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Abstract

Study of Triple-GEM detector for the upgrade of the CMS muon

spectrometer at LHC

by Thierry Maerschalk

This doctoral thesis is part of the upgrade of the CMS experiment at the Large Hadron

Collider of CERN, the LHC. CMS, together with the ATLAS experiment, led to the

discovery of the Brout-Englert-Higgs boson in 2012. But the LHC research program is

not over yet. Indeed, the LHC is intended to operate even at least 20 more years. During

this period, the luminosity will grow gradually up to five times its nominal value of 1034

cm−2 s−1 initially foreseen. This increase in luminosity requires the LHC experiments,

like CMS, to upgrade their detectors as well as their data acquisition system. One of the

next major CMS upgrade is the addition of a new detector layer in the forward muon

spectrometer of CMS. The technology that has been chosen by the CMS collaboration

for this upgrade is the Triple Gas Electron Multiplier (Triple-GEM) technology. This

upgrade aims to maintain the trigger performance despite the increasing rate of particles

(> 1 kHz/cm2) and will also improve the reconstruction of muons tracks, thanks to a

excellent spatial resolution (∼ 250 µm). It is the study and characterization of this

technology that is the subject of this thesis.

This characterization of the Triple-GEM detectors starts with a detailed study of the

time resolution. This study has been performed using different Monte Carlo simulations

like GARFIELD, and has demonstrated that the Triple-GEM detectors equipped with

the new VFAT3 electronics (developed for this upgrade) fulfill the requirements for the

CMS upgrade.

Then we have studied different detector prototypes. First, we have built two small 10×10

cm2 prototypes and developed a test bench at the ULB laboratory. This test bench has

allowed us to study another important parameter of the Triple-GEM detectors: the gain.

Later, we also had the opportunity to take part in the data taking and analysis of a test

beam campaign at CERN. The analysis of the data of this test beam is also presented

in detail.

The last part of this work concerns the study of the spatial resolution. We have estimated

the spatial resolution of the Triple-GEM detector equipped with a binary electronics by

Monte Carlo simulations as well as analytically. This study has been extended to other

detector technologies like the Micromegas and the silicon sensors.





Résumé

Etude de détecteur Triple-GEM en vue de la mise à niveau du

spectromètre à muons de CMS au LHC

par Thierry Maerschalk

Cette thèse de doctorat s’inscrit dans le cadre de la mise à niveau de l’expérience CMS

auprès du grand collisionneur de protons du CERN, le LHC. CMS, avec l’expérience

ATLAS, a permis la découverte du boson de Brout-Englert-Higgs en 2012. Mais le

programme de recherche du LHC n’est pas pour autant terminé. En effet, le LHC est

destiné à fonctionner encore au moins 20 ans. Pendant cette période, la luminosité va

crôıtre progressivement jusqu’à atteindre environ cinq fois la valeur nominale de 1034

cm−2 s−1 initialement prévue et ce d’ici 2025. Cette augmentation de luminosité pousse

les expériences du LHC, comme CMS, à mettre à jour les détecteurs ainsi que leurs

systèmes d’acquisition de données. Une des prochaines mises à niveau majeures de

CMS est l’addition d’une nouvelle couche de détection dans le spectromètre à muon

vers l’avant. La technologie de détection qui a été choisie par la collaboration CMS est

la technologie des Triple Gas Electron Multiplier (Triple-GEM). Cette mise à niveau

a pour but de maintenir les performances du système de déclenchement et ce malgré

l’augmentation de taux de particules (> 1 kHz/cm2) et de permettre également, grâce

à la très bonne résolution spatiale des Triple-GEM (∼ 250 µm), l’amélioration de la re-

construction des traces de muons. C’est l’étude des caractéristiques de cette technologie

qui est le sujet de cette thèse.

Cette caractérisation des détecteurs Triple-GEM commence par une étude détaillée de la

résolution temporelle. Cette étude a été réalisée à l’aide de différentes simulations Monte

Carlo telles que GARFIELD et a permis de montrer que les Triple-GEMs équipés de la

nouvelle électronique VFAT3 (spécifiquement dévelopée pour les Triple-GEMs) remplis-

sent les conditions pour la mise à niveau de CMS.

Nous avons ensuite étudié différents prototypes. Tout d’abord nous avons construit deux

petits (10× 10 cm2) prototypes de Triple-GEM et dévelopé un banc de test au sein du

laboratoire de l’ULB. Ce banc de test nous a permis d’étudier un autre paramètre impor-

tant des détecteurs Triple-GEM: le gain. Au cours de cette thèse nous avons également

participé à la prise de données et à l’installation de différents tests en faisceau au CERN.

L’analyse des données du test en faisceaux d’octobre 2014 est aussi présentée en détail.

La dernière partie de ce travail concerne l’étude de la résolution spatiale. Nous avons

estimé la résolution spatiale par simulation de Monte Carlo ainsi que de manière an-

alytique pour des détecteurs GEM munis d’une électronique binaire. Cette étude a

également été généralisée à d’autres détecteurs tels que les Micromegas ou encore les

capteurs au silicium.
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Chapter 1

Introduction

The work presented in this thesis is part of the detector development for the upgrade

of the forward muon spectrometer of CMS. The upgrade of the muon end-caps of CMS

consists in the addition of a new layer of detectors in the high-η region (1.5 < |η| <
2.2). The technology that has been chosen for this upgrade is the Triple-GEM detector.

The GEM (Gas Electron Multiplier) is a type of gaseous ionization detectors that is

capable of operating in high-rate (MHz/cm2) environments with detection performances

compatible with the CMS requirements.

This high-η region of the CMS muon spectrometer is the most challenging, where the

particle rate can reach several kHz/cm2, and it is also the less redundant since it relies

only on one detector technology, the Cathode Strip Chambers. Indeed their “associate”

Resistive Plate Chambers used everywhere else in the spectrometer for triggering purpose

have not been installed, due to concerns regarding their rate capability.

Simulations have shown that the introduction of a new layer of GEM detector in the

region, providing an extra precise hit (∼ 250 µm) with a good time resolution (better

than 10 ns), would improve the level one trigger muon reconstruction and momentum

resolution. This would allow to maintain a low muon trigger transverse momentum

threshold to keep the efficiency as high as possible in order to measure interesting physics

processes featuring soft muons.

The CMS GEM Collaboration has shown during the R&D phase started in 2009 and

which this work is part of, that the GEM technology is the most suitable choice for the

upgrade. This led to the approval in 2015 of the so-called GE1/1 project by the CMS

Collaboration and the CERN LHCC committee.

So far all the studies performed for the GE1/1 upgrade have been using the VFAT2

front-end electronics. The VFAT2 chip was used within the TOTEM experiment for the

readout of GEM detectors. The requirement of GE1/1 necessitate the design of a new

1



Chapter 1. Introduction 2

ASIC, the VFAT3. Since the time resolution is a very important parameter for optimal

trigger performance, we have investigated the time resolution we can expect with a CMS

Triple-GEM detector read-out with the VFAT3 chip. This study has been carried-out

with the state-of-the-art simulation software for gaseous detector, GARFIELD, as well

as with our own simulation program, designed to be much faster and flexible. Our

fast simulation program, called FastSim, has been validated with respect to several

measurements obtained during beam tests at CERN and at Fermilab as well as at the

ULB laboratory. This fast simulation has also been shown to be a very useful tool to also

study the spatial resolution of several detector geometries including silicon detectors.

We will start this thesis, in Chapter 2, by a presentation of the current theory of particle

physics: the Standard Model. Then, we will present the Large Hadron Collider (LHC),

which is the current largest and most powerful particle collider ever built. To follow,

we will present one of the major experiments present at the LHC: the Compact Muon

Solenoid (CMS). Finally, the upgrade plan of CMS will be presented with a particular

focus on the high-η upgrade.

In Chapter 3 the different physical processes that are at play within a gaseous detector

will be reviewed. We will start with the general principle of detection, then we will

study in detail different processes (the gas ionization, the kinetics of the electrons in the

gas, etc.). Afterwards we will present different micro-pattern gaseous detectors with a

particular attention to the GEM technology. Finally we will review the characteristics

of the CMS Triple-GEM detectors.

Chapter 4 is devoted to the Monte Carlo simulation study of different features of the

CMS Triple-GEM. First the GARFIELD simulation will be presented, followed by a

detailed study of the time resolution obtained using the latter. Then, we will present

the FastSim that is a simulation that has been developed during this thesis. Finally,

different comparisons between the FastSim results and other Monte Carlo simulations

and experimental data will be presented.

Chapter 5 is dedicated to the measurement of the performance of different Triple-GEM

prototypes. First, the setup that has been built at the ULB will be presented together

with two small Triple-GEM prototypes. Then the results obtained with those prototypes

will be presented. Finally, we will discuss a serie of results obtained during a test beam

campaign on full size Triple-GEM prototypes.

Finally, in Chapter 6, we will study in detail the spatial resolution. This study will

estimate the spatial resolution analytically and by Monte Carlo simulation for a binary

readout for the GEM-based detectors but also the silicon sensor and the Micromegas.



Chapter 2

Large Hadron Collider and

Compact Muon Solenoid

Physicists have always tried to understand the fundamental components of matter.

Nowadays it is mostly particle physics that studies the elementary constituents of matter

and their interactions. The elementary particle physics has emerged with the discov-

ery of the electron at the end of 19th century by J.J. Thomson. Since then, physicists

have regularly discovered new particles and have developed new fundamental particle

theories. At first, the discovery of new particles was mostly the results of experiments

with cosmic rays. Those discoveries have stimulated the physicists to build high energy

accelerators to produce controlled beams of particles. Those increasingly powerful accel-

erator have required the construction of ever larger and more complex experiments. This

development has led us to the construction of the LHC, the largest and most powerful

particle accelerator in the world. It has been designed for the discovery of the Higgs bo-

son, accurate measurement of Standard Model, and search for Beyond Standard Model

physics.

In this chapter we will start in section 2.1 by a brief presentation of the Standard Model of

elementary particles. To follow, in section 2.2, we will present the Large Hadron Collider

(LHC) and we will make an overview of the different experiments at the LHC, and the

accelerators present at CERN. Finally, in section 2.3 we will present the Compact Muon

Solenoid (CMS) experiment with a focus on the muon spectrometer and a presentation

of the upgrades.

3



Chapter 2. Large Hadron Collider and Compact Muon Solenoid 4

2.1 The Standard Model

The current theory in the field of modern particle physics is called the Standard Model

(SM) and was formulated in the late 1960 by S. Glashow, S. Weinberg and A. Salam.

The SM is an unification of the electroweak theory together with the quantum chro-

modynamics (QCD). According to the SM, matter is formed by 12 fundamental spin 1
2

particles called fermions and their interactions are described by the exchange of char-

acteristic gauge bosons (particle of integer spin) between the fermions.

2.1.1 Elementary Particles of Matter: Fermions

The 12 fermions are divided in two categories: six leptons and six quarks.

The leptons have an integer electric charge. There are three generations of charged

leptons (electron e−, muon µ− and tau τ−) and their associated neutrinos (νe, νµ and

ντ ) that are electrically neutral.

The quarks have a fractional electric charge:

• +2
3 |e| for the quarks up (u), charm (c) and top (t).

• −1
3 |e| for the quarks down (d), strange (s) and bottom (b).

where |e| is the electric charge of the electron.

The quarks are also grouped in three generation pairs that form the hadronic matter:

the first (u,d), the second (c,s) and the third (t,b) generation. In addition of their electric

charge, the quarks carry also a ‘color’ charge.

Additionally, to each fermion is associated an anti-particle that has the same mass as

the associated particle but all its quantum numbers are reversed.

2.1.2 Elementary Interactions & Gauge Bosons

In the SM, each fundamental forces has a mediator that is a gauge boson. There exist

four different elementary forces:

• The electromagnetic (EM) force is carried by the photon (γ). The EM interaction

applies on all charged particles. In classical physics it is described by the Maxwell

equations and it is described by the Quantum ElectroDynamics (QED) theory at

the quantum level.
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• The weak interaction is mediated by the charged boson W± and the neutral boson

Z, with masses of the order of hundred times the proton mass. Those bosons inter-

act with all elementary particles and allow heavier fermions to decay into lighter

fermions. Both the W± and the Z bosons have been discovered experimentally at

CERN in 1983.

• The strong interaction is mediated by the eight massless gluons gi and applied on

all the color charged particles. Consequently it acts only on the quarks and its

own gauge bosons. The strong interaction is described by the Quantum Chromo-

Dynamics (QCD).

• The fourth fundamental force is the gravitation. This interaction is not included

in the SM which constitutes one of its main limitations.

The strength of the different interactions, relative to the strong interaction, are reported

in the table 2.1.

Strong Electromagnetic Weak Gravitation

1 1/137 10−5-10−7 10−39

Table 2.1: Strength of the different interactions relative to the strong interaction.

2.1.3 Scalar Boson

The last particle predicted by the SM is the scalar boson. This particle was predicted

by Englert and Brout [1], Higgs [2], and Hagen, Kibble and Guralnik [3] and has been

experimentally confirmed by the CMS [4] and ATLAS [5] experiments at LHC in 2012.

The scalar boson is predicted in the theory by the Brout-Englert-Higgs mechanism that

was introduced in order to generate the mass of the heavy bosons and the mass of the

fermions.

Figure 2.1 gives a schematic representation of all the elementary particles predicted by

the SM.

2.1.4 Limitations and Needs for Beyond the Standard Model

The Standard Model is currently the best model to describe most phenomena of elemen-

tary particle physics. It has been successfully tested experimentally since its formulation.

However the SM can not be considered as the ultimate theory of particle interactions.

Indeed, the SM has a series of limitations that are the following:
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Figure 2.1: Schematic representation of the elementary particles predicted by the
Standard Model with the addition of the hypothetical presence of the graviton that is

the mediator of the gravitational force. Credits: CERN

• As already mentioned, the gravitation is not included in the SM. The current best

theory to describe the gravitation is the Einstein’s general theory of relativity.

• The model contains 19 free parameters (masses, mixing angle, coupling constants,

etc.), that need to be measured. It is widely believed that some of these parameters

should be related to each other from a mechanism that is not described by the SM.

• In the model, the neutrinos are assumed to be massless. However, experimentally

we have observed that the neutrinos can oscillate from one flavor to an other and

this fact implies that they have a non-zero mass.

• Today in the universe we observe a matter-antimatter asymmetry that is not ex-

plained by the SM.

• Several cosmological studies reveal strong evidence that the visible content of mat-

ter is only ∼ 5% of the total matter and energy in our universe. The rest is thought

to be due to the dark matter (25%) and the dark energy (70%). The SM does not

provide good candidates for a dark matter particle.
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All those limitations seem to require a new and presently unknown theory for the elemen-

tary particle physics. Several theories have been developed and are grouped under the

name Beyond Standard Model (BSM) theory, but until this day none of these theories

has been validated by the experiment.

2.2 The Large Hadron Collider

2.2.1 CERN Accelerators Overview

The CERN (Organisation Européen pour la Recherche Nucléaire - European Organi-

zation for Nuclear Research) was founded in 1954 by 12 European countries and has

now 21 member states. It is a European research facility that runs the largest particle

physics laboratory in the world. The CERN laboratory site is close to the Franco-Swiss

border near Geneva, as shown on Figure 2.2.

Geneva

CERN

ALICEATLAS

LHC

SPS

PS

BOOSTER

LHCbCMS

ALICE

ATLASLHCb

CMS

~100 m

Figure 2.2: Overall view of the LHC and location of the four main experiments [6].

As presented on Figure 2.3, CERN operates an accelerator complex made of six accel-

erators and a decelerator. The succession of the six accelerators allows to gradually

accelerate protons (or ions). This acceleration is done in four main steps:

• The Linear Accelerator (LINAC 2) initiates the acceleration with energies up to

50 MeV;
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• The protons are injected in the Booster (PSB) and then in the Proton Synchrotron

(PS). This step brings the proton’s energy up to 25 GeV/c2;

• The Super Proton Synchrotron (SPS) accelerates the protons up to 450 GeV/c2;

• Finally, the Large Hadron Collider (LHC) accelerates the protons to their collision

energy 3.5, 4 then 6.5 TeV.

Figure 2.3: Overview of the accelerator complex of CERN [7].
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Nowadays, the LHC is the largest and most powerful particle accelerator in the world.

It consists of a 26.7 km ring built at a mean depth of 100 m underground. It has two

parallel beam pipes with counter-rotating beams with four interaction regions equipped

with experiments. The LHC project was approved in December 1994 by the CERN

Council and it was built during the years 2000 to 2008 in the existing tunnel of the

former Large Electron-Positron (LEP) collider.

2.2.2 Luminosity and Center-of-Mass Energy

At the LHC, the proton beams are accelerated simultaneously in opposite directions

before colliding at one of the interaction points. The beams are made of bunches of

1011 protons distributed on 9 cm. We will now define two important parameters that

describe the performance of LHC:

• The luminosity (L): the number of events per second (Nevent) generated in the

collisions of a collider (like LHC) is given by:

Nevent = Linst · σevent,

where σevent is the cross section of the event of interest and Linst is the instanta-

neous luminosity.

The instantaneous luminosity is a function of the number of particles per bunch

ni, the frequency of collisions f and the transverse beam profiles σx and σy [8]:

Linst = f
n1n2

4πσxσy
.

The integrated luminosity is the amount of collected data (Lint) over a time period:

Lint =

∫ t2

t1

Linstdt,

and is generally expressed in inverse femtobarn (fb−1), where a barn is equal to

10−24 cm2.

• The center-of-mass energy (
√
s) defines the total energy available in a collision.

This energy depends on the energies of the particles of the two beams Ei and their

momenta pi:

√
s =

√
(E1 + E2)2 − (p1 + p2)2,
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In a collider, the momentum of the two beams have the same value and the opposite

direction (p1 = −p2), which means that we can write:

√
s =

√
(E1 + E2)2.

Therefore,
√
s at the LHC is equal to the sum of the energies of the two opposite

beams.

The nominal center-of-mass energy at the LHC is 14 TeV, and the nominal instantaneous

luminosity is 1034 cm−2s−1. During the first year of operation, the LHC ran at a center-

of-mass energy of 7 TeV and the total integrated luminosity was 5.1 fb−1. Then the

energy was increased to 4 TeV per beam (for
√
s = 8 TeV) until the integrated luminosity

reached 19.7 fb−1.

2.2.3 The LHC Experiments

There are four main experiments that are placed at the collision points of the LHC:

ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (LHC

beauty) and ALICE (A Large Ion Collider Experiment). Figure 2.4 shows the schematic

layout of the LHC and the location of the four main experiments.

CMS and ATLAS are two general purpose experiments that study a wide range of

particle physics. Those experiments were designed for the search of the Higgs boson and

for the search of BSM physics. They also perform precision measurements of processes

predicted in the SM. They have confirmed in 2012 the existence of the scalar boson of

the SM as mention before.

Unlike the two multi-purpose experiments, LHCb and ALICE are more targeted ex-

periments. LHCb focuses on the study of the asymmetry between the matter and the

anti-matter in the Universe and ALICE is designed to study the confinement of the

quarks through the quark-gluon plasma produced in heavy ions collisions.

There also exist two smaller LHC experiments that focus on forward particles: TOTEM

(TOTal Elastic and diffractive cross section Measurement) and LHCf (Large Hadron

Collider forward). Finally, near LHCb there is the MoEDAL (Monopole and Exotics

Detector at the LHC) experiment that focuses on the search for the magnetic monopole.
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Figure 2.4: Layout of the LHC including the four main experiments [9].

2.2.4 Upgrade Planning

With the aging of the detectors and the evolution of different technologies, it is necessary

to upgrade regularly both the accelerator systems and the experiments. Those upgrades

are helpful to increase the discovery potential of the LHC experiments. The upgrade

of the accelerator systems have two majors aspects: the increase of the center-of-mass

energy to reach the nominal value of 14 TeV and the increase of the instantaneous

luminosity. Those upgrades are planed and Figure 2.5 shows the projected LHC instan-

taneous and integrated luminosity as a function of the year as well as the shutdown time

of the accelerator.

Between 2013 and 2014 took place the first upgrade of the LHC. This first Long Shut-

down (LS1) has seen the improvement of the beam lines in order to increase the center-of-

mass energy from 8 TeV to 13 TeV and soon to the nominal 14 TeV. The instantaneous

luminosity has also been increased to approach the nominal value L = 1034 cm−2 s−1,

where it reached in 2012 about 7.5× 1033 cm−2 s−1.

The second Long Shutdown (LS2) is planned between 2019 and 2020. The goal is to

increase the instantaneous luminosity up to 2× 1034 cm−2 s−1.
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Figure 2.5: Projected LHC instantaneous and integrated luminosity as a function of
the year and preliminary dates for Long Shutdowns (LS).

Between LS1 and LS2, there is a period of operation called Run 2 and the goal is to reach

the integrated luminosity of 150 fb−1. Following LS2, Run 3 will take place starting

in 2021 and will continue until the LHC reaches 300 fb−1 that is planed for the end of

2023. The whole period, starting from November 2009 where the first collisions of the

LHC took place up to the end of Run 3, is called Phase I.

Starting from LS3, planned for 2024, the next phase of LHC operation will take place.

During this phase, called Phase II or High Luminosity LHC (HL-LHC), the instanta-

neous luminosity will be brought up to 5 − 7 × 1034 cm−2 s−1 and integrating a total

luminosity of 3000 fb−1.

2.3 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) detector, shown in Figure 2.6, is one of the multi-

purpose detectors operating at the LHC. The primary goal of the CMS experiment is to

study proton-proton collisions at a center-of-mass energy of 14 TeV and at luminosities

up to 1034cm−2s−1.

The position of any object in CMS is described in the polar coordinate system. The

origin of the system is given by the theoretical interaction point between the two proton

beams. The x-axis points radially inward the center of the LHC, the y-axis points
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Figure 2.6: Cutaway view of the CMS detector [10].

vertically upward, the z-axis points along the beam direction. The azimuthal angle φ is

measured from the x-axis in the x-y plane, the polar angle θ is measured from the z-axis

and the radial coordinate in this plane is denoted by r. A variable extensively used in

CMS is the so called pseudo-rapidity (η) defined as:

η = −ln
(
tan

(
θ

2

))

2.3.1 Overview

The CMS detector is an hermetic cylinder with a length of 28.7 m, a diameter of 15 m

and a total weight of 14000 t. It is divided into two regions: the central region called

the barrel and the two extremities called the endcaps. The different subsystems of the

CMS detector are organized in layers around the interaction point. There exist five

subsystems that have a specific task and characteristic [11] for the particle detection:
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• The tracker system is the central part of CMS and it is able to guarantee high track

reconstruction efficiency and a good momentum resolution of charged particles

together with the reconstruction of the primary vertices.

The full tracker system covers a detection region up to |η| = 2.5. It is made of

three layers of silicon pixel detectors in the barrel with about 66 millions of pixels

and two disks of pixel modules complement those layers on each side. Then, ten

layers of silicon strip sensors in the outer region and the endcaps for a total of 10

millions strips;

• The electromagnetic calorimeter (ECAL) is designed to detect photons and elec-

trons with a very high energy resolution. It allows to have a good invariant mass

resolution for photons pairs (1% at 100 GeV/c2). The ECAL is an hermetic

calorimeter that covers a detection region up to |η| = 3. It is made of more

than 61000 PbWO4 scintillating crystals in the barrel and around 15000 in the

endcaps. When the photons and electrons enter the ECAL, they initiate an EM

shower during which their energies are converted into light and then is collected

by photo-detectors;

• The hadronic calorimeter (HCAL) is a complement of the ECAL which is designed

to measure the hadrons jets energy. The HCAL is made of alternate brass convert-

ers and about 70000 scintillator tiles and photo-detectors that cover the detector

region up to |η| = 3. Additionally, the HCAL allows the indirect detection of

weakly interacting particles by measuring the missing energy;

• The magnet is a superconducting magnet of 6 m diameter and 12.5 m length

weighting a total of 220 t, generating a magnetic field of 3.8 T. It is kept at a

temperature of 4.5 K with liquid helium. The magnetic field is essential to bend

the charged particles and allows the precise measurement of their momentum. The

map of the magnetic field and the field lines produced by the magnet are shown

on Figure 2.7;

• The muons system consists of three different technologies of gaseous detectors and

covers the detection region up to |η| = 2.4. It plays a crucial role in the muon

identification, measurement of their momentum and general triggering. A detailed

description of the muon system and the different technologies is given in Section

2.3.2.

Figure 2.8 shows schematically how the various subsystems of detector contribute to the

identification of the particles that pass through them.
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Figure 2.7: Map of the magnetic field (left) and field lines (right) predicted for a
longitudinal section of the CMS detector by a magnetic field model at a central magnetic
flux density of 3.8 T. Each field line represents a magnetic flux increment of 6 Wb [12].

Figure 2.8: Schematic view of a slice of the CMS experiment showing the interaction
of particles in the different detection layers.
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2.3.2 Muon Spectrometer

The muon spectrometer [13] of the CMS experiment plays a crucial role since the recon-

struction of muons is a powerful tool to identify interesting physics processes. Its role is

to provide identification, track reconstruction and trigger of muons with momenta from

GeV to a few TeV. The system is located outside of the calorimeters and the magnet and

covers an area of ∼ 25000 m2. To stay relatively inexpensive and suitable for all of the

CMS requirements, it is based on three technologies of gaseous detectors: the Resistive

Plate Chambers (RPC), the Cathode Strip Chambers (CSC) and the Drift Tubes (DT).

Figure 2.9 shows a longitudinal cross-section of a quadrant of the current CMS experi-

ment with the details of the muon system.

The structure of the muon spectrometer is divided into two CMS regions: the barrel and

the endcaps. Let’s now define two important terms: The chambers are the basic phys-

ical modules that are independently-operating units and the stations are the assembly

of chambers around a fixed value of r in the barrel or z in the endcap.

The barrel is divided into five wheels along the z-axis. On each wheel there are four

stations. The two technologies in the barrel are the DT (the chambers ‘MB’ in yellow

on the figure) and the RPC (the chambers ‘RB’ in blue on the figure).

In each endcap there are four muon stations, the two technologies are the CSC (the

chambers ‘ME’ in green on the figure) and also the RPC (the chambers ‘RE’ in blue on

the figure).

The stations in the endcap are labelled ME1/n-ME4/n (or RE1/n-RE3/n), where n is

an integer that increases with the radial distance from the beam line.

