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Abstract
The IceCube Neutrino Observatory was constructed to detect astrophysical neutrinos. It uses the
Cherenkov light produced by secondary particles resulting from a neutrino interaction with an ice
nucleus, to detect the passage of these elusive particles. However, identifying extremely high-energy
neutrinos within the vast amount of collected data requires efficient, robust, and precise analysis
methods. With the development of deep learning in recent years, new simulation and reconstruction
techniques, using neural networks, have been developed by the IceCube collaboration.

This work evaluates the validity of using one of these new reconstruction methods, based on a
convolutional neural network and named Event-Generator, to simulate the temporal distribution and
the number of Cherenkov photons reaching each optical module for cascade events.

For this research, the neural network has been retrained to enhance its predictions. The new model
successfully predicts the expected amount of light and accounts for light propagation effects in the
presence of the dust layer. This result shows that the use of this simulation method is promising with
lots of room for improvement.
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Introduction

For millennia, humans gazed at the heavens, relying solely on visible light for observation, as it was
the only perceptible aspect to their eyes. What began as a primarily religious practice evolved into the
field of astronomy as the study of the celestial sphere became more systematic. Over several centuries,
increasingly sophisticated lenses and telescopes were employed to explore the sky. However, in the
twentieth century, this scientific domain underwent a profound transformation due to the advance-
ments in modern physics. New methodologies emerged, grounded in the examination of cosmic rays,
gamma rays, neutrinos, and more recently, gravitational waves, supplementing the traditional analysis
of optical photons. This led to the establishment of significant terrestrial detectors such as LIGO [1]
and Virgo [2] for gravitational waves, IceCube [3], ANTARES [4], and the Pierre Auger Cosmic Ray
Observatory [5] for neutrinos and cosmic rays, alongside orbiting detectors like the Fermi [6] satellite
for gamma rays. The pooling of data from these diverse detectors heralded the emergence of a new
discipline: multimessenger astronomy.

Among these diverse sources of information, neutrinos stand out due to their ability to interact
solely via weak interaction. This has several important implications: on the one hand, neutrinos ar-
rive from their production site to earth undeflected, without being absorbed which make they the ideal
messenger, and on the other hand, it makes their detection notably challenging and necessitating the
development of increasingly sophisticated detectors. The IceCube Neutrino Observatory, deployed
between 2004 and 2010 in the ice of Antarctica, was established to detect astrophysical neutrinos.
In 2013, the discovery of the highest-energy neutrinos ever detected was officially announced. Their
energies ranging from tens of TeV to a few PeV suggest an origin beyond the solar system [7]. Since
then, other detections have taken place and the analysis of the data has made it possible to identify
individual sources of astrophysical neutrinos such as the blazar TXS 0506+056 [8], the nearby active
galaxy NGC 1068 [9] and even the galactic plane [10].

Beyond PeV energies, an additional component to the observed astrophysical flux is believed
to arise from the interaction of the ultra-high-energy cosmic rays (UHECRs) with the background
photon field in the universe (cosmogenic neutrinos). These extremely-high-energy (EHE) neutrinos
carry important information about the origin of UHECRs but are, as of now, still undetected. Recently,
IceCube has published the most stringent upper limit on the EHE neutrino flux using more than 12
years of data.

The research presented in this thesis is part of a broader endeavor to develop the next-generation
EHE analysis in IceCube, with a particular focus on improving sensitivity in the energy region where
the transition between the astrophysical and cosmogenic components occurs. To achieve this, it is
imperative to possess a large quantity of the most faithful simulations possible of events occurring
within the detector. Information such as the location, direction, and energy of the particles traversing
it is deduced from the collected Cherenkov light signature. One of the main aspects of these sim-
ulations lies in reproducing the amount of light recorded by IceCube’s digital optical modules for
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high-energy cascade events. This master’s thesis presents an assessment of the reliability of simulat-
ing the photon distribution using a new simulation method, Event-Generator [11], developed by the
IceCube collaboration. This method, based on the use of a neural network, is compared to another
technique, Photonics [12], which has been used for several years and is based on interpolating data
tables produced from Monte Carlo simulations. Both methods are then compared to the full MC sim-
ulation, for which a full propagation of the produced photons in the ice is performed. However, as
the energy of incident neutrinos increases, the number of Cherenkov photons produced grows, and
the computational power required for this step becomes significant. Several approximations are made
by conventional methods to reduce this cost. Utilizing an efficient and reliable method based on deep
learning would enable achieving this objective while reducing the necessary approximations. In this
work, the NN-based algorithm has been trained with the purpose of improving predictions on the sig-
nal distribution within the detector. The primary criterion used for an initial assessment of the quality
of the NN predictions is the comparison of the predicted total charge.

The first chapter of this work begins with a brief description of multi-messenger astronomy. It is
followed by a recapitulation of the necessary theoretical principles of neutrino-matter interactions and
of cascade events, accompanied a description of the IceCube detector in chapter 2. Next, chapter 3
provides an explanation of the steps involved in simulating an event, along with an introduction to the
three methods used to simulate the expected charge produced in each DOMs by the neutrino-induced
particle cascade. Comparison of the total collected charge at high and low energies is subsequently
presented in chapter 4. This master’s thesis concludes with chapter 5, which summarizes the main
findings and offers insights into the future of this research work.



Chapter 1

Multimessenger astronomy

During the past century, astronomy and astrophysics have undergone significant transformations in
their methodologies. Presently, there exist four distinct messengers utilized for probing the universe
within and beyond Earth’s vicinity:

• Cosmic Rays, initially proposed by Charles Wilson in 1900 and subsequently detected by Victor
Hess during a balloon expedition twelve years later.

• Gamma rays, meticulously scrutinized, particularly through various satellite missions since
1961 [13].

• Gravitational waves, whose detection in 2015 [14] was rendered feasible through Albert Ein-
stein’s theory of general relativity.

• Neutrinos, these exceedingly elusive particles conjectured by Pauli in his correspondence with
Lise Meitner on December 4, 1930 [15].

1.1 Cosmic Rays
Shortly after their existence was confirmed, cosmic rays underwent meticulous examination. Com-
prising both primary and secondary components, these rays denote high-energy particles penetrating
Earth’s atmosphere from space. Primary cosmic rays mainly consits of charged particles: 89% pro-
tons, 10% α particles (helium nuclei), and 1% heavy nuclei [16]. The cosmic-ray flux, recorded above
the atmosphere, follows a power law:

dϕ

dE
∝ E−γ (1.1.0.1)

where γ ranges from approximately γ ≈ 2.7 for the region known as the "knee" to γ ≈ 3 for the
high-energy region, termed the "ankle". This parameter is profoundly influenced by the production
mechanisms and losses incurred during the particles’ journey through space. The energy spectrum of
cosmic rays is shown on Figure 1.1.

These cosmic rays are produced by various sources. At low energies (< 10 GeV), cosmic rays
predominantly originate from the Sun. Up to the knee, cosmic rays are composed mainly of protons
of galactic origin. The primary contributors to Galactic cosmic rays are supernova remnants [18],
although they can also arise from magnetars or micro-quasars. The knne is the region in which a
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Figure 1.1: Energy spectrum of the primary cosmic ray flux [17].

transition appears in the composition of cosmic rays. Each element would break at different energies
toward other elements with lower atomic number Z, the last being iron. Finally, the ankle makes the
link between the end of this galactic component of the spectrum and the extra-galactic one.

The spectrum breaks abruptly near energies above 1019 eV, a phenomenon known as the GZK
cutoff. Discovered by K. Greisen [19] and independently by G. T. Zatsepin and V. A. Kuzmin [20]
in 1966, this occurrence is attributed to the interaction between ultra-high-energy cosmic rays (UHE-
CRs) (E > 1019 eV) and photons from the cosmic microwave background (CMB). Assuming that
UHECRs are primarily protons, the anticipated reaction involves ∆+(1232) resonance production,
subsequently leading to pion production [21]:

p+ γ → ∆+ → n+ π+

→ p+ π0 (1.1.0.2)

This process, known as photopion production, is characterized by a pronounced increase in the
effective cross section for pion-photon collisions around 1225 MeV, as depicted in Figure 1.2 [22].

In the center of mass frame of the system, assuming a head-on collision (cos θ = 1), the energy
threshold required for this reaction is:

Ep =
mπ0

4ϵ
(2mp +mπ0) ≃ 1020eV (1.1.0.3)

where mp and mπ0 denote the masses of proton (p) and neutral pion (π0) respectively, and the
average energy of the CMB is considered to be approximately ≈ 6.34× 10−4eV [23], corresponding
to the energy of the observed cutoff.
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Figure 1.2: Increase in cross sections for photopion production around 1225 MeV, the energy of the ∆+ reso-
nance [22].

1.1.1 Cosmic-ray induced air showers
Cosmic rays hitting the Earth’s atmosphere interact with the atoms in the upper atmosphere, leading
to the generation of a lot of new particles constituting secondary cosmic radiation. Subsequently,
these secondary particles decay or undergo further interactions with environmental molecules, setting
off a cascading effect known as an air shower.

Upon the initial proton’s arrival, the most prevalent secondary particles produced are pions (about
90%) and kaons (approximately 10%), forming the hadronic component of the air shower. This
cascade of particles originates from the leptonic decay of charged π and K:

π+ → µ+ + νµ π− → µ− + ν̄µ (1.1.1.1)
K+ → µ+ + νµ K− → µ− + ν̄µ (1.1.1.2)

Subsequently, the produced muons decay, generating electrons and neutrinos or anti-neutrinos:

µ+ → e+ + νe + ν̄µ µ− → e− + ν̄e + νµ (1.1.1.3)

Given that muons experience minimal energy loss traversing the atmosphere, they constitute
roughly 80% of the charged particles at sea level. Moreover, the hadronic air shower extends lat-
erally due to transverse momentum arising during particle production [24].

Neutral pions (comprising approximately one-third of the created pions) decay into a pair of pho-
tons:

π0 → γ + γ (1.1.1.4)

The photons subsequently undergo pair production, generating two electrons. As these electrons
propagate, they are deflected by the magnetic field of the nucleus and emits a photon, a process called
bremsstrahlung. The repetition of this process initiates an electromagnetic cascade. Its longitudinal
development is significantly shorter than that of the hadronic cascade, while its lateral expansion
results from multiple diffusions.
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Figure 1.3: Representation of an air shower induced by a high energy incident proton. The three components
of the cascade are represented, in blue the electromagnetic part, in red the hadronic part and in green the part
containing muons and neutrinos [25].

The only particles capable of penetrating beneath the ground surface are muons and neutrinos due
to their low cross section and production altitude, respectively. Consequently, underground muons
constitute the primary background for underground neutrino detectors.These three major components
of air showers are represented schematically in the Figure 1.3. The electromagnetic part is graphed in
blue, the hadronic in red and the muons and neutrinos which result from it in green.

1.2 Gamma rays
As their name suggests, gamma rays consist of gamma photons. Typically, γ photons are defined as
having energies ranging from 105 eV to 1014 eV, with a maximal energy of ∼ 100 TeV currently
detected for a photon [26]. One major advantage is their exceptional penetrating power as neutral ra-
diation. Consequently, these beams remain unaffected by the magnetic fields permeating the universe,
enabling a precise determination of their origin.

Various physical mechanisms contribute to the emission of gamma photons, such as synchrotron
radiation, inverse Compton scattering, π0 decay, or proton synchrotron radiation [27]. Consequently,
active galactic nuclei (AGN), particularly blazars, are prominent sources [28]. Gamma radiation also
arises from the interaction between the interstellar medium and cosmic rays, leading to the production
of numerous pions:

p+ p → p+ p+π0 (1.2.0.1)
↪→ π0 → γ + γ (1.2.0.2)
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Nevertheless, gamma-ray astronomy encounters limitations. Firstly, Earth’s atmosphere blocks
high-energy electromagnetic radiation, including γ-rays. Consequently, to observe them satellites
must be deployed outside the atmosphere. Additionally, high-energy photons interact with cosmic
microwave background (CMB) photons, resulting in processes such as:

γ + γ → e+ + e− or more rarely γ + γ → µ+ + µ− (1.2.0.3)

This process, therefore, limits the gamma-ray horizon. To provide a sense of scale, for low-energy
incident photons (approximately 1TeV), the observable distance is around 1Gpc. For energies 100
times greater, the distance remains on the order of 1 Mpc. In addition, interactions with particles in
the interstellar medium also alter particle energies, causing observed shifts in the energy spectrum
[29].

1.3 Gravitational waves
The first direct observation of gravitational waves was made in September 2015 and announced by the
LIGO and Virgo collaboration a few months later [30]. Gravitational waves manifest as distortions in
the gravitational field that traverse the universe at the speed of light1.

The sources of gravitational waves currently detectable by ground-based detectors include the
inspiral and coalescence of binary systems of compact objects like neutron stars or black holes, the
core-collapse of massive stars, and isolated neutron stars [32]. One of the principal advantages of this
astrophysical messenger is its exceptionally high propagation speed, which remains largely unaltered
even over vast distances. For the events currently observed, the distances range from Mpc to Gpc,
depending on the masses of the objects involved [32].

However, the analysis of gravitational wave detection data presents significant uncertainty regard-
ing the direction of arrival of the events. A multi-messenger approach, used to identify (for example)
their gamma-ray counterpart in the case of course where the source is considered to be able to emit
photons, helps constrain their origin [33].

