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Abstract

Théo Guide

Master of Science in Physics Engineering

Université Libre de Bruxelles - École Polytechnique de Bruxelles

2022-2023

Study of the JUNO experiment sensitivity to the determination of the
neutrino mass ordering when observing neutrino signals from core-collapse

supernovae

Ever since neutrinos have been confirmed to be massive particles, a lot of physics exeperi-
ments have been aimed towards the determination of the neutrino mass ordering (NMO).
In this context, this work investigates how sensitive the JUNO experiment is to the de-
termination of the NMO when observing neutrino signals from a core-collapse supernova
(CCSN). This work uses the CCSN numerical model developed by the Garching group,
based on the Lattimer- Swesty and Shen equations of state, to generate time spectra of
the number of events recorded in JUNO called lightcurves. A Poisson likelihood ratio
test is constructed to introduce two statistical methods, the Asimov and toy Monte Carlo
pseudo-experiment methods, which take into account the uncertainty about the bounce
time of the CCSN through a specific χ2 test and are used on the lightcurves to determine
how sensitive JUNO is to the determination of the NMO based on CCSN observations.
The impact of the CCSN distance, mass, model, the interaction channels and the time
window on both the lightcurves and the statistical tests are assessed as well. Based on
the benchmark scenario of a 27 M⊙ CCSN at 10 kpc described by the Shen EoS, the
Asimov method reports an NMO determination sensitivity of 2.95 σ in the inverse mass
ordering case and 2.75σ in the normal mass ordering case. The toy Monte Carlo method
reports mixed results based on how it is defined, when the uncertainty about the bounce
time fluctuates for each pseudo-experiment the results are inconclusive but when it is
determined beforehand and fixed for all pseudo-experiments, it shows results comparable
to those of the Asimov method.

Keywords: neutrino mass ordering, core-collapse supernovae, JUNO, Poisson-χ2 like-
lihood, Asimov method, toy Monte Carlo experiments.
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Introduction

Neutrinos are mysterious particles. Since their discovery, they have for a long period of
time been thought to have no mass. It took the observation of a discrepancy between
the expected and measured solar neutrino flux at various experiments in the 1970’s to
explore the possibility of the neutrino oscillation phenomenon [1], initially proposed by
Bruno Pontecorvo in the late 1950’s [2], which necessarily implies massive neutrinos. The
eventual observation of neutrino oscillations by Takaaki Kajita & Arthur B. McDonald
won them the Nobel Prize in 2015 [3].

As previous experiments were designed to measure the mass difference between the
neutrinos of different flavors, rather than the absolute mass, a lot of physics experiments
have been proposed to determine the neutrino mass ordering. In this context the JUNO
experiment emerged.

The Jiangmen underground neutrino observatory (JUNO) is a medium baseline liquid
scintillator neutrino detector in China, buried 700 m underground and at equal distance
(∼ 52km) of two nuclear powerplants, which aims to determine the neutrino mass ordering
over 6 years of data taking by observing the reactor ν̄e energy spectrum with an excellent
energy resolution [4]. However, JUNO is not sensitive to only nuclear reactor ν̄e, it is
also sensitive to other neutrino sources to be able to measure other parameters than the
neutrino mass ordering. The neutrino sources JUNO is sensitive to include core-collapse
supernovae (CCSN), which from a neutrino observation point of view are very interesting
phenomena as they emit 99% of their energy in the form of neutrinos in all flavors.

As predicted by state of the art numerical models, the time spectra of CCSN neutri-
nos contain information about the neutrino mass ordering. It should thus be possible by
using the right statistical fitting tests to draw conclusions on the neutrino mass ordering
when observing a single CCSN, as opposed to the 6 years of data taking for the reactor ν̄e.

This work chooses to investigate this exact hypothesis. By computing the expected
time spectra of the CCSN and constructing the appropriate statistical tests the global
objective is to compute the expected sensitivity of JUNO to the NMO determination.

The master thesis begins by putting the neutrinos in the context of the standard
model and listing the current knowledge on neutrino parameters in Chapter 1. Next,
the CCSN phenomenon is analysed from a neutrino-emission point of view in Chapter 2
and afterwards the JUNO experiment and its measurement mechanisms are presented in
Chapter 3.

The CCSN time spectra as measured in JUNO are then defined and computed in
Chapter 4, then the statistical tests of interest for the NMO discrimination are constructed
in Chapter 5 and finally the expected sensitivity of the JUNO experiment is computed
based on the expected time spectra and statistical tests in Chapter 6.
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Chapter 1

The Standard Model & neutrinos

This chapter begins with a brief description of the Standard Model followed after-
wards by a more extensive description of the role neutrinos play in it. It then
proposes a complete theoretical discussion of the neutrino oscillation phenomenon
and finally the chapter concludes by summarizing the current state of knowledge on
neutrino parameters and ongoing experiments aiming to resolve open questions.

1.1 The Standard Model of particle physics

The Standard Model (SM) is the theory currently accepted to be the most fundamental
description of the Universe, containing the description of elementary particles on one
hand and of three of the four fundamental interactions on the other. Simply put, the SM
offers a unifying formalism for particles and interactions, describing interactions as matter
particles (fermions) exchanging virtual particles (bosons), which are the quantization of
the underlying interaction-specific quantum field. The considered interactions in the SM
are the strong interaction, the weak interaction and the electromagnetic interaction; the
gravitational interaction has yet to be described by the SM on a subatomic level.

The current classification, and by extent our total knowledge, of the elementary par-
ticles constituting the SM is represented in Fig. 1.1.

On one hand, the SM describes the fundamental components of matter via the spin-1
2

particles called fermions, which are divided into two categories : leptons and quarks. The
leptons as described by the SM are either charged and massive or neutral and massless,
the latter are called neutrinos. There are 6 types, called flavors, of quarks, with all
varying masses and an electric charge of either 2

3
or −1

3
.

The fermions as a whole are divided into three families, each represented by one flavor.
The first family consists of the up (u) and down (d) quarks, the electron (e−) and the
electron neutrino (νe), the second family of the charm (c) and strange (s) quarks, the
muon (µ) and the muon neutrino (νµ) and finally the third family regroups the top (t)
and bottom (b) quarks, the tau (τ) and the tau neutrino (ντ ).

Twelve fermions, and its corresponding antiparticles with same mass, spin and oppo-
site charges, are thus predicted by the SM to constitute matter. Stable matter, however,
is made up solely of the fermions of the first family, the electron neutrino excluded.
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The up and down quark bind together through the strong interaction to make up neu-
trons (udd) and protons (uud) and together with the electron make up all possible atoms.