We will now review shortly the three different technologies present in the actual muon

spectrometer.

2.3.2.1 Drift Tubes

The Drift Tubes are the principal detection technology of the CMS barrel. With a total

of 250 chambers (and about 200000 channels), the DTs cover the detection region up to

|η| = 1.2. As shown in Figure 2.10, the 250 chambers are distributed on the five wheels

of the barrel in four concentric layers that contain 60 chambers in the three first layers

and 70 in the outer layer.

Figure 2.11 shows the geometry of a CMS DT detection cell and its electric field lines.

The rectangular drift cell has a width of 42 mm and a height of 13 mm with at the

center an anode wire of 50 µm.
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Figure 2.9: CMS longitudinal cross-section showing the current muon spectrometer.
The Z-axis corresponds to the beam line, R correspond to the radius and the origin is

the interaction point.

A CMS DT chamber is made of two super-layers (SL) of DT cells, which are made of

four staggered layers of parallel cells. The major advantage of the cell structure is to

protect the chambers against damage from a broken wire.

The DT chambers measure the muon coordinate in the r-φ plane and provides a mea-

surement in the z direction.

The DTs are filled with a gas mixture of Ar/CO2 (85:15) that provides a drift time of

380 ns for 21 mm and are operated at a gas gain of 105.

The spatial resolution of the combined layers of DTs is of the order of 100 µm, the

reconstruction efficiency is higher than 95% and the time resolution is of the order of

few nanoseconds.

The long drift time of the charges inside the chamber constitutes one of the main limita-

tions of the DT technology. Indeed, the DT cannot operate at particle rates higher than

several tens of Hz. In addition, in order to keep the homogeneous drift velocity, the DT

have to operate in a uniform and low magnetic field. Due to those two limitations, the

DTs cannot be used in the CMS endcaps where the magnetic field can go up to 3.1 T

and the particle flux is between 102 − 103 Hz/cm2.
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Figure 2.10: Transversal view of one of the five wheels of CMS [13].

Figure 2.11: Schematic view of a CMS Drift Tube detection cell showing the geometry
and dimension of the chamber and the electric field lines.
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2.3.2.2 Cathode Strip Chamber

In the endcaps of the muon system, the Cathode Strip Chambers have the same function

as the DTs. There are four stations of CSC per endcap with a total of 540 chambers

that covers the pseudo-rapidity range 0.9 < |η| < 2.4.

As shown on Figure 2.12, the CSC is a a multi-wire proportional chamber in which the

cathode plane is segmented into strips perpendicular to the wire direction. The CMS

CSC are six-plane trapezoidal chambers (of 10◦ in φ for station ME1 and 20◦ in φ for

the three other stations) with a maximum length of 3.4 m and a maximum width of 1.5

m. The position of the strips in CMS is radial.

Figure 2.12: Schematic view of the trapezoidal shaped CMS Cathode Strip Chamber
(left); Schematic representation of the induced charge on the wires and the cathode

strips (right).

The CSCs are filled with a gas mixture of Ar/CO2/CF4 (40:50:10) and are operated at

a gas gain of 7 × 104. The signal induced by a muon crossing the detector is read by

both the wires and the cathode strips. The combination of those two signals gives a

typical space resolution better than 75 µm in r-φ for the ME1/1 and ME1/2 chambers

and better than 150 µm for the others that were the requirements of the Muon Technical

Design Report (TDR) [13]. The time resolution of the CSC is 6 ns.

2.3.2.3 Resistive Plate Chamber

The Resistive Plate Chambers (RPC) are present in both the barrel and the endcaps

to ensure the redundancy in the CMS muon spectrometer. In the six stations of the
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barrel, there are 360 RPC chambers and in the four stations of each endcap there are

252 chambers. The RPC system covers the pseudo-rapidity range up to |η| = 1.6.

The RPC is a gaseous detector made of two parallel plates separated by a gas volume

of 2 mm and covered with a 2 mm resistive Bakelite plate, as shown on Figure 2.13.

Figure 2.13: Schematic view of a RPC chamber.

In CMS, the RPCs are operated with a C2H2F4/i-C4H10 (95:5) gas mixture in avalanche

mode. To increase the output signal, the CMS RPCs have a double gap structure with

a common readout plane, as shown in Figure 2.14.

Figure 2.14: Layout of a double gap RPC chamber with a common readout plane.

The RPCs are particularly suitable for the BX identification and the first level triggering

since they are very fast detectors and they have a time resolution of the order of 1 ns.

Despite a poor spatial resolution (of the order of one centimeter), the RPC can resolve

tracking ambiguities by combining their hits with the data from the DTs and the CSCs.

The main limitation of the RPCs is their rate capability. Indeed, the high resistivity

of the Bakelite induces charging up effects and excessive current that bring the rate

capability down to below 1 kHz/cm2. For that reason, the endcap RPCs system only

covers the detection region up to |η| = 1.6, leaving the forward region (1.6 < |η| < 2.4)

only equipped with CSC detectors.
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2.3.3 Trigger System

The nominal bunch crossing rate of the LHC is 40 MHz which means a collision every

25 ns. When a collision occurs in CMS, the average event size is 1 MB [14]. For this

reason, it is impossible to store and to reconstruct the full amount of data produced at

this rate. To solve this, a trigger system selects events of interest and reduces the output

rate. As shown on Figure 2.15, the CMS trigger system has a two level design.

2.2 Overview of the CMS trigger system

At a collision rate of 40 MHz and taking into account every readout channel,  the 
aggregated data rate produced by CMS is about 100 Gbit/s  [12], which is far more 
than any storage technology can handle so far. Building an efficient trigger system 
architecture to significantly reduce this data stream without loosing events was the 
complex  task  of  the  trigger  design  group,  especially  given  the  performance 
specifications. For example, where the ATLAS detector has three levels of triggering 
to reduce the data volume for each event, the CMS detector has only two:

The main advantage of having fewer trigger levels is the direct availability of much 
more unfiltered data in the case an event has been accepted. The event reconstruction 
is  thus  more accurate  and the precision higher.  The required processing power to 
achieve  such  a  flat  trigger  function  in  a  delay  of  no  more  than  several  bunch 
crossings, on the other hand, is much more of a challenge. This section will first focus 
on the two layers of the trigger system of CMS, and subsequently on the muon system 
trigger mechanism and its hardware implementation.

2.2.1 Level-1 trigger (LV1)

For each bunch crossing, the sensors of the entire detector are read out and recorded 
locally in memory buffers inside the front-end electronics. Inside each of this piece of 
hardware, a local threshold-based decision trigger sends out a signal to a local sector 
trigger concentrator if the collision produced a signal with a sufficient magnitude to 
possibly be a valid hit. Several layers of concentrators, aiming at recognizing local 
patterns and coincidences, are stacked on top of each other to reach the uppermost 
global trigger system. This is depicted in Figure 16. If a valid trigger pattern is found, 
a Level-1 accept signal (produced by the Global Trigger Processor) is sent back to the 
entire detector, containing the bunch crossing number and a command to retrieve the 
corresponding data. Since most of the front-end electronics is highly optimized for 

28

Figure 15: CMS trigger system block diagram with the data 
rates between each level
Figure 2.15: Structure of the trigger system of the CMS experiment.

• Level 1 (L1): The goal of the L1 trigger is to reduce the 40 MHz rate to a maximum

of 100 kHz. The selection is done at the level of the detectors by the electronics.

The L1 trigger decision must be done in less than 3.2 µs that corresponds to

128 bunch crossings. As shown in Figure 2.16, the L1 combines the preliminary

reconstruction from the calorimeters and from the muon system. In the L1 trigger,

the tracker information is not included because it contains too many channels that

would slow down the triggering process.

When an event is accepted by the L1 trigger, the data of all the subsystems of

CMS are then sent to the next trigger level.

• High Level Trigger (HLT): The HLT receives the data from all CMS sub-detectors

with the full granularity and resolution and selects interesting physics candidates.

It runs on a large processor farm and reduces the input rate from the incoming L1

at 100 kHz to several hundreds of Hz. This selection takes a few milliseconds.

After the reduction of the two trigger levels, the events are sent to the Storage Manager

that stores the data on disk.
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Figure 2.16: Overview of the current architecture of the L1 trigger system [11].

2.3.4 CMS Upgrades

Like the LHC (see Figure 2.5), the CMS experiment requires a series of upgrades in order

to maintain the best performances possible for the detectors, like the efficiency and the

resolution, while both the center-of-mass energy and the luminosity of the accelerator

increase. The upgrade of the detector takes place during the different technical stops

and Long Shutdowns of the LHC.

A first set of upgrades was planed for the Phase I and has been already completed during

LS1 or will be finalized during LS2. A second set of upgrades is also planned for the

Phase II of the LHC. The major Phase I upgrades [15] of the different parts of the CMS

experiment are the following:

• Tracker system: The actual pixel detector will be replaced during LS2 in order to

keep the maximum tracking efficiency at high luminosity. Indeed, the actual pixel

detector was designed to operate at a maximum luminosity of 1034 cm−2 s−1. The

front-end electronics of this detector will also be replaced.

• Calorimeters: The principal upgrade of the calorimeter system is the replacement

of the HCAL photo-detectors by silicon photo-multipliers that provide a better

efficiency and have a better immunity to magnetic fields than the previous photo-

detectors.

• Muon system: The main changes to the muon system are the addition of a fourth

layer of CSC chambers and the extension of the RPC system. During LS1, The

new CSCs have been installed at the ME4/2 station and the RPC system has been

extended to cover the detection region up to |η| = 1.6.
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Another major Phase I upgrade of the muon system is the introduction of GEM-

based detectors. This upgrade will take place during LS2 with the installation of

2 × 36 GEM super-chambers in the forward end-caps of the muon system in the

detection region 1.6 < |η| < 2.2, as shown in Figure 2.17. The motivation for this

upgrade called GE1/1 will be discussed in the next section.

2 Chapter 1. Introduction

the tight geometrical limitations. The proposed GE1/1 detector utilizing GEM technology is an
excellent choice for this region due to its thin profile and the ability of operating well at particle
fluxes far above those expected in the forward region under HL-LHC conditions.. (In CMS
terminology, this muon station is designated GE1/1, where the letter G indicates the GEM
technology, the letter E indicates this is an endcap muon station, the first “1” indicates that it
is part of the first muon station encountered by particles from the interaction point, and the
second “1” indicates that it is the first ring of muon chambers going outward in radius from
the beam line.)
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Figure 1.1: A quadrant of the R− z cross-section of the CMS detector, highlighting in red the
location of the proposed GE1/1 detector within the CMS muon system.

The greatest benefit of the early installation of the GE1/1 muon station is to improve the L1
muon trigger during LHC running before the installation of a new silicon tracker and its asso-
ciated track trigger [3] in LS3.

The bending of muons within the CMS solenoid is largest at the position of the first muon
station; the bending is much less at subsequent muon stations because the magnetic field lines
bend around in the endcap flux return. Because of the reduction in the magnetic field and
higher background rates with increasing η, the contribution to the trigger rate within the GE1/1
coverage of 1.6 < |η| < 2.2 is particularly large and difficult to control. At this critical position,
the GE1/1 chambers in conjunction with the existing CSC station ME1/1 effectively multiply
by a factor of 2.4–3.5 the path length traversed by muons within the first muon station over that
of the 6 layers of the ME1/1 CSC chambers alone (11.7 cm). The increased path length, in turn,
significantly improves the L1 stand-alone muon trigger momentum resolution and drastically
reduces its disproportionately large contribution to the overall L1 muon trigger rate. The single
muon trigger rate curves before and after the GE1/1 upgrade for the region 1.6 < |η| < 2.2
are shown in Figure 1.2. With the upgrade, the L1 muon trigger thresholds can be maintained
at low pT values, so that the efficiency for capturing interesting physics processes featuring
soft leptons can be kept high. On the example of a single muon trigger, the upgrade will allow

Figure 2.17: CMS longitudinal cross-section location with location in red of the
proposed GE1/1 detector within the CMS muon system.

2.3.4.1 The CMS Muon Endcap GEM Upgrade

One of the major upgrades of the CMS muon spectrometer is the addition of a new layer

of detection in the high η region. We will discuss the physics motivations of the project

in this section. The characterization and performances of the Triple-GEM detectors will

be presented in detail in Chapter 3.

The CMS muon spectrometer was originally designed as a redundant system that em-

ploys three detection technologies. However due to concerns about their capability to

handle the high background particle rates, the RPCs, that provide redundant trigger

and coarse position measurement in both barrel and endcap regions, were not imple-

mented beyond |η| > 1.6. Nevertheless, after the LS2 shutdown, the CMS muon system

must be able to sustain a physics program that maintains sensitivity for electroweak

scale physics and for TeV scale searches similar to what was achieved before LS1.
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The studies of the muon trigger for the Phase I upgrade [16] have shown that the L1

trigger reaches an acceptable rate for muons with a transverse momentum PT > 25

GeV/c. This is no more the case after LS2 with the increase of the LHC luminosity to

2×1034 cm−2 s−1. The introduction of the GEM-technology provides additional precise

hits, with a good time resolution, that help to refine the stub reconstruction and improve

the momentum resolution.

The improvements in the single muon trigger rate curves with the GE1/1 upgrade are

shown in Figure 2.18.

1.1. Motivations for the GE1/1 muon detector upgrade 3

preserving the L1 threshold at 12-14 GeV providing nearly full efficiency for offline muons with
pT > 18− 20 GeV.

Figure 1.2: Level 1 muon trigger rates before and after the GE1/1 upgrade at a luminosity of
2× 1034 cm−2 s−1, for constant efficiency of 94%. MS1/1 denotes the first endcap muon station
Level 1 trigger in both cases, i.e. with CSC-only or with the combination CSC and GEM trigger
information. With the addition of GE1/1, the bending angle between the two stations can be
used and the trigger rate is greatly reduced.

Maintaining low muon trigger pT thresholds is important for a broad spectrum of physics stud-
ies ranging from new physics searches to the measurements in the Higgs sector. Some of the
striking examples are scenarios in the context of split [4, 5] and anomaly mediated [6, 7] SUSY,
sensitivity to which is often dependent on the ability to trigger on soft leptons, particularly in
the difficult for the LHC scenarios with “compressed” mass spectra. Other examples include
studies of the Higgs coupling to the third generation leptons via H → ττ and searches for
extended Higgs sectors appearing in various new physics scenarios [8] and which could hold
the key to the electroweak baryogenesis [9]. As an illustration, we consider the H → τ+τ−

case. Among the various decay channels, the semileptonic ττ → µτh + X channel is of spe-
cial importance due to its relatively large branching fraction and clean signal, provided these
events can actually be triggered efficiently given the low average lepton pT. Simulation studies
show an increase in the kinematic acceptance for H → τ+τ− signal events in this channel by
as much as 35% if the muon pT threshold is lowered by just 5 GeV, e.g. from 25 GeV to 20 GeV.
In addition to the inclusive muon trigger, all other trigger paths that rely on muon selections at
L1 will benefit from lower thresholds. The latter includes multi-object triggers such as µ+jet,
µ + Hmiss

T or e/γ + µ, which is relevant for studies of the bosonic Higgs decays, H → VV, such
as H → W+W− → eµ 2ν. Additional justification for a low-pT muon trigger may derive from
the B-physics program of CMS.

After the new silicon tracker and the track trigger for CMS will have been commissioned in
LS3, they will be used in coincidence with the L1 muon trigger to form a “combined muon
trigger,” where the momentum resolution for most muons from the primary event vertex will
be set by the very high resolution achieved by the track trigger. The GE1/1 and other planned

Figure 2.18: Level 1 muon trigger rates before and after the GE1/1 upgrade at
L = 2× 1034 cm−2 s−1 for constant efficiency of 94% [17].

By maintaining a low muon trigger PT thresholds, the efficiency to measure interesting

physics processes featuring soft leptons can be kept high.

As an example, let us consider the following Higgs boson decay channel: H → τ+τ−.

Among the various decay channels, the semileptonic ττ → µτh + X channel (where τh

represent the hadronic decay of a τ and X is the missing transverse energy -MET-)

is really important due to its relatively large branching fraction and its clean signal.

These events can be triggered efficiently if the muon trigger PT thresholds is maintained

sufficiently low. As shown in Figure 2.19, simulation studies show an increase in the

kinematic acceptance for H → τ+τ− signal events in this channel by as much as 35% if

the muon PT threshold is lowered from 25 to 20 GeV/c.

One of the major upgrade in view of the Phase II of the LHC, that will occur during

LS3, is the deployment of the tracking trigger. This addition of the tracker in the trigger
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Figure 6.11: Left: The distribution of the visible mass of the µ, τh, met system for events surviv-
ing all analysis selections for the H → ττ search in the VBF category in the µτh final state. The
three distributions correspond to a sample with 300 fb−1 and the offline muon pT threshold set
to 15, 20, and 25 GeV, illustrating importance of maintaining low muon thresholds in the trig-
ger and in the offline. Right: Full h → ττ analysis selection efficiency for the µτh VBF category
as a function of the chosen offline muon pT threshold.

analysis selections in the range 5 < pµ
T < 60 GeV. Figure 6.11 (left) shows the distribution for

the reconstructed visible mass of the µ+ τh+MET system for pµ
T thresholds of 15, 20, and 25 GeV

along with the total number of reconstructed events passing all selections (in 23% of these
events, muon candidate falls into the GE1/1, with this fraction being nearly independent of the
pµ

T threshold). Note that even with L = 300 fb−1 of data, the final sample remains fairly limited
in statistics, emphasizing the importance of maintaining maximum possible acceptance. These
results show that, on average, reducing muon threshold by 5 GeV, from 25 GeV to 20 GeV, yields
a 35% increase in the number of signal events passing all analysis selections and an overall 68%
increase if the thresholds are reduced from 25 GeV up to 15 GeV. Figure 6.11 (right) illustrates
these observations by showing the gains in the acceptance associated with the reduction in the
pµ

T threshold used in the offline analysis.

6.2.3 HL-LHC trigger performance

Deployment of the tracking trigger by CMS in LS3 will allow an ultra-high purity and low-rate
trigger targeting prompt muons by matching standalone muon candidates with the Tracker
tracks. The excellent momentum resolution of the Tracker eliminates the flattening of trigger-
rate curve owing to mismeasured low-pT muons and yields a very sharp turn-on of the trigger
efficiency. Using tracking isolation, which is less sensitive to PU than calorimeter isolation, and
combining objects targeting exclusive final states allows very high purity and low trigger rates.
The new combined trigger objects, referred to as L1TkMu, use track-trigger tracks extrapolated
to the muon stations and matched with L1 standalone muon candidates. The GE1/1 infor-
mation can contribute in resolution of ambiguities. More details about the Tracker part of the
trigger can be found in [3].

Preserving the standalone muon triggering capabilities will continue being important in HL-
LHC era. One particularly critical aspect is preserving the sensitivity to scenarios of new
physics predicting displaced muons arising from decays of new particles with finite lifetime.

Figure 2.19: Distribution of the visible mass of the µ, τh, MET system for the
selected events of the H → ττ analysis with the µτh final state (left); Full H → ττ
analysis selection efficiency for same analysis as a function of the chosen offline muon

PT threshold (right) [17].

system of CMS will allow to match standalone muon candidates with the Tracker tracks

and thus obtain an ultra-high purity and low-rate trigger targeting prompt muons. Those

combined trigger objects of the track-trigger tracks and L1 standalone muon candidates

(L1Mu) are referred to as L1TkMu.

Nevertheless, preserving the standalone muon triggering capabilities will continue to be

a key factor for the HL-LHC. One particularly critical aspect of the standalone muon

triggering is to preserve the sensitivity to scenarios of new physics predicting displaced

muons.

To illustrate this, let us consider the following scenario in the context of a SUSY with

hidden sectors:

H → 2n1 → 2nd2γd,

where a SM-like Higgs boson H with mass of 125 GeV/c2 decays into pairs of neutralinos

n1, which then decay into a stable dark sector neutralino nd and a dark photon γd of

mass m(γd) = 0.4 GeV/c2. The light γd decays into a pair of collimated muons. The

muons produced by the decay pointing back to the beamspot but are produced away

from the beamline. Figure 2.20 shows the comparison between the performance of the

L1TrkMu and the standalone muon trigger L1Mu algorithms in reconstructing at least

one of the two muons with no PT thresholds required as a function of the transverse

displacement of the decay vertex from the beamspot (Lxy).
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6.2. Muon trigger performance 111
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Figure 6.12: Left: The probability of reconstructing at least one muon candidate produced in
the decay of a light long-lived light particle decaying to a pair of muons γd → µµ as a function
of Lxy, the distance between the γd decay vertex to the beamline in the transverse plane. Stan-
dalone muon trigger L1Mu performance is compared to that of L1TrkMu, a trigger based on
matching muon and track trigger candidates with the CMS Phase-II detector simulation. Other
parameters of the model are shown in the legend and are chosen to ensure that a typical muon
transverse impact parameter dxy is small to minimize any sources of inefficiency not associated
with Lxy. Right: Probability to reconstruct a muon using L1Mu and L1TrkMu algorithms as
a function of muon’s true transverse impact parameter dxy. The parameters of the model are
chosen to provide a good coverage over the entire region of dxy shown. Only muons with small
true Lxy and pT > 8 GeV are used in the measurement to minimize sources of inefficiency not
related to dxy.

Figure 2.20: Comparison of the probability of reconstructing at least one muon can-
didate produced in the decay of a light long-lived light particle decaying to a pair
of muons γd → µµ as a function of the transverse displacement of the decay vertex
from the beamspot (Lxy) for the standalone muon trigger L1Mu performance and the

combined trigger objects of the track-trigger tracks and L1 standalone muon [17].

In view of the desired trigger and physics performances outlined, the set of minimum

requirements on the detection performance for the upgrade of the CMS muon endcaps

is shown on the table 2.2.

Properties CMS requirements

Rate capability > 10 kHz/cm2

Single chamber efficiency (MIP) > 97 %

Angular resolution < 300 µrad

Single chamber time resolution < 10 ns

Gain uniformity < 15 %

Table 2.2: The minimum requirements for the upgrade of the CMS muon endcaps.

We will now briefly review the rationale for these requirements.

First, as shown in Figure 2.21, the expected hit rate within the GE1/1 acceptance is

∼ 1 kHz/cm2 at the highest η for HL-LHC running at 14 TeV and 5 × 1034 cm−2 s−1.

Taking a safety factor of ten implies a hit-rate cabability of at least 10 kHz/cm2.

With an efficiency of 97.0% for an individual chamber, the super-chamber (that con-

tains two chambers) will reach an efficiency above 99.9% when the signals from the two

chambers are combined as a logical OR.

A precision of 300 µrad or better on the difference of the azimuthal muon positions

measured in GE1/1 and ME1/1 will enable the trigger to discriminate high-PT muons
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from low-PT muons reliably.

Both chambers making a super-chamber provide independent timing information that

can also be combined with timing provided by the CSCs. This means that a time reso-

lution of 10 ns or better for a single chamber is sufficient to reliably match GE1/1 hits

to ME1/1 stubs in time when running with a 25 ns bunch crossing time at the LHC.

Finally, a uniform gain in the chamber ensure a uniform response that is necessary to

ensure no geometrical trigger or reconstruction biases.

Figure 2.21: Hit rate of the simulated GE1/1 detector due to background particles
as a function of |η|, in the harsh CMS environment corresponding to the instantaneous
luminosity L = 5 × 1034 cm−2 s−1, typical of Phase II. The errors include statistical

and systematic contributions [18].

Post LS2 Upgrades The GE1/1 upgrade is not the only proposed muon detector

upgrade in the endcaps. During LS3, two new stations of GEM detectors are planed

to be installed in GE2/1 and ME0. And finally, two stations of improved RPC (iRPC)

detectors will be installed in RE3/1 and RE4/1. The locations of the new forward muon

detectors are shown on Figure 2.22.

For GE2/1 the detectors and the electronics will be very similar that the ones that will

be discussed in this thesis. However the iRPC and the detectors that will be used for

ME0 may be very different. Therefore those additional upgrades will not be discussed

further here.
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128 Chapter 4. Muon Systems

Figure 4.1: A quadrant of the muon system, showing DT chambers (yellow), RPC (light blue),
and CSC (green). The locations of new forward muon detectors for Phase-II are contained
within the dashed box and indicated in red for GEM stations (ME0, GE1/1, and GE2/1) and
dark blue for improved RPC stations (RE3/1 and RE4/1).

that allow relocation of some DT electronics from the collision hall, and installation of improved
electronics in the innermost set of CSC chambers (ME1/1).

There are three types of muon upgrades proposed for Phase-II: (i) upgrades of existing muon
detectors and associated electronics that ensure their longevity and good performance, (ii) ad-
ditional muon detectors in the forward region 1.6 < |η| < 2.4 to increase redundancy and
enhance the trigger and reconstruction capabilities, and (iii) extension of muon coverage up to
|η| = 3 or more behind the new endcap calorimeter to take advantage of the pixel tracking cov-
erage extension. Overviews of each type of upgrade are presented below, while further details
are included in subsequent sections of this chapter.

4.1.2 Upgrade of existing muon detectors

The present muon system is expected to provide excellent performance throughout the HL-
LHC program. However, it is known that DT electronics will need replacement due to limited
radiation tolerance of some components; this replacement also gives the opportunity to in-
crease the trigger rate capability and performance, and improve maintainability. Additionally,
the 108 inner-ring CSC chambers ME2/1, ME3/1, and ME4/1 will need to have their front-end
cathode cards replaced, since the combination of increased occupancy plus larger L1 trigger
rates and latency in Phase-II will cause their analog pipelines to fill up and lead to unaccept-
able deadtime.

Figure 2.22: CMS longitudinal cross-section location with location in red of the
proposed GE1/1, GE2/1 and ME0 detector and in dark blue of the improved RPC

stations within the CMS muon system.
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Gaseous Detectors

Gaseous detectors made their appearance at the beginning of the twentieth century. At

first they were mainly used for radiation detection. One of the most famous gaseous

detectors is obviously the Geiger-Müller detector. The principle was invented by H.

Geiger in 1913 and developed 15 years later in collaboration with W. Müller. At that

time, ionization chambers and proportional chambers already existed. However, those

detectors were not, or rarely, used in high energy physics. In general, the scintillator

detector were the favored technology, and this is mainly due to its excellent time res-

olution. One has to wait for the end of the seventies and the invention of G. Charpak

to see gaseous detectors playing a big role in high energy physics experiments. In 1968,

G. Charpak developed his Multi-Wires Proportional Chamber (MWPC) for which he

would later get the Nobel prize in 1992 for his invention. It is still on the same principle

that work within the GEM detectors, introduced almost 30 years later.

