IIHE people

 

Experiments

 

Directions

IIHE - Interuniversity Institute for High Energies (ULB-VUB)

The IIHE was created in 1972 at the initiative of the academic authorities of both the Université Libre de Bruxelles and Vrije Universiteit Brussel.
Its main topic of research is the physics of elementary particles.
The present research programme is based on the extensive use of the high energy particle accelerators and experimental facilities at CERN (Switzerland) and DESY (Germany) as well as on non-accelerator experiments at the South Pole.
The main goal of this experiments is the study of the strong, electromagnetic and weak interactions of the most elementary building blocks of matter. All these experiments are performed in the framework of large international collaborations and have led to important R&D activities and/or applications concerning particle detectors and computing and networking systems.
Research at the IIHE is mainly funded by Belgian national and regional agencies, in particular the Fonds National de la Recherche Scientifique (FNRS) en het Fonds voor Wetenschappelijk Onderzoek (FWO) and by both universities through their Research Councils.
The IIHE includes 19 members of the permanent scientific staff, 20 postdocs and guests, 31 doctoral students, 8 masters students, and 15 engineering, computing and administrative professionals.

IceCube

IIHE at the ICRC!

The 34th International Cosmic-Ray Conference took place in The Hague, The Netherlands from July 30 to August 6, 2015. More than 800 physicists attended the conference to discuss the latest progress in cosmic-ray and solar physics. Furthermore, recent developments in gamma-ray and neutrino astronomy as well as the hunt for dark matter were covered. The IIHE was clearly represented with 8 posters and 3 talks. Our members presented their results on the Earth WIMP (Weakly Interactive Massive Particles) searches, a possible dark matter candidate, and on multiple analyses that aim to find the sources of neutrinos emission with the IceCube Neutrino Observatory. We focus our attention on: sources with spatial extension in the sky (from 1° to 5°), Gamma-Ray Bursts - extremely energetic explosion possibly associated with the death of a star, Dust Obscured Blazars - a special type of galaxies - and solar flares. The Askaryan Radio Array (ARA) as well as a totally new way to observe high energy neutrinos using radar detection were the subject of two talks! Also, two of our new members presented their previous work on the Cherenkov Telescope Array (CTA) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The 35th ICRC will take place in Busan, South Korea, where we hope the IIHE will be even better represented!

CMS

The needle in the haystack

Physicists working in the CMS experiment regularly have to spend their time searching for a needle in a haystack. In other words we look for the rarest of rare collisions that represent very unlikely physics processes. An example of work done at the IIHE is the search for the production of four top quarks (the needle) in the huge dataset recorded by CMS in 2012 (the haystack). Our results put an extremely tight limit on the production of four top quarks, indeed the tightest limit at the LHC so far. As four top quarks are also produced in many new theories of physics such as supersymmetry, this limit can tell us a lot about the validity of these theories.

IceCube

The IceCube neutrino observatory at the South Pole is the world's largest neutrino telescope, completed in 2011 and taking data since 2005!

The detector is composed of 80 strings of 60 sensors deployed in the Antarctic glacier, between 1500 and 2500 m of depth. As its name suggests, IceCube covers an instrumented volume of one cubic kilometer. The DeepCore extension of IceCube is composed of 6 additional string in the center of the IceCube array, where the puriest ice can be found. At the surface, the IceTop air shower array equiped each IceCube string with 2 pairs of sensors in an ice tank of 3 square-meter.

IceCube

IIHE students at the South Pole

Falling off the earth is a serious risk at the South Pole. Down there, at the very end of the world, everything is different.. At the Inter-university Institute for High Energies (IIHE) in Brussels we are involved in a world wide effort to search for high-energy neutrinos originating from cosmic phenomena. For this we use the IceCube neutrino observatory at the South Pole, the world's largest neutrino telescope which is now completed and taking data.

IceCube

Astroparticle Physics revolves around phenomena that involve (astro)physics under the most extreme conditions.

Cosmic explosions, involving black holes with masses a billion times greater than the mass of the Sun, accelerate particles to velocities close to the speed of light and display a variety of relativistic effects. The produced high-energy particles may be detected on Earth and as such can provide us insight in the physical processes underlying these cataclysmic events. Having no electrical charge and interacting only weakly with matter, neutrinos are special astronomical messengers. Only they can carry information from violent cosmological events at the edge of the observable universe directly towards the Earth. At the Inter-university Institute for High Energies (IIHE) in Brussels we are involved in a world wide effort to search for high-energy neutrinos originating from cosmic phenomena. For this we use the IceCube neutrino observatory at the South Pole, the world's largest neutrino telescope which is now completed and taking data.

IceCube

IceCube observes first hint of astrophysical high-energy neutrinos

Two neutrino candidate events detected at the IceCube Neutrino Observatory, dubbed "Bert and Ernie", are the two highest energy neutrinos ever observed so far, with an estimated deposited energy of about 1 PeV. The IceCube event displays of these two events are shown in the figures below, where for comparison one should realize that a single event covers an area comparable with the Maracana football stadium in Rio de Janeiro! The probability that these two events are not background, i.e. anything else in the detector besides astrophysical neutrinos, is at the 2.8 sigma level and does not allow claiming a first observation of astrophysical neutrinos. Further details may be found in Physical Review Letters 111 (2013) 081801. To improve the detection sensitivity, a follow-up search on the same data period has been conducted. The new analysis selects high-energy neutrino events with vertices well contained in the detector volume and exploits veto algorithms by using the outer layers of IceCube sensors. By means of this new analysis method 26 new events have been detected. The entire sample of 28 events has properties consistent in flavour, arrival direction and energy with generic expectations for neutrinos of extraterrestrial origin.

CMS

Looking in usually ignored collisions for physics beyond the Standard Model

It is commonly agreed that the standard model is not the ultimate theory and breaks down at higher energies. One of its most famous extensions is called supersymmetry or SUSY. Even though the CERN LHC data is already extensively examined for signatures predicted by this theory, no evidence has been found. However, supersymmetric models in which particles would have large lifetime (so would seem not to come from the collision point), have been mostly overlooked until now. IIHE physicists have performed a search that focuses on checking the LHC data for evidence of such a model. The picture depicts the transverse view of the CMS interaction point, showing a typical event from one of the possible signal with long life time. The definition of the leptons' impact parameter, d0, which is largely correlated with to the particle lifetime, is shown by the arrows.

IceCube

IceCube results challenge current understanding of Gamma Ray Bursts

Favoured candidates for the emission of Ultra High-Energy Cosmic Rays are Active Galactic Nuclei (AGN) and Gamma Ray Bursts (GRB), both spectacular emitters of high-energy gamma rays arising from particle acceleration in relativistic jets. However, the composition of the particles involved in these processes as well as the acceleration mechanism are very uncertain. The IceCube Neutrino Observatory at the South Pole is honing in on how the most energetic cosmic rays might be produced. IceCube is performing a search for cosmic high-energy neutrinos, which are believed to accompany cosmic ray production, and as such explores the possible sources for cosmic ray production. In a paper published in the 2012 April 19 issue of the journal Nature (Volume 484, Number 7394), the IceCube collaboration describes a search for neutrino emission related to 300 gamma ray bursts observed between May 2008 and April 2010 by the SWIFT and Fermi satellites. Surprisingly, no related neutrino events were found - a result that contradicts 15 years of predictions and challenges most of the leading models for the origin of the highest energy cosmic rays, as shown in the figure.

  IIHE - Copyright © 2010-2015