1.4 Neutrinos
Neutrinos are extremely elusive particles. They are neutral in charge and weakly interacting, allowing
them to penetrate the universe largely unaffected by radiation and matter, and remain undeflected by
magnetic fields. Leveraging these unique physical properties, scientists can employ neutrinos to probe
the inner workings of the astrophysical phenomena under investigation. With few exceptions, such
as gravitational waves in certain scenarios [32], neutrinos stand as the sole messengers capable of
exploiting this advantage. Consequently, despite the challenges posed by their low interaction cross-
section, neutrinos serve as a unique messenger to study high-energy phenomena in the universe.

It has been established that there are three distinct types of neutrinos, each linked to a specific
charged lepton. These types are known as "flavors": the tau neutrino, the muon neutrino, and the
electron neutrino. As Figure 1.4 shows, they can have a wide range of energies, from 10−6 eV to
1018 eV. The source of each part of the spectrum is indicated on the graph.

1According to general relativity, the speed of propagation of gravitational waves equals the speed of light. Any future
experimental findings contradicting this would starkly challenge the theory of general relativity [31].
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Figure 1.4: Neutrino flux where each part of the spectrum is associated with its origin, including natural
sources and reactors [34].

This work focuses on extremely-high-energy (EHE) neutrinos, i.e., E > 1PeV. Generating such
energetic particles requires exceptionally powerful astrophysical environments. Several potential as-
trophysical sources have been proposed. Among them are gamma-ray bursts [35] and Active Galactic
Nuclei [36]. These particles are produced when a large number of highly accelerated hadrons en-
counter matter or photons from the surrounding medium. A chain of reactions then ensues:

p+ γ → ∆+ p+ γ → ∆+

↪→ ∆+ → π+ + n ↪→ ∆+ → π0 + p

↪→ π+ → µ+ + νµ ↪→ π0 → γ + γ

↪→ µ+ → e+ + νe + ν̄µ

The occurrence of each initial reaction depends on the surrounding matter density and the type of
accelerated particle [37].

In addition to high-energy neutrinos from cosmic accelerators, EHE neutrinos are expected to
be produced when UHECRs interact with the extragalactic background light (EBL) and Cosmic Mi-
crowave Background (CMB) photons via the ∆ resonance (as explained in ??). These cosmogenic, or
GZK, neutrinos represent a diffuse flux and can probe the nature of the enigmatic sources of cosmic
rays and the propagation of high-energy particles over cosmological distances.

Cosmogenic neutrinos contain unique information about the sources of UHECRs. The normal-
ization and shape of the neutrino flux provide insights into the cosmic ray composition, the redshift
evolution of their sources, and the maximum energy of their accelerators. Measuring the cosmogenic
neutrino flux will constrain several GZK neutrino models, offering insights into the astrophysics of
the highest energy particles ever detected.
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EHE neutrinos present a unique opportunity to observe particles of macroscopic energies that
have traveled billions of light years, revealing the maximum energy of acceleration achieved by any
astrophysical source in the Universe. Furthermore, the center-of-mass energies of their interactions,
approximately 1017 eV, surpass those of Large Hadron Collider, making them uniquely sensitive to
high-energy neutrino-nucleon cross sections and exotic scenarios for physics beyond the Standard
Model.





Chapter 2

Neutrino Astronomy with IceCube

Over the last forty years, one Nobel Prize per decade has been awarded for research directly related
to neutrinos 1. This underscores the importance and central role that the study of neutrinos holds in
modern physics. Consequently, significant funding has been allocated, particularly for the construc-
tion of advanced detectors. The IceCube Neutrino Observatory continues this legacy by enabling
groundbreaking discoveries and pushing the boundaries of theoretical physics models. Among his
major contributions to astrophysics, there is the first demonstration of a flux of EHE neutrinos [7], the
identification of the sources already cited in the introduction which are the blazar TXS 0506+056 [8],
the nearby active galaxy NGC 1068 [9] and even the galactic plane [10], as well as the first detection
of a particle shower at the Glashow resonance [38].

Although Earth is continuously bombarded by billions of neutrinos generated in the Sun and the
atmosphere, neutrino detection is challenging. Experimental neutrino research relies on detecting the
secondary particles produced when neutrinos interact with matter. To ensure effective detection, it is
crucial to thoroughly understand these interactions and the way secondary particles are emitted in the
form of a cascade.

2.1 Neutrino-matter interaction
As mentioned earlier, the key feature that makes neutrinos excellent astronomical messengers is that
they can only interact with matter through the weak interaction. They interact with both nuclei and
electrons. This process occurs through the exchange of a W± boson for charged current (CC) inter-
actions or a Z0 boson for neutral current (NC) interactions.

For energies below 100 GeV, incident neutrinos either undergo elastic CC collisions or quasi-
elastic NC collisions with hadrons. Above this energy, relevant to this work, neutrinos are directly
scattered by quarks inside the hadron in a process called deep inelastic scattering (DIS). The Feynman
diagrams for these interactions are depicted on Figure 2.1 with on the left NC and on the right for CC.
Here each line of the nucleon N represents a quark, X is an hadronic shower and l the created lepton.

11988: Leon M. Lederman, Melvin Schwartz, and Jack Steinberger for the discovery of the muon neutrino; 1995:
Frederick Reines for the discovery of the neutrino; 2002: Raymond Davis Jr. and Masatoshi Koshiba for the detection of
cosmic neutrinos; 2015: Takaaki Kajita and Arthur B. McDonald for demonstrating neutrino oscillation.
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Figure 2.1: Feynman diagrams for the DIS neutral current (left) and charged current (right) neutrino interac-
tion [42].

2.1.1 Cross-section
The cross-section of neutrinos varies greatly depending on their energy and is linked to both NC and
CC interaction channels. At high energies (above 1GeV), neutrinos interact with electrons and nuclei
of terrestrial atoms mainly through deep inelastic scattering processes:

νN
CC→ lN νN

NC→ νN (2.1.1.1)

The explicit calculation of the differential cross-section for the charged current interaction with an
isoscalar nucleon (i.e., with zero isospin) N = n+p

2
is given by

d2σCC

dxdy
=

2G2
FMNEν

π

(
M2

W

Q2 +M2
W

)2

· [xq(x,Q2) + xq̄(q,Q2)(1− y)2] (2.1.1.2)

where MN and MW are respectively the mass of the target nucleon and the W boson, Q2 the ex-
changed vector boson four momentum transfer which is involved in the definition of the Bjorken
variable x = Q2/(2Mν), y = ν/E the inelasticity with ν = Eν −El the energy loss in the lab frame,
GF the Fermi coupling constant [39]. Figure 2.2 shows the evolution of the neutrino cross-section in
the relevant energy range. Below 104 GeV, the cross-section grows linearly with the neutrino energy
because the transfer momentum is much smaller than the mass of the exchange boson (q2 ≪ MZ,W ),
and thus the contribution of valence quarks is dominant. At higher energies, these two quantities are
of the same order of magnitude, and the contribution from the sea quarks (ud,cs) becomes dominant,
causing the cross-section to enter a different regime and reducing its slope [40].

A similar reasoning can be applied to the neutral current interaction. Figure 2.2 shows the total
cross-section σ(E) combining both neutral and charged currents for neutrinos and anti-neutrinos. It
varies significantly with neutrino energy as:

σtot(E) =

∫
dxdy

d2σ

dxdy
(2.1.1.3)

Anti-neutrinos behave in the same manner. However, due to their opposite helicity, their cross-section
is approximately twice as small as that of neutrinos [25]. At energies around 1GeV, the DIS cross-
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Figure 2.2: Evolution of the cross-section of neutrinos and antineutrinos as a function of their energy. The
curve for ν̄e cross-section shows the Glashow resonance peak [41].

section can be approximated:

σνp ≈ 0.69× 10−38

(
Eν

1 GeV

)
cm2 (2.1.1.4)

σν̄p ≈ 0.35× 10−38

(
Eν

1 GeV

)
cm2 (2.1.1.5)

But this difference fades when the energy goes above ≈ 10TeV. Another interesting phenomenon
to mention regarding electron anti-neutrinos is the Glashow resonance effect. The Standard Model
predicts the resonant formation of a W− boson during the interaction of a high-energy electron an-
tineutrino with an electron occurring at E = 6.32 PeV in the reference frame of the electron. The
resonance peak is visible by plotting the evolution of the σ cross-section as a function of the antineu-
trino energy. This graph is presented in Figure 2.2.

In 2021, the IceCube collaboration reported the detection of a cascade of high-energy particles
consistent with being created at the Glashow resonance [38]. Evidence of this phenomenon indicates
the presence of electron antineutrinos in the astrophysical flux, further validating the standard model
of particle physics. Moreover, its unique signature offers a method to distinguish neutrinos from
antineutrinos, thereby enabling the differentiation of neutrino production processes in astronomical
accelerators.

2.1.2 Penetration through the Earth
From the cross-section, it is now possible to define the interaction length, representing the mean free
path of a particle before undergoing an interaction in a given medium:

λint(Eν) =
1

σνN(Eν)NA

(2.1.2.1)

where NA is the Avogadro number and is expressed in cmwe (cm water equivalent) or equivalently
g cm−2. Thus, as the cross-section increases at high energy, the interaction length decreases. Figure
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Figure 2.3: Neutrino interaction length through Earth [41].

2.3 shows the interaction length as a function of neutrino energy for a particle passing through the
center of the Earth. This length is LEarth = 1.1 × 1010 cmwe, and the energy from which the Earth
begins to become opaque to neutrinos is approximately 40 TeV.

A significant attenuation of EHE neutrinos is observed around the vertical direction and decreases
as the zenith angle of the incident neutrino increases. The only exception to this observation is a
phenomenon called tau neutrino regeneration. This occurs when a ντ of energy ≫ 1 PeV traverses the
Earth. It interacts with the nucleons in the medium and creates a tau lepton, which decays extremely
quickly, giving rise to another high-energy ντ . This process repeats many times through the Earth, and
eventually, a very low-energy ντ emerges. Thus, even though the Earth is opaque to very high-energy
ντ , this τ regeneration process allows for their detection [39].

2.2 Cascade Physics
When interacting with a nucleus in the detection medium, a neutrino creates a series of secondary
particles. Depending on the type of this particle, this can lead to two kinds of cascades. NC interac-
tions from all flavor neutrinos and CC interaction of numu and nutau will produce a hadronic cascade,
while CC interaction of nue will additionally gives rise to an electromagnetic cascade (see Figure 2.1
for reference).

2.2.1 Electromagnetic cascade
Similar to the explanation for atmospheric electromagnetic cascades, when a high-energy electron or
positron traverses a medium such as ice, it emits photons through bremsstrahlung. This phenomenon
describes the radiative energy loss of a particle deflected by a magnetic field. In this case, the elec-
tron’s trajectory is altered by the magnetic field of the ice atoms. The photons created in this process
produce electron-positron pairs, which in turn undergo bremsstrahlung. The repetition of this phe-
nomenon leads to an exponential increase in the number of particles and is called an electromagnetic
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cascade. To approach the development of this process in a simplified manner, the Heitler model is
used [25]. It considers that, at each stage of the process, an electron loses half of its energy through
bremsstrahlung until its energy falls below the critical energy EC , where losses occur through ioniza-
tion rather than radiation. In this case, the maximum number of particles is given by:

Nmax =
E

EC

(2.2.1.1)

Thus, it depends linearly on the initial energy [43].
The integrated track length, which is the sum of all individual propagation distances (Tem) of

charged particles in an electromagnetic cascade, scales linearly with the energy of the primary neu-
trino. Since the amount of emitted Cherenkov light is proportional to the track length, it also exhibits
a linear dependence on the energy.

2.2.2 Hadronic cascade
The hadronic cascade occurs when the neutrino collides with a nucleon. The particles that consti-
tute the cascade are mainly protons and neutrons, which produce charged and neutral pions. Each
neutral pion then initiates an electromagnetic cascade. Thus, by approximating that at each stage of
the process, a π0, a π+ and a π− are created, one-third of the hadronic cascade is converted into an
electromagnetic component after each step. The ratio between the track lengths due to electromag-
netic part Tem and hadronic part Thadron also represents the ratio between the quantity of Cherenkov
photons produced by each of the contributions. It is given by:

F =
Thadron

Tem

(2.2.2.1)

This factor generally increases with energy because a larger number of π0 are produced. The ratio is
therefore rewritten in terms of the electromagnetic fraction of the cascade Fem:

F = Fem + (1− Fem) · f0 (2.2.2.2)

where f0 is the relative Cherenkov activity of the hadronic part of the cascade. Fem is determined
phenomenologically as:

Fem = 1−
(

E

E0

)−m

(2.2.2.3)

The total length of the cascade is therefore calculable and the value found for en electromagnetic
cascade is T = Tem = 5.21 m GeV−1 [44]. Ultimately, electromagnetic cascades produce more
Cherenkov light than their hadronic counterparts. This is due to the fact that low-energy neutrons
(hence invisible) are generated in the cascade, that the creation of hadrons requires a lot of energy,
thus reducing the fraction of visible energy, and that hadrons have a higher energy threshold for
emitting Cherenkov photons compared to electrons [44].

