 1977, is special, as in LHC collisions it usually lives in unstable particles that travel a few millimeters before they transition into particles that physicists can identify with our very accurate tracking detectors. At the IIHE we are leading the effort in the CMS experiment to identify bottom (or beauty) quarks. Bottom quarks are also extremely useful to identify top quarks, the heaviest known elementary particle, and Brout-Englert-Higgs bosons. At the IIHE we are also developing the tools to distinguish collisions containing bottom quarks from those where charm quarks are produced. This will be extremely useful to study how often top quarks decay to charm quarks instead of b-quarks, a very rare process in the Standard Model that if larger than expected would be a convincing sign for new physics!


Here you see an event recorded by IceCube in January 2008, when the detector was still in construction!

At that time, 22 strings were already taking data and 18 other strings were freshly deployed. Every colored bubble indicates the detection of one or more Cerenkov photons created by the cross of a charged particle by one of the sensors deployed in the ice. The size of the circles reflects the intensity of the signal. The color indicates the arrival time from red (early) to blue (late). These informations combined with the geometry of the detector allow first guess reconstructions of the initial track.


The needle in the haystack

Physicists working in the CMS experiment regularly have to spend their time searching for a needle in a haystack. In other words we look for the rarest of rare collisions that represent very unlikely physics processes. An example of work done at the IIHE is the search for the production of four top quarks (the needle) in the huge dataset recorded by CMS in 2012 (the haystack). Our results put an extremely tight limit on the production of four top quarks, indeed the tightest limit at the LHC so far. As four top quarks are also produced in many new theories of physics such as supersymmetry, this limit can tell us a lot about the validity of these theories.


Here you see the installation of the the Compact Muon Solenoid forward tracker,

which was partly built at the IIHE. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector every built. Contributions were made to the assembly of detectors and their support structures, and the assembly of the detectors on a wheel such as you can see here. The tracker was installed inside the Compact Muon Solenoid detector in December 2007.


Dark matter searches with IceCube

According to the most recent observations and based on the standard model of cosmology, dark matter makes up 26.8% of the energy density in our Universe The argument that yet to be detected Weakly Interacting Massive Particles (WIMPs) make up the dark matter is compelling. Over time, WIMPs may accumulate in the center of the Sun and Earth, and annihilate with each other. The decay products may vary, and most of them will interact and decay in the massive body. If neutrinos are created from those secondaries, they will escape and provide a neutrino flux. This neutrino flux could be measured by the IceCube Neutrino Detector. Data taken by AMANDA and IceCube have been analysed at the IIHE to search for WIMPs in the centre of the Sun and Earth; no significant excess above background was observed so far.

  IIHE - Copyright © 2010-2015