On the other hand, the SM describes the three fundamental interactions through
particles called Gauge bosons. As such, when fermions interact with each other they do
so by virtually exchanging one of the four gauge bosons associated to a quantum field, in
turn associated to the corresponding force at stake. Thus, a Gauge boson is mediating
each of the three interactions described by the SM: the electromagnetic interaction is
mediated by the neutral and massless photons γ, the strong interaction by the neutral
and massless gluons (g), and the weak interaction by the massive Z and W± bosons,
respectively neutral and charged. Bosons are fundamentally different from fermions as
they notably have integer spins.

Lastly, the SM contains a 5th force carrier : the Higgs boson. Theorized in the 1960’s,
presumably detected in 2012 and confirmed to have been detected in 2013 [5], the Higgs
boson is a scalar boson with neutral charge and spin 0. Elementary particles get their
mass from their permanent interaction with the Higgs field, which is mediated by the
so-called Higgs boson.

This master thesis focuses on neutrinos and the assessment of their unknown parame-
ters. As explained above, the SM predicts massless neutrinos. However, it is now known
through the observation of the neutrino oscillation phenomenon that neutrinos have a
non-zero mass. The SM is consequently not complete and a physical model beyond the
SM, or a correction of the latter, needs to be formalized in order to theoretically explain
the massive neutrinos in the SM formalism.

Figure 1.1: The Standard Model of elementary particles with explicit antimatter [6]
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1.2 Neutrino physics

1.2.1 The weak interaction

Neutrinos are unique particles as they are sensitive to only the weakest of the three
interactions described by the SM : the weak interaction. The weak interaction is mediated
through the Z and W± bosons and can be divided into two types of interactions: neutral
current (NC), when a Z is exchanged and no charges, and charged current (CC) if a W±

is the mediator.
Neutral current reactions, in the context of neutrinos, can be thought of as elastic

scattering reactions mediated by the exchange between both fermions of the Z boson,
which is neutral as expected by the reaction not involving some charge modification. For
example the ν − p and ν − e− elastic scattering reactions

ν + p
Z−→ ν + p (1.1) ν + e−

Z−→ ν + e− (1.2)

Charged current interactions on the other hand are reactions involving nuclear decays.
These reactions are mediated by a charged boson, either W+ or W−. For example the
beta decay reaction: it changes one of the neutron’s down quark into an up quark,
transforming said neutron into a proton. This process is accompanied by the emission
of a virtual W− boson which decays into an electron and an electronic anti-neutrino,
respecting thereby the different conservation laws

d → u+W− → u+ e− + ν̄e (1.3)
= n → p+ e− + ν̄e (1.4)

1.2.2 Neutrino oscillations phenomenon

In 1970 the Homestake experiment took place, aiming to study the thermonuclear mech-
anism of the sun’s core, namely the p− p cycle (Eq. 1.5)

4p → α + 2e+ + 2νe (1.5)

through the measurement of its associated neutrino flux on earth. The results of
this experience showed a measured neutrino flux of about 1

3
lower than the expected νe

neutrino flux [1]. This discrepancy was the start of the solar neutrino problem which led
to the discovery of neutrino oscillations.

Besides other experiments confirming the discrepancy of neutrino flux with respect
to what the solar SM predicts [7], the solar neutrino problem took new experiments
and about a couple of decades to be solved through the confirmation of the neutrino
oscillation idea, loosely proposed by Bruno Pontecorvo in the late 1950’s [2]. The Super-
Kamiokande project in 1998 [8] and the Sudbury Neutrino Observatory in 2002 [9] set the
definitive answer to the problem by specifically observing neutrino oscillations in accor-
dance with the new and improved theoretical derivation. Leaders of both projects jointly
received the Nobel Prize in Physics in 2015 for the observation of neutrino oscillations [3].

More formally, the phenomenon of neutrino oscillations can be explained through the
generic quantum superposition formalism. Neutrinos are created and interact through
the weak interaction in flavor (e, µ, τ) eigenstates, which are in fact a superposition of
three states of definite mass (ν1, ν2, ν3). As a neutrino propagates through space, the
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quantum phases of these three different mass states evolve at different speeds and this
causes the neutrino’s global mass state superposition to change over time. Since different
combinations of mass states correspond to different combinations of flavor states, the
changing mass states as the neutrino propagates also cause the global flavor state to
change.

It is thus possible to express the neutrino flavor-eigenstates as a function of the neu-
trino mass-eigenstates and vice versa by means of a basis change. This change of basis,
from the flavor to the mass eigenstates, can be seen as a rotation in three dimensions,
characterized by 3 angles called the mixing angles. In the literature this rotation is
conventionally represented the 3 × 3 unitary lepton mixing matrix called the PMNS
(Pontecorvo-Maki-Nakagawa-Sakata) matrix

U =

1 0 0
0 c23 s23
0 −s23 c23

×

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

×

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13

 (1.6)

with the notation sij = sin(θij), cij = cos(θij). This unitary matrix is the product
of three individual rotation matrices and has four parameters, the three mixing angles
(θ12, θ23, θ13) and the Dirac phase δCP linked to the possibility of neutrino oscillations
violating CP symmetry, which has yet to be confirmed, and in case neutrinos are proven
to be Majorana particles, this phase has to be redefined with two Majorana phases [10].

The PMNS matrix thus gives the probability of measuring a mass state i given a
neutrino of flavor f by taking the square of corresponding matrix element |Ufi|2. This is
consistent with the fact that summing the squared matrix elements on one row gives a
unit probability, as performing a measure on an arbitrary flavored neutrino necessarily
always yields one mass state

∑3
i=1 |Ufi|2 = 1.

1.3 Neutrino oscillations
Neutrinos interact in their flavor eigenstates |νf⟩ while they propagate in their mass
eigenstates |νi⟩. The flavor states are a superposition of mass states |νi⟩ defined by the
matrix elements Ufi of the PNMS matrix

|νe⟩ = Ue1 |ν1⟩+ Ue2 |ν2⟩+ Ue3 |ν3⟩
|νµ⟩ = Uµ1 |ν1⟩+ Uµ2 |ν2⟩+ Uµ3 |ν3⟩
|ντ ⟩ = Uτ1 |ν1⟩+ Uτ2 |ν2⟩+ Uτ3 |ν3⟩

(1.7)

Before deriving the neutrino oscillation behaviour of the more complex three-flavor situ-
ation, it is common in the literature to first introduce the two-flavor scenario first. The
two-flavor situation gives the necessary physical intuition to understand the phenomenon
while keeping the calculations short, before deriving the three-flavor situation.