2.3 The IceCube Neutrino Observatory
In November 2004, construction began in Antarctica on what would become the world’s largest neu-
trino detector. Holes with a diameter of 60 cm were drilled to a depth of 2450 m by injecting pres-
surized hot water near the Amundsen-Scott South Pole Station, an American scientific base located
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Figure 2.4: Left: Schematic representation of the IceCube Neutrino Telescope, including its"DeepCore" and
the IceTop surface detector; Right: top view representation of the distribution of IceCube strings in green and
DeepCore strings in red on a hexagonal grid [46].

just a few steps from the geographic South Pole. Each hole required approximately 34 hours of work
followed by 12 hours for the installation of the detection modules [45]. This immense project, known
as the IceCube Neutrino Observatory, is the result of an international collaboration. Its primary mis-
sion is to detect astrophysical neutrinos that had previously not been observed. Upon its completion
in 2011, IceCube marked the beginning of EHE neutrino astronomy, opening a new window to the
universe.

2.3.1 Detector properties
As depicted on the left-hand side of Figure 2.4, the detector consists of 5160 Digital Optical Modules
(DOMs). These instruments are glass spheres with a diameter of 25 cm, housing a photomultiplier
tube (PMT) on the bottom face to collect the Cherenkov light produced by charged particles resulting
from neutrinos’ interaction with nucleons or electrons in the ice. The bottom hemisphere is filled
with silicone gel for optical coupling and contains a metal wire cage that provides protection against
magnetic effects while the other hemisphere holds the entire electronic board [47]. A schematic and
a picture of the DOM is shown in Figure 2.5. These optical sensors are placed on 86 strings, spaced
125 m apart, following a hexagonal grid and instrumenting a total volume of 1km3. Each string
holds 60 DOMs spaced 17 m apart. The detector has been designed to achieve the best sensitivity
to neutrinos with energies ranging from 1 TeV to 1 PeV [48, 49]. An infill of the IceCube detector,
called DeepCore, deploys 7 additional densely instrumented strings. DeepCore has been designed to
lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as
about 10 GeV [50]. The strings and DOMs are named according to their positions on the hexagonal
grid and along the string, respectively. The string numbers are shown in Figure 2.4, and the DOMs are
numbered from 1 to 60 starting from the top. Each specific DOM is then identified using a coordinate
pair (string, DOM).

In addition to this underground part, the IceCube Neutrino Observatory is supplemented by a
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Figure 2.5: Representation on the left and photography on the right of an IceCube digital optical module
(DOM) [52].

surface component called IceTop. It consists of 162 Cherenkov tanks (filled with "pure water" which
froze to ice) arranged in pairs over a 1 km2 surface at a distance of 125m from each other, above the
position of each string. Each tank has two DOMs, identical to those buried in the ice. It is located
at 2835 m above sea level and is built to detect atmospheric air showers of energies similar to those
of the ’in-ice’ detector [51]. While capable of detecting air showers and the passage of atmospheric
neutrinos and muons, IceCube’s primary goal is the detection of astrophysical neutrinos. Therefore,
muons and neutrinos generated in the atmosphere represent a significant background.

2.3.2 IceCube coordinates
The coordinate system used in IceCube is centered at a point as close as possible to the center of the
detector at a depth of 1948.07 m. It is possible to use two representations:

1. a classic right-handed Cartesian system. From its origin, the x̂ axis is oriented along the 90-th
Meridian East, the ŷ axis along the Greenwich Meridian, and the ẑ axis towards the surface,
perpendicular to the other two. For example, the sensor closest to the origin of this reference
frame is DOM (36,30) located at the position (+46m, -35m, +7m).

2. a spherical coordinate system. A common triplet (r, θ, ϕ) is then employed. The angle θ is the
zenith, defined as the angle between the vertical ẑ and the line connecting the particle to the
origin, and ϕ is the azimuthal angle, described as the projection of this same line in the x − y
plane measured counterclockwise from the +x axis. In this reference frame, the northern sky is
defined as the part of the celestial sphere with θ > 90 deg, i.e., the northern hemisphere seen
from the South Pole. This reference frame is used to refer to the direction of the particle passing
through the detector.

Thus, most of the time, a particle is located within the detector using the five coordinates (x, y, z, θ, ϕ),
the first three giving its position and the last two characterizing its direction [53].



The IceCube Neutrino Observatory 18

2.3.3 Detection Principle
The neutrino-matter interaction creates a hadronic and possibly electromagnetic cascade of relativistic
secondary particles, which can be detected through the Cherenkov light they produce in the ice.

Cherenkov radiation

In 1934, during his thesis, Pavel Alekseyevich Cherenkov observed a faint emission of continuous
spectrum in a volume of transparent liquid. He explained the reasons for this in an article four years
later [54] and was awarded the Nobel Prize for this discovery in 1958. In this paper, he explained
that when a charged particle traverses a dielectric medium at a speed greater than that of light in this
same medium, some of its energy is transferred to the surrounding polar molecules. These molecules,
attracted by the charge, align themselves as the particle passes through. Upon returning to their initial
state, they emit light. Thus, if the charged particle has a speed greater than that of light, this collective
effect of the medium’s molecules results in a coherent conical electromagnetic emission, known as
Cherenkov radiation [55].

Figure 2.6: Illustration of emission of Cherekov radiation [56].

The threshold for production of Cherenkov radiation is given by:

vpart = β · c > cmed =
c

n
⇒ β >

1

n
(2.3.3.1)

where c and cmed are respectively the speed of light in vacuum and in the medium, vpart the particle
speed, β the Lorentz factor and n the refractive index of the medium.

IceCube utilizes the extremely transparent ice of the Antarctica as its (natural) detection medium.
The properties of this ice have been studied in detail, and the average refractive index of deep ice
is established to be close to n ≈ 1.78 at IceCube’s depth2 [57]. Thus, the particle emits light at a
characteristic angle called the Cherenkov angle, which is obtained via the following relation:

cos θC =
c/n

β · c
=

1

βn
(2.3.3.2)

2Obviously, these values are not constant throughout the detector and must be adjusted at each point of the detector.
For more information, the reader is referred to [58].
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Figure 2.7: From left to right, cascade signature, track signature and double bang signature. The color in-
dicates the arrival time, with red representing earlier detection times and green representing later detection
times. The size of the colored spheres represents the amount of photons collected by the DOM [59].

For a relativistic particle (β ≈ 1) and assuming a constant index of refraction (n = 1.78), the
Cherenkov angle has a value of θC ≈ 56◦ [58].

Signatures and detection rate

IceCube uses the total charge collected by the DOMs and the photons arrival time to infer neutrino
properties such as energy and direction. Depending on the primary neutrino interaction type, three
different in-ice signatures can be detected [60, 61]:

• Cascades: They originate from an electromagnetic or hadronic shower resulting from a CC
interaction of νe or ντ and NC interaction of neutrinos of all flavors. The secondary particles
composing the cascade move radially from the vertex. Furthermore, due to the spacing of the
DOMs and the scattering of photons during their journey through the ice, these cascades possess
an almost spherical light distribution, clearly visible in the left part of Figure 2.7.

• Tracks: They are created by a CC interaction of νµ. The central illustration of Figure 2.7 shows
an example of the track generated by the produced muon. This track-like shape is formed by
the Cherenkov light emitted by the muon as well as the hadronic cascade that appears at one
of its ends. Above TeV energies, these tracks have typical lengths on the order of kilometers,
which is too large to be fully contained within the detector.

• Double bang: It occurs during the CC interaction of a ντ following ντ + N → τ + X . This
interaction generates a visible hadronic cascade in the detector. The τ has a lifetime of 29 ps
during which it propagates. However, when Eντ is in the PeV range, it does not have enough
time to exit the detector (it travels roughly 50m) before decaying via: τ− → µ+ + ν̄µ + ντ (BR
≈ 18%), τ− → e− + ν̄e + ντ (BR ≈ 18%) or τ− → ντ + meson (BR ≈ 64%) This gives rise to
a second cascade also visible in IceCube. An example of this event is shown in Figure 2.7.

It is possible to approximate the neutrino detection rate of the IceCube detector. Since the first
two types of events described above are predominant in the detector, it is acceptable to estimate this
rate by calculating the flux of muon tracks and cascades appearing in the detector [25]:

R(Evis, θ) =

∫
Evis

Pν→ℓ(Eν , Evis)Pshadow(θ, Eν)
dNν

dEν

dEν (2.3.3.3)

This formula encompasses three fundamental components:
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Figure 2.8: Atmospheric background in IceCube, including muons and neutrinos from cosmic-ray-induced air
showers (left) and Atmospheric background flux (right). Credit: J.A. Aguilar.

• The likelihood of a neutrino generating a detectable event within the detector, either by produc-
ing a lepton or a particle cascade. The probability is expressed as:

Pν→l = NA

∫ Eν

Emin

dEl
dσ

dEl

rl(El, Evis) (2.3.3.4)

where rl denotes the detection range necessary for generating the lepton (µ) or the EM or
hadronic cascade with an energy of El. The event must attain a final energy of Evis in order to
generate a detectable amount of light, and dσ

dEl
represents the neutrino interaction cross-section.

• The attenuation of the neutrino flux as it traverses the Earth. Consequently, Pshadow signifies
the probability that a neutrino, arriving at a zenith angle θ with energy Eν , is absorbed by the
Earth. By defining ξ(θ) as the column depth of Earth traversed by the neutrino with a zenith
angle θ, and recalling that the mean free path of the neutrino is delineated by equation 2.1.2.1,
the attenuation of the Earth is computed as:

Pshadow = e−NAσtotX(θ) (2.3.3.5)

• The incident neutrino flux at surface, denoted as dNν

dEν
.

Atmospheric background

Thanks to its large volume and high sensitivity, IceCube collects an impressive amount of data at a
rate of approximately 3 kHz.

Figure 2.8 shows the atmospheric background in IceCube, including muons and neutrinos from
cosmic-ray-induced air showers, cf. section 1.1.1. Atmospheric muons represent the most significant
contribution in the Southern Sky (downward-facing region), while they can be filtered out by look-
ing at the Northern Hemisphere, as they cannot traverse the Earth. However, atmospheric neutrinos
represent an irreducible background (with a rate of mHz) for astrophysical searches, since they can
traverse the Earth and cannot be removed using the Earth as a filter. It is often only possible on a
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statistical level to differentiate between astrophysical and atmospheric neutrinos because an event-
by-event classification is impossible. In this situation, the neutrino energy spectrum is often used to
improve the distinction.

For the contribution coming from the South, an outer layer of DOMs is considered a veto zone
for neutrino interaction vertices (see Figure 2.9). Thus, only events occurring inside the detector are
retained, i.e., those for which the DOMs veto layer don’t receive any light [61].

Figure 2.9: Veto Zone in IceCube: aerial view (left) and sectional view (right) [61].

As explained previously, the use of the earth as a filter has an impact on the detection of neutrinos
with energies greater than 1 PeV. Indeed, as their cross section increases, they interact by crossing
the Earth, only allowing their detection close to the horizon in the Northern hemisphere.

Data format

All the data collected (or simulated) is stored in .i3 files. The objective of this format is to compress a
large amount of information into minimal memory space. The data is meticulously organized within
.i3 files, consisting of a series of frames containing precise information. These frames can vary in
nature depending on their content: Physics (P), Data Acquisition (Q), Detector Status (D), Calibration
(C), Geometry (G), Tray Info (T) and Simulation (S). The Q type is arguably the most crucial as it
contains event information along with detector readings, whereas other types of frames typically
contain information about the detector, ice, etc., such as G frames. Different event data is distributed
within these frames in the form of I3Table, identified by a key, representing the types of data contained
therein. Another noteworthy frame type is the P frame, which exclusively contains event-related
information derived from the Q frames through a separation process [62].

While the initial format is adept at storing and transferring data, it’s less ideal for analysis pur-
poses. Hence, .i3 files are often converted into .hdf5 format, where only a subset of the data (chosen
by the analyzer) is retained. Similar to .i3 files, data in .hdf5 format is organized into groups within
which named datasets are stored [63].

2.3.4 Reconstruction methods for cascade events
Finally, these data are analyzed, and the main characteristics of the event are determined through its
reconstruction. The IceCube collaboration has developed several different reconstruction techniques
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for different event signatures and energies. They have in common that they typically rely on using a
predictive model to fit an event hypothesis to the measured data using a likelihood model.

A common example is a technique that uses a cascade template composed of numerous spline
tables generated for cascades of various vertex positions and directions of incidence via Monte Carlo
simulation explained in detail in the 3.2.2 section. It utilizes a log-likelihood method to determine
which simulation best matches the recorded data to infer the properties of the event [64].

For instance, the total energy deposited by a cascade can be determined by comparing the number
of photons measured at every DOM with the predicted one via spline tables. Since photon detection
follows a Poisson distribution, the probability of detecting k photons when the average number of
detected photons is λ, is given by:

P (k;λ) = L =
λk

k!
e−λ (2.3.4.1)

Since the spline tables are generated with a constant energy E0, the prediction for a cascade with an
arbitrary energy E is obtained by linearly scaling the mean predicted number of photons with the
energy λ′ = E/E0λ. Equation 2.3.4.1 thus becomes energy-dependent:

L =
(Eλ)k

k!
e−Eλ (2.3.4.2)

The following equality can be established directly:

lnL = k ln(Eλ)− Eλ− ln(k!) (2.3.4.3)

It is then possible to maximize the likelihood with respect to energy by considering the detection
made by each DOM:

0 =
∂Σ lnL
∂E

∣∣∣∣
E=Emax

=
∑

DOMsj

(
kjλj

Eλj

− λj

)
=
∑ kj

Emax

−
∑

λj (2.3.4.4)

The most probable energy Emax that results in detecting k photons is given by:

E =
∑

kj/
∑

λj (2.3.4.5)

These calculations are generalized by adding a term ρ representing the number of photons generated
by the detector noise. Thus, the mean is given by λ = λE + ρ and Equation 2.3.4.3 becomes:

lnL = k ln(Eλ+ ρ)− (Eλ+ ρ)− ln(k!) (2.3.4.6)

The maximization is then expressed as:

0 =
∑(

kjλj

Eλj + ρj
− λj

)
(2.3.4.7)

The energy that maximizes the likelihood of detecting k photons is obtained by applying gradient-
descent numerical minimization algorithms to the following equation:∑

λj =
∑ kjλj

Eλj + ρj
(2.3.4.8)

It is possible to include a time dependence by evaluating the probability not per DOM, but per time
interval. However, this only slightly improves the energy reconstruction but is crucial for direction
reconstruction [65].