In this chapter, we will discuss the physics principles that are involved to observe the

passage of a charged particle through a gaseous detector. We will start by the general

principle in section 3.1, then in section 3.2 and 3.3, we will see in details the ionization

process and the motion of electrons and ions in the gas. To follow in section 3.4 and

3.5, we will discuss the amplification process and the choice of the gas mixture. At the

end we will describe the signal formation in section 3.6. Finally in section 3.7, we will

present different technologies of modern micro pattern gaseous detectors.

Most of this chapter is based on classic textbooks [8, 19, 20], other sources are specified

throughout.

29
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3.1 General Principle

To illustrate the general principle of a gaseous detector, we will briefly describe the oper-

ation of a Multi-Wire Proportional Chamber (MWPC). Such a detector is schematically

shown in Figure 3.1.

A MWPC is made of wires outstretched between two parallel flat electrodes. Those

two planes define the sensitive region filled with a gas mixture. Generally, the wires

are connected to the ground by the electronics and the flat electrodes are at a negative

tension. This geometry results in a uniform and constant electric field in the sensitive

region, except in the proximity of the wires, as shown in Figure 3.1.

Figure 3.1: A schematic view of a MWPC (left) [21]; the equipotential line in a
MWPC (right).

When a charged particle passes through the gas volume, it creates a primary ionization

(see next section) along the track of the particle. The electric field will make the freed

electrons drift to the anode wires and the ions to the cathode planes. After the amplifi-

cation by avalanche around the wires, the motion of the charges will create an electric

current on the electrodes. This current is the signal that will inform of the passage of

a particle. This primary ionization is generally, for gaseous detector, too small to be

directly detected by the electronics. In order to detect the particle, an amplification in

the gas volume is thus necessary to increase the number of electrons drifting towards

the electronics. This amplification process is called an avalanche (see section 3.4).

3.2 Ionization

3.2.1 Energy Loss

A relativistic charged particle going through a volume of gas, or more generally through

matter, will interact with its constituents and by doing so the particle will loose some

energy along its trajectory. The particle can interact in several ways. Depending on



Chapter 3. Gaseous Detector 31

its type, the particle can interact through weak interaction, strong interaction, or elec-

tromagnetic interaction. In the gaseous detector, the dominating interaction is the

electromagnetic interaction.

There are several electromagnetic interactions possible, as the Cherenkov radiation,

bremsstrahlung,... But the dominant one in our case is the Coulomb interaction. This

interaction will excite and/or ionize gas molecules.

The energy loss by unit length of a relativistic charged particle is described by the

Bethe-Bloch equation :

−
〈
dE

dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ(βγ)

2

]
(3.1)

K = 4πNar
2
emec

2

where Tmax is the maximum kinetic energy given to a free electron during a collision,z

the charge of incident particle, me the electron mass, β is the velocity of the particle

divided by the speed of light (β = v/c), γ is the Lorentz factor (γ = (1 − β)−1/2), I is

the mean excitation energy, A and Z are respectively the mass number and the atomic

number of the material, Na the Avogadro number and re the classical radius of the

electron defined as re ≡ e2/πε0mec
2 (e is the electron’s charge and ε0 is the vacuum

permettivity).

The Bethe-Bloch function is shown in Figure 3.2 for different materials. We can see that

the energy loss does not depend on the mass of the particle, but only on the speed and

charge of the particle.

At low energy (β < 1.0) we can observe a quick decrease in the energy loss when β

increases, this is due to the term in 1/β2. The decrease continues until it reaches a

minimum at 3 6 βγ 6 4.

At relativistic energies (β ' 1, γ � 1), the energy loss, dominated by the term in

ln γ, increases logarithmically; this is the relativistic rise. This rise will continue until a

constant value called the Fermi plateau.

The slowdown of the relativistic rise is due to the term δ(βγ) (called Fermi’s density

correction). This effect appears when the particle has an ultra-relativistic velocity.

Indeed, at those velocities a temporary polarization of the atoms of the medium will

create a screening of the electric field along the trajectory and will lower the interaction

rate between those atoms and the incident particle.
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Figure 3.2: Average energy loss per unit length as a function of the momentum of
various particles in liquid hydrogen, helium gas, carbon, aluminum, iron, tin and lead.

3.2.2 Primary and Total Ionization

The incoming particle will, as we will see, create electrons and ions pairs all along the

trajectory by electromagnetic interaction. This mechanism is called primary ionization.

If the resulting released electrons have an energy larger than the ionization potential of

the medium, they will also ionize other molecules of the gas. This is called secondary

ionization. The sum of both primary and secondary ionizations is called total ionization.

In fact, only a fraction of the energy lost by the incident particle is used for the ionization.

If we define W the mean energy loss needed to create a ion-electron pair, we can write

a relation giving the average total number of produced pairs along the trajectory 〈N〉 :

W 〈N〉 = L

〈
dE

dx

〉
(3.2)
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Where L is the trajectory length. The energy needed to create a pair depends on the

gas mixture and is experimentally determined.

Starting from this relationship, we can easily express the average number of pairs created

per unit length (nT ):

nT =
〈dE/dx〉
W

In most of the gaseous detectors, we use a gas mixture. In this case, the total number of

electrons is obtained by summing the mean number of produced electrons in every gas

of the mixture, weighted by the gas percentage Pi in the mixture :

nT =
n∑
i=1

〈
dE

dx

〉
i

Pi
Wi

(3.3)

where the index i represents a gas among n. Note that in the case of gas mixtures, nT

is typically underestimated. Indeed in a compound the elements are not independent

and the de-excitation of an atom can lead to a delayed ionization of an other atom. The

values of Wi , dE/dx and nT for different gases are shown in the table 3.1, those values

are the mean values obtained experimentally.

Wi (eV) dE/dx (MeV/g cm2) nT (e−/cm)

He 41 1.94 7.8
Ne 36 1.68 39
Ar 26 1.47 94
Kr 24 1.32 192
Xe 22 1.23 307

CO2 33 1.62 91
CH4 28 2.21 53

C4H10 23 1.86 195

Table 3.1: Values of Wi, dE/dx and nT for different gases [22].

3.2.3 Collisions

When a charged particle crosses a gas volume it collides with a large number of gas

molecules, but only a few of these collisions actually produce ionization. The probability

distribution that will follow this ionization will therefore be a Poisson distribution.

If we have a mean value of n primary electrons over a certain distance, the probability

to create k primary electrons is given by:

P (k) =
nk

k!
e−n
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With this expression, we can compute the probability that the incident particle does not

ionize the gas, i.e. the particle can not be detected. Therefore, the minimum inefficiency

of a perfect detector is given by :

P (k = 0) = e−n

i.e. the probability that there are no primary ionization when passing through the gas

volume.

With this expression, we can compute the minimum inefficiency for a real case. The

distribution shown in Figure 3.3 gives the number of clusters of electrons produced by

a 15 GeV muon in 3 mm of Ar/CO2 (70:30). The mean value of this distribution gives
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Figure 3.3: Distribution of the number of clusters of electrons produced by a 15 GeV
muon in 3 mm of Ar/CO2 (70:30) produced by GARFIELD.

the number of collisions leading to ionization. The minimum inefficiency is equal to :

P (k = 0) = e−11.5 ' 0.001%

Another way to describe the ionization in a gaseous detector is to define the probability

distribution of the number of electrons released directly or indirectly with each primary

encounter. This distribution is called the ionization cluster-size distribution. It has been

carefully studied experimentally and the results are described elsewhere [23]. Figure 3.4

shows the ionization cluster-size distribution for argon. The last bin of this distribution

is the probability to have twenty or more electrons in one cluster.
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Figure 3.4: Ionization cluster-size distribution for argon.

3.2.4 Multiple Scattering

In addition to the inelastic collisions with atomic electrons, charged particles traversing

the medium will also go through elastic Coulomb interactions with nuclei. After a

number of successive small deviations, the particle will emerge at an angle θ compared

to the initial direction of the particle. The distribution of the scattering angle projected

in a plane parallel to the direction of the incident particle is a Gaussian with a standard

deviation given by :

θ0 =
13.6MeV

βcp
z

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
where β, p and z are respectively the speed, momentum and charge of the incident

particle while x and X0 are respectively the thickness and the radiation length of the

material. The radiation length is the characteristic thickness of matter traversed for an

electron to loose all but 1/e of its energy by bremsstrahlung or a high-energy photon by

e+e− pair production.

3.3 Electron and Ion Drift Velocity in Gas

The performance of a gaseous detector depends on the drift and diffusion of electrons

and ions in the gas. The drift velocity determines the time of collection of ionization and

therefore the speed of the detector response. Diffusion is responsible for the widening of

the distribution of the charge in the gas, which affects the determination of the position

of the incident particle. Before discussing the choice of the gas mixture and its influences

on the performance of the detector, we will introduce some theoretical principles.
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3.3.1 Gas Kinetics without External Fields

In a gas, in the absence of external field, the dynamics of the gas molecules and the ions

and free electrons in the gas in equilibrium is described by gas kinetics.

This theory states that the gas particles are subjected to thermal agitation. This agi-

tation provides a certain kinetic energy. The distribution of kinetic energy in a gas is

given by the Maxwell distribution [24] :

P (E)dE = N
2

√
π (kBT )3/2

√
E exp

(
− E

kBT

)
dE

where T is the absolute temperature, N the number of molecules in the gas, and kB

the Boltzmann constant. From this distribution, the velocity distribution can be easily

computed :

P (v)dv = N

(
2

π

)1/2( m

kBT

)3/2

v2 exp

(
− mv2

2kBT

)
dv

The average energy of a gas molecule under normal conditions depends only on the

temperature and is 3/2 kBT (0.04 eV) at 293 K. This energy corresponds to an average

speed :

v =

√
3kBT

m
(3.4)

where m is the particle mass.

As a consequence the electrons move much more rapidly than the ions. According to

Eq. 3.4, the speed of electrons and ions is 10 cm/µs and 10−2 cm/µs respectively.

Thus, in the absence of any other effect, a charge distribution, initially located at a

point, diffuses over time by multiple collisions and following a Gaussian:

dN

N
=

1√
4πDt

exp

(
− x2

4Dt

)
dx

where dN/N is the fraction of charge at a distance between x and x+dx from the initial

point at time t; D is the diffusion coefficient. The diffusion coefficient is proportional to

the average velocity v, it decreases with the mass of the particles.

For a one-dimensional distribution, the standard deviation is given by:

σx =
√

2Dt (3.5)
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It is easy to generalize this expression to the case of diffusion in a volume. In this case

the standard deviation is given by :

σ =
√

6Dt

3.3.2 Drift and Diffusion in the Presence of External Fields: Macro-

scopic Model

When a uniform electric field is applied, the electrons and the ions will be accelerated

along the field lines. This acceleration is interrupted by collisions with the gas molecules

that quickly limit the maximum velocity of the electrons and ions.

The motion of a charged particle (electron or ion) in a gas under the effect of an electric

field ~E and a magnetic field ~B, can be described by the equation of motion with friction

[25], the friction being caused here by the collisions between the particle and the gas

molecules. It is then possible to define the drift velocity (~vd) as the average speed of

all the charged particles. After a sufficiently long time, the friction force that increases

with the drift velocity will compensate the electromagnetic force, resulting in a constant

drift velocity. In the absence of magnetic field, the drift velocity is then expressed as:

~vd =
q

m
τ ~E (3.6)

where q and m are respectively the charge and mass of the particle, ~E the electric field

and τ the time of mean free path, i.e. the average time between two collisions.

By defining the mobility of a charge in a gas as µ ≡ (q/m)τ , the Eq. 3.6 can be written

as :

~vd = µ~E

Thus the mobility describes the differences in velocity that exist for different types of

particles in a same electric field. Mobility depends on the particle charge, mass, and the

gas type in which it drifts (since τ depends on gas).

In the case of a mixture of n gas, ion mobility in this gas mixture is given by the Blanc’s

law [26] :

1

µ
=

n∑
i=1

ci
µi

where ci is the gas concentration i and µi the mobility of the ion in the pure gas.
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Note also that if a magnetic field is applied parallel to the electric field, neither the drift

velocity nor the direction of drift are affected by the presence of the magnetic field. This

is not the case for diffusion, as we shall see later.

3.3.3 Drift and Diffusion in the Presence of External Fields: Micro-

scopic Model

As we saw in section 3.3.1, when no external field is applied, a free electron (or ion)

in the gas has a kinetic energy equal to 3/2kBT and instant drift velocity randomly

oriented. Under the effect of an electric field, the electrons and ions are accelerated

along the field lines and their average kinetic energy increases:

ε =
1

2
mv2 = εE +

3

2
kBT

where εE is the mean energy gained due to the electric field. With field values typically

used in gas detectors, above a few hundred V/cm, εE amounts to a few electron-volts.

Therefore the contribution of thermal energy, ∼ 0.04 eV , can be neglected.

At each collision, the charged particle loses an average fraction λ(ε) of its energy εE .

Therefore there is a balance between the energy received from the electric field and the

energy lost by collision. This allows to express the drift velocity as follows :

~vd =
q ~E

mNσ(ε)

√
λ(ε)

2

where σ(ε) is the collision cross section, and N the molecular density. σ(ε) and λ(ε) are

functions of the kinetic energy ε or the characteristic energy εk ≡ 2
3ε, we must observe

their evolution with the electric field to understand the behavior of the drift velocity.

This is what is shown in Figure 3.5 and 3.6 respectively showing the characteristic energy

as a function of the electric field and σ and λ as a function of the kinetic energy for

argon and methane.

In pure argon, εk increases slowly from ∼ 3 to 10 eV for electric fields from 100 to

2000 V/cm. In this energy range, it is observed in Figure 3.6 that the cross section is

close to the minimum and is equal to 10−15cm2 and that the lost fraction of the energy

is constant and very small, close to 10−5. This small value is explained by the fact that

in noble gases such as argon, below an excitation threshold of typically several electron

volts, collisions can only be elastic. Therefore the drift velocity will be small.

On the other hand, in a poly-atomic gas, such as CO2, methane, isobutane, etc., many
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Figure 3.5: Characteristic energy εk function of the external field [27].

states of rotation and vibration can be excited in the collisions, which lowers the exci-

tation threshold to a few tenths or hundredths of electron volts (0.03 eV for the CH4

molecule). Thus the values of λ are much larger (see Figure 3.6 for CH4) compared

to argon. Therefore, adding even a small amount of poly-atomic gas (e.i. CO2) to a

noble gas changes drastically the drift velocity as shown in Figure 3.7. Regarding the

diffusion, one can show that the standard deviation in the x direction (see Eq. 3.5) can

be expressed in terms of the average energy of the particles ε, and their mobility µ :

σ2
i = 2

2εµ

3q
t (3.7)

where 2εµ
3q can be identified to the diffusion coefficient D from Eq. 3.5. Note that the

time during which the charges are drifting from a distance L is equal to t = L
µE , which

allows writing Eq. 3.7 as :

σi = D′
√
L (3.8)

where D′ is the diffusion coefficient which is equal to :

D′ =

√
2D

µE
=

√
4ε

3qE
(3.9)

Thus, the standard deviation of the charge distribution is proportional to the square

root of the drift distance.
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Figure 3.6: Cross section σ and fraction of the energy lost by collisions λ function of
the kinetic energy for argon and methane.

When a magnetic field is applied, the electrons follow a helicoidal path in the direction

of the magnetic field, while drifting in the direction of the electric field. One can show

[24] that in this case the diffusion is reduced by a factor
1

1 + ω2τ2
where ω ≡ (qB)/m

is the cyclotron frequency.

For example, the transverse diffusion decreases as the magnetic field increases for the

Ar/CO2 (70:30) gas mixture as can be seen in Figure 3.8.

3.4 Amplification

When an electron moves in the gas with enough energy, it may cause ionizing collisions

(see section 3.2). Consequently, if the electric field exceeds a few kilovolts per centimeter,

electrons can gain sufficient energy between collisions to produce excitation or ionization

of the gas molecules, creating additional electron-ion pairs. The produced electrons will
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Figure 3.7: Electron drift velocity versus electric field for various Ar/CO2 mixtures
computed by simulation [24].

Figure 3.8: Longitudinal diffusion and drift velocity according to the electric field
and transverse diffusion according to the electric field for different magnetic fields for

Ar/CO2 (70:30) gas mixture [28].
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in turn be accelerated and therefore be able to further ionize the gas. This multiplication

process is called the avalanche. We will now describe this process in a more formal way.

We can define the free mean path of ionization of the electrons, i.e. the average distance

an electron must travel before undergoing an ionizing collision with a gas molecule. This

distance will depend on the effective ionization cross section σ(ε), which itself depends

on the energy (ε) it takes to create a pair. The distance also depends on the density of

the number of molecules in the gas (n). This leads to the following expression for the

mean free path of ionization :

λ(ε) = (nσ(ε))−1

The inverse of this distance represents the number of electron-ion pairs produced per

unit length. This number is called the Townsend coefficient (α(ε) =
1

λ(ε)
) [29].

Now that we have defined this coefficient, we must express the increase in the number

of electrons in an avalanche.

In the case of a constant electric field, an electron will ionize a gas molecule after an

average travel of α−1, there is therefore, at that time, two electrons and one ion. The

two electrons, after a mean path again equal to α−1, will ionize two gas molecules (on

average). And the process will repeat. On a distance dx we have an increased number

of electrons equal to n times the coefficient of Townsend :

dn

dx
= nα

If we integrate this relationship, it gives us the number of electrons produced in an

avalanche after a distance x :

n = n0e
αx

where n0 is the number of electrons at the start of the avalanche.

We can now define the gain as :

G(∆x) =
n

n0
= eα∆x (3.10)

which describes the multiplication factor of the avalanche.

The avalanche, which is a set of electrons and ions, will take the form of a drop, as

shown in Figure 3.9. Indeed the difference in drift velocity between electron and ion

(which is of the order of 103) will result in an accumulation of electrons at the front of

the avalanche, while the ions will be distributed all along the avalanche forming a tail.

A priori, given the description of the gain, nothing limits the multiplication. However

there is of course a limit to the gain. Indeed, the size of the avalanche will increase
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Figure 3.9: Diagram of the development of the avalanche.

with the distance. The electric field produced by the space charge will therefore also

grow to locally cancel the external electric field. This effect will result in electron/ions

recombination which will emit ultraviolet photons in an isotropic direction in the detec-

tor. These photons can also ionize the gas molecules which will create new avalanches.

All these avalanches can be combined with each other and connect the electrodes by a

conducting plasma, which will produce a discharge, which may damage the electrodes.

An empirical limit of maximum number of charges in an avalanche was determined by

Raether [29] and correspond to :

αs ∼ 20

where s is the characteristic dimension of the avalanche. This limit corresponds to a

gain of the order of 108.

3.5 Gas Mixture

The choice of the gas mixture that we use in a gaseous detector is something quite

complicated and depends on the expected performance of the detector. The important

parameters to be taken into account in the choice of the gas mixture for the application

studied in this thesis are: the electrons and ions drift velocities, the gain and the ability

to absorb ultraviolet photons (and thus minimize the discharge).

The choice of argon is quite conventional, because the primary ionization for minimum

ionizing particles is high enough (of the order of 100 e−/cm see table 3.1). And com-

pared to other noble gas (like xenon and krypton), argon is inexpensive.

It happens frequently that we should operate at a high gain, i.e. with a high electric
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field, which increases the risk of discharges. To increase the electric field while avoid-

ing discharges, a poly-atomic gas must be added. Indeed, poly-atomic gases have the

property to have a lot of degrees of freedom (rotation, vibration ...). They can therefore

absorb ultraviolet photons produced in the avalanche, and thus avoid the discharges.

This type of gas is called a quencher. Gases generally used as quenchers are CO2, CH4

or isobutane.

3.6 Induced Signal

The signal that is observed on the electrode is not due to the collection of the charges

themselves. Indeed, the collection time is too short to create a detectable current on the

electrode. The signal that is recorded by the electrode, is actually the current induced

by the displacement of the charges moving close to it.

To understand the observed signal, we will begin by studying the case of a moving

charge close to a non-segmented electrode, we will then look at the same case but for a

segmented electrode. Finally, we will end this section by calculating the signal currents

induced by a moving charge close to n electrodes.

3.6.1 Non-Segmented Electrode

If we have a charge q at a distance Z0 from a grounded electrode, we can compute the

charge distribution on the electrode by the method of images [30]. To do this, a virtual

charge −q is placed on the other side of the electrode. The sum of the potentials of

the two charges gives the total potential. From this potential, the electric field and the

charge distribution on the electrode become :

Ez(x, y) = − qZ0

2π(x2 + y2 + Z2
0 )3/2

Ex = Ey = 0

σ(x, y) = ε0Ez(x, y)

With the charge distribution we can compute the total charge induced on the electrode.

This charge is −q that is the image charge.

If you change the initial position of the charge, this will change the distribution of charge,

but not the induced charge. There will be no current induced by the movement of a

charge close to a non-segmented electrode, as shown in Figure 3.10.
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Figure 3.10: Diagram of the distribution of charge on a non-segmented electrode.

3.6.2 Segmented Electrode

We will now look at what happens if we segment the electrode in N parts of width W .

When the charge q moves, the charge distribution on the electrode portions will now

vary, which will produce a current, as shown in Figure 3.11.

To compute the induced charge at time t on the ith segment, the charge distribution

must be integrated on this portion:

Qi (Z0(t)) =

∫ ∞
−∞

∫ W/2

−W/2
σ(x, y) dxdy

= −2q

π
arctan

(
W

2Z0(t)

)
where Z0(t) is the position of the charge function of its speed (Z0(t) = Z0 + vt).

In order to get the current induced on the segment considered the time derivative of the

charge must be computed. The current induced by the movement of a charge q on the

ith segment will be given by the following expression :

dQi
dt

= Ii(t) =
4qW

π(4Z0(t)2 +W 2)
v

3.6.3 Induced Currents

We will now consider the signal that will be induced by the movement of a charge on

a set of electrodes. All electrodes are interconnected and are connected to the ground
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Figure 3.11: Diagram of the distribution of charge on a segmented electrode.

with a certain impedance. Considering a set of n grounded electrodes, and the induced

current on the electrode i by a moving charge q will be noted Ii(t). This configuration

is, in fact, the practical problem that must be solved in the case of a gaseous detector

with multiple electrodes.

To compute the induced current, we have to use two theorems.

The first is the Green’s reciprocity. This theorem states that having n potentials Vi

for i = 1, ..., n due to n charges Qi, and n other potentials V̂i due to another charge

distribution Q̂i then :

n∑
i=1

QiV̂i =
n∑
i=1

Q̂iVi

The second is the Shockley–Ramo theorem. This theorem states that to compute the

current Ii induced by the movement of a charge q, on grounded electrode i among n, it

is enough to compute the resulting current on the electrode when it is maintained at the

potential V0 (in the absence of the charge q and all other electrodes being maintained

at the ground potential).

At any point it therefore results in a potential Vi and an electric field ~Ei.

We can define what is called the normalized potential, as well as the normalized field

(respectively Vw and ~Ew) as :

Vw ≡
Vi
V0

~Ew ≡
~Ei
V0
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Using these two definitions, and both theorems, it is easy to show that the induced

current on the electrode i is of the form :

Ii = −q ~Ew.~v (3.11)

In practice, the computation of the induced current on the electrode i requires :

- computing the electric field in the detector, created by all the electrodes at their

operating potential;

- computing the normalized field ( ~Ew);

- computing the position and the drift velocity of the charge q.

The fields and potentials are usually computed using commercial programs [31]. The

movement of the charge q can be computed knowing the drift velocity and the intensity

of the electric field in the gaseous detector.

3.7 Micro Pattern Gaseous Detectors (MPGD)

The increasing constraints in particle physics experiments have led researchers to de-

velop new technologies. It is in the late eighties that the new generation of gaseous

detectors is born, with the invention of the Micro-Strip Gas Chamber (MSGC). The

MSGC is the first gaseous detector using micro-strip anodes instead of wires to provide

the gas amplification. After its introduction in 1988 [32], several alternatives have been

introduced: namely, the Micromegas in 1995 and the Gas Electron Multiplier in 1996.

In the following we will describe in details these detectors emphasizing their advantages

and drawbacks.

3.7.1 Micro-Strip Gas Chamber (MSGC)

The MSGC are made of a plane of metal strips etched by photo-lithography. Several

millimeters above this plane is placed a cathode plane drift. The space between this

electrode and the strips plane is filled with gas; it is the sensitive region of the detector.

The Figure 3.12 represents a section of a MSGC detector.

On the substrate, the metal strips consist of an alternate succession of anodes and

cathodes separated by a few tens of microns. Typically, the anodes are very narrow,

between 5 and 10 µm, while the cathodes are wider, of the order of 100 µm. The pitch

between the anodes is typically 200 µm.

Applying a potential difference of a few kilovolts between the drift plane and the detec-

tion plane, provides an electric field nearly uniform of a hundred volts per centimeter
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Figure 3.12: Diagram of the operating principle of an MSGC.

in the volume defined between the two planes, except close to the detection plane (see

Figure 3.13). The charges produced by ionization (see section 3.2) drift following the

field lines.

The avalanche is produced near the metal strips, where the field is no longer uniform

and increases to a few tens of kilovolts per centimeter. The field lines produced by the

electrode configuration will focus the primary electrons toward the anode strips, while

the ions produced in the avalanche are mainly collected by the cathode strips.

With this geometry and the intense fields, the ion collection is done within a few µs by

the adjacent cathodes, about one thousand times faster than in the MWPC.

A major advantage of the MSGC compared to the MWPC is the high granularity. In-

deed, the photo-lithography allows high accuracy (of the order of 0.1 µm) in the place-

ment of anodes and cathodes, which leads to a good spatial resolution (up to 30 µm as

shown in ref.[33]).

3.7.2 Micromegas

The Micromegas (Micro Mesh Gaseous Structure) have been introduced in 1995 by I.

Giomataris et al.[34]. Unlike MSGC, the Micromegas detector plane consists only of

anodes.