The approach and general development leading to the neutrino oscillation expressions
in this section are taken from Pr. Barbara Clerbaux’s graduate course on particle physics
at the Université Libre de Bruxelles [11].
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1.3.1 Two-flavor neutrino oscillations

In the two-flavor situation, a generic flavor eigenstate can be written as

|νf⟩ =
2∑

i=1

Ufi |νi⟩ (1.8)

where here the electronic and muonic flavors are considered (f = e, µ) and Ufi represents
the basis change. This superposition can be understood as basis change, a 2D rotation
in the flavor-mass space, defined by a rotation matrix

U =

(
cos θ sin θ
sin θ cos θ

)
(1.9)

containing here only one mixing angle θ. More explicitely, Eq. 1.8 now becomes

|νe⟩ = cos θ |ν1⟩+ sin θ |ν2⟩
|νµ⟩ = − sin θ |ν1⟩+ cos θ |ν2⟩

(1.10)

These mass states are each solution of the non-relativistic Schrödinger equation

Ĥ |νi⟩ = Ei |νi⟩ = iℏ
d

dt
|νi⟩ (1.11)

where Ei is the energy of mass eigenstate |νi⟩ or the eigenvalue of |νi⟩ from the Hamilto-
nian which can be written

Ĥ =

(
E1 0
0 E2

)
(1.12)

Considering the neutrino of flavor f is produced at t = 0 and subsequently propagates in
vacuum, the solutions of the Schrödinger equation (1.11) are the following propagating
mass states

|νi(t)⟩ = e
−iEit

ℏ |νi(0)⟩ , i = 1, 2 (1.13)

To highlight neutrino oscillation, at t = 0 only one of the two neutrino flavor eigenstates
can be observed

|νe(0)⟩ = |1⟩ ; |νµ(0)⟩ = |0⟩ (1.14)

By inverting Eq. 1.10 one obtains the following mass eigenstates at t = 0

|ν1(0)⟩ = cos θ |1⟩ ; |ν2(0)⟩ = sin θ |1⟩ (1.15)

This gives the opportunity to write the time evolution for t > 0 of |νµ(t)⟩ from Eq. 1.10
using Eq. 1.14 and Eq. 1.15:

|νµ(t)⟩ = − sin θ |ν1(t)⟩+ cos θ |ν2(t)⟩ (1.16)

= − sin θe
−iE1t

ℏ |ν1(0)⟩+ cos θe
−iE2t

ℏ |ν2(0)⟩ (1.17)

= − sin θe
−iE1t

ℏ cos θ |1⟩+ cos θe
−iE2t

ℏ sin θ |1⟩ (1.18)

=
1

2
sin(2θ)

(
e

−iE2t
ℏ − e

−iE1t
ℏ

)
|1⟩ (1.19)

where the property sin(2a) = 2 sin a cos a has been used to go from line (1.18) to (1.19).
This time evolution allows to compute the oscillation probability, meaning the probability
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to measure a neutrino of flavor νµ after a neutrino initially created as νe propagates over
a time t. The oscillation probability is computed through the Born rule with appropriate
initial conditions Eq. 1.14 and by taking advantage of sin2 a = 1−cos(2a)

2
:

Pνe→νµ = | ⟨νe(0)|νµ(t)⟩ |2 =
1

4
sin2(2θ)

∣∣∣(e−iE2t
ℏ − e

−iE1t
ℏ

)∣∣∣2 (1.20)

=
1

4
sin2(2θ)

(
2− 2 cos

(
E2 − E1

ℏ
t

))
(1.21)

= sin2(2θ) sin2

(
E2 − E1

2ℏ
t

)
(1.22)

To simplify this expression, an approximation is introduced that seemingly contradicts the
non-relativistic Schrödinger equation used previously, but still holds up for high-energy
neutrinos [12]. The simplification consists of considering said high energy neutrinos, for
which v ∼ c, p1 ∼ p2 = p and p ≫ mi. This allows to write a new expression for the
mass state energies Ei

E2
i = (pc)2 + (mic

2)2 = c2
[
p2
(
1 +

m2
i c

2

p2

)]
≈ c2

[
p+

1

2

m2
i c

2

p

]
(1.23)

=⇒ E2 − E1 ≈
(m2

2 −m2
1)c

4

2p
(1.24)

Which by substituting L ≈ ct, p = E
c

with E the average energy of the neutrino and
injected in Eq. 1.22 finally gives:

Pνe→νµ = sin2(2θ) sin2

(
(m2

2 −m2
1)c

3L

4ℏE

)
(1.25)

It is common to use specific units for the variables : [m] = eV2

c4
, [E] = GeV, [L] = km as

to get, by injecting the numerical values of the constants:

Pνe→νµ = sin2(2θ) sin2

(
1.27

∆m2
21L

E

)
(1.26)

where ∆m2
21 = m2

2 −m2
1.

The oscillation probability is thus non-zero under two conditions : the mixing angle θ
must be non-zero, meaning the mass states must be different from the flavor states, and
the mass difference ∆m2

21 must be non-zero aswell, implying mass states are different and
thus at least one mass state has a mass.

For fixed values of θ, ∆m2
21 and neutrino energy E, the oscillation probability varies

periodically with the propagation distance L between 0 and sin2(2θ) with a spatial period
T = π 4ℏE

∆m2
21c

3 . Since this is a two-flavor framework, the non-oscillation probability forms
perfect destructive interferences with the oscillation probability, both survival probabili-
ties are plotted on Fig. 1.2a.

When looking on the contrary on Fig. 1.2b at how the oscillation probability behaves
in function of E

L
at fixed E, one sees that for small values of L, meaning far from the

neutrino creation point, the oscillations are too fast and a mean oscillation effect will be
observed. For large values of 1

L
, meaning close to the source, no oscillations happen.
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(a) Pνe→νµ = f (L) and 1− Pνe→νµ = f (L) (b) Pνe→νµ = f
(
E
L

)
Figure 1.2: The oscillation probability of νe in function of the travelled distance L or its
inverse. The plots’ legends use a notation considering only the flavor, e.g. P (e → µ) ≡
Pνe→νµ , parameters are taken according to Table 1.1: ∆m2

12 = 7.39 · 10−5, θ12 = 33.82
and E = 3 · 10−3 GeV.