Chapter 3

Simulation in IceCube

The IceCube detector is designed to capture Cherenkov photons emitted by ultra-relativistic parti-
cles created during the interaction between a neutrino and an ice nucleus. It records the temporal
distribution and flux of photons captured by the DOMs.

The goal of a simulation is to replicate these data as accurately as possible. To achieve this, the
used algorithms must be capable of recreating the following elements in sequence:

1. the neutrino-nucleon interaction,

2. the creation and propagation of secondary particles,

3. the emission and propagation of Cherenkov photons emitted by these particles,

4. the detector response,

5. the simulation of electronic noise and background from air showers.

Each of these steps has been implemented (in C++ or Python) and can be used within the Ice-
Cube’s core software framework IceTray, a comprehensive suite designed to establish a cohesive
analysis environment, accommodating simulation, reconstruction, and analysis modules seamlessly.
This framework encompasses various integral components, including Dataclasses for efficient data
storage, the event viewer, Input/Output file utilities, and versatile tools facilitating interaction with
external services like databases [66].

3.1 Simulation Steps and Software
The simulation process is intricate and multifaceted, requiring a diverse set of software tools tailored
to different stages. Furthermore, the steps involved in producing the final signal exhibit diverse for-
mats. Figure 3.1 describes the simulation steps and Figure 3.3 shows the data types contained within
the I3Frames, produced at each stage of the event simulation and reconstruction in IceCube.

3.1.1 Primary Particles, Vertex, and Secondary Particles
IceCube detects different type of events as described in section 2.3.3. Given the significant differences
among these particles, it is impractical to simulate them all in a single process. Hence, various
software packages have been used, each specializing in a particular simulation domain.

23
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Figure 3.1: Software tools used for successive stages of simulation in IceCube [67].

• The CORSIKA software, short for COsmic Ray SImulation for KAscade, is utilized to replicate
the cosmic-ray air showers detected by IceTop. Employing a Monte Carlo technique, COR-
SIKA accurately models the trajectories of primary particles, such as protons, photons, nuclei
up to iron, or other particles, through the atmosphere until their decay or interaction with an air
molecule. In the second case, the software also simulates the Extensive Air Showers initiated
along the propagation direction. This framework can effectively simulate events ranging from
1012 to 1020 eV in energy [68].

• As mentioned earlier, atmospheric muons are abundantly produced in the atmosphere, penetrat-
ing the ice surface and reaching the detector. For these events, a Monte Carlo generator known
as MuonGun is employed. This tool, based on CORSIKA simulations, parametrizes the flux
of atmospheric muons reaching the detector’s depth, allowing for the simulation of only those
muons contributing to the detection process, thereby optimizing computational efficiency [69].

• Various codes are available for simulating neutrinos and their interactions in the ice. Among
these, NuGen (Neutrino Generator) and LeptonInjector are the most commonly used. NuGen
synthesizes a neutrino of a particular flavor and determines its energy and direction of incidence
(θ, ϕ), the zenith and azimuthal angles. It injects the particle or its antiparticle with a (1 : 1)
ratio at at a certain distance from the surface of Antarctica (depending on the particle’s energy).
Subsequently, the software propagates the neutrino through the Earth and makes it interact
if necessary. The code takes into account both charged and neutral interactions with Earth’s
nuclei, as well as the Glashow resonance and tau regeneration, both explained in section 2.1.
Secondary particles are then absorbed by the Earth, and the simulation stops unless a second
neutrino is created, in which case it continues its path.

If the neutrino reaches the detector, NuGen, using an occurence probability, simulates a vertex
within the detection volume. The NC and CC interactions are both considered. NuGen also
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manages the situation in which multiple neutrinos would arrive simultaneously at the detector
except the situation where two neutrinos interact simultaneously. The probability of the latter
case occurring is so low that if it were to happen, NuGen would choose one of only two neutri-
nos to interact. Finally, secondary particles, including electromagnetic and hadronic cascades
resulting from them, are created with their own direction and energy [70].

LeptonInjector operates on the same principle as NuGen, except that the interaction weight-
ing part is included in an additional component of the software called LeptonWeighter. Like
NuGen, its generation is Monte Carlo-based [71].

• The PROPOSAL (Propagator with Optimal Precision and Optimized Speed for All Leptons) is
a Monte Carlo-based software used to simulate muon and tau propagation through a transparent
medium. This software pays special attention to the numerous physical phenomena associated
with this propagation, such as ionization, bremsstrahlung, photonuclear interactions, electron
pair production, etc., as well as the treatment of uncertainties in the simulations [72].

The simulation volume is therefore different from the effective detection volume, as the simulation
begins outside the detector and can continue after passing through it, as in the case of muons. The
primary and secondary particles created during these simulations are stored in a Q frame, inside an
object called I3MCTree. They take the form of I3Particle, which is a class that manages to describe
them and their kinematics, recording some parameters. Among these, there are at least position
(3 coordinates), time, direction (2 angles), energy, length, and speed [73]. Afterwards, they are
propagated in the ice using the PROPOSAL and CMC (Cascade Monte Carlo) software to account for
interactions with the medium such as ionization, electron-positron pair production, bremsstrahlung,
photonuclear interaction, and decay.

3.1.2 Cherenkov emission and light propagation
The data collected by the DOMs are the number of photons detected and their temporal distribu-
tion. The aim of this simulation step is to accurately predict these parameters and, consequently, the
probability density function (PDF) of the arrival time of photons.

To achieve this, the Cherenkov emission by secondary particles and the propagation of each pho-
ton through the ice must be simulated. This step requires significant computational power because
the number of photons can be very high and their paths very complex.

The most accurate method relies on numerical ray tracing of each individual photon using a
Monte-Carlo (MC) simulation. Softwares like clsim [74] or PPC [75] for Photon Propagation Code
allows for this simulation but it demands computational power that increases rapidly with the event’s
energy. This is why another technique, called Photonics, was developed and has been widely used.
This method uses results from the previous approach and approximations to reduce the amount of
computation required.

In the same vein, more recently, new event reconstruction techniques based on deep learning
have been developed. The convolutional neural network Event-Generator is one of them. Giving the
success in event reconstruction of this method in particular, it is therefore interesting to adapt this tool
for event simulation, as it could address both the computational power issue and reduce the number
of approximations made. Since this work aims to evaluate the reliability of this method’s predictions
by comparing it to the other two, these techniques are discussed extensively in sections 3.2 (MC &
Photonics) and 3.3 (Event-Generator).
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Figure 3.2: Charge response function probability distribution model used to weight the MCPEs to account for
the variability in photoelectron amplification by the PMT [76].

3.1.3 Detector Response
The aforementioned methods simulate the light yield at each DOM in the from of Monte Carlo Pho-
toelectrons, abbreviated as MCPEs. To obtain a replica of the signals as collected by the detector, it is
essential to simulate the noise that occurs during detection, as well as the response of the photomulti-
pliers (PMT) and the DOM.

• The noise that appears between the production and the recording of photons consists of three
distinct parts: uncorrelated radioactive noise, uncorrelated thermal noise, and correlated noise,
all of which generate detectable photons. The first is due to the electronic properties of the
PMTs and the DOMs, which are temperature-dependent. It is simulated by a Poisson distribu-
tion:

fUncorrelated(x) =
(λ∆t)x

x!
e(−λ∆t) (3.1.3.1)

where ∆t is the simulated time window and λ is the parameter describing the rate of photons
hitting the detector, called hits, of the described process. A similar Poisson process to equation
3.1.3.1, but independent of temperature, describes the number of hits generated by the decays
occurring in the glass of the DOMs and the PMTs. Finally, the correlated noise arises from
secondary particles due to the previous decays. These produce a burst of photons through
scintillation. This large number of photons hitting the detector simultaneously is followed by a
long afterglow. The hits from this part are given by a Poisson distribution independent of the
time window:

fCorrelated(y) =
ηy

y!
e−η (3.1.3.2)

where η is an experimental parameter approximately equal to 8. Their time interval follows a
standard normal distribution:

fCorrelated(zi) =
1√
2π

e−z2i (3.1.3.3)

where zi results from the time δti between two successive hits via a log-normal distribution:

δti = 10(µ+σzi) (3.1.3.4)
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Figure 3.3: Types of data produced at each stage of event simulation and reconstruction in IceCube [67].

These three components are simulated by the software Vuvuzela, which produces modified
MCPEs data [77].

• PMTResponseSimulator takes the MCPEs created in the previous steps as input and calculates
the charge deposited on the anode at each hit. A weight corresponding to the charge carried by
the photon is assigned to each MCPE using a charge response function probability distribution
model. This model, shown in Figure 3.2, combines a Gaussian centered on a charge of 1
photoelectron and an exponential to account for low-amplitude signals. This assignment is
essential as it simulates the variability in signal amplification by the PMT.

Next, the software simulates the pre-pulses, late pulses, and after-pulses1, the variable transit
time of the photoelectrons in the PMT, the temporal resolution of the hits of 2 ns, and saturation
effects. The outputs are of the type MCPulses [67].

• The DOMLauncher code concludes this simulation sequence by replicating the behavior of the
DOM mainboard. This consists of a discriminator that imposes a temporal threshold and an
amplitude threshold for the detected signal for each DOM, local coincidence logic that ensures
the signal has been detected by several neighboring DOMs, and signal digitization. The input
signal is thus an MCPulse, while the output signal is a DOMLaunch [78].

1Pre-pulses are formed by electrons ejected from the first dynode, late pulses by electrons backscattered from the
dynode and hitting the cathode, and after-pulses result from ionizations of residual gas between the dynodes caused by
the passage of accelerated electrons.
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The different types of data obtained at each stage of the simulation are shown on the Figure 3.3.
In this case, the collected signal is obviously a DOMLaunch. To reconstruct the event properties it is
desirable to first estimate the number of photons hitting the DOM by removing the detector response
again. In this case, the obtained signal is in the form of an I3RecoPulse. An Ice Tray segment named
DetectorSegment can be used to obtain I3RecoPulses data by taking MCPEs or MCPulses as input
[67].

3.2 Full Monte-Carlo simulations and Photonic method
The crucial aspect of simulating an event in Icecube is the determination of the number of photons and
their temporal distribution detected by each DOMs. A method, referred to here as full Monte Carlo
simulation, allows for the precise simulation of each photon’s propagation in the ice from their point
of emission to where they are detected. However, the number of photons to be simulated (especially in
UHE events) and the non-trivial optical properties of the ice, make this step particularly challenging.
As this method requires significant computational power and takes a considerable amount of time, the
photon distributions calculated are stored in large tables called spline tables.

Another method, Photonics, which has been widely used in recent years, was then implemented. It
interpolates these tables to obtain the probability distribution function associated with each DOM for
a given event hypothesis, i.e., a particle cascade. Despite some approximations involved, Photonics
must deliver an accurate simulation while minimizing computational time and power, and store the
data in the most accessible and concise manner possible [12].

3.2.1 Light propagation and Ice properties
Before discussing the full Monte Carlo simulation itself, it is important to examine the propagation
of Cherenkov photons through the ice. It is influenced by absorption and diffusion processes. With
the Cherenkov effect in ice emitting photons in the visible or near UV spectrum, absorption is pri-
marily due to molecular and electronic excitations. The absorption length λa is defined as the average
distance after which a Cherenkov photon is absorbed. Polar ice is also embedded with air bubbles
(near to the DOM) and dust grains, which act as scattering centers. Given their varied sizes, the
most appropriate theory to explain their influence on photons is Mie scattering. For each scattering
event, characterized by the size of its scattering center and the wavelength of the photon, this method
predicts a scattering angle distribution.

The optical properties of the ice significantly influence photon propagation. Therefore, it is cru-
cial to accurately model the characteristics of the cubic kilometer of ice in which the detector is
submerged. Antarctic ice has accumulated over millennia and thus exhibits variations in its opti-
cal parameters with depth. Indeed, differing conditions of pressure, temperature, and insoluble dust
have resulted in successive layers that can be approximated as horizontal, this greatly facilitates their
simulation.

3.2.2 Monte Carlo Simulation and spline table
The objective of this part of the simulation is to obtain the arrival time and flux of photons emitted
by a stationary point-like source for each DOM. This is achieved using the full Monte Carlo method.
The source is characterized by an orientation and position, and the light emitted has an emission angle
and wavelength from the Cherenkov emission profile.
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Figure 3.4: Propagation of photons emitted by a source located at position Zs, and the geometry of the record-
ing cells used to determine the photon flux [12].

