IIHE people

 

Experiments

 

Directions

IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.

IceCube

IceCube results challenge current understanding of Gamma Ray Bursts

Favoured candidates for the emission of Ultra High-Energy Cosmic Rays are Active Galactic Nuclei (AGN) and Gamma Ray Bursts (GRB), both spectacular emitters of high-energy gamma rays arising from particle acceleration in relativistic jets. However, the composition of the particles involved in these processes as well as the acceleration mechanism are very uncertain. The IceCube Neutrino Observatory at the South Pole is honing in on how the most energetic cosmic rays might be produced. IceCube is performing a search for cosmic high-energy neutrinos, which are believed to accompany cosmic ray production, and as such explores the possible sources for cosmic ray production. In a paper published in the 2012 April 19 issue of the journal Nature (Volume 484, Number 7394), the IceCube collaboration describes a search for neutrino emission related to 300 gamma ray bursts observed between May 2008 and April 2010 by the SWIFT and Fermi satellites. Surprisingly, no related neutrino events were found - a result that contradicts 15 years of predictions and challenges most of the leading models for the origin of the highest energy cosmic rays, as shown in the figure.

CMS

Shown here is a result of the 2012 LHC run at the Compact Muon Solenoid,

studying the invariant mass of electron pairs produced at the Large Hadron Collider. Shown is the data, as black dots, and the simulation predicting what we should expect according to the particle physics Standard Model (coloured bands). The IIHE is actively involved in the study of this kind of collisions, in collaboration with other groups of the CMS experiment. The data points agree very well with the predictions from the Standard Model, which means that up to now no new physics beyond the Standard Model could be observed that produces electron pairs. This could change when the LHC runs at a higher collision energy in 2015 and the high mass region to the right of the spectrum can be explored. New physics could show up as a peak in the high mass region of the spectrum, and could look like a small version of the peak of the Z boson that can be seen at a mass of about 90 GeV.

IceCube

IIHE students at the South Pole

At the Inter-university Institute for High Energies (IIHE) in Brussels we are involved in a world wide effort to search for high-energy neutrinos originating from cosmic phenomena. For this we use the IceCube neutrino observatory at the South Pole, the world's largest neutrino telescope which is now completed and taking data.Here you see a really cool phenomenon made by ice crystals that are drifting in the air at low levels and acting as prisms for the light rays passing through them. In this way, a halo around the sun is visible. In this picture, IIHE PhD Student David put his head in front of the sun and the halo becomes visible more easily.

IceCube

Dark matter searches with IceCube

According to the most recent observations and based on the standard model of cosmology, dark matter makes up 26.8% of the energy density in our Universe The argument that yet to be detected Weakly Interacting Massive Particles (WIMPs) make up the dark matter is compelling. Over time, WIMPs may accumulate in the center of the Sun and Earth, and annihilate with each other. The decay products may vary, and most of them will interact and decay in the massive body. If neutrinos are created from those secondaries, they will escape and provide a neutrino flux. This neutrino flux could be measured by the IceCube Neutrino Detector. Data taken by AMANDA and IceCube have been analysed at the IIHE to search for WIMPs in the centre of the Sun and Earth; no significant excess above background was observed so far.

CMS

Candidate top quark +W boson collision event at CERN

Shown is a candidate collision event from the 2010 LHC run that was selected in the search for one top quark associated with a W boson at the Compact Muon Solenoid experiment at CERN. IIHE scientists are leading the analysis effort in the detailed study of these kind of collisions. Understanding single top production is relevant both for the detailed understanding of the physics of top quark production but also in the context of the Standard Model Quantum Chromodynamics in general as this process is special because of the production of a single heavy quark in association with a gauge boson. This event topology is very similar to that expected for new physics or the elusive Higgs boson, for which this kind of events are a background.

Phenomenology

The pheno group — A hint for supersymmetry?

Particle physics phenomenology studies the implications of a theoretical model on experiments in high-energy particle physics and the other way round. From the experimental side, the CMS Collaboration observed in a certain search region 12 events more than expected based on the Standard Model of Particle Physics. Can this be explained by theories that go beyond the Standard Model like supersymmetry? Scientists from the pheno group at the IIHE as well as from the theory group at the ULB collaborated to answer this question. The figure shows how the number of events predicted by a simple supersymmetric model depends on the parameters of the model. The two free parameters, the mass of the stau and the selectron, are shown on the x- and y-axis while the number of events is indicated by the colours. Since we are looking for 12 events coming from new physics, we see from the figure that the model with selectron mass 145 GeV and stau mass 90 GeV can account for the observation of CMS.

CMS

Looking in usually ignored collisions for physics beyond the Standard Model

It is commonly agreed that the standard model is not the ultimate theory and breaks down at higher energies. One of its most famous extensions is called supersymmetry or SUSY. Even though the CERN LHC data is already extensively examined for signatures predicted by this theory, no evidence has been found. However, supersymmetric models in which particles would have large lifetime (so would seem not to come from the collision point), have been mostly overlooked until now. IIHE physicists have performed a search that focuses on checking the LHC data for evidence of such a model. The picture depicts the transverse view of the CMS interaction point, showing a typical event from one of the possible signal with long life time. The definition of the leptons' impact parameter, d0, which is largely correlated with to the particle lifetime, is shown by the arrows.

CMS

The Compact Muon Solenoid forward tracker was partly built at the IIHE.

Here you see the assembly of several of the (black) support structures on which the tracker detectors were mounted. The IIHE contributed to the construction of the over 200 square meter silicon tracker, the most ambitious particle tracking detector ever built. Other contributions were made to the assembly of detector modules and the installation on the detector. Each detector element can identify the path of charged particles to a precision of up to 1/100 millimeters.

  IIHE - Copyright © 2010-2015