Above the anode plane is placed a grid which acts as a cathode. This grid is maintained

at about one hundred microns above the anode plane with cylindrical pillars of ∼ 300

µm in diameter. A voltage, of the order of −500 V , is applied to the grid and the anode
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Figure 3.13: Diagram and line of electric field of an MSGC.

plane is grounded via the readout electronics to create an electric field of the order of

50 kV/cm. The space defined is the amplification gap.

A few millimeters above the grid is the drift electrode which defines the sensitive volume

of the detector, also called drift gap.

Figure 3.14: Operating diagram of the Micromegas.

When a charged particle passes through the sensitive volume of the detector, it deposits

the ionization energy along its path. The charges produced drift in this sensitive area

along the field line whose configuration is shown in Figure 3.15. The electric field is

relatively small, of the order of 1 kV/cm in the sensitive volume. This field is constant,

which implies a constant drift of the charges until the neighborhood of the grid.

The electrons are then caught in the holes of the grid and go in the amplification area

where there is a constant field around 50 times more intense than in the drift gap. This
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Figure 3.15: SEM image of a Micromegas structure (Left) [35]. The electric field
lines around the Micromegas grid (Right).

very high field is responsible for the avalanche process that occurs over the entire anode-

cathode distance (of 100 µm) and not only close to the anodes, as in the case of the

MSGC.

The electrons quickly reach the anodes while the positive ions, slower, drift in the op-

posite direction and are collected at the micro-grid.

The electric field is high and constant throughout the entire amplification gap, these ions

are therefore quickly evacuated. In Micromegas, less than 30% of the signal is induced

by the electrons within 5 ns and 70% of the signal is created by ions in 40 ns [36].

3.7.3 Gas Electron Multiplier

The Gas Electron Multiplier (GEM) was introduced in 1996 by F. Sauli [37].

The GEM foil consists of a kapton foil of few tens of microns thick with 5 µm copper

cladding surfaces on both sides. Those foils are pierced with a high density of micro-holes

(50 to 100 holes per cm2). The most common technique used to produce those holes is

photo-lithography. Two different techniques of photo-lithography exist to produce GEM

foils: Double-Mask and Single-Mask. The Figure 3.16 shows the schematic comparison

of both procedures. By applying a potential difference between the two foils of copper,

a few hundred volts, it produces an electric field of the order of 50 kV/cm in the center

of the holes. Figure 3.17 left shows a GEM foil produced by Double-Mask technique and

its dimensions and Figure 3.17 right shows the electric field lines in the neighborhood of

the holes.

A GEM-based detector is made of a gas volume, defined between a cathode plane and an

anode plane, split in two with a GEM foil. An electric field is applied in the gas volumes.

The volume between the cathode plane and the GEM foil is the sensitive volume (often

called the drift gap) where the primary ionization takes place. The ionization electrons
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Figure 3.16: Schematic comparison of procedures for fabrication of a double-mask
(left) and a single-mask GEM(right) [38].

drift to the GEM foil and are accelerated in the holes, causing a first multiplication.

Afterward in the volume defined between the GEM foil and the anode plane, that is

generally called the induction gap, the electron cloud produced in the foil will induce

a signal to the anode plane. The anode plane is usually composed of readout strips

directly connected to a front-end electronics.

Figure 3.17: A SEM picture of a GEM foil with its dimensions (left); electric field
lines close to the GEM holes (right).

However given the limited gain of a few hundred [39] that can provide a GEM foil,

two or three GEM foils are usually stacked in the same volume of gas. The detector

is then called a Double- or Triple-GEM. Figure 3.18 shows the operating diagram of a

Triple-GEM.

Figure 3.19 shows the effective gain, that will be properly defined on page 55, for different

multiple GEM detectors. We can directly see that a multiple-GEM can reach an effective

gain of several thousands.
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Figure 3.18: Operating diagram of a Triple-GEM.

Figure 3.19: Effective gain (full curves) and discharge limits on exposure to alpha
particles (dashed lines) of multiple GEM detectors [40].
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One of the main benefit of the GEM compared to other gaseous detectors is the high

rate capability, up to 106 mm−2s−1 as shown in Figure 3.20.

Figure 3.20: Normalized gas gain as a function of particle rate for MWPC and
GEM [41].

Configuration of the CMS Triple-GEM In the context of the upgrade of the for-

ward muon spectrometer of CMS, different geometries of Triple-GEM have been consid-

ered. The final detectors have a trapezoidal shape with an active area of 990×(220−445)

mm2.

Over the years, the CMS GEM collaboration has performed a large R&D effort during

which the GEM technology has evolved and different parameters such as the electric

fields in the gaps, have been studied and optimized. We report in the following the

major results.

In 2010, various Triple-GEM prototypes have been studied during several test beam

campaigns [42]. Two gas mixtures have been considered for operating the Triple-GEM

detectors: Ar/CO2 (70:30) and Ar/CO2/CF4 (45:15:40). Different gaps configurations

were also considered.

The efficiency measured for the different gas mixtures and gap configurations are re-

ported on Figure 3.21. In each case, the efficiency reaches the plateau at 98 % for a

gain of ∼ 8000. One can remarks that the efficiency plateau is very long, up to a gain

of ∼ 30000.
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Figure 3.21: Triple-GEM detector efficiency for different gas mixtures and gap size
configurations as a function of the gain [42].

The time resolution has been also studied during those test beams. The results are

shown in Figure 3.22. The use of Ar/CO2/CF4 (45:15:40) gives a time resolution better

than 5 ns for an electric field of the drift gap higher than 2 kV/cm against 8 to 10 ns in

the Ar/CO2 (70:30) gas mixture. Eventually, the gap configuration of 3:1:2:1 mm has

been chosen.

A more detailed summary of the studies of the diverse prototypes can be found in ref.[43]

and ref.[17].

The detector readout board is divided into eight η-partitions with 3×128 strips and the

strip pitch varies from 0.6 mm (short side) to 1.2 mm (long side).

To power the different parts of the detector, the collaboration has opted to use a voltage

divider made of a ceramic plate. The best working point of the detector has been

calculated and is set to be at 4000 V which corresponds to a current of 800 µA through

the divider. At that point, the electric fields of the four gaps are 3/3.5/3.5/5 kV/cm and

the voltage applied to the three different GEM foils are 450/440/420 V, which ensure

the best time resolution and a good efficiency.

For further discussions, this configuration will be called the ‘standard’ configuration.
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Figure 3.22: RMS of the time distribution as a function of the electric field in the
drift gap with a fixed induction field of 5 kV/cm [43].

Gain in the Triple-GEM Detector As presented in the section 3.4, the gain in

a gaseous detector is defined as the ratio of the number of electrons produced in the

avalanche and the number of primary electrons n0 (Eq. 3.10). This definition expresses

an absolute gain that is quite difficult to measure in a real detector like the GEM.

Indeed, in the case of the Triple-GEM detectors, several processes can lead to the loss

of electrons. The electrons can be captured on one of the copper foils or on the kapton

of the GEM foils.

These losses are referred to the so-called transparency. The transparency of a GEM foil

is defined as the probability that an electron which enters into a GEM hole exits that

hole. The transparency depends on several parameters as the gas mixture, the voltage

applied to the GEM, etc.

For this reason, the effective gain Geff of a Triple-GEM detector is defined as:

Geff =
neff
n0

,

where neff is the number of electrons inducing a signal to the anode plane.

The measurement of the CMS Triple-GEM gain will be discussed in detail in this work

in section 5.1.3.
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Full-Size GE1/1 Prototypes During the five years of R&D for the CMS Triple-

GEM, several generations of GE1/1 prototypes were built and tested. Figure 3.23 shows

the five generation of detectors that were developed between 2010 and 2014 and that we

will review shortly.

Figure 3.23: Five generations of GE1/1 prototypes chambers constructed and tested
by the CMS GEM collaboration in 2010-2014 [17].

Each generation of prototype has been developed based on the experience of the previous

generation.

GE1/1-I

In 2010 the CMS GEM collaboration has built the first large-area GEM detector.

The detector is 0.5 m2, the foils were produced with the single-mask method and

the gap configuration was 3:2:2:2 mm.

GE1/1-II

In 2011 the gap configuration was changed to 3:1:2:1 mm and the segmentation of

the detector was increased to 3× 8 sectors (against 2× 8 sectors for the previous

generation).

GE1/1-III

In 2012 a new stretching and assembly technique has allowed the collaboration

to mount the GEM foils of the prototype without gluing. The outer detector

frame was made of several pieces and was still glued to the drift board. The third

generation was the first to be powered by a custom made ceramic HV divider.

GE1/1-IV

The fourth generation that was built in 2013 is the first with a complete mechanical
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assembly. One of the main benefit of not using any glue is the time it takes to build

a chamber, indeed the detector can be assembled in a few hours. Unfortunately to

avoid non-uniformity in the gap size, the different GEM foils had to be pre-bent.

This pre-bending technique works in principle but is very time consuming.

GE1/1-V

The fifth generation of prototype, that was produced in 2014, features a re-designed

stretching apparatus that is now totally inside the gas volume as shown in Figure

3.24.

Figure 3.24: Cross section through inner and outer chamber frames and GEM foils
of the GE1/1-V showing the stretching apparatus [17].
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Triple-GEM Detector Simulations

Together with the experimental study of new detectors, it is also important to study

their performance with the help of Monte Carlo simulations. This helps to understand

the measurements and also serves to optimize the detector parameters like its geometry

or the operating voltages.

In this chapter we will present the study of several characterizing parameters (time

resolution, detector efficiency) of the CMS Triple-GEM detectors using various Monte

Carlo simulation programs. In section 4.1, we will introduce the GARFIELD frame-

work. GARFIELD is used as a benchmark to compute the time resolution of the CMS

Triple-GEM detector in section 4.2. Then we will describe in section 4.3 a fast and

parameterized simulation of the Triple-GEM detectors that we have developed. The

results obtained with this fast simulation are compared with the GARFIELD results.

Finally, in section 4.4, we will present an hybrid simulation combining GARFIELD and

the fast simulation.

4.1 GARFIELD

GARFIELD [44] is a multi-function computer program which has been developed to

simulate gaseous detectors in two- or three-dimensions. It is interfaced with programs

such as Heed [45] and Magboltz [46]. The main steps of a GARFIELD simulation can

be summarized as follow:

Electric Field Maps

GARFIELD needs the electric field map of the detector to be simulated. For

many two-dimensional models of chambers the exact fields are known (i.e. the

drift chamber), but this is not the case for three-dimensional detector models. To

59
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handle this problem, GARFIELD is interfaced with finite element programs like

ANSYS [47] or neBEM [48].

In our case the detector structure and electric field have been simulated using the

ANSYS program.

Primary Ionization

Primary ionization is either predefined by giving the position, energy and velocity

direction of the primary electrons or by doing a realistic simulation of a charged

particle passing through the detector using Heed. This program computes the

energy loss of fast charged particles in gases.

Transport

After the primary ionization, GARFIELD needs to compute the electron trans-

port in the gas mixture under the influence of electric and magnetic fields. The

transport properties are described by the Boltzmann transport equation [49]. The

solution to this equation is computed using the Magboltz program that is inter-

faced with GARFIELD.

During the drift each primary electron will collide with the gas molecules. GARFIELD

computes the time between two collisions with a method called the null event

method [50].

At each collision, the energy of the electron is computed and a process is applied

to this electron. The process is chosen randomly with a probability distribution

given by the cross section table at the given energy and for the given gas mixture.

The cross sections of the different processes are shown in Figure 4.1 for Ar, CO2

and CF4.

Each process leads to a different result: an elastic collision will diffuse the incident

electron, an ionization will produced a new electron, etc.

Between each collision the generated signal of every particle is computed on the

electrodes. This induced signal is given by equation 3.11 and the procedure pre-

sented in section 3.6.3.

4.2 Time Resolution Studies

In this section we report on the study of the time resolution that can be achieved with

the CMS Triple-GEM detectors. One of the objectives of the CMS GE1/1 detector

upgrade is to improve the muon trigger efficiency. Therefore the time resolution of the

detector has to be well understood in order to ensure the correct LHC bunch crossing

identification associated to the recorded muon.
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Figure 4.1: Cross sections of the different processes for Ar, CO2 and CF4 [51].

In CMS, these detectors will be read out by the new VFAT3 chips being currently

designed. Hence the study of the time resolution of the CMS Triple-GEM detector has

been performed with simulations. We have used the GARFIELD software to understand

the detector response and signal shape. The time resolution of the detector has been

evaluated for two methods that could be implemented in the VFAT3 electronics [17] [52]:

the Time-Over-Threshold (TOT) and the Constant Fraction Discriminator (CFD).

This section is structured as follows: in subsection 4.2.1 the signal formation inside

Triple-GEM detectors is reviewed while in subsection 4.2.2 the VFAT3 electronics is

described. The time resolution is studied in subsection 4.2.3.
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Figure 4.2: Sketch of the gap configuration of a CMS Triple-GEM detector.

4.2.1 Signal Formation

In a Triple-GEM detector the signal recorded on the anode strips is induced exclusively

by the drift of the electrons extracted from the third GEM foil, facing the anode plane.

When a charged particle crosses the detector, as shown in Figure 4.2, the primary

ionization occurs all along the particle path. The primary electrons released in the

Drift gap are amplified through the three successive GEM foils, while primary electrons

released in Transfer 1 gap are amplified twice, etc. Both processes, the ionization and

the amplification, are prone to statistical fluctuations, resulting in large variations of

the induced anode current. Figure 4.3 shows three typical anode signals, namely the

induced current recorded as a function of time, simulated with GARFIELD with the gas

mixture Ar/CO2/CF4 (45:15:40). The geometry used for all the simulations presented

in this chapter is shown in Figure 4.2 (3 mm for the Drift gap, 1 mm for Transfer 1, 2

mm for Transfer 2 and 1 mm for the Induction gap). The electric field for the Drift gap

and both Transfer gaps is 3 kV/cm and the electric field for the Induction gap is equal

to 5 kV/cm. The voltage applied to the three GEM foils is 400 V.

To better understand the signals shown in Figure 4.3 and 4.4, it is worth reminding that

in the Ar/CO2/CF4 (45:15:40) gas mixture, the drift velocity (vdrift) is ∼ 0.1 mm/ns

for an electric field above 3 kV/cm as shown in Figure 4.5. We can therefore identify the

contribution of the primary ionization to the signal from the different gas gaps of the

detector. The respective contributions are indicated by vertical dashed lines in Figure

4.4.

Between 0 and 10 ns after the passage of the muon, the signal induced by the electrons

produced in the Induction gap is seen, between 10 and 30 ns the signal induced by the

electrons released in the Transfer 2 gap and amplified only by the third GEM is observed.

Between 30 and 40 ns the signal given by the electrons released in the Transfer 1 gap
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Figure 4.3: Three different induced signals simulated by GARFIELD for a gas mixture
of Ar/CO2/CF4 - 45:15:40.

and amplified by the second and third GEMs is seen. Finally between 40 and 70 ns the

signal induced by the electrons coming from the Drift gap and fully amplified by the

three GEM foils is observed.

Figure 4.4: Induced signal simulated by GARFIELD for a gas mixture of
Ar/CO2/CF4 (45:15:40).

Comparing the signals of Figure 4.3 and 4.4, we can notice large variations in the ampli-

tude of the peaks within same regions (Induction, Transfer 1/2, Drift). These variations

are due to the statistical fluctuations of both processes, namely the ionization and the

amplification. On the first induced signal of Figure 4.3, we can notice two peaks between

40 and 70 ns, those peaks come from two different clusters of electrons created in the

Drift gap but spatially separated by ∼ 2 mm. In some extreme cases, the amplitude of

the part of the signal induced by electrons coming from the Transfer 1 gap can be the

highest of the signal.

4.2.2 The Readout Electronics

The front-end electronics foreseen for the CMS Triple-GEM is the VFAT3. The VFAT3

is an ASIC containing a total of 128 channels of charge sensitive preamplifiers and of

associated shapers. This chip will run at the LHC frequency of 40 MHz, getting a
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Figure 4.5: Evolution of the drift velocity as a function of the electric field for the
Ar/CO2 (70:30) and Ar/CO2/CF4 (45:15:40) gas mixtures simulated by GARFIELD.

clock of 320 MHz through the E-Ports [53] that handle all communication with the off-

detector electronics (see Figure 4.6). The analog front-end preamplifiers and shapers are

programmable to offer a large flexibility. One of the programmable parameters relevant

for this study is the peaking time.

Several parameters, such as the time resolution or the detector efficiency were simulated

to estimate the performances of the CMS Triple-GEM detectors. The simulations were

done by convoluting the induced anode current given by GARFIELD (see section 4.2.1)

with the following VFAT3 transfer function:

F (t) =

(
t

τ

)n
· exp

(−n · t
τ

)
(4.1)

where t is the time, τ the peaking time and n the filter order.

The convolution is discrete and uses the binning of the GARFIELD signal, that is 1 ns.

The study has been performed with two possible VFAT3 designs:

• first VFAT3 (”VFAT3 n2”) design has a filter of order 2 and the possible peaking

times are 20 ns, 50 ns, 100 ns, 250 ns or 500 ns.

• The second design (”VFAT3 n3”) has a filter of order 3 and possible peaking

times are 25 ns, 50 ns, 75 ns, 100 ns or 200 ns.

4.2.3 Time Resolution

To unambiguously identify the LHC bunch crossing a detected particle was created in,

the CMS Triple-GEM detectors must provide a time resolution better than 10 ns [17].
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Figure 4.6: VFAT3 block diagram.

Assuming that the signal shape does not change with the signal amplitude, a simple

threshold discriminator will induce a time walk effect [19] degrading the time resolution:

two signals with the same arrival time will not necessarily cross the electronics threshold

at the same time. A signal with a small amplitude will cross the threshold later than

a signal with a larger amplitude. Therefore the time resolution has been studied with

two methods that are not affected by this effect: the Time Over Threshold (TOT) and

the Constant Fraction Discriminator (CFD). The objective of this study is to determine

the best method and peaking time, optimizing the time resolution as well as the latency

(the time it takes to the method to return the time tag), another important parameter

for the CMS level-1 trigger. Both methods have been tested with both VFAT3 designs

and several peaking times.

Time Over Threshold The concept of the Time Over Threshold (TOT) method

is to compare the time when the signal is above the electronics threshold against a

theoretical time stored in a Look Up Table (LUT). This LUT gives the information

about t1 the time when the signal crosses the threshold for the first time (see Figure

4.7).

To build the LUT, an arbitrary signal produced by GARFIELD is convoluted with

the VFAT3 shaper transfer function and is then normalized. This normalized signal is

multiplied, increasing the peak amplitude by small steps to span the entire dynamic

range of the electronics. For each amplitude level the TOT is computed with a clock

cycle of 1 ns and written in a LUT with the associated t1. The size of the LUT for both

VFAT designs is summarized in the tables 4.1 and 4.2. To estimate the time resolution

of a signal simulated with GARFIELD, we compare the time t1, when the signal actually

crosses the threshold, and the corresponding time tLUT provided by the LUT according

to the counted time over threshold. The TOT is measured with a clock cycle of 3 ns.

In Figure 4.8 the difference t1 − tLUT is plotted for the case of a peaking time of 100
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Figure 4.7: A Triple-GEM signal after the convolution with the VFAT3 transfer
function (see Eq. 4.1). The threshold defines two times, the instant at which the rising
signal crosses the threshold (t1) and the instant at which the falling signal returns below

the threshold value (t2).

Peaking time (ns) Entry

20 43

50 88

100 153

250 407

500 753

Table 4.1: Number of entries in the LUT for VFAT n2 design.

Peaking time (ns) Entry

25 44

50 77

75 112

100 144

200 282

Table 4.2: Number of entries in the LUT for VFAT n3 design.

ns and for the VFAT n3 design; a Gaussian is fitted on the distribution. From the fit

results the sigma is considered as the time resolution.

The latency of the TOT method is provided by the time t2 the signal takes to fall below

the threshold, see Figure 4.7. Indeed, it is only at that moment that the TOT can be

compared with the LUT. The time to get the result from the LUT corresponds to one

clock cycle.

Constant Fraction Discriminator The CFD method consists in generating a bipo-

lar signal from the output of the shaper. This bipolar signal has the property to have
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Figure 4.8: Time resolution distribution computed with the TOT method for a peak-
ing time of 100 ns for the VFAT n3.

its zero crossing point occurring at the same time for every amplitude.

The bipolar signal is obtained as follows: a first copy of the original signal is delayed

by a time tdelay with respect to the original signal. The delay corresponds to the differ-

ence between the time when the signal is at its maximum tmax and the time when the

output signal has an amplitude equal to its maximum amplitude divided by a constant

k: tdelay = tmax − tk as shown in Figure 4.9. The second signal is a copy of the original

signal multiplied by −1/k.

Figure 4.9: A Triple-GEM signal after the convolution with the VFAT3 transfer func-
tion. The delay time tdelay applied in the CFD construction is the difference between
the time tmax when the signal amplitude is the maximum (Amax) and the time tk when

the signal amplitude is at maximum divided by the constant k (Amax/k).

Finally, the bipolar signal is the sum of those two signals. Figure 4.10 shows the Triple-

GEM signal after the convolution with the VFAT3 transfer function, the two constructed
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signals and the bipolar signal used in the CFD method.

Time (ns)
0 100 200 300 400 500 600

A
m

pl
itu

de

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 4.10: The blue curve is the Triple-GEM signal after the VFAT3 convolution,
the black curve represents the delayed signal, the violet is the signal multiplied by − 1

k ,
and the red signal corresponds to the sum of the black and violet curves.

The construction described above has the feature to have the zero crossing (at a time

t0) of the bipolar signal and maximum of the output of the shaper occurring at the same

time. This property can be used if the tmax of our signal is known. To estimate the

tmax, the mean of the tmax distribution of 500 simulated signals as shown in Figure 4.11

is taken.
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Figure 4.11: tmax distribution for VFAT n3 with a peaking time of 100 ns.

To compute the time resolution using the CFD method, the zero crossing of 500 simu-

lated signals is compared with respect to the estimated tmax. Finally, a Gaussian is fitted

on the distribution, as shown in Figure 4.12. Taking into account the fit parameters,

the sigma is assumed to be the time resolution.
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Figure 4.12: Time resolution distribution computed with the CFD method for a
peaking time of 100 ns for the VFAT n3.

Finally, in order to estimate the latency using the CFD method, the mean value of the

tmax distribution with the information related to the zero crossing is used.

Triple-GEM Configuration in GARFIELD The configuration and parameters

used for these GARFIELD simulations are not the ‘standard’ ones that will be applied

in CMS. One of the reasons is that this analysis is anterior to the GE1/1 TDR and since

then our knowledge about the performance of the long CMS Triple-GEM detector has

significantly improved.

The gap geometry used in these simulations is 3:1:2:1 mm, the electric fields for the

different gaps are 3/3/3/5 kV/cm, the voltage applied to the GEM foils 400 V and the

gas mixture is Ar/CO2/CF4 (45:15:40). The energy of the muons is 1.5 GeV.

Results The TOT and CFD methods were applied to 5 different peaking times for

both VFAT3 designs. For each peaking time, 500 events simulated by GARFIELD are

used.

Figure 4.13(a) and Figure 4.13(b) show, for both methods and both VFAT3 designs

respectively, the time resolution as a function of the VFAT3 peaking time. We can see

that the time resolution is better than 5 ns for a peaking time longer than 50 ns. This

result confirms the very good time resolution of the CMS Triple-GEM detector measured

during the test beam with Ar/CO2/CF4 (45:15:40) gas mixture [42] (see section 3.7.3).

Figure 4.14(a) and Figure 4.14(b) report the latency for both methods and both designs

respectively.
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Figure 4.13: Time resolution for both TOT and CFD methods as a function of the
peaking time, for the VFAT n2 (fig. 4.13(a)) and VFAT n3 (fig. 4.13(b)), and for a

gas mixture of Ar/CO2/CF4 - 45:15:40.

By construction the CFD method is faster than the TOT and the fact that the VFAT3

output signal (Eq. 4.1) is asymmetric explains why the difference between the latency

of both methods increases with the peaking time. For instance, the latency of the CFD

method for a peaking time of 50 ns is of the order of 100 ns against 250 ns for the TOT

method and this for both designs.

All the results are summarized in the tables reported in Appendix A.
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Figure 4.14: Latency for both TOT and CFD method as a function of the peaking
time of the VFAT n2 (fig. 4.14(a)) and VFAT n3 (fig. 4.14(b)), and for a gas mixture

of Ar/CO2/CF4 - 45:15:40.

4.2.4 Contribution to the Time Resolution

In this section various processes that can contribute to the time resolution observed

in the previous section will be presented. The goal is to explain the expected time

resolution and to identify the main contributions to the time fluctuation. Multiple

processes contribute to the time resolution, some are related to the detector technology,

others to the read-out electronics. The processes under consideration are the following:

• the fluctuation due to the sampling of the electronics clock (σclk);

• the fluctuation in the position of the primary ionization clusters (σclusters);

• the fluctuation due to the longitudinal diffusion (σdiff.L.);

• all other fluctuations (ie. gain fluctuation, ionization clusters size, etc) (σother).
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Each of these contributions will be reviewed in detail now. The parameters considered

for this part of the study are the ‘standard’ parameters used in the CMS GEM upgrade.

Electronics clock

The VFAT3 chip works at the frequency of 40 MHz derived from a clock running

at 320 MHz received through the E-port (see section 4.2.2). This allows to adjust

the phase of the 40 MHz clock used to ’sample’ the VFAT3 comparator by steps

of 3.125 ns. Therefore, according to the uniform distribution, for every event the

uncertainty on the time the signal passes the comparator threshold within a clock

cycle is given by:

σclk =
3.125√

12
= 0.9 ns

Primary ionization clusters

As seen in section 4.2.1, the primary ionization may occur all along the parti-

cle path and the primary electrons are therefore released in the different gaps in

clusters. The following hypothesis is assumed: the three GEM amplifications are

needed to have a signal detected by the electronics. With this hypothesis, the first

cluster of electrons to be detected is the cluster closest to the first GEM foil in the

drift gap. The contribution to the time resolution is therefore the uncertainty on

the position of this cluster. The distribution of the distance between the closest

cluster and the first GEM foil depends on the number of clusters in the drift gap.

In other words, it depends on the gas mixture.

A reasonable hypothesis is to assume that the clusters of electrons are uniformly

distributed in the drift gap. Figure 4.15 shows the evolution of the distribution of

the distance between the first GEM foil and its closest cluster as a function of the

number of clusters.