The coordinate system chosen to describe the propagation and recording of photons is cylindrical
(ρ, l, ϕ). This preference arises from the cylindrical symmetry exhibited by the Cherenkov cone in
a non-dispersive medium. Despite the disruption of this symmetry by the optical properties of the
medium, the coordinate system remains intact. Additionally, the system is aligned, by design, with
the symmetry axis of the source, denoted as l̂, as shown in Figure 3.4.

The path of the photons is then simulated from scattering point to scattering point, and a weight
characterizing their probability of reaching the next point without being absorbed is updated at each
scattering, considering the properties of the surrounding ice. The position of the photon in this refer-
ence frame is recorded each time it enters a recording cell, a volume element representing a potential
recording point. The system’s symmetries are exploited to reduce the number of parameters to save.
Only the recording position relative to the source, the source depth Zs along the vertical axis ẑ, the
zenith angle Θs, and the recording time t are placed in a six-dimensional table called the spline ta-
ble. It contains a series of bins whose width is the time between two recordings. Each of these bins
contains the differential flux of photons arriving in a cell, weighted by the total weight of the detected
photons. Each source with a particular position or orientation will generate its own spline table. By
repeatedly simulating the same source a large number of times, the PDF of photons reaching a cho-
sen detection point and the expected flux are obtained. A parameterization of these functions is then
stored in the spline tables, increasing their size.
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3.2.3 Photonics method: spline tables interpolation
When simulating events with Photonics, it is no longer necessary to numerically calculate the prop-
agation of photons. It is sufficient to load the spline tables, produced by the previous technique,
corresponding to the studied source. In the case of a moving source, its trajectory is approximated as
a series of closely spaced point sources. This is done using the PhotonicsService package available
in the IceTray environment. The mean field of photons reaching a DOM is then calculated for each
DOM and the total field produced by a source of specific energy is recorded. If the DOM is not ad-
equately placed on a fictitious detection cell for a single source, or if it receives light from multiple
point sources, a multidimensional interpolation of the spline tables is performed to calculate the PDF
of photons reaching the DOM.

3.3 Event generator method
Since 2013, the fully installed IceCube Neutrino Observatory has been recording as many events as
possible to detect and study astrophysical neutrinos. Since particles of this type are rare, finding them
requires deeper analysis of this gigantic quantity of data. It is for this reason that ever more efficient
and more economical methods of reconstruction and simulation have been developed. In this idea,
the IceCube collaboration has turned towards a method that requires very low computational power,
once the code is trained, and is very powerful: neural networks.

Various types of neural networks have been developed over the years, initially for reconstructing
events. Among them, convolutional neural networks (CNNs) have stood out due to their excellent
adaptation to the data provided by the detector and their exceptional ability to exploit the system’s
symmetries. It is this type of neural network that a new event reconstruction method called Event-
Generator [11] uses. Designed to exploit the symmetries and domain knowledge studied, this method
is coupled with a usual model of maximum-likelihood based technique to obtain the best possible
outcomes. It shows good results for the reconstruction of high energy cascade events [11] and it has
been crucial in the discovery of EHE neutrinos from the galactic plane [10]. This success suggests
the potential use of this neural network for simulating EHE events, with the major advantages of
saving computational resources compared to full MC and reducing approximations in comparison
with Photonics.

This subsection first provides the theoretical considerations of this type of neural network. Fi-
nally, an explanation of the main components of the NN are presented. Given the complexity of the
process, the explanation is limited to the reconstruction and simulation of cascade events, although
these models could be applied to other signatures.

3.3.1 Neural Network and Training: theoretical considerations
Neural Network Description

As its name suggests, a neural network consists of a large number of small computational units called
neurons. These neurons are arranged in successive layers, referred to as the input layer for the first,
the output layer for the last, and hidden layers for all those in between. These artificial neurons are
connected to each other in various ways, thereby defining different types of neural networks. For
instance, left part of Figure 3.5 depicts a fully connected network where each neuron in a layer is
connected to all neurons in the previous and consecutive layer.
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Figure 3.5: Fully connected neural network and zoom on the calculations carried out inside a neuron [79].

A neuron in a layer thus receives data ai from the neurons in the previous layer. Within each
neuron, a specific weight is assigned to each input before a weighted sum is computed. A bias term
bi is then added to this sum. These parameters, wij and bi, are optimized during training. The result
is subsequently processed through a nonlinear activation function σ(x). The most common activation
functions are shown in Figure 3.6. Their purpose is to enable the neural network to process nonlinear
relationships in the data [79].

Figure 3.6: Main activation functions used in neural networks [80].

Convolutional Neural network

The IceCube collaboration is developing different types of NN whose characteristics are adapted to
its detector. Among them are convolutional neural networks (CNN). Initially developed for image
recognition, CNNs take advantage of the fact that relationships between pixels at the top of an image
are not causally related to those between pixels at the bottom. Consequently, it is not necessary to
consider connections between them. Moreover, when an object is moved from one location to another
inside the image, its nature and thus the pattern attributed to it by the CNN remains unchanged. In
other words, convolutional layers leverage locality and translational invariance to eliminate some
unnecessary free parameters.

Convolutional layers have the capability to share weights associated with the input data of one
neuron to another. This weight sharing forms what is known as a convolutional kernel or filter. Using
the analogy of image processing again, this means that a feature detected in one part of the image can
be applied to another part of the image. Figure 3.7 illustrates the calculation of a convolutional layer
(horizontal green surfaces) composed of 25 neurons. To achieve this, a kernel of size 3× 3 consisting
of 9 units moves laterally across the blue input layer to produce the green output layer. To obtain an
output, the kernel weights the shaded part of the input layer before summing their contributions. The
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collection of these outputs forms the feature map. Naturally, if the kernel size changes, the feature
map also changes. A convolutional layer can also have multiple kernels [79].

Figure 3.7: Convolutional kernel of 9 units moving laterally across the blue input layer to produce the green
output layer [79].

These features echo the temporal and spatial translation invariance of neutrino physics described
in subsection 2.1. However, while image pixels are small and easily arranged in an orthogonal grid,
CNNs are designed to process this specific arrangement in input data. This poses a challenge be-
cause IceCube’s data has large and variable dimensions, and originate from DOMs distributed on an
irregular triangular grid. This is discussed in detail in section 3.3.2.

Training Procedure

The training of a neural network is carried out in three stages. First, it is essential to determine a loss
function that best characterizes the disagreement in the networks outcome with the true value. The
goal of the training process is to minimize this function.

It is also necessary to create a specific dataset where the input data is associated with the actual
value that the neural network needs to determine. For example, using the analogy of image recog-
nition, the training set will contain data in which an image of an ytrue is already associated with the
class ytrue that the neural network must identify.

The dataset is then divided into n "batches". The second step involves passing these data through
the neural network, which then returns an output fθ(x). The loss function L(fθ(x), ytrue) thus charac-
terizes the errors the neural network makes by comparing its output with the expected true response
ytrue. This process is illustrated on the left side of Figure 3.8.

Figure 3.8: Illustration of determining the loss function through forward propagation and calculating the
gradient via backpropagation [79].
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The initial outputs of the neural network will be random values because the free parameters θ of
the neural network are initialized this way. The final step minimizes the loss function to adjust these
parameters. To achieve this, stochastic gradient descent is employed. For each batch, backpropagation
calculates the gradient ∂L

∂θ
with respect to the free parameters. This step is shown in Figure 3.9. This

process is iteratively repeated until the losses converge to a minimum [79, 82].
The initial dataset used during the training process is divided into three parts: the training set, the

validation set, and the test set. Only the first set is used during the previously described stages. The
second set is used to determine if the parameters resulting from the training process are performing
correctly. If the process has been carried out properly, the curves describing the evolution of losses
as the training progresses for both the training and validation sets will tend similarly towards a small
value. Normal training is illustrated in the central part of Figure 3.9. If at some point, the losses
evaluated on the validation dataset start to increase, creating a gap between the two curves, this be-
havior is called overfitting. This situation is shown in the right part of Figure 3.9. Overfitting can
occur, for example, due to excessive memorization of the training data, and applying this to another
set creates a divergence. In that case, the training is then stopped at the point where the validation
losses are minimal. The last set is used by the NN to evaluate the entirety of the training and not for
further training. The difference from the validation set is that no parameters are determined when it
is presented to the NN [81].

Another process used to improve training and reduce the likelihood of overfitting is the dropout.
This technique involves randomly removing units from certain layers of the NN to reduce the likeli-
hood of the training process placing too much emphasis on specific data.

Figure 3.9: In the graph on the left, a representation of gradient descent aimed at reducing losses is shown
[82]. Representations of the loss evolution evaluated on the training set and the validation set during training
are presented in the central and right parts, respectively, illustrating the cases where the training proceeds
correctly and in the case of overfitting [79].

3.3.2 IceCube Features and Implemented Software
IceCube’s Hexagonal Geometry and Data Dimensionality

Most convolutional algorithms rely on data storage and tensor operations based on an orthogonal grid.
This means that IceCube’s data must be converted to this format, despite the detector being composed
of three parts with an approximately hexagonal shape but different sizes: the main section has 78
string of 60 DOM spaced 17 m apart, the upper DeepCore (related to the dust layer) has 10 DOMs
spaced 10 m apart on 8 strings and the lower DeepCore has 50 DOMs spaced 7 m apart on 8 strings
too.

Each of these parts is treated independently to achieve an orthogonal framework. For the Deep-
Core section, this is accomplished by unfolding the hexagon into a two-dimensional line: the number
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of strings in length and the number of DOMs in height. For the main part, fictitious zero DOMs are
added to form a cube with a face of (10 × 10) strings and a depth of 60 DOMs. The modification of
the detector geometry is shown in Figure 3.10, where the added zero points are indicated in orange.

Figure 3.10: Orthogonalization process of the three hexagonal-shaped detector parts of different size [65].

However, it is important to note that this transformation does not accurately approximate highly
irregular areas of the detector, such as the dust layer. The modification of the input grid results in
the following input data tensors: (10 × 10 × 60 × n) for the main part, (8 × 10 × n) for the upper
DeepCore, and (8× 50× n) for the lower DeepCore. In these tensors, n is the number of parameters
describing the cascade event and the DOMs. Generally, CNNs require input data to be of uniform and
constant shape, which means that n cannot vary [65].

Hexagonal Convolution Kernels

To determine the kernel shape that best fits the input geometry, the same method as in the previous
subsection is employed. The original hexagonal arrangement is placed on a parallelogram-shaped
grid, which is filled with zeros at its edges. It then appears that using a hexagonal-shaped kernel
makes it possible to preserve the geometry of the detector. It is defined by a size s and orientation
o, encapsulated in a tuple (s, o). Figure 3.11 shows different hexagonal kernels, defined by various
tuples. It also illustrates the completion of the grid with zeros, represented by orange points [65].

Preprocessing: Data Normalization

In principle, the range and scaling of a data set should not be an issue for neural networks, able of
handling a vast amount of data. However, most nonlinear activation functions used in these neurons
are centered around zero. This means that if they are applied to very large or very small data, they
converge and the associated gradient vanishes. Additionally, a dispersion of data over several orders
of magnitude creates an asymmetry in the distribution of errors. As a result, the gradient no longer
consistently points toward the minimum, causing issues during training. An illustration of this prob-
lem is shown in Figure 3.12, where an asymmetric elliptical error distribution presents a gradient
vector that does not point toward the minimum, unlike the circular distribution where it does.
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Figure 3.11: Hexagonal convolutional kernel defined by a tuple (s, o) where the size s corresponds to the
number of points on one edge of a kernel with orientation o = 0 [65].

Some data collected in IceCube (such as energy or collected charge) span several orders of mag-
nitude and thus lead to these kinds of problems. These values undergo the following transformation:

X ′ = ln (C +X) (3.3.2.1)

where the constant C ensures that the logarithm does not receive a null value. Other data remain
unchanged: X ′ = X .

Another problem related to input data that can occur is the exploding gradient. This effect happens
when a small imbalance due to non-normalized data propagates through the NN, causing an excessive
increase in the gradient during backpropagation. To prevent this, the input data are normalized to zero
mean and unit variance via:

X ′′ =
X ′ −X ′

σX′ + ϵ
(3.3.2.2)

where X ′ is the mean and σX′ is the standard deviation derived from a subset all events prior to the
training. The constant ϵ = 10−4 is included to avoid division by zero. Finally, this data transformation
ensures that the X ′ and σX′ from the elements added to fill the grid, in orange in Figure 3.10, are zero.
Thus, their output in X ′′ also remains zero.

Figure 3.12: Representation of the error distribution and the associated gradient vector for an asymmetric
elliptical distribution on the left and a circular distribution on the right [79].
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3.3.3 Event-generator method: Combining Maximum-Likelihood and Deep
Learning

Figure 3.13: Event-Generator method architecture [11].

In contrast to Photonics, employing a neural network allows to involve more dimensions for the
prediction of the photon yield at each DOM. This increased complexity should allow, considering
a successful training of the network, for a more accurate prediction. The use of neural networks is
therefore emphasized since they allow for efficient interpolation of large amounts of data and, once
trained, require very little computational power. Event-Generator in addition to having the advan-
tages of deep learning, is coupled with a maximum-likelihood setting to achieve the best possible
performance.

