IIHE people

 

Experiments

 

Directions

IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.

IceCube

Astroparticle Physics revolves around phenomena that involve (astro)physics under the most extreme conditions.

Cosmic explosions, involving black holes with masses a billion times greater than the mass of the Sun, accelerate particles to velocities close to the speed of light and display a variety of relativistic effects. The produced high-energy particles may be detected on Earth and as such can provide us insight in the physical processes underlying these cataclysmic events. Having no electrical charge and interacting only weakly with matter, neutrinos are special astronomical messengers. Only they can carry information from violent cosmological events at the edge of the observable universe directly towards the Earth. At the Inter-university Institute for High Energies (IIHE) in Brussels we are involved in a world wide effort to search for high-energy neutrinos originating from cosmic phenomena. For this we use the IceCube neutrino observatory at the South Pole, the world's largest neutrino telescope which is now completed and taking data.

CMS

Looking in usually ignored collisions for physics beyond the Standard Model

It is commonly agreed that the standard model is not the ultimate theory and breaks down at higher energies. One of its most famous extensions is called supersymmetry or SUSY. Even though the CERN LHC data is already extensively examined for signatures predicted by this theory, no evidence has been found. However, supersymmetric models in which particles would have large lifetime (so would seem not to come from the collision point), have been mostly overlooked until now. IIHE physicists have performed a search that focuses on checking the LHC data for evidence of such a model. The picture depicts the transverse view of the CMS interaction point, showing a typical event from one of the possible signal with long life time. The definition of the leptons' impact parameter, d0, which is largely correlated with to the particle lifetime, is shown by the arrows.

CMS

The needle in the haystack

Physicists working in the CMS experiment regularly have to spend their time searching for a needle in a haystack. In other words we look for the rarest of rare collisions that represent very unlikely physics processes. An example of work done at the IIHE is the search for the production of four top quarks (the needle) in the huge dataset recorded by CMS in 2012 (the haystack). Our results put an extremely tight limit on the production of four top quarks, indeed the tightest limit at the LHC so far. As four top quarks are also produced in many new theories of physics such as supersymmetry, this limit can tell us a lot about the validity of these theories.

IceCube

IceCube results challenge current understanding of Gamma Ray Bursts

Favoured candidates for the emission of Ultra High-Energy Cosmic Rays are Active Galactic Nuclei (AGN) and Gamma Ray Bursts (GRB), both spectacular emitters of high-energy gamma rays arising from particle acceleration in relativistic jets. However, the composition of the particles involved in these processes as well as the acceleration mechanism are very uncertain. The IceCube Neutrino Observatory at the South Pole is honing in on how the most energetic cosmic rays might be produced. IceCube is performing a search for cosmic high-energy neutrinos, which are believed to accompany cosmic ray production, and as such explores the possible sources for cosmic ray production. In a paper published in the 2012 April 19 issue of the journal Nature (Volume 484, Number 7394), the IceCube collaboration describes a search for neutrino emission related to 300 gamma ray bursts observed between May 2008 and April 2010 by the SWIFT and Fermi satellites. Surprisingly, no related neutrino events were found - a result that contradicts 15 years of predictions and challenges most of the leading models for the origin of the highest energy cosmic rays, as shown in the figure.

IceCube

First results from a realistic modeling of radio emission by particle cascades in ice

In the previous decade several new experiments (ANITA, NuMoon, ARA, ARIANNA) were proposed to detect high energy (>EeV) neutrino induced particle cascades in dense media such as ice, salt, and moon rock. At the highest energies, these neutrino's are extremely rare and a large detector volume is needed to detect them. Due to the long attenuation length, the detection of the produced radio signals is the most promising tool to search for these rare events. In light of these new experimental efforts, the EVA-code, originally constructed to model radio emission from cosmic-ray-induced air showers, is under development to model radio emission from particle cascades in the South-Pole ice. The ice geometry is included into the code, as well as a parameterized model for the particle cascade. Furthermore, the original EVA-code already incorporated Cherenkov effects in the emission for radio signals moving on curved paths due to a density gradient in the medium. The figure below shows a preliminary result for the electric field as seen by an observer positioned at the ice-air interface. The particle cascade starts at 330 meters depth traveling approximately 10 meters straight upward in the ice until it dies out. The pulses as seen by observers at different lateral distances ranging from 10 m to 300 m are shown. It is seen that the pulse becomes sharper moving outward toward the Cherenkov cone at a lateral distance of approximately 330 meters."

CMS

Pinning down the bottom, charm and top quark

The bottom quark, discovered in 1977, is special, as in LHC collisions it usually lives in unstable particles that travel a few millimeters before they transition into particles that physicists can identify with our very accurate tracking detectors. At the IIHE we are leading the effort in the CMS experiment to identify bottom (or beauty) quarks. Bottom quarks are also extremely useful to identify top quarks, the heaviest known elementary particle, and Brout-Englert-Higgs bosons. At the IIHE we are also developing the tools to distinguish collisions containing bottom quarks from those where charm quarks are produced. This will be extremely useful to study how often top quarks decay to charm quarks instead of b-quarks, a very rare process in the Standard Model that if larger than expected would be a convincing sign for new physics!

CMS

Monojets as a possible signature for dark matter production at the Large Hadron Collider

Dark Matter is, almost a century after it was conceived, still only known to us through gravitational effects. Depending on its properties, there exists the exciting possibility of producing dark matter particles at colliders like the LHC. With the CMS detector, IIHE scientists search for direct production of dark matter particles in collisions like the one shown here: a jet (a spray of particles from a quark or gluon) recoiling against particles that escapes detection. This particular collision was the highest energy event of this type recorded by the CMS detector so far. Although it is most probably a background collision, dark matter could manifest itself in our detector exactly in such a "monojet" signature.

CMS

The Compact Muon Solenoid forward tracker was partly built at the IIHE.

Here you see the assembly of several of the (black) support structures on which the tracker detectors were mounted. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector ever built. Other contributions were made to the assembly of detector modules and the installation on the detector. Each detector element can identify the path of charged particles to a precision of up to 1/100 millimeters.

  IIHE - Copyright © 2010-2015