1.3.2 Three-flavor neutrino oscillations

The three-flavor oscillation mechanism follows the same physical intuition as the two-
flavor situation, but is defined by the 3 × 3 PMNS matrix. Hence, the probability for a
neutrino created at t = 0 in flavor α to oscillate to the flavor β after a propagation time
t is defined by

Pνα→νβ = | ⟨να(0)|νβ(t)⟩ |2 =

∣∣∣∣∣
3∑

i=1

U∗
αiUβie

−im2
i

L
2E

∣∣∣∣∣
2

(1.27)

as developed in [13]. It is interesting to compute the survival probability of a neutrino,
as that is the quantity that will have an imprint on the data observed by neutrino ex-
periments like JUNO. Let’s consider the survival probability of a νe over a propagation
L = ct assuming the normal mass hierarchy and using the same unit system as for Eq.
1.26

Pνe→νe =

∣∣∣∣∣
3∑

i=1

U∗
eiUeie

−im2
i

L
2e

∣∣∣∣∣
2

(1.28)

= 1− sin2(2θ12) cos
4 θ13 sin

2

(
1.27

∆m2
21L

E

)
− sin2(2θ13)

[
cos2 θ12 sin

2

(
1.27

∆m2
31L

E

)
+ sin2 θ12 sin

2

(
1.27

∆m2
32L

E

)]
(1.29)

The survival probability is, besides of E and L, function of the different squared mass
differences. It is known from neutrino parameters measurements (cf. section 1.4) that
∆m2

21 ≪ ∆m2
32,∆m2

31 which allows to write the survival probability in terms of a fast
oscillation ∆m2

32 ≈ ∆m2
31 = ∆m2

fast and a slow oscillation ∆m2
12. This leads to the new

survival probability

Pνe→νe ≈ 1− sin2(2θ12) cos
4 θ13 sin

2

(
1.27

∆m2
21L

E

)
− sin2(2θ13) sin

2

(
1.27

∆m2
fastL

E

)
(1.30)
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= 1− Pslow − Pfast (1.31)

This survival probability depends on the two squared mass differences. The θ23 mixing
angle and mass splitting terms are typically measured by atmospheric neutrino experi-
ments, while θ12 and ∆m2

12 are determined with the solar neutrino neutrino data [13].
These slow and fast components smoothly add up as can be seen on Fig. 1.3 where

the high frequency sine of the atmospheric oscillations is weighted by the low frequency
sine of the fast solar oscillations.

Figure 1.3: Electron neutrino survival probability in the three-flavor framework, consid-
ering ∆m2

32 ≈ ∆m2
31 = ∆m2

fast. The plot’s legend uses the same notation as in Fig. 1.2,
parameters are taken according to Table 1.1 and E = 3 · 10−3 GeV.

1.4 Neutrino parameters: state of knowledge

1.4.1 Neutrino mass ordering

As only the values of ∆m2
ij can be assessed via neutrino oscillations, the ordering of the

mass eigenstates remains unkown. In fact, when defining m2 > m1 as a fixed parameter, it
is still not known whether neutrinos follow a normal mass ordering (NO) m3 > m2 > m1

or an inverted mass ordering (IO) m3 < m1 < m2. This is the neutrino mass ordering
(NMO) problem.

Fig. 1.4 gives a representation of each mass state, in the NO and IO situation, with
their respective flavor content. The flavor content f of a mass state i is computed via
the PNMS matrix : |Ufi|2
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Figure 1.4: Representation of the possible neutrino mass orderings with the flavor content
of each mass state represented by the coloring of the mass state bars [13]. Numerical
values are a bit outdated.

The squared mass differences thus depend on the ordering, from which they get their
sign:

∆m2
21 = m2

2 −m2
1 =⇒ ∆m2

21 > 0, ∀ NMO

∆m2
32 = m2

3 −m2
2 =⇒ ∆m2

32 > 0, NMO = NO

∆m2
32 < 0, NMO = IO

∆m2
31 = m2

3 −m2
1 =⇒ ∆m2

31 > 0, NMO = NO

∆m2
31 < 0, NMO = IO

1.4.2 Neutrino oscillation parameters

Neutrinos are currently still at the source of many research projects, of both theoretical
and experimental nature. On the experimental side, a very prolific domain consists of
accurately measuring the neutrino oscillation parameters θij and ∆m2

ji.
The Super-Kamiokande experiments for example are sensitive to the atmospheric neu-

trino oscillations parameters ∆m2
13, θ13 [14], while other experiments such as the Borexino

experiment focus on the solar oscillation parameters ∆m2
12, θ12 [15] .

The particle data group regroups all current experimental knowledge on particle
physics with adapted confidence intervals, over all validated experiments. The up-to-
date neutrino oscillation parameters are listed in Table 1.1 [16]. There is still a relatively
big uncertainty on the value of θ23, making its accurate measurement a big challenge for
ongoing and upcoming experiments.

Using the values in Table 1.1, assuming normal mass ordering, a null charge-parity
(CP) violating phase δCP = 0 and considering the central values of the 3σ intervals gives

1∆m2
32 +∆m2

21 = m2
3 −m2

2 +m2
2 −m2

1 = m2
3 −m2

1 = ∆m2
31
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Parameter Best fit 3σ interval
NO

∆m2
21 [eV2] 7.39× 10−5 6.79 → 8.01

∆m2
32 [eV2] 2.449× 10−3 2.358 → 2.554

sin2 (θ12) 0.310 0.275 → 0.350
sin2 (θ23) 0.558 0.427 → 0.609
sin2 (θ13) 0.02241 0.02046 → 0.02440
θ12 [°] 33.82 31.61 → 36.27
θ23 [°] 48.3 40.8 → 51.3
θ13 [°] 8.61 8.22 → 8.99

IO
∆m2

21 [eV2] 7.39× 10−5 6.79 → 8.01
∆m2

32 [eV2] −2.509× 10−3 −2.603 → −2.416
sin2 (θ12) 0.310 0.275 → 0.350
sin2 (θ23) 0.563 0.430 → 0.612
sin2 (θ13) 0.02261 0.02066 → 0.02461
θ12 [°] 33.82 31.61 → 36.27
θ23 [°] 48.6 41.0 → 51.5
θ13 [°] 8.65 8.26 → 9.02

Table 1.1: Table regrouping known values for neutrino oscillation parameters, assuming
different neutrino mass orderings. NO = normal ordering; IO = inverted ordering. The
parameter ∆m2

31 is not listed in the table as ∆m2
31 = ∆m2

32 +∆m2
21

1

the following PMNS matrix

U =

 0.821 0.550 0.149
−0.463 0.490 0.738
0.332 −0.675 0.657

 (1.32)

1.4.3 Neutrino mass ordering experiments

Experiments trying to determine the neutrino mass ordering are based on the fact that
different NMOs generate a different neutrino oscillation pattern, hence different flavor-
specific fluxes. The difference in observed fluxes with respect to each NMO can be
measured in hope of assessing the actual NMO.