As shown in Figure 4.16, in the case of Ar/CO2/CF4 (45:15:40), a minimum ion-

izing particle releases on average ∼ 15 clusters over 3 mm of gas according to

GARFIELD. Figure 4.17 shows the distribution of the distance between the first

GEM foil and its closest cluster for a number of clusters taken randomly following

a Poisson distribution with a mean value equal to 15. The RMS of this distribution

is equal to 0.22 mm.

Another effect that affects the time fluctuation due to the primary electron clusters

is the transparency of the GEM foil. As presented in section 3.7.3, the transparency

of a GEM foil is defined as the probability that an electron which enters into a

GEM hole exits that hole. The transparency depends on the gas mixture, the

voltage applied to the GEM (∆VGEM ) and both the electric fields above (|Eabove|)
and below (|Ebelow|) the GEM foil.
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Figure 4.15: Evolution of the distribution of the distance between the closest cluster
and the first GEM foil binned by cluster multiplicity.

As shown in Figure 4.18, in the Ar/CO2/CF4 (45:15:40) gas mixture and for

the ‘standard’ condition of the first GEM foil (∆VGEM = 450 V, |Eabove| = 3

kV/cm and |Ebelow| = 3.5 kV/cm ), the transparency is equal to 84.5%. This

means that in 15.5% of the cases the primary cluster closest to the GEM foil will

not create an avalanche and will not contribute to the signal. Therefore it is the

next cluster which may be the first to contribute to the signal. Figure 4.19 shows

the distributions of the three next clusters closest to the first GEM foil. The

distribution of the distance of the first primary cluster contributing to the signal,

shown in Figure 4.20, is therefore the weighted sum of the distributions shown in

Figure 4.19 and the distribution shown in Figure 4.17, weighted by the probability

of each cluster to be the first to contribute to the signal. The probability for the

first cluster is equal to the transparency (0.845), the probability for the second

cluster is the transparency times the probability that the first cluster did not

contribute (0.845× 0.155 = 0.131), etc.
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Figure 4.16: Number of electron clusters in 3 mm of Ar/CO2/CF4 (45:15:40) gas
mixture produced by a muon of 15 GeV simulated by GARFIELD.
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Figure 4.17: Distribution of the distance between the first GEM foil and its closest
cluster for the Ar/CO2/CF4 (45:15:40) gas mixture and 3 mm drift gap.
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Figure 4.18: Transparency as a function of the voltage applied to the GEM foil for
Ar/CO2/CF4 (45:15:40) with drift field of 3 kV/cm and a transfer 1 field of 3.5 kV/cm,

simulated with GARFIELD.
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Figure 4.19: Distribution of the distance between the second, third and fourth closest
clusters respectively and the first GEM foil for the Ar/CO2/CF4 (45:15:40) gas mixture.
The last bin of those distributions are the case when the cluster does not exist (i.e. if

only one cluster is produced).

One can note that those distributions are describe by the order statistics distribu-

tions [54].

The RMS of the distribution of the distance of the first primary cluster contributing

to the signal and the first GEM foil (σposition), shown in Figure 4.20, is equal to

0.26 mm, to be compared to the value of 0.22 mm if the transparency is not taken

into account as shown in Figure 4.17.

This result leads to a fluctuation in time equal to:

σclusters = σposition · v−1
drift = 0.26× 10.3 ' 2.7 ns

Note that in this work we have neglected the effect due to the fluctuations on the

number of electrons per ionization cluster, which is assumed to be small, as well as
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Figure 4.20: Distribution of the distance between the first cluster to pass and the
first GEM foil for the Ar/CO2/CF4 (45:15:40) gas mixture.

the fluctuations due to a possible primary electron cluster released in the Transfer

1 gap to provide a signal passing the threshold.

Longitudinal diffusion

The electrons produced in the detector are going to diffuse during their drift to-

wards the anode. The diffusion can be expressed in two terms: the longitudinal

and the transverse diffusion. In the present case, the transverse diffusion will not

affect the time resolution. However, due to the longitudinal diffusion, the drift

time of the electrons may fluctuate. The contribution to the time resolution due

to the longitudinal diffusion is equal to:

σdiff.L. =
(
Cd ·
√
L · v−1

drift

)
tr

+
(
Cd ·
√
L · v−1

drift

)
drift

= 0.025
√
mm×

√
3 mm× 9.8 ns/mm+ 0.026

√
mm×

√
0.25 mm× 10.3 ns/mm

= 0.42 + 0.13 ' 0.6 ns

where Cd is the longitudinal diffusion coefficient, which depends, as the drift ve-

locity, on the electric field which is not the same in the drift and in the transfer

regions. L is the drift distance between the closest cluster to the first GEM foil

and the induction gap. In our geometry this distance is the mean value of the dis-

tribution shown in Figure 4.20 plus the 3 mm between the foil and the induction

gap.

Other

There are additional contributions not taken into account: fluctuations on the

time of flight of the incoming particle, ionization cluster size, gain fluctuation,
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Contributions Ar/CO2 (70:30) Ar/CO2/CF4 (45:15:40)

Primary clusters 4.5 ns 2.7 ns

Longit. diff. 1.5 ns 0.6 ns

Table 4.3: Contributions on the time resolution for the primary clusters of electrons
and for the longitudinal diffusion for both gas mixtures.

electronics threshold, electronics noise, etc. Those fluctuations are difficult to

compute and are not estimated in this work.

Ar/CO2 (70:30)

The same computation can be done for other gas mixtures.

In the case of Ar/CO2 (70:30), the contribution due to the primary ionization

clusters is the following:

σclusters = σposition · v−1
drift = 0.31× 14.5 ' 4.5 ns,

and the contribution due to the longitudinal diffusion:

σdiff.L. =
(
Cd ·
√
L · v−1

drift

)
tr

+
(
Cd ·
√
L · v−1

drift

)
drift

= 0.045
√
mm×

√
3 mm× 14.1 ns/mm+ 0.045

√
mm×

√
0.31 mm× 14.5 ns/mm

= 1.10 + 0.36 = 1.46 ns

The comparison of those contributions between both gas mixtures is summarized

in the table 4.3.

The discrepancies between both gas mixtures can be explained by the differences

in the parameters of those gas mixtures. The longitudinal diffusion is higher in

the Ar/CO2 (70:30) gas mixture: the difference is around 0.006
√
cm when the

electric field is higher than 3 kV/cm. The number of primary ionization clusters

in this mixture is lower than in the Ar/CO2/CF4 (45:15:40) gas mixture: 4.9/1

mm on average for Ar/CO2/CF4 (45:15:40) against 3.8/1 mm for Ar/CO2 (70:30).

Finally, the main difference between those two gas mixtures is the drift velocity

that is higher by ∼ 25% at E > 3 kV/cm with the addition of CF4 (as shown in

Figure 4.5).

Summary of the fluctuations

The time resolution estimated with the GARFIELD simulation is around 4.5 ns

for Ar/CO2/CF4 (45:15:40) as shown in Figure 4.13. The main contribution to

the time resolution is the fluctuation due to the primary ionization clusters and in

particular the position of the first cluster contributing to the signal. It has been

shown that this fluctuation amounts to 2.7 ns without taking into account the
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fluctuation of the number of electrons in each cluster. With this observation, this

contribution to the time resolution is assumed to be the most important.

The comparison between both gas mixtures has been done and shows that the

Ar/CO2/CF4 (45:15:40) gas mixture gives a better time resolution.

The difference in terms of time resolution between the two gas mixtures will be

studied by simulations and the results will be detailed in section 4.3.7.

4.3 FastSim

As described in section 4.1 GARFIELD computes at each collision with a gas molecule

the probability for attachment, ionization and inelastic collisions. This provides an

accurate simulation of the electron drift in the gas, but it is also very time consuming

when we want to simulate avalanche with high gains. This is even more true for detectors

where the avalanche occurs at large distance (∼ 1mm) from the anode. Therefore we

have developed a dedicated parameterized simulation called FastSim in the framework

of the GE1/1 upgrade project.

The goal of this simulation is to provide a fast simulation of the Triple-GEM detector

fully parameterized using the input of GARFIELD. The purpose is to be able to produce,

quickly and easily, signals for different configurations, like gap geometry, strip pitch, gas,

etc.

One of the main advantages of the FastSim is the simulation time. Depending on

the geometry (i.e. the number of strips), the full GARFIELD simulation of the signal

induced on the anodes by a muon in a CMS Triple-GEM detector can take several hours.

The time it takes to simulate a similar signal with the FastSim is of the order of the

second.

The structure of this section is the following: a global overview of the simulation will

be given, then the different classes of our simulation will be reviewed in detail. Finally,

some results will be compared to a full GARFIELD simulation and to experimental data

as well.

4.3.1 Structure of the simulation

The FastSim is implemented in C++ interfaced with ROOT [55] and is composed of five

classes: Geometry, Electrons, Track, Gain, and Electronics.

The simulation uses those classes to produce a two-dimensional simulation of a Triple-

GEM detector (Figure 4.21) and to compute the electronics signal according to different

configurations.

Firstly, the simulation creates a detector configuration by fixing the geometry and the
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Figure 4.21: Coordinate system of the FastSim.

gas properties.

Secondly a muon track is created in this geometry, producing primary electrons along

its path. The drift of the primary electrons towards the anode plane, their diffusion as

well as their multiplication inside the gas are parameterized.

Next, the electrons arriving above the readout strip induce a signal.

Finally, the induced signal is convoluted with the electronics transfer function and the

track reconstruction is performed.

4.3.2 Geometry

The Geometry class defines the detector geometry and the gas properties.

Detector Geometry Configuration The geometry configuration of the detector in

the FastSim is defined by six attributes: the X positions of the three GEM foils, the X

position of the anode plane, the read-out strip pitch and the number of strips. All the

positions are defined by the distance to the cathode plane that is the origin coordinate of

the X axis as shown in Figure 4.21. The configuration used to simulate the Triple-GEM

for the GE1/1 upgrade project is the following: the first GEM foil is placed at 3 mm

away from the cathode plane, the second foil is placed at 4 mm, the third at 6 mm and

the anode plane at 7 mm.

The strip pitch can be varied between 0.6 and 1.2 mm. The number of strips is fixed to

128 that corresponds to one sector of the Triple-GEM read by the VFAT3 ASIC.
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Gas Properties The gas properties are defined by three parameters: the drift ve-

locity, the longitudinal and transverse diffusion coefficients. Those parameters, that

depend on the gas mixture and the electric field, have been obtained from Magboltz

[46]. Figure 4.5 shows the evolution of the drift velocity as a function of the electric field

for the two gas mixtures foreseen in the CMS GEM project (Ar/CO2/CF4 (45:15:40)

and Ar/CO2 (70:30)). Figure 4.22 and 4.23 show respectively the evolution of the lon-

gitudinal diffusion coefficient and the evolution of the transverse diffusion coefficient for

both gas mixtures as a function of the electric field. In a Triple-GEM detector there are

Figure 4.22: Evolution of the longitudinal diffusion coefficient as a function of the
electric field for the Ar/CO2 (70:30) and Ar/CO2/CF4 (45:15:40) gas mixtures simu-

lated by GARFIELD and Magboltz.

Figure 4.23: Evolution of the transverse diffusion coefficient as a function of the elec-
tric field for the Ar/CO2 (70:30) and Ar/CO2/CF4 (45:15:40) gas mixtures simulated

by GARFIELD and Magboltz.

four different gas gaps (as shown in Figure 4.21) and consequently four different electric

fields.

To power all the elements of the detector (GEMs and cathode), the CMS GEM collab-

oration has decided to use a ceramic high-voltage divider [43]. Figure 4.24 shows the
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schema of the ceramic high-voltage divider. The electric field inside a gap i (|Ei|) is

Figure 4.24: Ceramic high-voltage divider schema.

computed as follow:

|Ei| =
Idiv ·Ri
Di

, (4.2)

where Idiv is the divider current, Ri is the resistor of the gap and Di the size of the gap.

Before running the FastSim, for each current a configuration file is created with the

three gas parameters for the four different gas gaps. The electric field in each gap is

computed using the equation 4.2 and the parameters are taken from the linear interpo-

lation between the two closest points computed with Magboltz.

4.3.3 Muon Track

In the FastSim, a muon track is defined by the primary electron clusters released in the

gas volume along a straight line. The track incident angle φ is defined from the vertical

axis (X) to the strip plane.

First the incident track perpendicular to the anode plane (φ = 0◦) will be described,

then the non-perpendicular case will be discussed.

The perpendicular track is defined by a number of electron clusters uniformly distributed

in the geometry (between 0 and 7mm along the X axis) at a Y coordinate Y0. The

number of clusters is taken randomly following a Poisson distribution. The distribution

of the number of electron clusters created by a muon has been studied with GARFIELD

for the two gas mixtures and are shown in Figure 4.25 and 4.26.

Each cluster has a certain number of electrons. The ionization cluster size distribution

is the probability distribution of the number of electrons ionized directly or indirectly
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Figure 4.25: Number of electron clusters in 7 mm of Ar/CO2/CF4 (45:15:40) gas
mixture produced by a muon of 15 GeV simulated by GARFIELD.
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Figure 4.26: Number of electron clusters in 7 mm of Ar/CO2 (70:30) gas mixture
produced by a muon of 15 GeV simulated by GARFIELD.
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by each primary encounter. It has been carefully studied experimentally for argon

and carbon dioxide and the results are described elsewhere [20], while in the case of

tetrafluoromethane (CF4) it has been simulated with GARFIELD. Figure 4.27 shows the

ionization cluster size distribution for the three gases. The last bin of those distributions

is the probability to have twenty or more electrons in one cluster, which is necessary for

the probability normalization.
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Figure 4.27: Ionization cluster size distribution for argon, carbon dioxide and tetraflu-
oromethane.

For each cluster, the number of electrons is drawn randomly from the ionization cluster

size distribution corresponding to one of the gas. The gas is chosen with a probability

equal to its percentage in the mixture.

For non-perpendicular tracks, the electron clusters are uniformly distributed in the ge-

ometry according to Y = Y0 + tanφX. By definition, an inclined track will create more

clusters due to the longer trajectory in the gas volume. The number of clusters is com-

puted in the same way as the straight track and then multiplied by
1

cosφ
.

Figure 4.28 shows an example of a perpendicular 15 GeV muon track simulated by the

FastSim, in other terms the distribution of primary electrons as a function of the dis-

tance in the triple-GEM detector. In this case, 25 clusters have been created, and the

number of electrons per cluster lies between 1 and 10. In total 57 primary electrons have

been produced by this track.

4.3.4 Electrons

In the FastSim, an electron is represented by a class with four attributes: the position

in X and Y , the time and the geometry of the detector. When an electron is created

by the muon track, the X and Y coordinates are set to the position of the cluster (see

previous section) and the time is set to zero. Afterward each electron will drift to the

anode plane.
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Figure 4.28: Cluster sizes along a perpendicular muon track of 15 GeV in Ar/CO2

(70:30) gas mixture.

The algorithm for the drift and the diffusion of the electrons is based on the equations

presented in section 3.3:

1. Starting with a state of the electron: e− =(Xi,Yi,ti), the distance D between

Xi and the position of next GEM foil (XGEMi) or the anode plane (Xstrips) is

computed.

2. The standard deviation of the transverse diffusion is computed with:

σd = Ctransverse ·
√
D,

where Ctransverse is the transverse diffusion coefficient.

3. The new Y position (Yi+1) of the electron is randomly chosen according to a

Gaussian with a mean of Yi and a sigma of σd.

4. The X position of the electron is updated to the position of the GEM foil or the

anode plane.

5. The new time (ti+1) is computed as follow:

ti+1 = ti +D · (vdrift)−1 + σtime,

where σtime is a random number taken from a Gaussian distribution with a mean

value of zero and the following σtime:

σtime = Clongitudinal ·
√
D · (vdrift)−1 ,
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where Clongitudinal is the longitudinal diffusion coefficient and vdrift the drift ve-

locity.

The new state of the electron is updated to: e− =(Xi+1,Yi+1,ti+1).

This algorithm runs until the X position reaches Xstrips.

4.3.5 Gas Gain

During the drift in the gas volume the electrons will undergo an amplification at Xi =

XGEMi , the position of the three GEM foils. This amplification is computed with the

Gain class.

The Gain class will add new electrons to the existing collection of electrons. The state of

those electrons is the same as the state of the original electron initiating the amplification,

that is e−new = e− =(Xi,Yi,ti) where Xi = XGEMi .

The gain of each GEM foil is based on GARFIELD simulation. The effective gain

depends on the gas mixture, the voltage applied to the GEM (∆VGEM ) and both the

fields above (|Eabove|) and below (|Ebelow|) the GEM foil.

The Figures 4.29, 4.30 and 4.31 show the effective gain as a function of the voltage applied

to the foil for three different configurations of the electric field. The three configurations

are the typical configuration for the three GEM foils in the CMS Triple-GEM detector.

As explained in section 4.3.2, for each current the voltage applied to the GEM foil via

the divider can be computed.

Figure 4.29: Effective gain as a function of the voltage for GEM 1 (|Eabove| = 3
kV/cm ; |Ebelow| = 3.5 kV/cm) simulated by GARFIELD.

It has been shown [20] that gain fluctuations in proportional counters follow the Polya

distribution:

P (x) =
α

µ
· 1

(α− 1)!
·
(
α · x
µ

)α−1

· exp

(−α · x
µ

)
,
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Figure 4.30: Effective gain as a function of the voltage for GEM 2 (|Eabove| = 3.5
kV/cm ; |Ebelow| = 3.5 kV/cm) simulated by GARFIELD.

Figure 4.31: Effective gain as a function of the voltage for GEM 3 (|Eabove| = 3.5
kV/cm ; |Ebelow| = 5 kV/cm) simulated by GARFIELD.

where µ is the mean of the distribution and α is called the Polya parameter.

It has been shown [56] that the Polya parameter is of the order of unity for argon

gas mixtures. The Polya distribution becomes an exponential if α = 1. Therefore the

number of electrons created during an avalanche in the FastSim is a random number

taken from an exponential distribution with a mean value given by the effective gain

computed with GARFIELD.

Since the effective gain is the ratio of the number of electrons inducing a signal and the

number of primary electrons, most of the processes that affect the number of electrons

inducing a signal (like the attachment, the Penning effect, the transparency) are indi-

rectly included in the FastSim where we used the effective gain provided by GARFIELD.

However, as explained in section 4.2.4, the shape of the signal affects the time resolution.

For this reason the transparency has also been implemented separately in the simulation.

In this case, instead of lowering the global gain of the detector the transparency removes
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a certain number of electrons before each GEM foil. The probability for an electron to

be removed is equal to ‘1− transparency’.

This method can be activated in the simulation if the study requires the shape of the

signal and not the average gain, as the time resolution study.

4.3.6 Electronics

The Electronics class computes the raw induced signal, performs the convolution with

the electronics transfer function to obtain the shaped signal, records the number of

hit-strips and reconstructs the position of the muon with two different algorithms. The

position reconstruction is done by simulating a binary or an analog readout. These steps

are described in detail in the following.

Induction of the Raw Signal In the FastSim, the electrons start to induce a cur-

rent on the anodes just after the third GEM foil, when they enter the induction gap,

since the GEM foils screen the electric charge before that point. The induced current is

therefore very close to the one recorded in a parallel plate geometry.

In the FastSim the induced current is computed on an infinite anode plane. As pre-

sented in section 3.6.3 the current is given by equation 3.11. In the case of two parallel

electrodes, the electric current (I(t)) induced by a charge q becomes:

I(t) = −q · vdrift ·
1

D(t)
, (4.3)

where vdrift is the drift velocity of the charge and D(t) the distance between the charge

and the strip at time t.

According to Eq. 4.3, the time of induction tind is:

tind =
Dind

vdrift
,

where Dind is the distance of induction of the charge. In the simulation this distance is

equal to the size of the induction gap for every electrons except the primary electrons

created directly in the induction gap. For those electrons the distance of induction is

the distance between their position of creation and the position of the anode plane.

In the FastSim the induced signal consists in a histogram with a binning of 1 ns. Each

electron fills n bins of the histogram with n equal to tind starting with the bin equal to

the time when the electron exits the third GEM foil and enters the induction gap. Each

bin is filled with 1
D(t) so that this algorithm can give an induced current in arbitrary

units (since q and vdrift are constant in the gap).

Figure 4.32 shows such an induced signal created with the FastSim.



Chapter 4. Triple-GEM Detector Simulations 88

Figure 4.32: Induced signal for a perpendicular 15 GeV muon in Ar/CO2 (70:30) gas
mixture.

The shape of the signals computed with the FastSim is comparable to the shape found

with the GARFIELD simulation (as shown in Figure 4.3).

The choice to compute the induced current on an infinite anode plane instead of separate

strips and to use arbitrary units is led by the fact that the shape of the signal is only used

for the time resolution analysis. Indeed, the efficiency and the spatial reconstruction use

the charge collected by the strips but not the shape of the signal. The charge collected

by each strip is computed separately in the FastSim. This choice has been made to

keep the FastSim computations ‘simple’. We will see in section 4.4.3 that the anode

segmentation has a little impact on the time resolution.

Front-End Shaper The front-end electronics foreseen for the CMS Triple-GEM is

the VFAT3 as explained in section 4.2.2.

The two possible VFAT3 designs are implemented in the FastSim. The simulation of this

electronics is done by convoluting the induced anode current with the VFAT3 transfer

function (Eq. 4.1). The convolution is discrete and uses the binning of the raw signal

(1 ns).

Strips and Spatial Reconstruction In the FastSim, the spatial reconstruction is

done for two algorithms. Those algorithms represent two cases of read-out electronics:

the analog (where the charge is recorded) and the binary (where the recording is done

only if the charge is above the threshold).

Given the detector geometry and the large size of the strips with respect to the electron

transverse diffusion, a strip is considered as hit by an electron when its final Y position
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is within the range [−pitch2 ,pitch2 ] around the center of the strip. Therefore it is easy to

represent the anode plane by an histogram where each bin represents one strip of width

equal to the strip pitch. Each electron drifting into the induction gap will create an

entry in the bin corresponding to the strip it hits. When the histogram is filled, the

electronics threshold is applied. The threshold of the VFAT3 is programmable and is

expressed in VFAT unit (V U) [42]. The VFAT unit can be expressed in the number of

electrons1:

1V U = 0.08fC = 500e−

For each bin, the number of electrons is compared with the threshold expressed in

number of electrons.

In the case of the binary read-out, if the number of electrons is below the threshold, the

output is set to zero. If the number of electrons is above the threshold, the output is set

to one.

In the case of the analog read-out, if the number of electrons is below the threshold, the

output is also set to zero. If the number of electron is above the threshold, the output

is set to the number of electrons. This output gives the information of the charge.

Binary Read-out For a binary read-out chip, all adjacent strips with a collected charge

above a given threshold are considered. The reconstructed position of the charged

particle track with the binary read-out (Ybin) is the geometrical center of those

strips:

Ybin =
1

N

∑
yi,

where N is the number of hit strips and yi is the middle position of the strip i.

Center of Gravity The position reconstructed with the CoG method (YCoG) is com-

puted using the following formula:

YCoG =
1

qtot

∑
qiyi,

where qtot is the total number of electrons, i is the strip number, qi is the number

of electrons on that strip.

4.3.7 Results

Time Resolution The time resolution has been studied with the FastSim signals.

The goal is to compare the results obtained with the FastSim signals with the time

resolution obtained with the GARFIELD simulation study presented in section 4.2.

1Since the VFAT3 chip was still under design while performing this analysis, these numbers are based
on the VFAT2 design.
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The CFD method has been chosen for this comparison since it is the algorithm that will

be implemented in the VFAT3 electronics [57].

The CFD method has been applied to the convoluted signals (with the VFAT n3 design)

for the five different peaking times (20, 50, 75, 100 and 200 ns).

To compare the resolution obtained with both simulation signals, the parameters used

in the FastSim have been chosen to be the same as the one used in the GARFIELD

simulation:

• the geometry of the gaps is 3:1:2:1 mm;

• the electric fields for the different gaps are 3/3/3/5 kV/cm;

• the voltage applied to the GEM foils is 400 V;

• the gas mixture is Ar/CO2/CF4 (45:15:40);

• the muon energy is set to 1.5 GeV.

For further discussions, this set of parameters will be called ‘non-standard’ parameters

with respect to the ‘standard’ parameters defined in section 3.7.3.

At 1.5 GeV 12 primary clusters of electrons are created on average in 3 mm of Ar/CO2/CF4

(45:15:40) against 15 for a muon of 15 GeV. As explained in section 4.2.4, the number of

primary clusters of electrons affect the time resolution. The number of primary clusters

in the FastSim has been also changed for this comparison.

Figure 4.33 shows the time resolutions for both simulations as a function of the peak-

ing time of the VFAT3 electronics. With the FastSim, the time resolution has been

computed with and without the transparency.

The time resolution appears to be over-estimated with the FastSim when the trans-

parency is disabled. Indeed, the values of the resolution show a discrepancy of 5 to 12%

between the FastSim without transparency and GARFIELD. When the transparency is

activated, the time resolution is degrading slightly as expected (see section 4.2.4) and

is getting closer to the GARFIELD results except for the 25 ns peaking time. The dis-

crepancy for the other peaking times is less than 7%.

It is important to note that despite the simplification of the FastSim compared to the

GARFIELD simulation, the results of the FastSim are very satisfying: in absolute val-

ues, the differences are smaller than 0.5 ns.

Figure 4.34 and 4.35 show the time resolution as a function of the VFAT n3 peak-

ing time for the ‘standard’ and ‘non-standard’ simulation parameters obtained by the

FastSim, respectively without and with the simulation of the transparency.
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Figure 4.33: Time resolution computed with the CFD method for both the
GARFIELD simulation and the FastSim as a function of the VFAT n3 peaking time

for a gas mixture of Ar/CO2/CF4 (45:15:40).
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Figure 4.34: Time resolution computed with the CFD method for the FastSim with-
out transparency as a function of the VFAT n3 peaking time for a gas mixture of
Ar/CO2/CF4 (45:15:40) for the ‘non-standard’ parameters and the ‘standard’ param-

eters.
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Figure 4.35: Time resolution computed with the CFD methods for the FastSim
with transparency as a function of the VFAT n3 peaking time for a gas mixture of
Ar/CO2/CF4 (45:15:40) for the ‘non-standard’ parameters and the ‘standard’ param-

eters.