The first step is to implement a cascade event generative neural network which, for a given cascade
hypothesis, returns the charge λ⃗ and the pulse arrival time PDF P⃗ (t) reaching a DOM. This generative
model simulating a cascade which is described by the following parameters: ξ⃗ = (x, y, z, θ,Φ, E, t)
is denoted:

G(ξ⃗) = {λ⃗, P⃗ (t)} (3.3.3.1)

The function that best models the pulse arrival time PDF Pd(t) for a particular DOM d is a mixture of
asymmetric Gaussians. These are defined by:

AG(x|µ, σ, r) = N ·

 exp
(
− (x−µ)2

2σ2

)
, x ≤ µ

exp
(
− (x−µ)2

2(σr)2

)
, otherwise

(3.3.3.2)

where r is the parameter describing their asymmetry and N is given by:

N =
2√

2π ·σ(r + 1)
(3.3.3.3)

The pulse arrival time PDF is a weighted sum of K Gaussians:

Pd(t) =
K∑
j=1

wj ·AG(t|µ(d,j), σ(d,j), r(d,j)) (3.3.3.4)
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This method has the advantages of requiring only a small value of K (between K = 3 and K = 5
suffices) to obtain a good description and of maintaining a low number of free parameters.

In order to reduce approximations from the start, the exact position of each DOM relative to the
center of the cascade (primary interaction point) is calculated and this relative displacement vector
provided as input to the network. In addition to this data, the different angles shown on the left part of
the Figure 3.13 are determined and feed to the network. This allows both rotational and translational
symmetries to be preserved along with the detector geometry.

These pieces of information, combined with those of the cascade, form a tensor of size (86×60×
12) containing all the DOMs, which is sent as input data to a CNN where the data weights are not
shared among the DOMs because the kernel is of dimension 1 × 1. This neural network serves to
simulate the symmetry breaking that occurs in the ice. The data is then sent to a second layer of the
CNN but with shared weights to simulate other properties such as the quantum efficiency ϵd of the
DOMs or the linear scaling of the collected charge. This is done by modifying the expected charge
through the relation:

λ′
d = λd ·

E

10TeV
· ϵd (3.3.3.5)

The overall architecture of the method is presented in Figure 3.13. The outputs it returns are therefore
µ⃗d, σ⃗d, r⃗d, w⃗d, the parameters of the mixture model, and the charge λd collected by each DOM. It is
also important to add that the charge is scaled based on the energy at the end of the process.

Although it is designed for event reconstruction, the neural network employed as constructed can
be used for generating or simulating events.

During the training, a Gamma-Poisson mixture distribution is apply on the pulses measured at the
DOMs. It is given by:

GammaPoisson(z | λ, α) =
Γ
(
z + 1

α

)
Γ(z + 1)Γ

(
1
α

) ( 1

1 + αλ

) 1
α
(

αλ

1 + αλ

)z

, (3.3.3.6)

It is simply an equivalent of the usual negative binomial distribution but real-valued. The α that
appears in Equation 3.3.3.6 is the shape parameter that characterizes the dispersion of the photons.
The likelihood of obtaining an event given Nd pulses at the d-th DOM, each one arriving at time td,i
and carrying a charge cd,i, is [11]:

Levent

(
x⃗ = {c⃗, t⃗} | ξ⃗

)
=

5160∏
d=1

GammaPoisson

(
Nd∑
i=1

cd,i | λd(ξ⃗), αd(ξ⃗)

)
·

Nd∏
i=1

Pd(td,i | ξ⃗)cd,i .

(3.3.3.7)





Chapter 4

Evaluation of the Event-Generator
Simulation

The Event-Generator model, initially developed for event reconstruction, is now adapted to make
simulations in IceCube. To assess its reliability, its predictions are first compared to those obtained
using the photonics method, cf. section 3.2, for EHE incident neutrinos. Then, MC simulation will
be added to the analysis for incident neutrinos of 10 TeV. This work focuses only on event cascades
and the analysis is conducted by studying one of their main characteristics: the total collected charge
predicted for each DOM or over the entire event.

4.1 Cascade event simulation
The first step is to simulate a cascade and visualize the PDFs created by each method. A cascade
is defined by: ξ = {(x, y, z), θ, ϕ, E, t} where (x, y, z) are the vertex coordinates expressed in the
IceCube reference system, θ, ϕ and E are the zenith angle, azimuth angle, and energy of the inci-
dent neutrino, respectively, and t is the time at which the interaction occurs. When this cascade is
injected into the detector, a PDF is predicted for each DOM using Photonics and Event-Generator
methods separately. Figure 4.1 is a graph showing a comparison of the PDF generated at DOM
(36, 30) by each of these techniques for a E = 10 TeV cascade generated at the center of the detec-
tor, i.e. at position (0 m, 0 m, 0 m). This sensor is closest to the vertex. Its location is recorded at
(+46 m,−35 m,+7 m). It should be noted that while Event-Generator predicts the temporal distri-
bution of reconstructed photon pulses, Photonics predicts the hits of MC photonelectrons.

It logically follows that the farther the DOM is from the interaction point, the wider their temporal
dispersion and the larger the time at which the distribution is centered. The first behavior arises from
the fact that the photons are differently scattered during their journey, spreading out their arrival time
and extending their travel time before being detected. This evolution is evident when the PDFs from a
cascade are plotted for all the DOMs in a string for one interaction point. Figure 4.2 shows the PDFs
for DOMs 4 to 50 of string 36.

As previously, the closest point to the vertex in this case is DOM 30. On the graphs, the PDFs
are very similar for DOMs close to the cascade center but differ increasingly with greater distance.
Ultimately, a significant difference appears in both the PDF and the predicted charge for the far-
thest DOMs represented. Photonics seems to predict a distribution where this is not the case for

39
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Figure 4.1: Normalized PDF generated at DOM (36, 30) by the photonics method (blue) and the Event-
generator method (orange) for a 10 TeV cascade with vertex at (0,0,0). The mean expected charge is indicated
in the legend.

Event-Generator. This is attributed to a larger background for Photonics than for Event-Generator,
the second being invisible due to share scales. Physically, the PMTs are too far from the center of the
cascade to record a signal from the cascade.

Figure 4.2: Normalized PDF generated by the Photonics method (blue) and the Event-generator method (or-
ange) at DOMs 4 to 50 of string 36 for a 10TeV cascade with vertex at (0, 0, 0).
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It is also possible to predict the charge received by each DOM. This value is indicated in the legend
of Figure 4.1. Generally, this charge is expressed in units of photoelectrons. The value is obtained
by dividing the collected charge by the charge of an electron multiplied by the nominal gain of the
PMT [83]. In these simulations the charge of each photoelectron is normalized to 1 by dividing this
number by the incident charge. The way the charge collected by a sensor is predicted differs between
methods:

• Photonics uses a Poisson distribution for the description of photoelectrons in each DOM giving
the predicted mean charge λ.

• Event-Generator uses a negative binomial distribution for the description of photoelectrons in
each DOM. This time, the distribution is defined properly by the mean number of photoelen-
trons and the binomial coefficient α.

The total charge collected by each DOM for the same event is shown in Figure 4.3. This time a
detector simulation has been performed based on the prediction of Photonics and for each DOM actual
photon hits have been sampled for both methods (e.g., in each DOM the actual simulated charge can
vary from the predicted mean following the aforementioned probability density distributions). Each
colored point represents a DOM that receives a charge. They are distributed according to their distance
from the vertex in the x − y plane and their position on the string on the vertical axis. This allows
consideration of the 3D geometry of the detector in a 2D representation. Only detection points close
to the vertex exhibit significant charge, which decreases spherically with distance, consistent with the
interpretation derived from the PDFs. An asymmetry is observed between the propagation upwards in
the detector and downwards. This is due to the presence of the dust layer, which increases absorption
and scattering in the ice. Consequently, the light yield within and below this layer is significantly
reduced.

Figure 4.3: Total charge collected by each DOM for a 10 TeV cascade with a vertex at (0,0,0) with Photonics
on the left and Event-Generator on the right.
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The presented comparison so far was established for an incident neutrino energy of 10 TeV, which
is relatively low. By increasing the energy, some adjustments are useful to make. Three phenomena
are interesting to mention to obtain an adequate simulation at high energy.

1. A cascade event in IceCube consists of both a hadronic and an electromagnetic part. As de-
scribed previously, at low energies, the electromagnetic component produces more Cherenkov
photons than the hadronic component. The latter is therefore simulated as an electromagnetic
cascade but at a lower energy. This difference decreases with increasing energy, resulting in
the hadronic component’s contribution becoming more significant and approaching that of the
electromagnetic component.

2. The sources of Cherenkov photons, which are electrons in the electromagnetic cascade, were
considered point-like. At low energies, the cascade extension can be ignored and the approx-
imation is valid. However, at high energy, this extension is no longer negligible and must be
taken into account.

3. As the energy of the cascade increases, the number of photons produced also grows. To reduce
the computing power necessary to perform the detector simulation, a merging of the incident
photons is carried out, within a time interval of 5 ns. This makes it possible to manage large
flows of photons with a very small loss of precision but a computational gain.

As comparison, Figure 4.4 also shows the distribution of charges collected by each DOM, plotted
as in the previous figure but for a 10 PeV cascade. The three points explained above are implemented
in the simulation. The number of sensors that receive light is significantly greater, and the collected
charges are three orders of magnitude higher. The impact of the dust layer remains visible, as does the
background noise in the simulation with Event-generator. A noticeable difference in the high-charge
DOMs is apparent. A more thoughtful analysis of high energy events and explanation is provided in
the following section.

Figure 4.4: Complete simulation of total charge collected by each DOM for a 10 PeV cascade with the vertex
at (0,0,0) with Photonics on the left and Event-Generator on the right.
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4.2 High energy first comparaison
It is time to study the differences that appears between these two methods for a wide energy and vertex
position range. A dataset of 1000 events has been generated following a neutrino spectrum in E−1

with energy between 1 PeV and 1 EeV. The left part of Figure 4.5 shows the energy distribution of
these data. Given the semi-logarithmic scale of the graph and the fact that the bins of this histogram
are constructed to be constant on a logarithmic scale, the power law is clearly represented by a uniform
distribution. The right graph of the same figure displays the distribution of the simulated events
withdepth, showing a uniform distribution throughout the detector. The data are presented in the
IceCube coordinate system.

Figure 4.5: Energy distribution on the left and vertex depth distribution on the right for the set of 1000 events
with energies ranging from 1 PeV to 1 EeV.

The simulated events exhibit high energies and interact at various depths within the detector. This
allows for a comparison between the simulations performed with Photonics and those conducted with
Event-generator methods. This comparison is made by analyzing the representative data simulated
by each method: the predicted total charge.

First, it is relevant to calculate the total charge collected by each DOM, independently of the oth-
ers, for each event. A representative event characterized by an extremely high energy, approximately
100 PeV, has been selected. Figure 4.6 therefore shows the distribution of this charge by DOM for
each of the methods. In blue, these are the RecoPulses resulting from the injection of MCPulses into
DetectorSegment, while in red, these are the RecoPulses produced by the Event-Generator CNN.

Differences are observed on this graph both for low and high collected values. In the first case,
Event-generator strongly dominates. This is due to the background noise previously explained. In
the second case, fluctuations appear between the two methods, leading to significant discrepancies for
certain energy ranges. Photonics presents a peak of DOMs with charges around 103 that is not present
in the other method, which shows a more regular distribution extending to slightly higher charges, up
to 104. The total charge recorded by the detector during the event is obtained by summing the charge
collected by each DOM. The result of this sum for each method is:

Methods Total Charge Event Mean
Photonic 1 497 961.02 1 411.84

Event Generator 3 045 211.96 2 364.30
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Figure 4.6: Distribution of the total charge collected by each DOM for an event of energy: E = 100.42 PeV.

This shows a clear disagreement between the two simulations, with the total charge recorded by
Event-Generator being twice as large as the same data predicted by Photonics. The same observation
applies for the mean collected charge.

It is therefore interesting to examine the evolution of the total charge per event. Figure 4.7 thus
presents the distribution of these values for Photonics in blue and Event-Generator in red.

This figure shows a good agreement between the two simulations up to a charge of approximately
5 × 105. Beyond this value, a clear difference appears between the two simulations. Photonics,
inculding the detector simulation, predicts the majority of high-energy events with charges between
105 and 2 × 106. The distribution then drops sharply and stops at 5 × 106. Simulations performed
with Event-Generator calculate total charges up to 2 × 107. They also show a region with a slight
increase between charges of 105 and 6× 106. Consequently, the total charges collected simulated by
Event-Generator are much larger than those simulated by Photonics for high-energy events.

An explanation can be provided to account for this difference. The simulations are based on an
approximation that states the charge deposited in the detector increases linearly with the energy of
the incident particle. This approximation is physically justified up to energies of ∼ 1EeV1. However,
when the electronic response of the detector is taken into account, this linearity at high energy is
broken. This is due partly to the saturation of the PMTs receiving too many photons in a very short
time, and partly to the analog-to-digital conversion that occurs during signal processing in the DOM.

Given this information, it is important to examine the simulation content in more detail. When
using Photonics, the total charge is calculated based on the RecoPulses, i.e., the simulation of the
signal arriving at the DOMs, MCPEs, are then processed through DetectorSegment that simulates the
saturation of the PMTs and DOMs. This is reflected by the abrupt end of the blue histogram, leading
to a clear absence of very high collected charges.

1Above these energies, the LPM effect must be considered. Interested readers are referred to [84].
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Figure 4.7: Total collected charge distribution per event for a set of 1000 events with energies ranging from
1 PeV to 1 EeV.