Several project aiming to discriminate the NMO based on the study and measurement
of neutrino oscillations currently exist. A non-exhaustive list includes :

- NOνA (NuMI Off-axis electron neutrino Appearance): it is a long-baseline neutrino
experiment which uses a beam of neutrinos produced at Fermilab in an accelera-
tor. It focuses on the measure of the NMO-specific ν̄e/νe appearances and ν̄µ/νµ
disappearances.[17]

- Super-Kamiokande: it is a water Cherenkov detector. Super-Kamiokande aims to,
among other things, measure the neutrino mass hierarchy by observing atmospheric
neutrinos and beam-neutrinos from a proton accelerator. For the atmospheric neu-
trinos observation, it aims to measure the matter effects on the oscillation proba-
bilities [18].
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- JUNO experiment: it is a liquid scintillator detector aiming to measure the neu-
trino mass hierarchy mainly by observing the oscillations of reactor ν̄e from two
equidistant nearby nuclear power plants. It aims to observe the NMO-dependent
interference in neutrino oscillations which is the phase difference in the vacuum
neutrino oscillations [19].

This master thesis focuses on the NMO discrimination with the JUNO experiment,
exploiting supernova neutrinos instead of reactor neutrino data.

In addition to determining the mass hierarchy and oscillation parameters, numerous
experimental outcomes are being sought through neutrino observations to investigate
physics beyond the Standard Model. Besides the NMO determination through reactor
neutrinos, the next generation of neutrino experiments (including JUNO) search to solve
open problems which include the assessment of wether or not neutrinos are Majorana
particles and violate CP symmetry through the observation of a double-beta decay, neu-
trino signals as a measure of dark matter existence, measuring the hypothetical existence
of sterile neutrinos [20–22] ...
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Chapter 2

Core-collapse supernovae as neutrino
messengers

This chapter begins with a brief description of a heavy star’s evolution. After the
stellar evolution, a discussion of its end of life follows along with a full but qual-
itative description of the core-collapse supernova phenomenon, in agreement with
current state of the art knowledge. The core-collapse phenomenon is then viewed
from the neutrino point of view and how it is of interest for neutrino observatories.

2.1 Stellar evolution

When the core of a massive protostar reaches a certain threshold temperature, a star is
formed (considered here M ≥ 8M⊙) and it enters the main sequence of its life. During the
main sequence, the star maintains its internal pressure and temperature through nuclear
fusion of hydrogen into helium in its core. As the core becomes hotter and denser, the
fusion of heavier elements in the star is possible. When the core runs out of usable nuclear
fuel, the core collapses. This core collapse triggers a rebound shock wave that expels the
star’s outer layers in a supernova explosion. The term "core-collapse supernova" (CCSN)
refers to both the core collapse and the subsequent supernova explosion triggered by the
rebound shock wave.

2.1.1 Main sequence

The stellar nucleosynthesis cycle starts when the core hits ∼ 107 K [23]. In this state one
particular fusion becomes energetically possible, the fusion of hydrogen, which happens
mainly through the proton-proton cycle or the CNO-cycle. Through both these cycles,
the star converts hydrogen into helium and also releases heat as fusing elements with
a lower binding energy per nucleon into heavier elements is an exothermic process [24].
The new helium atoms are heavier than the hydrogen atoms and pile up at the center of
the star, thus creating a new core inside an outer layer of hydrogen, the light nuclei they
come from.
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As the fusion of hydrogen gradually stops, the outer layers compress the core as there
is not enough outwards thermal pressure anymore coming from the fusion. The com-
pression of the core increases its temperature and pressure until the fusion of the next
element is possible, in this case helium. This periodic fusing of light elements into heav-
ier and heavier elements goes on until the fusion of silicon, which eventually decays into
iron-56. This is the last step of the stellar nucleosynthesis because the fusion of iron-56
is not exothermic anymore since iron-56 has the highest binding energy per nucleon of
all elements.

At this point, the star has an inner core of iron-56 atoms, covered with several outer
layers of elements of decreasing weight giving the structure illustrated in Fig. 2.1. Now
that the star cannot create outwards pressure anymore through the thermal energy re-
lease from the core fusion, it cannot counteract the gravitational forces of the outer
layers anymore. The star tends to its inevitable collapse as the outer layers gradually
compress its core and eventually the electron degeneracy pressure cannot withstand the
gravitational compression, the electron degeneracy pressure being the pressure created
by condensed electrons which follow a Fermi-Dirac statistics and thus cannot occupy the
same energy levels [25]. When the iron-core gets to the Chandrasekhar limit M = 1.4M⊙,
the gravitational collapse takes place [23].

Figure 2.1: Stellar structure in the final stage of the main sequence [26]

2.1.2 Core collapse supernova : a neutrino-driven explosion

Once the Chandrasekhar limit is reached, the core collapses due the uncompensated
gravitational pressure from the outer layers and the CCSN begins. The CCSN is however
not an instantaneous phenomenon and, as currently believed, is composed of three basic
phases, preceded by a phase of infalling matter, which are illustrated in detail Fig. 2.2;
a phase of infalling matter on the core (panel 1-2), a bounce of this supersonic matter
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wave on the core when it cannot be anymore compressed (panel 3-4), a stalling of this
wave after energy losses (panel 5) and finally a revive of the stalled wave resulting in the
actual explosion (panel 6).

To start with, just before the actual core-collapse, the star’s outer layers are contract-
ing the core which has a density of around ρ = 1010 g/cm3. As the core gets compressed
from the infalling matter of the outer layers, two major phenomena occur. One is the
electron capture

p+ e− → n+ νe (2.1)

and the second is the photodisintegration of 56Fe originating protons and neutrons in the
chain. These two reactions result in a neutron-rich core, reducing the electron degeneracy
pressure, and an overall pressure loss with respect to the infalling outer layers.

As the core now gets compressed to about ρ = 1012 g/cm3, the νe created through
electron captures on infalling matter get trapped as their average diffusion time becomes
larger than the collapse time [27]. The core then further gets contracted until the core
density reaches the nuclear density ρ = ρ0 = 1014g/cm3 at which point the core physically
cannot be contracted anymore and a sudden stop is put to the infalling matter. This
sudden stop creates an outwards shock wave, the core bounce. The core bounce travels
through supersonic infalling matter, dissociating heavy nuclei on its way, losing energy
and eventually stalling at a radius of 100-200 km.