Those results show that the time resolution improve when we use the ‘standard’ parame-

ters which have been optimised for that purpose [42]. This is now easily understandable

since several of the processes that contribute to the time fluctuation are affected by the

parameters of the simulation: the number of primary electron clusters, the electric fields

which affect the drift velocity and, finally the voltage applied to the GEM foils which

affect the transparency.

Finally, the time resolution has been computed with the FastSim for Ar/CO2 (70:30).

The Figure 4.36 shows the time resolution obtained with the FastSim for 3550 V at

the voltage divider instead of 4000 V for Ar/CO2/CF4 (45:15:40). The voltage is put

at a lower value since the gain in Ar/CO2 (70:30) is higher than for the Ar/CO2/CF4

(45:15:40) gas mixture.

The time resolution is equal to 6.73 ns. This results confirm that the CMS Triple-GEM

detector can provide a time resolution better than 10 ns for both gas mixtures.

All the time resolution results are summarized in the tables reported in Appendix A.

It is important to note that the FastSim reproduces very well the measurements shown

in Figure 3.22. Although the configurations of the fields and of the gaps (as well as the

electronics) that are not exactly the same, the measurements have shown that the best

time resolution of 4 ns is achieved with Ar/CO2/CF4 (45:15:40) while it reaches at best

7 ns for Ar/CO2 (70:30).
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Figure 4.36: Time resolution computed with the CFD methods for the FastSim with
transparency for the VFAT n3 design at a peaking time of 100 ns for a gas mixture of

Ar/CO2 (70:30) for 3550 V at the voltage divider.

Efficiency To further validate the FastSim, we have studied the detector efficiency.

This is possible in the context of the upgrade of the CMS muon endcap system, where

the performance of large-area GEM detector prototypes have been widely studied. For

instance one full-size GE1/1 prototype of 1 m long has been assembled by the Florida

Tech group and tested at Fermilab. The results of the beam test done at Fermilab are

described in ref.[58].

During this test beam, the detector was operated with Ar/CO2 (70:30) gas mixture

and the APV25 readout electronics [59]. The Florida Tech group has emulated the

behavior of the binary output of the VFAT3 chip with an offline reconstruction from the

analog APV25 readout. The detector efficiency has been calculated with three different

thresholds: 0.8 fC, 0.98 fC and 1.2 fC.

To compare those results with the FastSim, three efficiency curves have been produced

with parameters chosen to be as close as possible to the beam test conditions.

The main difference with the parameters described in section 4.3 is the ceramic divider.

The values of the different resistors were not the same and consequently the various

electric fields have different values. The values of the resistances are shown in the table

4.4.

Figure 4.37 shows the three efficiency curves from the Fermilab test beam and the three

efficiency curves computed with the FastSim as a function of the divider current.

The efficiency points found with the FastSim have been fitted with a Sigmoid function

(f(x) = a
1+exp(b·(x+c))) and the confidence belts of 68 and 95% are represented in yellow.

A shift of 20 µA can be seen between the data and the simulation, but the shape seems
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RD 1 MΩ

RGEM1 0.55 MΩ

RT1 0.5 MΩ

RGEM2 0.5 MΩ

RT2 1 MΩ

RGEM3 0.45 MΩ

RI 0.5 MΩ

Table 4.4: Values of the resistances of the ceramic divider used during the beam test
done at Fermilab.
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Figure 4.37: Efficiency curves as a function of the current from the Fermilab test
beam the FastSim for three different thresholds.

to be the same.

The value of maximum efficiency found with the test beam results is equal to 97%

against 100% for the FastSim. This is due to the fact that no effect (attachment and

transparency) that can reduce the number of electrons inducing a signal is explicitly

simulated. These effects are included in the effective gain. Therefore once the gain is

high enough, each muon ionizing the gas will create a signal readable by the electronics.

Although the agreement is not perfect, it is remarkable that the FastSim efficiency

plateau occurs within ±20 µA from the experimental data. The disagreement in the

influence of the threshold may also be due to the fact that the measurement have been

done with the APV25 readout electronics emulating the VFAT binary readout.
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Spatial Resolution We will now compare the spatial resolutions computed by the

FastSim for the two reconstruction methods: the Binary read-out (Bin) and the Center-

of-Gravity (CoG).

We have produced a sample of 500 events for a detector filled with the Ar/CO2/CF4

(45:15:40) gas mixture, a strip pitch of 0.817 mm, the current in the divider was set to

800 µA and the threshold put at 1 fC. The Figure 4.38 shows the residuals between the

reconstructed hit and the simulated hit for both methods.
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Figure 4.38: Residuals between the reconstructed hit and the simulated hit for both
methods.

We can observe that for this set of parameters, the CoG method gives a RMS of ∼
0.18 mm against ∼ 0.14 mm for the Bin method. This result seems to suggest that the

binary readout could lead to a better spatial resolution than the analogue readout using

a CoG method.

We will study in detail this unexpected result in the chapter 6.

4.4 Hybrid Simulation

The idea of the Hybrid simulation is to combine the FastSim with the GARFIELD

simulation. This combination allows to keep the flexibility and speed of the FastSim
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with a better computation of the induced signal produced by GARFIELD. Indeed, the

induced signal will be computed on each strip for every electron instead of an infinite

anode.

The primary goal of this simulation was to study the time resolution and understand

the induction of the signal on several strips.

4.4.1 Implementation

The FastSim is used to create the muon track, compute the motion of the electrons and

the amplifications. Then, the induction gap is completely simulated with GARFIELD.

The FastSim provides a collection of electrons to GARFIELD. Those electrons are the

electrons entering the induction gap just after the third GEM foil (e− =(XGEM3 ,Yi,ti))

and all the primary electrons released directly in the induction gap.

The detector simulated by GARFIELD is the induction gap with five strips and no

amplification step.

Every electron will induce a signal on each of the five strips. The induction of the signal

is computed by GARFIELD as presented in section 4.1.

4.4.2 Example of Signals

Figure 4.39 shows the raw signals induced on the five strips. The muon track was

generated with φ = 0 and Y0 equal to the position between the strip 3 and 4 in the

Ar/CO2/CF4 (45:15:40) gas mixture. The strip pitch is 0.6 mm.

The two main signals are shared in between the strips 3 and 4 while on the three other

strips the signals induced are negligible. 500 signals have been produced in the same

conditions and then convoluted with the VFAT3 transfer function. Figure 4.40 shows

the distributions of the maximum amplitude of the 500 shaped signals on the five strips.

The distributions of maximum amplitudes confirm that the signal is mainly shared

between the strips 3 and 4.

4.4.3 Time Resolution

To compare the results of the Hybrid simulation with the full GARFIELD simulation,

the time resolution of the Hybrid simulation has been repeated with the CFD method

(as explained in section 4.2.3).

The electric fields of the three first gaps simulated with the FastSim were 3/3/3 kV/cm,
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Figure 4.39: Raw signals induced on the five strips for perpendicular muon track
passing between strip 3 and 4 in the Ar/CO2/CF4 (45:15:40) gas mixture.
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Figure 4.40: Distributions of the maximum amplitude of 500 shaped signals on the five
strips for perpendicular muon track passing between strip 3 and 4 in the Ar/CO2/CF4

(45:15:40) gas mixture.
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GARFIELD Hybrid simulation strip 3 Hybrid simulation strip 4 FastSim

4.76± 0.16 ns 4.61± 0.17 ns 4.54± 0.18 ns 4.43± 0.16 ns

Table 4.5: Time resolutions computed with CFD method for a peaking time of 100
ns for the VFAT n3 for the three different simulations.

the voltage applied to the GEM foils 450/440/420 V, the transparency was activated

and the energy of the muon was 1.5 GeV.

Figure 4.41 shows the residual distributions for both strip 3 and 4 and a peaking time

of the VFAT electronics of 100 ns.
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Figure 4.41: Time resolution distributions for strip 3 (Left) and strip 4 (Right)
computed with the CFD method for a peaking time of 100 ns for the VFAT n3 obtain

with the Hybrid simulation.

The time resolution found on both strips are similar within the error bars.

Those resolutions have to be compared with the resolutions found with the GARFIELD

simulation and the FastSim.

Figure 4.42 shows the residual distribution for the FastSim with transparency. The

residual distribution found with the signals simulated with GARFIELD was shown in

Figure 4.12.

All the time resolutions are summarized in the table 4.5. The time resolution found with

the Hybrid simulation, the full GARFIELD simulation and the FastSim are compatible

within the error bars.
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Figure 4.42: Time resolution distribution computed with the CFD method for a
peaking time of 100 ns for the VFAT n3 obtain with FastSim with the transparency.

4.5 Conclusion

The detailed study of the time resolution which could be achieved with the CMS Triple-

GEM detector read-out by the VFAT3 electronics has been presented in this chapter.

The study has been performed using GARFIELD, state-of-the-art in gaseous detector

simulations. The simulation has been used to compute the induced anode current which

has been convoluted with the transfer function of the VFAT3 electronics.

The time resolution has been studied for two different methods, the TOT and CFD, and

with several peaking times to reduce the effect of the time walk.

The GARFIELD study shows that the most efficient method, in terms of combined

time resolution and latency, is the CFD method. The time resolution for this method is

4.98± 0.16 ns for a peaking time of 50 ns with a latency of 100± 5 ns.

It has also been showed that both VFAT3 designs, with a 2nd and 3rd order filter, give

the same results in terms of the time resolution and the latency.

The different effects that can contribute to the time resolution of our detector have

also been studied. It has been shown that the main contribution is due to the primary

ionization clusters statistics. This effect accounts for ∼ 3 ns for Ar/CO2/CF4 (45:15:40)

gas mixture and ∼ 4.5 ns for Ar/CO2 (70:30) gas mixture.

In this chapter we also describe in details the FastSim, a fast parameterized simulation

that has been developed during this thesis. This simulation framework has been designed

to propose a fast alternative to GARFIELD to simulate Triple-GEM detector, where

the geometry and the electric fields can easily be changed. To validate the FastSim, we

have first computed the time resolution for the Ar/CO2/CF4 (45:15:40) gas mixture.
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The resolution has been compared with the results obtained with GARFIELD. The

results are comparable within two sigmas despite the simplification of the simulation

with respect to GARFIELD. Then we have used the CFD method on signals produced

with the FastSim for the Ar/CO2 (70:30) gas mixture. The results show that the time

resolution is better than 7 ns. This confirms that the CMS Triple-GEM detector fulfills

the CMS upgrade requirement in terms of time resolution (presented in table 2.2) for

both gas mixtures.

The FastSim performance has also been compared with real data. We have reproduced

the efficiency of the CMS Triple-GEM detector found during the Fermilab beam tests.

The agreement is not perfect but is well quantified.

Finally, a combination of the two simulations (FastSim and GARFIELD) called the

Hybrid simulation has been presented. With the Hybrid simulation, we have computed

the signal on multiple strips and performed a time resolution study. The time resolution

found for the strips hit is fully compatible with the previous results where only one strip

was simulated.

The FastSim has shown to be a very useful tool to study and understand the behavior

of the Triple-GEM detectors. We will see in chapter 6 how its use can be extended to

simulate other detector technologies.



Chapter 5

Triple-GEM Prototypes

Performances

The effective gain of a GEM foil is a quite complex variable to simulate. Indeed the gain

depends in a complicated way on several parameters like the geometry of the GEM holes,

the electric fields, the gas mixture, etc. This is why the simulations like GARFIELD are

not totally satisfying concerning the computation of the gain. To better understand the

gain in the Triple-GEM detectors, we have decided to measure it on small prototypes.

The goal of those measurements is to compute the effective gain of a single-GEM foil

in order to use those results as an input for the FastSim instead of the effective gain

computed by GARFIELD.

We have also participated in a test beam campaign that was intended to test several

full size Triple-GEM detectors allowing us to compare different measurements to our

FastSim.

In this chapter we will present the two types of Triple-GEM prototypes that we have

studied. First in section 5.1, we will present the small 10x10 cm2 prototypes, that we

have built at CERN, together with the setup that the IIHE team has put in place in

Brussels. Then we will focus on the measurement of the gain on those prototypes.

Afterwards, in section 5.2 we will present a test beam campaign that we joined. We will

review the setup and also the full size Triple-GEM prototypes. Finally we will discuss

different results obtained with the analysis of the data taken during the test beam and

compared to our FastSim.

101
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5.1 Gain Measurement with 10x10 cm2 Prototypes

Small prototypes of a new detector type are useful to study and to understand the

behavior of a specific new technology. For this purpose a small setup has been built

at the IIHE lab to study the Triple-GEM detector and the new DAQ electronics being

developed for the CMS upgrade.

In this section, the small prototypes will be described from their assembly to their

installation on the test-bench. Afterward the experimental setup will be presented in

details. Finally, we will discuss the gain measured with our prototypes.

5.1.1 The 10x10 cm2 Detectors

The CERN PCB workshop [60] offers the possibility to buy 10x10 cm2 “Triple-GEM

build kit”. The ULB group has bought and built two of those kits. Both detectors have

been assembled by the IIHE team at CERN in a clean room (as shown in Figure 5.1).

Figure 5.1: Assembly of one of the ULB 10x10 cm2 Triple-GEM prototypes.

The base of the prototype detector is the readout board. On this board there are the

copper strips, the Panasonic connectors and ten copper bands. The connectors are used
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to connect the readout electronics to the strips and the copper bands are used to connect

the GEM foils and the drift electrode to the high voltage.

The readout plane of the prototype is made of two sets of 256 strips. The two sets are

perpendicular to each other and each set is divided into two groups of 128 channels.

Each group is connected to a Panasonic connector. A schematic view of the readout

plane is shown in Figure 5.2.

Figure 5.2: Schematic view of the Triple-GEM readout strips and the name we at-
tributed to the four different connectors.

Four nylon screws are fixed at the four corners of the 10x10 cm2 square formed by the

strips. Those screws are the support of the GEM foils and the drift cathode.

Figure 5.3 shows a GEM foil used in the small prototype. The GEM foils are made of

50 µm kapton foil with 5 µm copper on both sides, the external diameter of the holes

is 70 µm, the internal diameter is 50 µm and the pitch is equal to 140 µm. One can see

on the top right of the foil two connector bands used to connect both top and bottom

copper foils to the high voltage. This connection is done by soldering.

To separate the GEM foils and create the different gas gaps, plastic spacers of 0.5 mm

are placed on the nylon screws. Finally, a bolt is used to keep the foils and spacers on

the screw.

Figure 5.4 shows the three GEM foils on top of the readout board, the spacers in between

the foils and the bolt that maintains the whole stack.

An outer frame is placed on the readout board. This frame contains the gas inlet/outlet.

To assure the gas sealing, two O-rings are placed on the top and bottom of this frame.

To close the gas volume, a kapton foil and a plastic frame are placed on the top of the

outer frame.

To power the different electrodes of the detector, the voltage is distributed via a ceramic

divider from a high voltage power supply. Figure 5.5 shows the HV connections to the
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Figure 5.3: One GEM foil of the Triple-GEM build kit.

Figure 5.4: Triple-GEM foils spaced by plastic spacers on the nylon screw. The stack
is ended by the bolt. At the bottom we can distinguish the readout board.
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different GEM foils, the ceramic divider as well as the noise shielding (lower row of

pictures). Figure 5.6 shows the full Triple-GEM test-bench.

Figure 5.5: Assembly of the HV connection and of the ceramic voltage divider (upper
row). Soldering of the HV connection between the divider and the detector electrodes

(middle row). Addition of copper foils for shielding and grounding (lower row).

Later for the need of the gain measurements (see section 5.1.3), one of the two Triple-

GEM prototypes has been transformed into a Double-GEM by removing one of the GEM

foils. The geometry chosen for the Double-GEM is 3:2:1 mm.

In addition the powering scheme of this Double-GEM has been modified to enable a

larger flexibility: each electrode is powered individually. In total five different power

supplies are needed: one for the drift and four for the GEM electrodes (two per GEM

foil). Figure 5.7 shows the five HV connections to the detector electrodes.

Since the two electrodes of a single GEM foil are powered separately, a mechanism has

to be added in order to protect the GEM foil in the case of one of the power supply trips

because of a discharge. Indeed, if one of the HV power supply trips, the voltage of the

corresponding GEM electrode will go down to zero, increasing the potential difference

across the GEM foil to the value of the electrode still powered, that is well beyond 500 V.

This protection is provided by two Zener diodes facing each other and placed between

the two GEM electrodes. The diodes have a breakdown voltage of −500 V. In case of
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Figure 5.6: Triple-GEM prototype placed in the test-bench at the IIHE lab.

over-voltage the current will flow through the diode and bring the voltage across the foil

to zero. Figure 5.7 shows also the four Zener diodes.

Figure 5.7: The five HV connector and the four Zener diodes of the Double-GEM
prototype.

Figure 5.8 shows the Double-GEM prototype test-bench. On the top right, a pre-

amplifier connected with a small Lemo cable to the Panasonic connector ‘Yb’ (see

Figure 5.2) can be observed .

The voltage applied to the five electrodes of the Double-GEM foil for the different

measurement points expressed in terms of equivalent current in the divider, the electric

fields of the three gaps and the voltage applied to the foil of the Tripe-GEM are reported

in Appendix B.
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Figure 5.8: Double-GEM prototype placed in the test-bench at the IIHE lab.

5.1.2 Setup

The full experimental setup installed at the IIHE lab is composed of the detector, a gas

system, a high voltage power supply and a readout system. Figure 5.9 shows a schematic

view of the experimental setup.

Both the gas system and the high voltage power supply are controlled by a web interface

through Ethernet.

The signal coming out of the detector is sent to a pre-amplifier and then an amplifier.

Eventually, the signals are read with a scope or with NIM modules.

All the parts of the setup will be described in details in the following section.

DAQ Web Interface The DAQ web interface is made of three different entities: the

user interface, the central node and the experimental side.

The user interface is a web application that provides the ability to control remotely

different parameters of the experimental setup as the high voltage or the gas flow. The

web application can be run on a simple web browser. It communicates with the central

node.

The central node is a web server coupled to a database. The central node treats the

communication between the user interface and the experimental side.

On the experimental side, a server with C and C++ software is located next to the
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Figure 5.9: Schematic view of the experimental setup.

setup. The different softwares are used to communicate with the high voltage module

and the gas system through Ethernet.

Gas System The gas mixture used for the different measurements is the Ar/CO2

(70:30). The gas mixture is provided with a gas mixer and the flows are controlled by

HORIBA flow meters [61].

Figure 5.10 shows the gas system used in the setup, with two gas bottles and the flow

meters. The flow meters are connected to the experimental side server of the DAQ web

interface.

High Voltage The high voltage is provided to the detector with a VME high voltage

module. The module is able to power 6 channels independently up to 6 kV.

There is a filter installed between the HV module and the detector to reduce high

frequency noise which could propagate to the readout. Figure 5.11 shows the voltage

RC filter (R = 300 kΩ and C = 2× 2.2 nF).

Amplification Chain The signal coming out of the detector is amplified in two steps.

The first amplification is done by an ORTEC 142B charge sensitive pre-amplifier [62].

Figure 5.12 shows a diagram of the ORTEC 142B circuit.
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Figure 5.10: The two gas bottles and the HORIBA flow meters remotely monitored
via Ethernet.

Figure 5.11: HV filter.
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Figure 5.12: Diagram of the ORTEC 142B pre-amplifier circuit.

On the diagram a test input with a capacitor (C3) can be observed. C3 is a 2 pF

capacitor that allows to do a calibration of the pre-amplifier. Indeed, by using a known

square signal produced by external pulse generator sent to the test input, we can observe

the output voltage with an oscilloscope.

To produce a semi-Gaussian shaped pulse and to improve the signal-to-noise ratio, the

output signal of the pre-amplifier goes into a shaper. The shaper is the ORTEC 575

amplifier [63].

Example of Signals Figure 5.13 shows the signals we observe with the oscilloscope

for the Triple-GEM prototype after the full chain of amplification.

We can clearly see a noise level around 40 mV and the maximum amplitude of the signal

have a mean value of 147 mV. The shape is asymmetric and the signal lasts for more

than 1 µs.

5.1.3 Gain Measurements

As presented in section 3.7.3, only the effective gain can be measured. Since the effective

gain is the ratio of the number of electrons inducing a signal to the anode plane (neff )

and the number of primary electrons (n0), to estimate the gain, neff must be measured

and n0 estimated.

n0 is known since the gain measurement rely on a iron-55 (55Fe) X-ray source.neff has

been measured with two different methods: the measurement of maximum amplitude of
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Figure 5.13: Output signals of the Triple-GEM prototype after the full chain of
amplification observed with the oscilloscope.

the signal after the amplification chain and the measurement of the induced current on

the anode plane.

55Fe source The 55Fe is a radioactive isotope of iron and therefore is an X-ray source

with a well known energy spectrum. The main emission of the 55Fe source is at 5.9 keV.

Figure 5.14 shows the X-ray spectrum of the iron-55 source [64].

Two different peaks can be observed, the main peak is clearly visible at 5.9 keV and a

second one is visible around 3 keV. The second peak is the escape peak of argon.

As explained in section 3.2.2, the mean energy loss (W ) needed to create a ion-electron

pair is defined by Eq. 3.2 and is experimentally determined. Since the gas mixture used

for the measurements is Ar/CO2 (70:30), the mean energy is given by:

W =

(
%(Ar)

WAr
+

%(CO2)

WCO2

)−1

= 27.8 eV

To compute the average number of ion-electron pairs produced by an X-ray photon of

5.9 keV, the Eq. 3.3 is used:

n0 = 5.9 keV · 1

W
= 212 e−
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GEM electrodes and an anode separated by 2 mm gaps; the drift gap
is 3 mm thick, to ensure efficient detection of minimum ionizing
tracks. The drawing shows also the scheme used to distribute the
appropriate voltages to all electrodes, a simple resistive chain with a
single voltage source. Other powering schemes permitting to vary
the individual voltages have been used during the developments and
by other authors (see for example [23]).

While the final test of the reliability of a detector is its long-term
use in realistic experimental conditions, a procedure has been
established permitting the comparison of performances in the labora-
tory [24]. The detector is first characterized with an exposure to a
moderate flux of soft X-rays (5.9 keV form an 55Fe source); the
effective gain is measured as a function of voltages, and the maximum
safe operating voltage determined. The chamber is then exposed to a
source releasing much larger ionization, and the discharge rate is
determined at increasing values of voltage. A convenient source to this
extent is the 6.4 MeV α decay of 220Rn, introduced with the gas flow
from a natural thorium generator. Fig. 11 [25] shows a compilation of
gain measurements and discharge rates with the internal α source as a
function of voltage applied to each electrode in the Single-, Double-
and Triple-GEM configuration. Considering the onset of discharges as
operating limit, a gain above 104 can be safely reached in the triple
structure. While the radiation environment in an experiment differs
from the laboratory conditions, the results can be taken as a guide-line
for the design and comparison of detectors. Further studies have
shown that a small asymmetry (�10%) in the sharing of amplification
between electrodes, with the first GEM in the cascade operated a
slightly higher gain, increases the discharge immunity [25]. The
amount of moisture in the gas also affects the results, and should be
kept below �50 ppm [26].

The measurements described above have been performed with a
70–30 Ar–CO2 gas filling at one bar, a cheap, non-flammable mixture
convenient for use in large experimental systems. Many other gases
have been investigated to meet special experimental requirements;
only some examples are given here. Mixtures with carbon tetra-
fluoride increase the electron drift velocity, improving the detector
time resolution, but require higher operating voltages (Fig. 12 [27]).

Large gains can be attained also in pure noble gases [28], owing
to the confinement of the avalanches in the holes that prevent
photon feedback problems; Fig. 13 shows an example of gains
measured with a Triple-GEM detector in a range of noble gases
and their mixtures [29]. This opens up the possibility to use the
multiplier in photosensitive sealed detectors and in dual-phase
devices, discussed in Sections 13 and 15.

The measurements described above were mostly realized at atmo-
spheric pressures; for special applications, however, GEM detectors
have been operated successfully at pressures between 10 and 50 Torr
[30,31] and high pressure noble gases and their mixtures [32–35].

Originally motivated by the need of reducing the sparking
probability in another micro-pattern device, Micromegas [36,37],
use of resistive electrodes to locally quench the formation of
discharges has been developed also for GEM-like detectors as an
alternative to multiple cascaded electrodes [38–40]. As in similar

Fig. 8. Single GEM effective gain as a function of voltage in Ar–CO2 mixtures at
atmospheric pressure.

Fig. 9. Pulse height spectrum on 5.9 keV for a single GEM. The relative energy
resolution is �17% FWHM.

Fig. 10. Schematics of a Triple-GEM detector.

Fig. 11. Effective gain and discharge rates as a function of voltage in multi-GEM
detectors.

F. Sauli / Nuclear Instruments and Methods in Physics Research A 805 (2016) 2–24 5

Figure 5.14: Energy spectrum of the 55Fe source for a single GEM [64].

Measurements with the signal amplitude The first method used to estimate

neff is by measuring the maximum amplitude of the 55Fe signal after the amplification

chain.

First a calibration of the full amplification chain is needed. The goal of this calibration

is to determine the output amplitude for a given input charge. To control the input

charge, a pulse generator is connected at the test pulse input of the pre-amplifier. By

knowing the amplitude of a square pulse and since the capacitor of the test input is also

known, the equivalent input charge can be computed.

Figure 5.15 shows the calibration curve measured for our setup, in other terms the input

charge as a function of the amplitude of the output.

A linear function is fitted to the points and the slope (p1) is the coefficient between the

measured amplitude and the input charge. The Y intercept of the fit (p0) is compatible

with zero.

Therefore the effective gain (G) can be computed and is given by:

G =
p1

n0
·Amax

=
7256

212
·Amax,

where Amax is the maximum amplitude measured.

In the absence of an ADC adapted to our signals, we have determined the amplitude

corresponding to the 5.9 keV peak (Amax) by using an oscilloscope. For each point a

set of 50 signals was recorded and the mean of the 50 maximum amplitudes was used

as the estimator of Amax.

Figure 5.16 shows the gain measured as a function of the HV on the Triple-GEM for two
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Calibration of the amplification chain

Figure 5.15: Calibration curve of the full amplification chain.

different positions of the source on the four connectors. The notation for the different

positions is the following: the first two letters are the connector name (as defined in

Figure 5.2) and then the last two letters indicates the position of the source along that

connector. The error bars present on the graph are the statistical uncertainties.
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Figure 5.16: Measured gain as a function of the HV on the Triple-GEM for two
different positions of the source on the four connectors.