In the simulation performed with Event-Generator, it is clear that saturation is not taken into
account given the particularly high collected charges. This can be explained by the fact that the neural
network was initially designed to perform event reconstruction at low energy. It was supposed to take
as input the signals from the DOMs, the RecoPulses. This type of data contains certain characteristics
of the detector that the NN should be able to reproduce. However, this is not sufficient because
the dataset on which the neural network was initially trained contains RecoPulses from low-energy
events, for which saturation is not important, and the linear energy scaling is build into the model.
Hence, Event Generator cannot simulate saturation effects in the DOMs response.

4.3 Neural Network Retraining
The solution proposed to address this problem is to retrain the neural network to predict the hits
of Monte-Carlo photoelectrons at the DOM before involving any further detector response. Ideally,
this retraining should be performed and evaluted with high-energy events. However, this requires
a large amount of input data. As the computational power and time needed to simulate an event
increase drastically with its energy, only a limited number of high and very high energy simulations
are available. Therefore, the training cannot be performed on this range of data.

A dataset has been made available2 in the form of 15,000 .hdf5 and .3 files. These files are suitable
for training because they contain both the MCPE hits and the parameters of the events that produce
them, allowing the NN to evaluate, via a loss function, the errors it makes.

The training dataset contains 15 900 809 events at a fixed energy of 10 TeV and uniformly dis-
tributed throughout the detector volume. It has been divided into three parts as explained in sec-
tion 3.3.1 and its distribution is presented in the following table:

2We warmly thank Alina Kochocki for sharing her simulations.
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Number of events Percentage
Training 11 025 665 69.34

Validation 2 470 125 15.53
Test 2 405 019 15.13
Total 15 900 809 100

The training requires significant computational power, thus the use of Graphics Processing Units
(GPUs) is necessary. These are electronic circuits developed to perform calculations very quickly.
Additionally, they have the major advantage of being able to execute the same task simultaneously on
multiple datasets, excelling in tasks that require the repetition of the same operation numerous times.
This parallelization significantly reduces the training time of the neural network. The computational
interface is provided by HTCondor [85], a system that allocates computational resources for complex
tasks. It distributes the available power among independent and asynchronous tasks.

The training evaluates the losses that occur when a part of the training dataset is passed through
the NN and aims to minimize them. The neural network improves through iterative repetition of
these steps. The more repetitions, the better the training, until the point where further gains become
negligible. However, since Condor servers are in high demand, a maximum runtime of two days is
allowed for each request. This time limit restricts the number of possible training iterations. Using
the software TensorBoard [86], it is possible to monitor the evolution of losses during the process to
ensure proper training and a sufficient number of repetitions. This is shown in Figure 4.8. The light
blue curve represents the losses calculated on the training dataset, while the purple one represents
those on the validation dataset.

Figure 4.8: Evolution of calculated losses as a function of the number of training iterations.

This figure shows that the training proceeded correctly, as a clear and consistent minimization of
losses is visible across both datasets. The total number of steps performed is 1 045 102.

Regarding the neural network’s specific feature, another internal change was made. Initially, the
number of asymmetric Gaussians used in the loss function was K = 3. This value was increased
to K = 10 to improve training performance. However, this has the consequence of increasing the
computational load and thus extending the training time.
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4.4 Low energy retraining evaluation
Now that the network has been retrained, its performance needs to be evaluated. This is done using a
dataset of 100 000 events uniformly distributed throughout the detector’s volume, all with an energy
of 10 TeV. It would have been interesting to perform this analysis on a high-energy dataset, but
the limited number of high-energy simulations available prevents obtaining representative results.
Choosing a larger but lower-energy dataset remains consistent because the NN is trained on MCPEs.
These data are simulated based on the approximation that the deposited charge increases linearly
with the incident neutrino’s energy. Therefore, the results obtained at these lower energies can be
extrapolated to higher energies.

Thus, similarly to what was done in subsection 4.2, it is relevant to look again at the total predicted
charge per event. The distribution of this value is presented in Figure 4.9 for three different simulation
techniques.

This time, in addition to the two previously mentioned methods, the full Monte Carlo simulation
is used for comparison. It is the most accurate simulation in terms of the system’s physical properties.
So, the other two should aim to reach this one.

Figure 4.9: Distribution of the total charge collected per event for simulations using Photonics (blue), Event-
Generator (red), and full Monte Carlo (yellow).

On this figure, the blue curve represents the values from the Photonics simulation, the red curve
represents those from the Event-Generator, and the yellow curve from the Monte Carlo. There is
a good consistency among the three simulations. For very low collected charges, Photonics and
Event-Generator are close to each other but differ from Monte Carlo. This could be due to statisti-
cal fluctuations linked to the data set. Then, for larger charges, the three methods agree, although
a discrepancy with Photonics appears, while a particular agreement between the curves from Monte
Carlo and Event-Generator can be observed. The histogram from Photonics thus has a peak at slightly
lower collected charges. Finally, all three curves drop sharply beyond a charge of 2× 103 as 10 TeV
events can no longer deposit higher charges in the detector, but again, this drop occurs slightly earlier
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for Photonics. It thus appears that Event-Generator is capable of more accurately simulating the total
charge collected in the detector.

Since all cascades result from an incident 10 TeV neutrino, the total amount of Cherenkov photons
produced is approximately the same for all events. However, as the previous figure shows, the charge
collected by the detector, and more specifically by the DOMs, varies from one event to another. This
variation is due to the propagation of photons in the ice, the detection medium of IceCube, and the
position of the interaction itself. Therefore, it is crucial to ensure that the NN has incorporated these
detector-specific characteristics during its training.

Since the properties of the ice change with depth, it is relevant to examine the variation in the col-
lected charge as a function of the depth, expressed in IceCube coordinates, of the primary interaction
vertex. This is represented in the graph in Figure 4.10, where the curves blue, red, and yellow again
represent the simulations performed with Photonics, Event-Generator, and Monte-Carlo, respectively.

Figure 4.10: Distribution of the total charge collected by the detector as a function of the depth of the primary
vertex, expressed in IceCube coordinates.

The obtained distributions are highly asymmetric and non-uniform. This indicates that certain
areas of the detector are less conducive to photon propagation. The charge collected from an interac-
tion occurring in these areas is therefore lower, as expected from studies on the ice properties [57].
The prediction from Photonics appears unusually low, while the close proximity of the red and yel-
low curves is striking. This difference is reflected in the average load calculated with each method,
indicated in the legend.

Methods Mean Total Charge
Photonic 577.48

Event-Generator 781.56
Monte-Carlo 793.06
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The reasons for the lower charge predicted by Photonics are unclear and deserve further analysis.
The key point of this analysis is the sharp drop in collected charge at the dust layer. This was

expected since the increased presence of dust in this ice layer significantly enhances photon scattering.
Consequently, a substantially reduced number of photons reach the detector. This drastic reduction
clearly indicates that the internal properties of the detector are well accounted for both Photonics and
Monte-Carlo. As Event-Generator also follows this trend, it demonstrates that the NN, through its
training, has successfully incorporated these characteristics as well.





Conclusion and outlook

Thanks to the detections made by IceCube, the amount of experimental data on neutrinos increases
every day. This is a major advantage because identifying EHE neutrinos involves studying event
records over multiple years, thus requiring efficient, robust, and precise analysis methods. With the
development of Deep Learning in recent years, the research field of high-energy event analysis is
rapidly evolving. The advent of new simulation and reconstruction techniques using neural networks,
developed by the IceCube collaboration, is evidence of this.

The goal of neutrino detection simulations is to accurately reproduce the Cherenkov light pro-
duced by secondary particles resulting from neutrino interaction in ice, propagate this light, and pre-
dict the detector response. This simulation is carried out in several stages, one of the most important
being the prediction of the temporal distribution and the number of photons reaching each optical
module. This work has tested the validity of using one of these new reconstruction methods, based on
a convolutional neural network and named Event-Generator, to simulate this distribution for cascade
events.

An initial study of the total charge collected per event of very high energy events indicated that the
method, originally developed for reconstruction, could not be applied for these applications without
changes. To obtain these results, the predictions of Event-Generator were compared to those of a
simulation technique that has been used for several years, Photonics. A retraining of the neural
network, using a different type of data, was therefore conducted to improve its ability to account for
specific detector characteristics, such as saturation. Finally, a second evaluation was performed on the
retrained model using a low-energy data set. This time, the full Monte Carlo simulation was added.
Closer to reality but requiring more computational power, this method helped demonstrate the success
of the CNN to predict the total charge collected per event and the attenuation due to the dust layer in
its simulation of the PDFs.

There are multiple possibilities for improvements. The most prominent one is currently to per-
form a new training by including variations of the Ice model, and thus the properties of the ice, in
the input dataset. This would certainly allow to simulate events with arbitrary ice properties, a skill
extremely valuable for neutrino searches! On a smaller scale, it would now be interesting to perform
various training types by changing hyper-parameter such as the loss function to find the most suitable
ones. These topics unfortunately could not be covered in this master’s thesis and are therefore left for
future research projects.

Summarizing from the beginning, this research work within the IceCube Collaboration began with
familiarization with the IceCube Core software, where all simulations were conducted, and with the
data format processed within it. This was achieved by studying the existing simulations. A feasi-
bility evaluation was then performed through an initial comparison between the two main methods
employed: Event-Generator and Photonics. This comparison was conducted on a set of high-energy

51



Low energy retraining evaluation 52

data specifically simulated for this purpose. Finally, given the results of this stage of the research, a
retraining of the neural network was performed using the appropriate type of data. This allowed the
completion of this Master’s thesis by comparing this retraining with, this time, the Photonics and full
Monte Carlo methods.
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10.22323/1.196.0053

[50] Abbasi, R., Abdou, Y., Abu-Zayyad, T., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers,
M., Allen, M., Altmann, D., Andeen, K., Auffenberg, J., Bai, X., Baker, M. D., Barwick, S.
W., Bay, R., Alba, J. L. B., Beattie, K., Beatty, J. J., Bechet, S.,. . . Hanson, K. (2012). The
design and performance of IceCube DeepCore. Astroparticle Physics, 35(10), 615-624. https:
//doi.org/10.1016/j.astropartphys.2012.01.004

[51] Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Altmann,
D., Andeen, K., Auffenberg, J., Bai, X., Baker, M. D., Barwick, S. W., Baum, V., Bay, R.,
Beattie, K., Beatty, J. J., Bechet, S., Tjus, J. B., Becker, K.,. . . Halzen, F. (2013). IceTop :
The surface component of IceCube. Nuclear Instruments And Methods In Physics Research.
Section A, Accelerators, Spectrometers, Detectors And Associated Equipment, 700, 188-220.
https://doi.org/10.1016/j.nima.2012.10.067

[52] DuVernois M., The IceCube Upgrade. [slides]. University of Wisconsin-Madison.
https://indico.fnal.gov/event/22303/contributions/245856/
attachments/157629/206323/duvernois_icecube_upgrade.pdf

[53] IceCube Docs. (2024, 9 mai). icetray(328e9b87) - Dataclasses documentation - Coordinate Sys-
tems. https://docs.icecube.aq/icetray/main/projects/dataclasses/
coordinates.html

https://doi.org/10.1142/9789811282645_0006
https://doi.org/10.1142/9789811282645_0006
https://user-web.icecube.wisc.edu/~jvansanten/lit/jvs_diplom.pdf
https://user-web.icecube.wisc.edu/~jvansanten/lit/jvs_diplom.pdf
https://bib-pubdb1.desy.de/record/83502/export/hr
https://bib-pubdb1.desy.de/record/83502/export/hr
https://doi.org/10.3390/psf2023008062
https://doi.org/10.3390/psf2023008062
https://cds.cern.ch/record/920022/files/p20.pdf
https://doi.org/10.1016/j.nima.2023.168440
https://doi.org/10.1016/j.nima.2023.168440
https://doi.org/10.22323/1.196.0053
https://doi.org/10.22323/1.196.0053
https://doi.org/10.1016/j.astropartphys.2012.01.004
https://doi.org/10.1016/j.astropartphys.2012.01.004
https://doi.org/10.1016/j.nima.2012.10.067
https://indico.fnal.gov/event/22303/contributions/245856/attachments/157629/206323/duvernois_icecube_upgrade.pdf
https://indico.fnal.gov/event/22303/contributions/245856/attachments/157629/206323/duvernois_icecube_upgrade.pdf
https://docs.icecube.aq/icetray/main/projects/dataclasses/coordinates.html
https://docs.icecube.aq/icetray/main/projects/dataclasses/coordinates.html


BIBLIOGRAPHY 58

[54] FRANK I., TAMM Ig. (1937). coherent visible radiation of fast electrons passing through matter.
C. R. Sc. U.R.S.S., 3, (14), 109-114

[55] Quand les particules chargées dépassent la vitesse de la lumière - l’effet Tcherenkov - la dé-
couverte, ses applications et son découvreur. (2012, 24 mars). IN2P3 Events Directory (Indico).
https://indico.in2p3.fr/event/6320/

[56] Cherenkov radiation detected in 2D regime. (2024, 9 mai).
Internet. https://www.resonancescience.org/blog/
cherenkov-radiation-detected-in-2d-regime