When the core bounce reaches a density such that it becomes transparent to neutrinos,
all the νe produced can finally escape the shock and get released in a big burst called the
νe burst which lasts ∼ 10 ms and starts a few ms after the core bounce.
Now that the core bounce shock wave is stalled, matter keeps falling inwards and piling up
on the core, heating the outer layers of the forming proton neutron star (PNS). Neutrino-
antineutrino pairs are created through thermal reactions in all flavors, everywhere in the
collapsing core.

Neutrinos thus created leave the neutrino sphere and desposit their energy in the
region between the neutrino sphere and the stalled shock wave. In this region, the gain
layer, a net energy deposition takes place and pressure builds up. Eventually enough en-
ergy is deposited and enough pressure builds up to revive the shock wave, which results
in the supernova explosion. With the supernova explosion, the mass accretion of the PNS
is also put to a stop.

After the star exploded, the PNS cools down and still emits a neutrino signal which
remains detectable on earth for ∼ 10 s. If the initial star was massive enough, the PNS
could at this point collapse into a black hole. The fact that massive CCSNe result in its
massive remnant collapsing in black hole is an agreed upon idea but concrete evidence
on the conditions in which that happens has yet to be found.

The outline of the sequence of events constituting a core-collapse supernova in this
section are taken from the state of the art report made by the JUNO collaboration in order
to prepare for CCSNe neutrino signal measurements [13] and H.A. Bethe’s benchmark
work in 1990 [27].
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Figure 2.2: The different stages of a stellar core-collapse with eventual supernova explo-
sion and cooling phase. The upper half of each quadrant shows the global mass movements
while the lower half show the nuclear processes at play. The horizontal axis gives mass
information (MCh = Chandrasekhar limit, Mhc = mass of collapsing inner core) while the
vertical axis show the different radii Ri (Fe = iron core radius, s = shock radius, g =
gain radius, ns = neutron star radius, ν = neutrinosphere) [28]
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2.2 CCSN neutrino signal and experimental value
CCSNe are currently subject of a lot of research projects as they are not a fully under-
stood phenomenon. However, if they happen according to the neutrino-driven explosion
mechanism as described in the previous section, the CCSN can be divided into three
neutrino-emitting phases that are of use for neutrino observation experiments: the neu-
trino burst, the accretion phase and the proton-neutron star cooling.

Here, as νµ/τ -ν̄µ/τ pairs are created in basically equal amounts through thermal pro-
cesses, they are designated by νx alltogether while for νe and ν̄e the dynamics remain
different enough as to treat them separately [13].

1. Neutrino burst : During the core collapse, before the bounce, νe emission starts
to rise as electron capture becomes energetically possible and favourable in the
dense layers and core. Afterwards, the big compression from the bounce formation
transiently reduces the neutrino emission signal for a few ms and, concomitantly,
ν̄e emission starts to appear. After the νe burst is over (∼ 10 ms after bounce), νx
fluxes also start to rise as neutrino-pair productions become possible in the heated
matter.

2. Accretion phase : After the neutrino burst and the bounce, matter piles up on the
core for hundreds of ms. The neutrino signal is fed by the accretion flow in which
νe are emitted through electron capture on infalling e−. In the early stages of the
accretion, the luminosity of νe-ν̄e is almost twice as intense than that of νx. After
∼ 200 ms, the explosino takes place and the luminosity drops, which corresponds
to the infall of the outer Si-O layers.

3. Cooling : After the supernova explosion has passed the PNS maintains some
neutrino radiation, equally for all flavors. The luminosity eventually drops after
∼ 10 s.

Each phase has thus its own signature, as can furthermore be seen on Fig. 2.3. Each
of the phases will bring different information and allow to study different physics related
to CCSN. As is explained more explicitely in the next section, this work focusses on the
νe burst phase and its associated NMO-specific signatures that can be told apart in a
neutrino observatory.

Figure 2.3: 27M⊙ CCSN simulated neutrino luminosity curves (green : νe, blue: ν̄e, red :
νx = νµ,τ , ν̄µ,τ ) for the three neutrino emission phases. This simulation from the Garching
group uses a spherically symmetric model and a manually triggered explosion [13]
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2.2.1 Experimental value of supernova neutrinos

When considering a core-collapse supernova, The neutrino fluxes Fνi reaching the Earth
are function of the initially emitted neutrino fluxes F 0

νi
and neutrino mixing physics

through the survival probabilities p/p̄. Their expressions can be written in all generality
as follows

Fνe = pF 0
νe + (1− p)F 0

νx (2.2)
Fν̄e = p̄F 0

ν̄e + (1− p̄)F 0
νx (2.3)

4Fνx = (1− p)F 0
νe + (1− p̄)F 0

ν̄e + (2 + p+ p̄)F 0
νx (2.4)

where p/p̄ is the survival probability of a neutrino/antineutrino after propagating
through the CCSN matter and space and neglecting matter effects for those neutrinos
crossing the Earth, which are indeed irrelevant for the CCSN neutrino energies. Here, the
νµ,τ/ν̄µ,τ (=νx) are all treated equally because their interactions when moving through
the CCSN matter are very similar and it makes the formalism easier to work with [29].

Now to compute the NMO-dependent flux FNMO
νi

, one needs to take into account
the different resonances that neutrinos can undergo, modifying these probabilities and
resulting in a flavor change [30].

Assuming the standard case of the adiabatic MSW effect [31], for the NO case, the
resonances create an almost complete exchange between the νx and νe spectra and for
the IO case, on the contrary, the resonance happens at a different stage, and affects the
anti-neutrinos [29]. As a result of these resonances, assuming only νe are created during
the neutrino burst phase and neglecting the terms of order sin2 θ13 ∼ 10−5, one finds the
survival probabilities as listed in Table 2.1 and the expressions (2.5-2.8) for the neutrino
flux arriving on Earth [29].

FNO
νe = pNOF 0

νe + (1− pNO)F 0
νx ≈ 0 (2.5)

2FNO
νx = (1− pNO)F 0

νe + (1 + pNO)F 0
νx ≈ F 0

νe (2.6)

F IO
νe = pIOF 0

νe + (1− pIO)F 0
νx ≈ sin2 θ12F

0
νe (2.7)

2F IO
νx = (1− pIO)F 0

νe + (1 + pIO)F 0
νx ≈ cos2 θ12F

0
νe (2.8)

A detector which is able to detect νe would thus measure, around the νe burst phase of
the CCSN, an intense peak in the IO case, but an absence of such peak in the NO case.
This is the NMO sensitivity this master thesis will focus on.