The first thing to notice is that the gain can go up to ∼ 40000 for an high voltage of
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∼ 3460 V. But large discrepancies up to a factor of two can be observed between the

eight sets of measurements.

First we can observe that the gain is systematically larger along the vertical strips read-

out through connectors Xa and Xb. This discrepancy can reach 35 %. This can be easily

understood, since the two sets of strips are perpendicular and the ‘X’ strips are on top

of the ‘Y’ strips.

If we just look at the ‘X’ strips, a difference of 9 to 25 % can be observed for one

connector and different positions of the source.

Between the two ‘X’ connectors we have up to 10 % difference in the measured gain.

All those variations are due to the way the prototype is built.

Indeed an important parameter of the geometry is the gap between the foils which affects

the electric field and consequently the effective gain. In our prototypes the distance

between the foils is maintained by the spacers and the bolts on the screws. The GEM

foils are not stretched. This can lead to non-uniformities in the gap size and in the

electric fields and therefore in the effective gain.

Measurements with the current To measure the effective gain G of a GEM de-

tector using the recorded current on the read-out strips, the following formula is used

[65]:

G =
Is

e · n0 ·R
(5.1)

Where e and n0 are respectively the charge of the electron and the mean number of

primary electrons produced, Is the recorded current, and R the rate of the X-ray source

times the efficiency of conversion.

Figure 5.17 shows the rate R measured as a function of the HV. We can see that beyond

3350 V the rate measured without veto (red inverted triangles) increases rapidly. This

is due to the fact that with low electronics thresholds the large signals presenting a long

tail of the order of the µs, can trigger multiple times the discriminator. To avoid this

phenomena a veto is implemented. With a veto of 50 µs the measured rate reaches a

plateau of 1.5 kHz. If we increase the veto length to 200 µs, the rate decreases to 1.1

kHz because several signals may occur during the veto time.

Once the X-ray rate has been measured, the current induced on the strips has been

recorded with a Keithley 6517 Electrometer/High Resistance Meter [66].

Figure 5.18 shows the comparison between the gain measured with the current and with

the maximum amplitude. The measurements have been done at position ‘Xa Ya’. One

can see that both methods give an effective gain of the same order of magnitude but
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Figure 5.17: Measured rate of the 55Fe source as a function of the HV of the Triple-
GEM.
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Figure 5.18: Measured gain of the Triple-GEM at the position ‘Xa Ya’ for both the
current method and the maximum amplitude method.
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are not compatible within the error bars. The measurement of the induced current has

a precision of the order of a pico-ampere. The signal of our source is quite small (of the

order of a hundred of pico-ampere) therefore the measure is very sensitive to external

noise.

In view of the discrepancy in the results obtained for the effective gain with the maximum

amplitude method, it is not surprising that both measurements do not agree much better.

Note however that at high gain, when the currents are higher, the disagreements are

within 55%.

Charging-up An effect that has also been observed and that can affect the effective

gain is the charging-up. The charging-up causes an increase of the effective gain with

time. This increase is due to an accumulation of electrons on the kapton of the GEM

holes. Indeed, the electrons that enter a GEM hole (or are created there) have a certain

probability to be captured on the kapton. The consequence is an accumulation of elec-

trons on the kapton surface and therefore an increase of the electric field in the hole.

Figure 5.19 shows the measured gain of the Triple-GEM at the position ‘Xa Ya’ as a

function of the time.
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Figure 5.19: Measured gain of the Triple-GEM at the position ‘Xa Ya’ as a function
of the time.

The measurement has been done during 1224 minutes. The gain increases clearly until

it reaches a plateau that starts after around 200 minutes. The gain increases by ∼ 70%

between the first gain measurement and the plateau.
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Gain of the single-GEM foil In this section we want to combine the gains measured

with a Triple-GEM and with a Double-GEM to estimate the gain of a single-GEM foil.

As explained in section 3.4, the gain of a gaseous detector follows an exponential. This

means that we can express the effective gain of a single-GEM foil G as a function of the

voltage applied to the GEM foil hv as:

G = α · exp(β · hv).

One can show that the effective gain of the Triple-GEM detector Gtriple can be expressed

as the product of the effective gain of the three single-GEM foils Gi.

Gtriple = G1 ·G2 ·G3.

So we can write:

Gtriple = A · exp(β1 · hv1 + β2 · hv2 + β3 · hv3),

where A = α1 · α2 · α3.

Since the voltage applied to each foil in our Triple-GEM is fixed via the ceramic high-

voltage divider, we can write:

Gtriple = A · exp ((β1 ·R1 + β2 ·R2 + β3 ·R3) · I)

= A · exp (B · I)

where I is the current applied to the high-voltage divider and Ri the resistance associated

to the foil i.

In the same way, we can express the effective gain of a Double-GEM Gdouble as:

Gdouble = a · exp(b · I),

where a = α1 · α2, b = β1 ·R1 + β2 ·R2.

This means that we can write the effective gain of the single-GEM foil i as follow:

Gi = αi · exp(βi · I), (5.2)

where αi =
A

a
and βi = B − b.

To measure the effective gain of the first GEM foil of the Triple-GEM detector, the

configuration of the Double-GEM must be the complementary. It means that if the

electric fields of the four gaps of the Triple-GEM are 3/3.5/3.5/5 kV/cm and the voltage

applied to the three different GEM foils are 450/440/420 V and we want to estimate

the gain of the first GEM foil, the electric fields of the three gaps of the Double-GEM
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must be 3.5/3.5/5 kV/cm and the voltage applied to the two different GEM foils must

be 440/420 V. The lists of complementary configurations of the Double-GEM equivalent

to GEM1, 2 and 3 are given in Appendix C.

To estimate the effective gain of the three single-GEM foils of our Triple-GEM detector,

we need to measure the gain of the Triple-GEM detector and the gain of the Double-

GEM detector.

Gain of the Double-GEM We have performed the measurement of the effective

gain of the Double-GEM with the maximum amplitude method.

Figure 5.20, 5.21 and 5.22 show the effective gain measured with the Double-GEM

prototype for the configuration complementary to the Triple-GEM for the GEM1, 2 and

3 respectively.
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Figure 5.20: Effective gain of the Double-GEM for the configuration complementary
to the GEM1 as a function of the current.

The measurements have been done on the connector ‘Xb’ and ‘Yb’ and two positions of

the source.

The same sort of disagreement between the different sets of measurements than those

observed with the Triple-GEM can be seen.

Combination Finally, the combination of the measurements of the Double- and

Triple-GEM has to be done.
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Figure 5.21: Effective gain of the Double-GEM for the configuration complementary
to the GEM2 as a function of the current.
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Figure 5.22: Effective gain of the Double-GEM for the configuration complementary
to the GEM3 as a function of the current.
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Figure 5.23 shows an exponential fit on the effective gain measured with the Triple-GEM

at the position ‘Xb Ya’.
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Figure 5.23: Measured gain as a function of the current for the Triple-GEM at the
position ‘Xb Ya’ fitted with an exponential.

Figure 5.24 shows an exponential fit on the effective gain measured with the Double-

GEM complementary to the GEM1 at the position ‘Xb Ya’.

A)µI (
800 810 820 830 840

G
ai

n

3000

4000

5000

6000

7000  / ndf 2χ  0.01516 / 1

Constant  1.087± -10.1 

Slope     0.001331± 0.02257 

 / ndf 2χ  0.01516 / 1

Constant  1.087± -10.1 

Slope     0.001331± 0.02257 

Figure 5.24: Measured gain as a function of the current for the Double-GEM at the
position ‘Xb Ya’ fitted with an exponential.
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With the fits to the Double- and Tripe-GEM measurements, we can use Eq. 5.2 to

compute the effective gain of the three single-GEM foil respectively.

Figure 5.25 shows the gain of the three single-GEM foils as a function of the voltage

applied to the foil.
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Figure 5.25: Effective gain of the three single-GEM foil as a function of the voltage
applied to the foil.

In view of the disparity between the results of the different gain measurements on the

two prototypes, we do not expect to obtain the exact gain. Nevertheless we can clearly

see that the effective gain of the three foils is not equivalent. It is normal since the

effective gain depends on both the fields above and below the GEM foil. This behavior

is interesting to note that the effective gain of the third GEM foil is the highest and the

second GEM foil have the lower gain.

Those results can be compared with the effective gain of a single-GEM foil predicted

by GARFIELD. Figure 5.26 shows the effective gain of the three single-GEM foil as a

function of the voltage applied to the foil for the three configurations of electric fields.

We can observe that the effective gain computed with GARFIELD is higher than the

effective gain computed from the measurements but the order is the same: for a fixed

voltage applied to the foil, the effective gain of the third foil of a CMS Triple-GEM

detector is the highest and the effective gain of the second foil is the lowest.
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Figure 5.26: Effective gain of the three single-GEM foil as a function of the voltage
applied to the foil simulated by GARFIELD.

5.2 Test Beam

In October 2014, three full size GE1/1 Triple-GEM detectors have been tested with

beam. The tests were performed using a muon beam at the CERN SPS test beam

facility [67]. To produce the beam, a proton beam is extracted from the SPS towards

the North Area and goes to a primary target where a jet of pions is produced. The

pion beam can be directly sent to the experimental hall or can pass through a secondary

target. If the secondary target is introduced in the beam, only the muons coming from

the pion decays will cross the target. Figure 5.27 shows the layout of the SPS and the

three primary targets T2, T4, T6 of the North Area.

In this section we will present the setup used during the test beam together with the

prototypes used during the test beam. Finally, we will show some results and compare

them with the FastSim.

5.2.1 Setup

The test beam setup is made of three scintillators, a tracker and the GE1/1 Triple-GEM

detectors. A schematic view of the setup is shown on Figure 5.28.

The scintillators are mounted with photo-multipliers tubes. The coincidence of the three

scintillators provides the trigger to our setup.
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Figure 5.27: Layout of the SPS and its extraction areas.

Figure 5.28: Schematic view of the test beam setup.
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The tracker is made of three 10x10 cm2 Triple-GEMs. Like the prototypes presented in

the previous section, the three trackers detectors have 256 strips in both horizontal and

vertical directions transverse to the beam and have a gap configuration of 3:2:2:2 mm.

The tracker is used to reconstruct the muon tracks and the beam profile. Figure 5.29

shows the beam profile of the muon beam for the three tracker detectors.
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Figure 5.29: Muon beam profile of one run for the three trackers.

The three detectors tested are: a GE1/1-IV, a GE1/1-IV-GIF and a GE1/1-V. The

detail of the different generations of prototypes has been presented in section 3.7.3. The

GE1/1-IV-GIF is a generation IV prototype that has been irradiated for aging test at

the GIF facility [68].

5.2.2 Results

Electronics The front-end electronics used during the test beam was the VFAT2

[69], precursor of the VFAT3 which has been described in section 4.2.2. It has a Signal-

over-threshold digital readout. The VFAT2 chip has an internal clock of 40 MHz. The

output pulse length is measured in integer number of clock cycles and is referred to as

monostable pulse length (MSPL). For the different results presented in this section, the

MSPL is always set at 4.

Like the VFAT3, the VFAT2 transmits 8 fast trigger signals (not used during this test

beam) at 40 MHz and slow tracking data for all the 128 strips, when a trigger signal is

received.

An important concept for the analysis is the VFAT2 latency. The VFAT2 latency is
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the time, in clock cycles, between an external trigger input and a desired point in the

memory where the tracking data is stored. This means that we have to measure the

time between the trigger given by the three scintillators and the signal recorded by the

GE1/1 prototype.

To measure the VFAT2 latency, we measure the ratio of signals recorded by the VFAT2

electronics to the number of triggers, for the different memory registers. This is called

the latency scan. Figure 5.30 shows the latency scan for the GE1/1-V at 650 µA.
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Figure 5.30: Latency scan of the GE1/1-V detector at 650 µA.

The latency can change with the current applied to the divider. Indeed, there is two

effects that affect the time when the signal is recorded by the electronics. Firstly, as

shown on Figure 4.5, the drift velocity of the electrons in the detector increases with the

electric field and therefore with the current applied to the divider. Secondly, since the

VFAT2 has a Signal-over-threshold readout, there is a time walk effect (as presented in

section 4.2.3) which depends on the detector gain and therefore on the divider current.

Figure 5.31 shows the evolution of the latency for the three detectors as a function of

the current in the divider.

As expected, the latency increases with the current which means that the signal is

recorded earlier in the electronics memory.

The back-end electronics is the TURBO. The TURBO can control up to 8 VFAT2 chips

and has a clock frequency of 40 MHz.

Efficiency The efficiency of the detector (ε) is defined as follows:

ε =
NGE1/1+trk

Ntrk
,
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Figure 5.31: Evolution of the latency for the three GE1/1 prototypes as a function
of the current in the divider.

where Ntrk is the number of tracks reconstructed with the tracker and NGE1/1+trk is the

number of events where a hit is found in the GE1/1 detector and with a reconstructed

track.

The track is reconstructed by using a linear fit to the three tracker positions. The track

is considered for the evaluation of the efficiency if the three trackers have a hit, and if

the χ2 of the linear fit is less than 5.

Figure 5.32 shows the efficiency for the GE1/1-V prototype for the six different latency

values.

We can see that the efficiency curve is good for a latency of 21 or 22 as expected from

the Figure 5.31. At the plateau, we achieved an efficiency of ∼ 98%.

Figure 5.33 shows the efficiency curve of the Triple-GEM GE1/1-V prototype for a

latency of 22 and as a function of the current in the divider and the curve found with

the FastSim.

As we already saw in section 4.3.7, the efficiency curve computed by the FastSim reaches

the plateau within ±20 µA with respect to the measured efficiency.

Cluster Size The last parameter that we have studied is the cluster size. The cluster

size is the average number of strips hit per event. This parameter is crucial for the

spatial resolution of a detector as we will see in the next chapter. Figure 5.34 shows the
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Figure 5.32: Efficiency curves for the GE1/1-V prototype as a function of the current
in the divider for six different latency values.
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Figure 5.33: Efficiency curves as a function of the current in the divider for both the
GE1/1-V prototype at a latency value of 22 and the FastSim.
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evolution of the cluster size as a function of the current for both the FastSim and the

GE1/1-V detector.
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Figure 5.34: Evolution of the cluster size as a function of the current in the divider
or both the GE1/1-V prototype and the FastSim.

We can see that the cluster size evolves with the current which is expected. Indeed,

when the gain increases the tails of the Gaussian distribution of the electrons diffusion

will be more populated and therefore the probability to induce a signal higher than the

threshold on the adjacent strips increases.

The overall shape between the experimental points and the simulation points seems to

be similar but the FastSim underestimates the cluster size for currents over 650 µA.

This result is coherent with the discrepancy found in the efficiency curves and suggests

that the effective gain used in the FastSim is underestimated.

5.3 Conclusions

The effective gain of the Triple-GEM detector is known to be very delicate to simulate

even with the state-of-the-art simulation like GARFIELD. To properly reproduce by

simulation Triple-GEM measurements like the detection efficiency, the spatial and time

resolution, etc. it is important to rely on precise and well controlled experimental data.

For this reason, we have performed ourselves a series of measurements with different

Triple-GEM prototypes which allowed us to observe and better understand several pro-

cesses that take place in our detectors.
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The first step was to build two small 10x10 cm2 prototypes together with the installation

of a test-bench at the IIHE lab.

We have measured the gain of the Triple-GEM detector with two different methods that

allowed us to confirm that high gains can be achieved for a reasonable voltage. We have

also observed large disparities in terms of effective gain within one prototype (up to 25%

as a function of the position of the X-ray source). This observation is not very surprising

in view of the building process used for those small prototypes. Both methods still give

an effective gain of the same order of magnitude even for the higher gains. We also

have observed the charging-up effect which increases the gain measured in our GEM

detectors.

After those measurements, we have developed a method to extract the effective gain of

a single-GEM foil from the measurements of both a Triple- and a Double-GEM proto-

types. Unfortunately in view of the discrepancy observed in the previous studies, the

effective gain of the single-GEM foil can not be estimated accurately. Nevertheless those

measurements have allowed us to better understand the gain in the Triple-GEM detec-

tors.

In October 2014 we also had the opportunity to join a test beam campaign. We par-

ticipated to the data taking as well as the data analysis. We focused on two important

quantities: the efficiency and the cluster size. The results have shown that the CMS

GEM detectors are able to reach a very high efficiency of ∼ 98%.

Finally we have compared both the efficiency and the cluster size measured during the

test beam with the FastSim. Both comparisons are not perfect, however it is remark-

able that our ‘simple’ FastSim reproduces the efficiency plateau within ±20 µA on the

current divider and that the cluster size is reproduced within ±10%.

We will show in the next section how the FastSim can be a powerfull tool to understand

the behavior of the spatial resolution in Micro-strip detectors.





Chapter 6

Spatial Resolution of Micro-Strip

Detectors with Binary Readout

After studying the time resolution and efficiency of our Triple-GEM detectors, we will

now focus on a third important parameter of a particle detector: the spatial resolution.

As presented in Chapter 4, in the FastSim we reconstruct the position of an incident

particle with two different methods (the center of gravity and binary reconstruction).

We have observed that, in certain cases, the spatial resolution found with the binary

reconstruction was better than the resolution found for the center of gravity method.

This observation, a priori unexpected, has led us to study extensively the spatial reso-

lution for the binary readout.

In large experiments such as CMS, comprising hundreds or thousands of detection ele-

ments, it is sometimes more advantageous to use a binary readout electronics than an

analogue one. Indeed it is not always feasible to integrate an analog-to-digital converter

(ADC) in each channel of the front-end ASIC; the constraints are typically associated

with the total area of the integrated circuit and with the power consumption. With

a binary readout the cost of an increased number of readout channels would then be

balanced by a simpler readout circuitry. In addition the data volume is much smaller

with a binary readout.

For many applications one can use the binary readout architecture. In this architecture

each channel of the front-end electronics is equipped with an amplitude discriminator

which generates 1-bit information in response to each signal above a given threshold.

The information delivered by a strip detector is suppressed to the minimum already in

the front-end circuit. Binary information can be easily stored in the integrated circuit

separately for each channel, which allows one to cope with high rate of particles.

131
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In this chapter, the spatial resolution will be estimated analytically and by Monte Carlo

simulation for a binary readout for three types of detectors: silicon sensor, Micromegas

and GEM-based detectors. The spatial resolution is studied as a function of several

parameters: strip pitch, diffusion coefficients, detector volume, track incident angle,

ionization statistics, etc. Our approach is rather generic which means that in the future

these results could be used to optimize the geometry of new detectors.

The analytic model has been developed from the definition of the spatial resolution for

a binary readout. From this definition, the formula is split into two terms: one term

represents the geometrical effects and the second represents the diffusion effects. The

geometrical effects result from wide strip pitches compared to a charge distribution that

depends on the diffusion, the incident angle, and the threshold. The diffusion effect is

almost independent of pitches and incident angles; it can be reduced by arranging a

small diffusion coefficient or by increasing the number of ionization electrons.

The analytic calculation of the spatial resolution for a binary readout will be presented

in details. The relative importance of both terms will be discussed for the 3 types of

detectors. The results will also be compared with the simulations, for both a binary and

analogue readout.

6.1 Detector Model

In this section, a simple model of detector will be presented to describe different types

of detector technologies; semiconductor detectors, Micromegas, and GEM. The model

can represent each technology by fixing some parameters.

The detector model consists of the drift region and the induction region, which are

separated by an amplification step (Figure 6.1). The drift region is the sensitive part of

the detector and the induction region is the volume where the signal is induced to the

electronics. The drift region and the induction region have a parameterized size. The

other end of the induction region is equipped with the electrode strips with the pitch p.

The strips are to be connected to the readout electronics.

Those detectors are used to reconstruct the position of a ‘charged particle track’. The

position of a track is defined as the midpoint of the track segment in the drift region,

and is referred to x̃ in this study. Note that x̃ can be always defined from the center of

the nearest strip to the track position and thus −p/2 ≤ x̃ ≤ +p/2.

The parameters used to compute the spatial resolution in this study are the number of

primary electrons and the gap of drift region L, the gap of the induction region, the track

incident angle φ from the vertical axis (z) to the strip plane, the transverse diffusion

coefficient Cd := σd/
√
z with σd being the diffusion width of an electron cloud which
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has drifted over a length z, namely Cdr
d for the drift region and C in

d for the induction

region, and an electronics threshold.

Drift Region

Induction Region

O

track

Figure 6.1: Detector Model.

6.1.1 Gaseous detectors

The two gaseous detectors considered for this study are the Micromegas [70] and the

GEM detectors. Both technologies are classes of MPGD and were presented in section

3.7.

The model presented here describes a basic Single-GEM detector. In the Micromegas

case, the difference is that the space between the grid and the anode plane defines the

volume of amplification which coincides with the induction region.

6.1.2 Semiconductor detectors

The most important difference compared to the Micromegas and the GEM is that the

detector uses a semiconductor material for its sensitive volumes instead of gas mixtures.

Since the semiconductor has a factor 10 smaller ionization potential than gas, modern

low-noise electronics can read out signals without amplification contrary to the gas-based

detectors.

There is neither amplification nor induction region. The induction region coincides with

the sensitive region also called the drift region (see our detector model above). Figure

6.2 shows a schematic drawing of a semiconductor detector.

6.2 Simulation

A simulation of the detector has been developed following the model described before.

A simple geometry is fixed (the gap sizes, the pitch and diffusion coefficients, etc.), then

a track is created. Electrons are created along the track in the drift region. Those
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Drift Region O

track

Figure 6.2: Schematic drawing of semiconductor detectors.

electrons drift and diffuse until the amplification region. Each electron arriving at the

amplification region is multiplied by the gain g. After amplification, all electrons drift

and diffuse until the strip plane.

This simulation is based on the FastSim described in chapter 4. Since the goal of

this simulation is to obtain the reconstruction of a ‘charged particle track’, a lot of

simplifications have been made in the different algorithms.

All the modifications made on the FastSim will now be described in details.

6.2.1 Charged particle track

It is well known that the detector medium affects the total number of ionized electrons,

for instance, ∼100/cm for MIP in Ar gas, ∼1,000,000/cm for MIP in a silicon sensor.

To take this fact into account in the simulation, the parameters for the gas-based and

the semiconductor detectors are not the same.

For the gas-based detectors the number of clusters is taken randomly on a Poisson

distribution with a fix mean value equal to 12, which is obtained from Magboltz [46] for

a 3 mm argon based gas mixture. Then the number of electrons per cluster is taken

randomly on the argon ionization cluster size distribution.

For the semiconductor case, the number of electrons per cluster is arbitrarily fixed to

one, but the number of clusters is fixed to 20000, which is a typical value for 300 µm Si

sensor.

6.2.2 Electrons motion and gain

The motion of each electron is defined by the following method. The distance L between

the position of the electron and the position of the end of the drift region along the z

axis is computed. Then the diffusion is computed with :

σd = Cd.
√
L,
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where Cd is the transverse diffusion coefficient. The new X position of the electron is

randomly chosen on a Gaussian with a mean of x̃ and a sigma of σd.

Then, in the gas based detector, to simulate the gain g− 1 electrons are created at that

new position (Xampl).

Each of those electrons is then moved to the readout plane and itsX position is computed

with the same diffusion formula (with L equal to the induction gap size).

6.2.3 Induction and threshold

To simulate the strips a histogram is created in the same way as the FastSim. The

bin size is equal to the strip pitch, in this way, each bin represents a strip. For each

electron, the bin corresponding to the final X position of this electron is filled. Then

the electronics threshold is applied.

The computation of the induced current is not done in this simulation.

6.2.4 Reconstructed position

With the analog output, we reconstruct the X position with the center of gravity (CoG)

method, and with the binary output, we use an average position of the hit strips. Both

methods are described in section 4.3.6.

To obtain the spatial resolution we use the residual distribution. The residual is the

distribution of the difference between the reconstructed position and the real position

(in our case, the simulated position of the particle track). The mean of the residual

distribution is, by definition, the bias of the reconstruction method and the RMS of the

distribution is used as the spatial resolution of the method.

6.2.5 Spatial resolution

As a matter of fact, the reconstructed position from measured data is somehow displaced

from the original track position because of stochastic processes in detectors and the finite

strip pitch size. Therefore it is essential to take into account the spatial resolution to

reconstruct the track position from measured data.

The spatial resolution σx can be defined with a probability P (xreco;xtrack) that a position

xreco is reconstructed for the track position xtrack:

σ2
x(xtrack) =

∫
dxreco P (xreco;xtrack) (xreco − xtrack)2. (6.1)
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Experimentally, the RMS of the residual (xreco − xtrack) is often used to estimate σx.

One can note that this definition is completely generic. It means that the time resolution

or the energy resolution can be defined with the same expression by interpreting the

meaning of xreco and xtrack as time or energy instead of position.

6.2.6 Effect of the Transverse Diffusion on the Spatial Resolution

Figure 6.3 shows an example of our simulation results in which spatial resolutions are

plotted as a function of σd assuming typical semiconductor configurations and a track

angle of φ = 0. Note that each point represents a spatial resolution for a specific detector

configuration that has a specific σd. The fact is that a σd represents several detector

cases since σd depends on the drift region gap and the bias voltage. The evolution of

the cluster size with respect to the σd is also plotted for the same configuration.

The spatial resolution with the analogue readout (CoG) improves as σd becomes larger,

since the CoG method does not work well when the number of hit strips is less than

three, which is described as the effects of finite size pads in ref.[71]. On the other hand,

the spatial resolution with the binary readout has two characteristics:

1. a wavy structure, which makes roughly twice the difference at maximum,

2. the wavy structure becomes less visible as σd increases.

The understanding of these behaviors may open the possibility to improve the spatial

resolution with the binary readout.
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Figure 6.3: Spatial resolution σx as a function of σd for a typical semiconductor
configuration, assuming the track angle φ = 0◦.

6.3 Analytic examination

In this section the focus will be on more analytic aspects in order to understand the

behavior observed at the previous sections. A previous work [72] has shown that an

analytic expression of the spatial resolution can be written for Time Projection Chambers

(TPC). Here, a similar expression is formulated but considering the binary read-out and

the different incident track angles to the readout plane.

6.3.1 Introduction

Accuracy term and Precision term The spatial resolution is defined at Eq.(6.1).