[57] Aartsen, M. G. & IceCube Collaboration. (2013). Measurement of South Pole ice transparency
with the IceCube LED calibration system. Nuclear Instruments and Methods in Physics Re-
search A, 711, 73–89. https://pdf.sciencedirectassets.com/271580/1-s2.
0-S0168900213X00075/1-s2.0-S0168900213001460/main.pdf

[58] Mikkelsen, R. E., Poulsen, T., Uggerhøj, U. I., & Klein, S. R. (2016). Characteristics of
Cherenkov radiation in naturally occurring ice. Physical Review. D/Physical Review. D., 93(5).
https://doi.org/10.1103/physrevd.93.053006

[59] Detecting Neutrinos (2024, 26 mai). IceCube Masterclass. https://masterclass.
icecube.wisc.edu/en/learn/detecting-neutrinos

[60] Ahlers, M., Helbing, K., & De Los Heros, C. P. (2018). Probing particle physics with Ice-
Cube. European Physical Journal. C, Particles And Fields, 78(11). https://doi.org/10.
1140/epjc/s10052-018-6369-9

[61] Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J. H., Aguilar, J. A., Ahlers,
M., Altmann, D., Auffenberg, J., Bai, X., Baker, M., Barwick, S. W., Baum, V., Bay, R., Beatty,
J. J., Bechet, S., Tjus, J. B., Becker, K. H., Benabderrahmane, M. L.,. . . Grandmont, D. T.
(2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science,
342(6161). https://doi.org/10.1126/science.1242856

[62] IceCube Docs (2024, 9 mai). icetray(328e9b87) - Q Frames. https://software.
icecube.wisc.edu/icetray/main/projects/icetray/qframes.html

[63] IceCube Docs (2024, 9 mai). icetray(328e9b87) - i3frame. https://docs.icecube.aq/
icetray/main/projects/icetray/classes/i3frame.html

[64] Abbasi, R., Ackermann, M., Adams, J., Aguilar, J., Ahlers, M., Ahrens, M., Alispach, C.,
Alves, A., Amin, N., An, R., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C.,
Axani, S., Bai, X., Balagopal, A., V., Barbano, A.,. . . Gallagher, J. (2021b). A convolutional
neural network based cascade reconstruction for the IceCube Neutrino Observatory. Journal Of
Instrumentation, 16(07), P07041. https://doi.org/10.1088/1748-0221/16/07/
p07041

[65] Aartsen, M. G., Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Altmann, D.,
Arguelles, C., Auffenberg, J., Bai, X., Baker, M., Barwick, S. W., Baum, V., Bay, R., Beatty, J.
J., Tjus, J. B., Becker, K.-., BenZvi, S., Berghaus, P.,. . . Hanson, K. (2014). Energy reconstruc-
tion methods in the IceCube neutrino telescope. Journal Of Instrumentation, 9(03), P03009.
https://doi.org/10.1088/1748-0221/9/03/p03009

https://indico.in2p3.fr/event/6320/
https://www.resonancescience.org/blog/cherenkov-radiation-detected-in-2d-regime
https://www.resonancescience.org/blog/cherenkov-radiation-detected-in-2d-regime
https://pdf.sciencedirectassets.com/271580/1-s2.0-S0168900213X00075/1-s2.0-S0168900213001460/main.pdf
https://pdf.sciencedirectassets.com/271580/1-s2.0-S0168900213X00075/1-s2.0-S0168900213001460/main.pdf
https://doi.org/10.1103/physrevd.93.053006
https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos
https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos
https://doi.org/10.1140/epjc/s10052-018-6369-9
https://doi.org/10.1140/epjc/s10052-018-6369-9
https://doi.org/10.1126/science.1242856
https://software.icecube.wisc.edu/icetray/main/projects/icetray/qframes.html
https://software.icecube.wisc.edu/icetray/main/projects/icetray/qframes.html
https://docs.icecube.aq/icetray/main/projects/icetray/classes/i3frame.html
https://docs.icecube.aq/icetray/main/projects/icetray/classes/i3frame.html
https://doi.org/10.1088/1748-0221/16/07/p07041
https://doi.org/10.1088/1748-0221/16/07/p07041
https://doi.org/10.1088/1748-0221/9/03/p03009


BIBLIOGRAPHY 59

[66] IceCube Docs (2024, 9 mai). icetray(328e9b87) - overview. https://software.
icecube.wisc.edu/icetray/main/info/overview.html

[67] Carlos Díaz-Vélez, J. (2020, juin). Neutrino and Air Shower Simulations in IceCube [Di-
apositives]. IceCube Bootcamp, Madison, Wisconsin. https://events.icecube.
wisc.edu/event/123/contributions/6472/attachments/5487/6310/
Simulation_in_IceCube_2020.pdf

[68] Heck, D., Knapp, J., Capdevielle, J., Schatz, G., & Thouw, T. (n.d.). CORSIKA: A Monte
Carlo code to simulate extensive air showers. INSPIRE. https://inspirehep.net/
literature/469835

[69] Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from
PArametric formulas : a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics
Communications, 179(12), 915-923. https://doi.org/10.1016/j.cpc.2008.07.
014

[70] IceCube Docs (2024, 9 mai). icetray(328e9b87) - neutrino-generator. https://docs.
icecube.aq/icetray/main/projects/neutrino-generator/intro.html

[71] Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Alispach, C.
M., Alves, A. A., Amin, N. M. B., An, R., Andeen, K., Anderson, T., Ansseau, I., Anton, G.,
Argüelles, C., Axani, S., Bai, X., Balagopal, A., Barbano, A. M.,. . . Gallagher, J. (2021).
LeptonInjector and LeptonWeighter : A neutrino event generator and weighter for neutrino
observatories. Computer Physics Communications, 266, 108018. https://doi.org/10.
1016/j.cpc.2021.108018

[72] Koehne, J., Frantzen, K., Schmitz, M., Fuchs, T., Rhode, W., Chirkin, D., & Tjus, J. B. (2013).
PROPOSAL : A tool for propagation of charged leptons. Computer Physics Communications,
184(9), 2070-2090. https://doi.org/10.1016/j.cpc.2013.04.001

[73] IceCube Docs (2024, 24 mai). icetray(328e9b87) - I3Particle. https://docs.icecube.
aq/icetray/main/projects/dataclasses/particle.html

[74] IceCube Docs (2024, 24 mai). icetray(328e9b87) - clsim - overview. https://docs.
icecube.aq/icetray/main/projects/clsim/overview.html

[75] IceCube Docs (2024, 24 mai). icetray(328e9b87) - Photon Propagation Code (ppc). https:
//docs.icecube.aq/icetray/main/projects/ppc/

[76] IceCube Docs (2024, 24 mai). icetray(328e9b87) - DOMLauncher Project - PMTResponseSim-
ulator. https://docs.icecube.aq/icetray/main/projects/DOMLauncher/
PMTRes.html

[77] Larson, M. J. (2013). Simulation and Identification of non-poissonian Noise Triggers in the
IceCube Neutrino Detector, [These de doctorat, The University of Alabama]. https://
inspirehep.net/files/147e9132d1d0245895dc407c4dd7505f

[78] IceCube Docs (2024, 24 mai). icetray(328e9b87) - DOMLauncher Project - DOMLauncher
Project. https://docs.icecube.aq/icetray/main/projects/DOMLauncher/
DOML.html

https://software.icecube.wisc.edu/icetray/main/info/overview.html
https://software.icecube.wisc.edu/icetray/main/info/overview.html
https://events.icecube.wisc.edu/event/123/contributions/6472/attachments/5487/6310/Simulation_in_IceCube_2020.pdf
https://events.icecube.wisc.edu/event/123/contributions/6472/attachments/5487/6310/Simulation_in_IceCube_2020.pdf
https://events.icecube.wisc.edu/event/123/contributions/6472/attachments/5487/6310/Simulation_in_IceCube_2020.pdf
https://inspirehep.net/literature/469835
https://inspirehep.net/literature/469835
https://doi.org/10.1016/j.cpc.2008.07.014
https://doi.org/10.1016/j.cpc.2008.07.014
https://docs.icecube.aq/icetray/main/projects/neutrino-generator/intro.html
https://docs.icecube.aq/icetray/main/projects/neutrino-generator/intro.html
https://doi.org/10.1016/j.cpc.2021.108018
https://doi.org/10.1016/j.cpc.2021.108018
https://doi.org/10.1016/j.cpc.2013.04.001
https://docs.icecube.aq/icetray/main/projects/dataclasses/particle.html
https://docs.icecube.aq/icetray/main/projects/dataclasses/particle.html
https://docs.icecube.aq/icetray/main/projects/clsim/overview.html
https://docs.icecube.aq/icetray/main/projects/clsim/overview.html
https://docs.icecube.aq/icetray/main/projects/ppc/
https://docs.icecube.aq/icetray/main/projects/ppc/
https://docs.icecube.aq/icetray/main/projects/DOMLauncher/PMTRes.html
https://docs.icecube.aq/icetray/main/projects/DOMLauncher/PMTRes.html
https://inspirehep.net/files/147e9132d1d0245895dc407c4dd7505f
https://inspirehep.net/files/147e9132d1d0245895dc407c4dd7505f
https://docs.icecube.aq/icetray/main/projects/DOMLauncher/DOML.html
https://docs.icecube.aq/icetray/main/projects/DOMLauncher/DOML.html


BIBLIOGRAPHY 60

[79] Hünnefeld, M. (2017). Online Reconstruction of Muon-Neutrino Events in IceCube using Deep
Learning Techniques [Master Thesis]. Technische Universität Dortmund.

[80] Neural network activation function. (2024, 20 mai). A new activation func-
tion for Neural Networks - logmoid. https://www.linkedin.com/pulse/
activation-functions-neural-networks-leonardo-calderon-j-

[81] Nunes da Silva I., Spatti D., Flauzino R. A., Bartocci Liboni L., dos Reis Alves S.F. (2017).
Artificial Neural Networks: a practical course. Springer International Publishing. https://
doi.org/10.1007/978-3-319-43162-8

[82] Kromydas, B., & Kromydas, B. (2024, February 5). Training neural networks for beginners.
LearnOpenCV – Learn OpenCV, PyTorch, Keras, Tensorflow With Code, & Tutorials. https:
//learnopencv.com/how-to-train-neural-networks-for-beginners/

[83] Aartsen, M., Ackermann, M., Adams, J., Aguilar, J., Ahlers, M., Ahrens, M., Alispach, C.,
Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C., Auffenberg, J., Axani, S.,
Backes, P., Bagherpour, H., Bai, X., Balagopal, A., V., Barbano, A.,. . . Glauch, T. (2020).
In-situ calibration of the single-photoelectron charge response of the IceCube photomulti-
plier tubes. Journal Of Instrumentation, 15(06), P06032. https://doi.org/10.1088/
1748-0221/15/06/p06032

[84] Alvarez-Muñiz, J., & Zas, E. (1998). The LPM effect for EeV hadronic showers in ice : im-
plications for radio detection of neutrinos. Physics Letters. B, 434(3-4), 396-406. https:
//doi.org/10.1016/s0370-2693(98)00905-8

[85] HtCondor user guide. (2024, 10 juin) Internet. https://htcondor.readthedocs.io/
en/latest/users-manual/quick-start-guide.html

[86] Tensorboard references. (2024, 10 juin) Internet. https://github.com/tensorflow/
tensorboard/blob/master/README.md

https://www.linkedin.com/pulse/activation-functions-neural-networks-leonardo-calderon-j-
https://www.linkedin.com/pulse/activation-functions-neural-networks-leonardo-calderon-j-
https://doi.org/10.1007/978-3-319-43162-8
https://doi.org/10.1007/978-3-319-43162-8
https://learnopencv.com/how-to-train-neural-networks-for-beginners/
https://learnopencv.com/how-to-train-neural-networks-for-beginners/
https://doi.org/10.1088/1748-0221/15/06/p06032
https://doi.org/10.1088/1748-0221/15/06/p06032
https://doi.org/10.1016/s0370-2693(98)00905-8
https://doi.org/10.1016/s0370-2693(98)00905-8
https://htcondor.readthedocs.io/en/latest/users-manual/quick-start-guide.html
https://htcondor.readthedocs.io/en/latest/users-manual/quick-start-guide.html
https://github.com/tensorflow/tensorboard/blob/master/README.md
https://github.com/tensorflow/tensorboard/blob/master/README.md



	Introduction
	Multimessenger astronomy
	Cosmic Rays
	Cosmic-ray induced air showers

	Gamma rays
	Gravitational waves
	Neutrinos

	Neutrino Astronomy with IceCube
	Neutrino-matter interaction
	Cross-section
	Penetration through the Earth

	Cascade Physics
	Electromagnetic cascade
	Hadronic cascade

	The IceCube Neutrino Observatory
	Detector properties
	IceCube coordinates
	Detection Principle
	Reconstruction methods for cascade events


	Simulation in IceCube
	Simulation Steps and Software
	Primary Particles, Vertex, and Secondary Particles
	Cherenkov emission and light propagation
	Detector Response

	Full Monte-Carlo simulations and Photonic method
	Light propagation and Ice properties
	Monte Carlo Simulation and spline table
	Photonics method: spline tables interpolation

	Event generator method
	Neural Network and Training: theoretical considerations
	IceCube Features and Implemented Software
	Event-generator method: Combining Maximum-Likelihood and Deep Learning


	Evaluation of the Event-Generator Simulation
	Cascade event simulation
	High energy first comparaison
	Neural Network Retraining
	Low energy retraining evaluation

	Conclusion and outlook