After the νe burst however, the emission of the other neutrino flavors starts to get
important and this NMO sensitivity falls off.

Neutrino mass ordering p p̄
NO ∼ 0 cos2 θ12
IO sin 2θ12 ∼ 0

Table 2.1: Survival probabilities p/p̄ for CCSN neutrinos/antineutrinos for the two NMOs



19

Chapter 3

The Jiangmen Underground Neutrino
Observatory

The JUNO experiment is presented in this chapter, discussing its scope, structure
and detection characteristics. After, the tools set up at the JUNO experiment to
identify the neutrino mass ordering using supernova neutrino signals are presented.

3.1 The JUNO experiment : an overview
The Jiangmen Underground Neutrino Observatory (JUNO) experiment is a medium-
baseline multi-purpose neutrino experiment, buried ∼ 700 m underground, whose main
purpose is the assessment of the neutrino mass ordering through the observation of reactor
antineutrinos. It has been shown that after six years of data taking, JUNO will be able
to determine the NMO at a 3− 4 σ confidence level [19].

JUNO’s unprecedented energy resolution, number of discernable events and baseline
optimization (cf. Fig. 1.3) will furthermore allow precise measurements of the neutrino
oscillation parameters as well as assessing other neutrino-related open questions [4]. It
has also been shown that after six years of running, JUNO will be able to determine the
neutrino oscillation parameters with a sub-percent precision [19]

The JUNO experiment is located in Jinji town in the Guangdong province (Fig. 3.1),
at 53 km of two nuclear powerplants (NPP), the Yangjiang and Taishan powerplants.
This location has been chosen based on the fact that the baseline that gives the best
NMO discrimination power when observing reactor antineutrinos is around 53 km [4].

3.1.1 The JUNO detector

The JUNO detector has two main components : the veto detector, composed by the
muon top tracker (TT) and the water Cherenkov detector (WCD), and the central de-
tector (CD) as schematically shown in Fig. 3.4.

The WCD is a cylindrical pool with a diameter of 43.5 m and a height of 44 m,
filled with 35 kton of ultrapure water. The extreme purity of water is necessary to
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Figure 3.1: Location of the JUNO experiment at 53 km of
Yangjiang NPP and Taishan NPP, the JUNO-TAO facility at
Taishan serves as reference observatory of the ν̄e fluxes [19]

avoid background noise in the form of impurity disintegrations. The light (Cherenkov
photons/radiation) produced by muons is reflected on the inner core of the cylinder,
which is covered in reflective foils, and/or detected with the 2400 20-inch photomultiplier
tubes (PMT) placed on the outer shell structure of the CD.

The TT is a plastic scintillator system that is used to track incoming muons. It is
composed of several 6.7 m2 square TT walls placed side by side, with a 15 cm overlap,
on three layers with each TT wall composed of 512 scintillator strips that will detect the
muons, tracking their path (Fig. 3.2) [32].

Figure 3.2: JUNO experiment Top Tracker [19]
Figure 3.3: JUNO CD
large PMT and small PMT
system [19]

Together, they thus form a double muon veto system or the veto detector. Indeed,
muons are a threat to ν̄e observations as they generate 9Li and 8He, which are β-emitting
and n-emitting isotopes, and fast neutrons which can imitate the IBD signature for which
the CD is tuned. It is thus important to have this muon veto system to distinguish
between muon-induced reactions and radioactivity in general from ν̄e-IBDs. The TT
is expected to be very effective for atmospheric muons as 1

3
of all atmospheric muons

entering the CD will cross the TT, where their path will be tracked and extrapolated into
the CD giving a very efficient veto mechanism. For other muon sources, the veto system
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relies on the WCD and CD only [19].

The CD is an acrylic sphere, with an inner diameter of 35.4 m. It will be filled with 20
kton of organic liquid scintillator (LS), making up around 1.5× 1033 target protons [13].
The LS requires a high level of purity, which is achieved by a dedicated purification system,
and is composed of three compounds : Linear Alkyl Benzene (LAB), 2,5-diphenyloxazole
(PPO), and 1,4-bis(2-methylstyryl)benzene (bis-MSB) which have a high light yield and
show adequate transparency [19].

The inside of the acrylic sphere is coated with 17 612 "large" 20-inch PMTs to cap-
ture the scintillation signals and 25 600 "small" 3-inch PMTs filling the gaps the large
PMTs leave when evenly distributed (Fig. 3.3). The small PMTs’ purpose is manifold;
as they accumulate events over time (in a narrower energy window than the large PMTs)
they can serve as a reference for the detector overall reducing thereby some uncertainties
and improving the energy resolution and absolute uncertainty. They will also extend the
dynamic range of the detector and, with their good time resolution, they will help the
event reconstructions [19].

The relative energy resolution required for the determination of the NMO with reactor
ν̄e at the desired confidence level is σ

E
= 3%√

E
where E = 1MeV is the visible energy in the

detector [13], this resolution is expected to be achieved by JUNO, as reported in [33].

Figure 3.4: The JUNO detector [19]
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3.1.2 Measurements with JUNO

The main purpose of JUNO is to assess the NMO through the observation of reactor
antineutrinos. JUNO observes the reactor antineutrinos through the CC inverse beta
decay reaction (IBD) in the CD

ν̄e + p → e+ + n (3.1)

The reactor ν̄e interact with the LS protons, creating a positron and a neutron; the
positron almost immediately deposits his surplus energy Te+ and annihilates with a sur-
rounding e− generating 2 γ rays at 180° of total energy E = 2 ·511keV, while the neutron
takes a while to thermalize, (∼ 200 µs) and eventually releases a 2.2 MeV γ after it is
captured (5.4 MeV if the capture happens on carbon nuclei).

The neutrino energy can be inferred by reconstructing the positron energy and using
the kinematics (energy threshold) of the reaction Eth

ν = me + mn − mp ≈ 1.804 MeV,
and thus Eν = 1.8 MeV + Te+ . Furthemore, the IBD has an easily identifiable signature,
both in time (prompt and delayed γ signals) and energy (Eγdelayed = 2.2 MeV) making it
a handy reaction [4].