However, the systematic error due to the finite strip pitch has to be taken into account

and consequently the definition should be written as:

σ2
x :=

1

p

∫ +p/2

−p/2
dxtrack

∫
dxreco P (xreco;xtrack) (xreco − xtrack)2

=
1

p

∫ +p/2

−p/2
dxtrack

〈
(xreco − xtrack)2

〉
, (6.2)
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where we introduced the notation 〈 〉 representing
∫
dxrecoP (xreco;xtrack). Eq.(6.2) is

rewritten to split the formula into two terms as:

σ2
x =

1

p

∫ +p/2

−p/2
dxtrack

[〈
(xreco − 〈xreco〉)2

〉
+ (〈xreco〉 − xtrack)2

]
(
σx
p

)2

=

∫ +1/2

−1/2
d

(
xtrack
p

) [〈(
xreco
p
−
〈
xreco
p

〉)2
〉

+

(〈
xreco
p

〉
− xtrack

p

)2
]
.(6.3)

In the last line, we divided both side of the equation by p2 to be described by dimension-

less parameters: σx/p, xtrack/p, and xreco/p. The first term is the variance of xreco/p and

the second term is the deviation of 〈xreco/p〉 from the true position xtrack/p, and thus

these terms will be referred to as “precision term” and “accuracy term”, respectively.

Each term is separately plotted, together with the simulation results in several condi-

tions in Figure 6.4. The sum of the precision term and the accuracy term matches the

corresponding simulation as expected. The precision term increases according to σd and

thus this term can be taken as a contribution from the diffusion effect. On the other

hand, the accuracy term has a periodic structure, and it is more clearly visible in smaller

σd region, especially for semiconductor detector configuration in which a large number of

ionized electrons are produced. GEM and Micromegas detector configurations give sim-

ilar results except for small σd region because of the additional diffusion in the induction

regions. The accuracy term will be revisited in section 6.3.2.

The track angle does not affect much the precision term, however it does affect the

accuracy term. This behavior can be qualitatively understood as follows:

1. If the track angle is not 0◦, the charge width at the readout plane depends not

only on the diffusion σd but also on the projected length of a tilted track. This

fact is schematically shown in Figure 6.5 with respect to different diffusion cases.

2. In small σd region, the projected length of a tilted track mimics the diffusion effect

as shown at (T.1) in Figure 6.5. This means the behavior is similar to the 0◦ angle

track case, but it must be shifted to left (to smaller σd) by the projected track

length when one looks at the spatial resolution as a function of σd.

3. In large σd region, the charge spread evolves via (T.2) and (T.3) to (T.4) in Fig-

ure 6.5. In this case, the track angle effect is buried under the diffusion effect

and thus the reconstructed position systematically displaced by D tanφ/2 at max-

imum.

Auxiliary parameter ∆W To investigate more concretely, let us introduce a new

parameter representing an effective width of charge spread. In other words, the signal
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Figure 6.4: Comparison between our simulation (green, star) and the sum (black,
solid line) of the precision term (red, dashed line) and the accuracy term (blue, dashed
line) for three different detector models. The precision term and the accuracy term

were numerically computed here.

is assumed to come from the strips within xtrack ±∆W (as shown in Figure 6.6). ∆W

is therefore the distance between the edge of the strip and the position of the incident

particle from which the signal is detected by two strips. Note that this ∆W depends

not only on the diffusion but also on the incident track angle as well as the electronic

threshold. In reality this ∆W varies because of the stochastic processes such as the

diffusion, the ionization, and the gas gain. However constant values for ∆W will be

used as a first approximation, and this will be referred as “simplified model”. Figure

6.7 shows a comparison of the cluster size as a function of the track position between

the simulation and the simplified model.

As can be seen in Figure 6.7, the cluster size depends on the track position in a readout

strip. To describe the boundary where the cluster size changes, let us define µ±n:

µ±n := ±
(
n− 1

2
− ∆W

p

)
:= ±

(
n− 1

2
−∆Wp

)
, (6.4)

where we defined ∆Wp as ∆W/p. µ+n is the value of xtrack/p where the charge spread

touches to the strip of a = n from the lower side, and µ−n is the value of xtrack/p where

the charge spread touches to the strip of a = −n from the upper side. Figure 6.8 shows

example cases of n = 1.
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(R.1) (R.2) (R.3) (R.4)

(T.1) (T.2) (T.3) (T.4)

σd
Figure 6.5: Evolving electron cloud (yellow) from a track (green) as a function of σd
for the right angle tracks in the first row and for the tilted tracks in the second row.
Comparing (R.2) and (T.1), they are similar in terms of signal width and thus (T.1)
must give similar spatial resolution to (R.2), but with smaller σd. This results in a

left-shift in the spatial resolution plots as a function of σd (Figure 6.4).

a=0 a=1 a=2a=-1a=-2

Threshold

Figure 6.6: Graphical interpretation of ∆W . The yellow shape represents a charge
spread and ∆W can be interpreted as an effective width of the charge spread. When
the strips a = 0 and a = 1 collect a certain amount of electrons like in this figure, the
reconstructed position (xreco) is expected to be between a = 0 and a = 1. Note that
the ∆W depends not only on the diffusion but also the threshold, the track angle and
the diffusion in the amplification region e.g. GEM. Note that the threshold is applied

on the integrated charge on the strips.

Note that

xreco
p

=


0 (µmin ≤ xtrack/p ≤ µmax)

1 (µmax < xtrack/p)

−1 (µmin > xtrack/p)

(6.5)
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Figure 6.7: Schematic view to show difference between our simulation and simplified
model in terms of the cluster size. The jump at ± ∼ 0.25 corresponds to µ±1.

Figure 6.8: The charge spread touches the boundary of the strip a = 1 (−1) at
xtrack = µ+1 (µ−1). On the left is a case of µ+1 > µ−1. On the right is a case of

µ−1 > µ+1.

with µmax being max(µ+1, µ−1) and µmin being min(µ+1, µ−1).

6.3.2 One parameter model for the accuracy term

If we consider all the hit strips are in contact with their neighbor hit strips, the recon-

structed position in an event is always discrete:

xreco
p

= 0,±0.5,±1.0,±1.5 · · · (6.6)

This fact motivates us to rewrite the accuracy term in the following general expression:

Accuracy Term =

∫ +1/2

−1/2
d

(
xtrack
p

)(〈
xreco
p

〉
− xtrack

p

)2

≡
∫ +1/2

−1/2
d

(
xtrack
p

)( +∞∑
k=−∞

Rk(xtrack)
k

2
− xtrack

p

)2

, (6.7)
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where Rk(xtrack) (k:integer) is the probability that the position is reconstructed at k/2.

Note that a special condition R0 = 1, Rk 6=0 = 0 gives a well known formula (σx/p)
2 =

1/12.

As a first step, let us develop Eq.(6.7) assuming a specific condition ∆Wp ≤ 1 in which

Eq.(6.5) should be satisfied:

Accuracy Term =

∫ +1/2

−1/2
d

(
xtrack
p

)( +∞∑
k=−∞

Rk(xtrack)
k

2
− xtrack

p

)2

=

∫ +1/2

−1/2
d

(
xtrack
p

)(
R+1(xtrack) ·

(
1

2

)
+R−1(xtrack) ·

(−1

2

)
− xtrack

p

)2

=

∫ +1/2

−1/2
d

(
xtrack
p

)(
f+1

2
− f−1

2
− xtrack

p

)2

, (6.8)

where we defined “turn-on” functions of readout strip of a = ±1 as :

f+1 :=

{
1 ( xtrack

p ≥ µ+1 )

0 ( xtrack
p < µ+1 )

f−1 :=

{
1 ( xtrack

p ≤ µ−1 )

0 ( xtrack
p > µ−1 ).

(6.9)

This model is only valid within ∆Wp ≤ 1 as assumed, but this can be easily generalized

in a similar fashion:

Accuracy Term =

∫ +1/2

−1/2
d

(
xtrack
p

)( +∞∑
k=−∞

Rk(xtrack)
k

2
− xtrack

p

)2

=

∫ +1/2

−1/2
d

(
xtrack
p

)( ∞∑
n=1

(
f+n

2
− f−n

2

)
− xtrack

p

)2

, (6.10)

with

f+n :=

{
1 ( xtrack

p ≥ µ+n )

0 ( xtrack
p < µ+n )

f−n :=

{
1 ( xtrack

p ≤ µ−n )

0 ( xtrack
p > µ−n ).

(6.11)

Since the number of hit strips is likely less than 7 in most practical cases, f+n and f−n

for n > 3 are expected to be 0. In such a case the sum in Eq.(6.10) is necessary only

for n ≤ ∼ 2. A numerical computation of Eq.(6.10) is shown in Fig. 6.9 to see how

the spatial resolution evolves with ∆Wp. This one-parameter model explains the wavy

structure seen in the accuracy term.
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Figure 6.9: The accuracy term described with the one-parameter model (Eq.(6.10)).
This model explains the wavy structure seen in the accuracy term.

Fig. 6.10 shows comparison between the accuracy term from the simulation and the one

from the one-parameter model. The discrepancy getting larger according to σd/p is

caused by the fact that the constant ∆W assumption becomes no longer valid due to

large diffusion with limited ionization statistics.
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Figure 6.10: The one-parameter model compared to the simulation. In this example,
we set ∆W = 3.25σd so that their periodic patterns are matched.

6.3.3 Two parameter model for the accuracy term

The diffusion causes fluctuations in ∆W , however this fact was not taken into account

in the previous section. When ∆W fluctuates, the boundaries µn defined in Eq.(6.4) are

no longer constant in each event. This fact was already observed in Figure 6.7, where

the transition boundary between the cluster size of 1 and that of 2 can be defined as a
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point (e.g. ±0.25) in the model case (Red line) while it can be only defined as a range

(e.g. from ±0.18 to ±0.32) in the realistic simulation (Green line). In order to take this

effect into account, let’s define transition regions with a width of 2δ as highlighted in

yellow in Figure 6.11. The idea is to linearly weight f±n in the transition region. We

Figure 6.11: Transition region around µ±1 with its width of 2δ in the two parameter
model.

therefore constrain δ being proportional to ∆Wp as a first approximation. Eq.(6.11) can

be modified as follows:

f+n =


1 ( xtrack

p > µ+n + δ )

tn ( µ+n − δ ≤ xtrack
p ≤ µ+n + δ)

0 ( xtrack
p < µ+n − δ )

,

f−n =


0 ( xtrack

p > µ−n + δ )

sn ( µ−n − δ ≤ xtrack
p < µ−n + δ )

1 ( xtrack
p < µ−n − δ )

,

tn =
1

2δ

(
xtrack
p
− (µ+n − δ)

)
, (6.12)

sn = 1− 1

2δ

(
xtrack
p
− (µ−n − δ)

)
. (6.13)

Note that δ works as a second parameter to describe the fluctuations in ∆W . The

main difference from the one-parameter model is, that f±n could shift simultaneously

depending on the track position xtrack within the transition region. This can recover

the fluctuation effect on ∆W due to the diffusion in the drift region, which was missing

in the one parameter model. This improvement can also be seen from the viewpoint of

the cluster size (Figure 6.12).
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Figure 6.12: A comparable plot to Figure 6.7, but with including the transition
regions. The blue dotted line corresponds to the new model introduced at section 6.3.3.

A numerical computation of Eq.(6.10) with Eq.(6.12) is shown in Figure 6.13 to see how

the spatial resolution evolves with ∆W/p. This two parameter model can describe the

simulation result well with just two parameters; ∆W and δ.
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Figure 6.13: Two parameter model with fitted parameters of ∆W/σd = 3.23 and
δ/∆W = 0.99 compared to the simulation. To compute χ2, a fixed error of 0.0005 is

assumed to each simulation point.

6.3.4 Sigmoid expression for two parameter model

Although the two-parameter model describes well the simulation result, it is difficult to

generalize the integration over xtrack/p due to the condition analysis (e.g. f+n = 1 when
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xtrack/p ≤ µ+n). To improve this situation we propose another formulation of f±n with

the sigmoid functions:

f+n =
1

1 + exp[−xtrack/p−µ+n

2δ ]
,

f−n =
1

1 + exp[xtrack/p−µ−n

2δ ]
, (6.14)

where µ±n are defined in Eq.(6.4). Noting Eq.(6.10) can be rewritten as:

Accuracy Term =

∫ +1/2

−1/2
d

(
xtrack
p

)(
1

4

∞∑
n=1

(f+n − f−n)2 +
1

2

∑
n<n′

(f+n − f−n) (f+n′ − f−n′)

−
∞∑
n=1

xtrack
p

(f+n − f−n) +

(
xtrack
p

)2
)
. (6.15)

Figure (6.14), (6.15) and (6.16) show fitting results with using the sigmoid expression

model for a silicon detector case, a Micromegas detector case, and a GEM detector case.

For the GEM detector case, an additional parameter ∆Wprf/p is introduced to consider

the diffusion in the induction region, and µ±n in Eq.(6.4) is modified as:

µ±n := ±

|n| − 1

2
−
√(

∆W

p

)2

+

(
∆Wprf

p

)2
 . (6.16)
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Figure 6.14: Two parameter model with sigmoid functions compared to the simulation
for silicon detector configuration. To compute χ2, a fixed error of 0.0005 is assumed to

each simulation point.
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Figure 6.15: Two parameter model with sigmoid functions compared to the simula-
tion for Micromegas detector configuration. To compute χ2, a fixed error of 0.0005 is

assumed to each simulation point.
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Figure 6.16: Two parameter model with sigmoid functions compared to the simulation
for GEM detector configuration. To compute χ2, a fixed error of 0.0005 is assumed to

each simulation point.

6.4 Cluster size

The cluster size is defined as the average number of hit strips and is a measurable

variable. Using f±n defined in the previous sections, the cluster size can be written
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down as:

Cluster Size = 1 +

∫ +1/2

−1/2
d

(
xtrack
p

){ ∞∑
n=1

(f+n + f−n)

}
. (6.17)

If adopting the sigmoid definition of Eq.(6.14), it can be rewritten as follows:

Cluster Size = 1 +

∞∑
n=1

{
2 + 2δ

[
ln

(
exp

[
−xtrack/p− µ+n

2δ

]
+ 1

)

− ln

(
exp

[
xtrack/p− µ−n

2δ

]
+ 1

)]+1/2

−1/2

}
.

(6.18)

An example plot is shown in Figure 6.17 together with the simulation result. The

result shows that the two parameters can describe not only the spatial resolution but

also the cluster size. This implies that, if the spatial resolution is dominated by the

accuracy term, and once one measures the spatial resolution and the cluster size from

an experiment, one can solve the Eq. of (6.15) and (6.18) and obtain the two model

parameters: ∆W/σd and δ/∆W . These two parameters will give a guiding principle

how to optimize the spatial resolution for instance by changing electronics threshold,

the electric field, gas mixture or readout pitch.
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Figure 6.17: Cluster size compared with Two parameter model with sigmoid functions
and the simulation for silicon detector configuration. The parameters for the model are

same as the ones obtained by fitting the spatial resolution.
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6.5 Conclusion

Studying the residuals between the reconstructed hit and the simulated hit with the

FastSim software, we unexpectedly observed that in some cases the binary readout could

lead to a better spatial resolution than the analogue readout when we use the center of

gravity of the charge distribution.

This observation triggered a systematic study of the behavior of the spatial resolution

with both readout types as a function of various parameters like the strip pitch, the

diffusion coefficient, the primary ionization, etc.

The FastSim code, first developed for the CMS Triple-GEM simulation, has been ex-

tended to study various detector types including silicon detectors. A breakthrough of

this work is also the development of the analytic formula describing the behavior of the

spatial resolution, nicely confirmed by the simulations. The analytic formula is broken

down into two terms the accuracy term and the precision term that can numerically be

computed. The sum of them fits the corresponding simulation results.

We have also introduced a variable representing the effective width of the charge spread,

∆W , to explain the wavy structure of the accuracy term. Later we have improved our

model by adding a second parameter named δ so that the fluctuations of ∆W due to

the diffusion in the drift gap can be taken into account. The two parameter model is

applicable for silicon detectors and Micromegas detectors. To model the GEM detectors

a third parameter, ∆Wprf/p, taking into account the diffusion in the induction gap is

added.

Once the two parameters for a silicon detector or a Micromegas detector are found by

measuring the spatial resolution and the cluster size, the formula can be a guiding prin-

ciple to improve the spatial resolution by optimizing such as the detector gap size, the

strip pitch size, the electric field in the drift region, or the comparator threshold. For

GEM detectors, an external measurement is necessary to determine the diffusion effect

in the induction region.

This very promising analysis is now published in Nucl. Instr. and Meth. A [73].

In the future we would like to extend the study for tracks non-perpendicular to the

strips. We also intend to find more experimental data in the literature against which

our models can be confronted.





Chapter 7

Summary

This work is a contribution to the study of Triple-GEM detectors for the upgrade of the

CMS muon spectrometer. This upgrade consists of the addition of a new layer of GEM

detectors in the high-η region of CMS. It is within this framework that we have studied

the three key parameters of the CMS Triple-GEM detectors: their time resolution,

spatial resolution and efficiency. We had the opportunity to study those parameters

both through different simulations and also by conducting several measurements on

various prototypes.

For this upgrade a new front-end electronics, the VFAT3, is under design. We have

therefore investigated by simulation the time resolution one can expect with a CMS

Triple-GEM detector read-out with a VFAT3. The study has been performed using the

GARFIELD simulation, the FastSim and the Hybrid simulation.

We have shown that the best method, in terms of combined time resolution and latency,

is the CFD method which yields a time resolution of 4.98 ± 0.16 ns for a peaking time

of 50 ns with a latency of 100± 5 ns.

The various effects that contribute to the time resolution of the Triple-GEM detector

have been studied in detail. It has been shown that the main contribution is due to the

primary ionization clusters statistics, accounting for ∼ 3 ns for Ar/CO2/CF4 (45:15:40)

gas mixture and ∼ 4.5 ns for Ar/CO2 (70:30) gas mixture.

The results of the FastSim for the Ar/CO2/CF4 (45:15:40) gas mixture are comparable

with the results obtained with GARFIELD despite the simplification of the simulation.

The main advantage of the FastSim compared to GARFIELD is the simulation time.

GARFIELD simulations can take several hours against a few second for the FastSim

to simulate one muon signal. Afterwards we have used the CFD method on signals

produced with the FastSim for the Ar/CO2 (70:30) gas mixture and we have shown

that the time resolution is better than 7 ns which confirms that the CMS Triple-GEM

151
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detector fulfill the upgrade requirement in terms of time resolution, with CF4-free gas

mixture.

With the Hybrid simulation, the induced anode current has been computed on multiple

strips. The time resolution found for the strips hit is fully compatible with the results

of the FastSim where only one strip was simulated.

So far all our simulations were based on GEM foil gains computed by GARFIELD

simulations. To avoid this, we have performed a systematic measurement of the gain

with several prototypes. Those measurements have allowed us to confirm that high gains

can be achieved for a reasonable voltage even if large disparities in effective gain have

been observed. We have also developed a method to extract the effective gain of a single-

GEM foil from the measurements of both a Triple- and a Double-GEM prototypes. This

method is promising, provided a better uniformity during the assembly.

In October 2014 we had the opportunity to join a test beam campaign. We participated

to the data taking at CERN as well as the data analysis. The results of the data analysis

have shown that the GE1/1 prototype can reach a get a very good detection efficiency

of ∼ 98%.

Finally, after the different studies concerning the time resolution and efficiency of the

Triple-GEM detectors, we focussed on the third important parameter of a particle de-

tector: the spatial resolution. We have shown that in some cases the spatial resolution

with the binary readout is better than the one with the analogue readout. This study

has been done both by Monte Carlo simulation and analytically for a binary readout for

three types of detectors: silicon sensor, Micromegas and GEM-based detectors.

The spatial resolution has been studied as a function of a series of parameters and we

have shown that in the future these parameters could be used to optimize the geometry

of new detectors.

A two parameter model of the spatial resolution with the binary readout has been studied

and it has been shown that this model is applicable for silicon detectors and Micromegas

detectors, and can be used for GEM detectors with the addition of one parameter.

Once the parameters for a silicon detector or a Micromegas detector (and for GEM

detectors with an external measurement of the diffusion effect in the induction region)

are found by measuring the spatial resolution and the cluster size, the formula can be a

guiding principle to improve the spatial resolution by optimizing geometrical parameters

of the detector. This is definitely an area where we will continue our investigations by

comparing our models to existing experimental data.

To conclude, during this work we had the opportunity to study many aspects of the CMS

Triple-GEM detectors. Our work confirms, by measurements and simulations, that this

technology meets the CMS GE1/1 specification and is well suited for this upgrade. We
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have also developed a fast simulation framework which, despite is level of simplification,

permits to understand the behavior of the Triple-GEM detector as well as the spatial

resolution of other micro-strip detectors including silicon sensors.
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Appendix A

Time Resolution Tables

Time resolution for VFAT n2 design found with GARFIELD

Peaking time (ns) 20 50 100 250 500

TOT (ns) 5.52± 0.22 5.17± 0.2 4.63± 0.18 4.52± 0.14 4.56± 0.24

CFD (ns) 6.88± 0.25 4.95± 0.16 4.59± 0.16 4.50± 0.15 4.58± 0.16

Time resolution for VFAT n3 design found with GARFIELD

Peaking time (ns) 25 50 75 100 200

TOT (ns) 5.19± 0.17 4.91± 0.15 4.81± 0.16 4.60± 0.14 4.65± 0.15

CFD (ns) 6.07± 0.18 4.98± 0.16 4.82± 0.16 4.76± 0.16 4.64± 0.16

Latency for VFAT n2 design found with GARFIELD

Peaking time (ns) 20 50 100 250 500

TOT (ns) 144± 12 272± 24 490± 46 1146± 112 2238± 222

CFD (ns) 72± 6 100± 5 149± 5 299± 5 548± 5

Latency for VFAT n3 design found with GARFIELD

Peaking time (ns) 25 50 75 100 200

TOT (ns) 153± 11 248± 20 343± 28 440± 37 825± 70

CFD (ns) 79± 6 105± 5 132± 5 159± 5 269± 5
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Time resolution for VFAT n3 design found with the FastSim without transparency

Peaking time (ns) 25 50 75 100 200

‘GARFIELD’ parameter 5.66± 0.20 4.58± 0.15 4.24± 0.13 4.20± 0.13 4.39± 0.18

‘standard’ parameters 4.94± 0.17 4.21± 0.14 4.01± 0.11 3.80± 0.13 3.94± 0.14

Time resolution for VFAT n3 design found with the FastSim with transparency

Peaking time (ns) 25 50 75 100 200

‘GARFIELD’ parameter 5.43± 0.17 4.89± 0.18 4.51± 0.14 4.43± 0.16 4.44± 0.16

‘standard’ parameters 5.18± 0.28 4.18± 0.21 3.89± 0.21 3.83± 0.20 4.29± 0.24



Appendix B

Parameters of the CMS

Triple-GEM
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Figure B.1: Evolution of the electric fields in the different gap of the CMS Triple-GEM
as a function of the current in the divider.
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Figure B.2: Evolution of the electric tension applied to the different GEM foils of the
CMS Triple-GEM as a function of the current in the divider.



Appendix C

Configurations of the

Double-GEM

Tension applied to the Double-GEM equivalent to GEM1

Current (µA) HVG1bottom (V) HVG1top (V) HVG2bottom (V) HVG2top (V) HV drift(V )

600 375 690 1215 1545 2332.5

620 387.5 713 1255.5 1596.5 2410.25

640 400 736 1296 1648 2488

660 412.5 759 1336.5 1699.5 2565.75

680 425 782 1377 1751 2643.5

700 437.5 805 1417.5 1802.5 2721.25

720 450 828 1458 1854 2799

740 462.5 851 1498.5 1905.5 2876.75

760 475 874 1539 1957 2954.5

780 487.5 897 1579.5 2008.5 3032.25

800 500 920 1620 2060 3110

820 512.5 943 1660.5 2111.5 3187.75

840 525 966 1701 2163 3265.5
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Tension applied to the Double-GEM equivalent to GEM2

Current (µA) HVG1bottom (V) HVG1top (V) HVG2bottom (V) HVG2top (V) HV drift(V )

600 375 690 1215 1552.5 2227.5

620 387.5 713 1255.5 1604.25 2301.75

640 400 736 1296 1656 2376

660 412.5 759 1336.5 1707.75 2450.25

680 425 782 1377 1759.5 2524.5

700 437.5 805 1417.5 1811.25 2598.75

720 450 828 1458 1863 2673

740 462.5 851 1498.5 1914.75 2747.25

760 475 874 1539 1966.5 2821.5

780 487.5 897 1579.5 2018.25 2895.75

800 500 920 1620 2070 2970

820 512.5 943 1660.5 2121.75 3044.25

840 525 966 1701 2173.5 3118.5
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Tension applied to the Double-GEM equivalent to GEM3

Current (µA) HVG1bottom (V) HVG1top (V) HVG2bottom (V) HVG2top (V) HV drift(V )

600 262.5 592.5 1117.5 1455 2130

620 271.25 612.25 1154.75 1503.5 2201

640 280 632 1192 1552 2272

660 288.75 651.75 1229.25 1600.5 2343

680 297.5 671.5 1266.5 1649 2414

700 306.25 691.25 1303.75 1697.5 2485

720 315 711 1341 1746 2556

740 323.75 730.75 1378.25 1794.5 2627

760 332.5 750.5 1415.5 1843 2698

780 341.25 770.25 1452.75 1891.5 2769

800 350 790 1490 1940 2840

820 358.75 809.75 1527.25 1988.5 2911

840 367.5 829.5 1564.5 2037 2982





Bibliography

[1] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons.

Phys. Rev. Lett., 13:321–323, Aug 1964.

[2] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev.

Lett., 13:508–509, Oct 1964.

[3] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global conservation laws and

massless particles. Phys. Rev. Lett., 13:585–587, Nov 1964.

[4] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the

CMS experiment at the LHC. Phys.Lett., B716:30–61, 2012.

[5] ATLAS Collaboration. Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett., B716:1–29,

2012.

[6] CERN Service graphique. Overall view of the LHC. Vue d’ensemble du LHC. Jun

2014. General Photo.

[7] Jean-Luc Caron. Accelerator complex of CERN: an overview of all accelerators of

CERN. Vue d’ensemble de tous les accélérateurs du CERN. Jul 2001.
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