In order to identify the NMO with reactor antineutrinos, JUNO utilizes the survival
probability of electron neutrinos, Eq. 1.30, in its unsimplified version

Pν̄e→ν̄e = 1−sin2 2θ13
(
cos2 θ12 sin

2∆m2
31 + sin2 θ12 sin

2∆m2
32

)
−cos4 θ13 sin

2 2θ12 sin
2∆m2

21

(3.2)
In fact, the this survival probability shows an NMO-specific spectrum in the L

E
-space.

The reactor ν̄e energy spectrum thus contains a discernible difference, one NMO to the
other, when considering a fixed and optimized L of around 53 km [19] The IBD reaction
can at that point be used as a probe to measure the ν̄e flux and spectrum. The excellent
energy resolution and high statiscs (in ∼ 6 years of data taking), will allow JUNO to
determine the NMO with reactor ν̄e.

JUNO is sensitive to a lot of neutrino sources however, through mainly but not only
the IBD reaction; the neutrino sources JUNO is sensitive to are summarized Table 3.1.

Research Expected signal Energy region Backgrounds
Reactor antineutrino 60 IBDs/day 0− 12 MeV Radioactivity, µ

Supernova burst 10kpc 5000 IBDs, 2300 ES 0− 80 MeV Negligible
DSNB (w/o PSD) 2− 4 IBDs/year 10− 40 MeV Atmospheric ν

Solar neutrino ∼ 100 eES per year for 8B 0− 16 MeV Radioactivity
Atmospheric neutrino ∼ 100 per year 0.1− 100 GeV Negligible

Geoneutrino ∼ 400 per year 0− 3 MeV Reactor ν

Table 3.1: Detectable neutrino event sources in JUNO with event rate, energy window
and associated background noise (ES: elastic scattering, eES: electron elastic scattering,
DSNB : diffuse supernova neutrino background ; PSD : pulse shape discrimination).
Figure adapted from [19].

This work focuses on the measurements that can be made with supernova neutrinos,
following a CCSN at an observable distance, and how they can be of use for the NMO
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discrimination. As Table 3.1 illustrates, a CCSN brings a lot of events in the detector
making it an information-rich event that cannot be missed.

The physical properties of a supernova neutrino flux and how they can be utilized in
JUNO are discussed in the next section.

3.2 NMO determination with JUNO: application to su-
pernova neutrinos

For a supernova at 10 kpc, around 5000 IBD and 2300 elastic scattering events are
expected in JUNO. This exceptionally high statistics could allow to probe a lot of neutrino
and supernova parameters.

In JUNO, CCSN neutrinos can be observed through different kinds of interactions.
The main interaction channels and the corresponding number of expected events for
different average neutrino energies are summarized in Table 3.2. The expected energy
spectrum for a 10 kpc CCSN considering all the interaction channels listed in the table
below is represented in Fig. 3.6.

Channel Reaction Type Events for different ⟨Eν⟩ values
12MeV 14MeV 16MeV

IBD ν̄e + p → e+ + n CC 4.3× 103 5.0× 103 5.7× 103

Proton-neutrino ES ν + p → ν + p NC 6.0× 102 1.2× 103 2.0× 103

Electron-neutrino ES ν + e → ν + e CC&NC 3.6× 102 3.6× 102 3.6× 102
12C ν + 12C → ν + 12C∗ NC 1.7× 102 3.2× 102 5.2× 102

CC 12C νe +
12C → e− + 12 N CC 4.7× 101 9.4× 101 1.6× 102

CC 12C ν̄e +
12C → e+ + 12 B CC 6.0× 101 1.1× 102 1.6× 102

Table 3.2: Neutrino interaction channels in JUNO for a 10 kpc CCSN, adapted from [13]

This master thesis focuses on the three main interaction channels for CCSN neutrino
signals in JUNO: the IBD channel, the neutrino-electron elastic scattering interaction
(eES) and the neutrino-proton elastic scattering interaction (pES).

Electron elastic scattering

In order to be able to record information about νx, it is necessary for JUNO to be
sensitive to NC interactions, since νx only interacts through NC reactions. In that sense,
and despite its small cross-section, the eES interaction channel is an adequate probe for
νx, as it is sensitive to all neutrino flavors [34].

However, for νe, the electron elastic scattering can proceed through both NC or CC
channels, as is illustrad in the Feynman diagrams in Fig. 3.5, which slightly changes the
interaction cross section for νe. This makes the detector sensitive to the νx/νe fraction of
the CCSN neutrino flux.

The energy of the neutrino is reconstructed via the visible recoil energy spectrum from
the scattered electron [36].
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Figure 3.5: Feynman diagram of the CC νe − e− interaction (left) and NC νe − e−

interaction (right) from [35]

Proton elastic scattering

The proton elastic scattering channel is a purely NC channel and is thus sensitive to all
neutrino flavors as confirms the cross section expression [37]. Its cross section is much
bigger compared to the eES cross section, resulting in ∼ 2000 pES events against ∼ 300
eES event for a 10 kpc CCSN (Table. 3.2). On the other side its cross section is about
the same than the IBD cross section for ν̄e but at way smaller energies, furthermore its
sensitivity to all neutrino/antineutrino flavors compensates [13].

The pES channel is thus an important interaction channel when observing three-
flavoured neutrino fluxes like the CCSN neutrino flux, even though the three flavors are
blended together.

Just like for electron elastic scattering events, the proton elastic scattering channel
reconstructs the neutrino energy on the basis of the proton recoil kinetic energy [37].

Inverse beta decay

The inverse beta decay is the main interaction for CCSN neutrino signal, as for the reactor
antineutrino flux, and follows the exact same physics and detection procedure as has been
previously described.

Figure 3.6: Neutrino event spectrum with respect to the visible energy Ed in JUNO for
a 10 kpc CCSN, assuming no flavor conversions [13].
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Chapter 4

Core-collapse supernova neutrino
simulations for JUNO

This chapter first discusses two popular numerical models, and two neutron star
equations of state, that are commonly used in the literature to simulate CCSNe.
Then, some JUNO detection physics and its limitations are introduced to adapt the
CCSN simulations to the detector. Finally, combining those models with the JUNO
neutrino detection physics, the lightcurves measured in JUNO and how they are
impacted by the different simulation parameters are discussed.

4.1 Supernova numerical models

Core-collapse supernovae, on all conceptual levels, are still not completely understood.
They are very complex phenomena on one side and don’t happen very often at an ob-
servable distance via neutrinos, making it difficult to acquire data to test the different
theories, on the other side. Since the last observed CCSN in the Large Magellanic Cloud
in 1987, the SN 1987A [38], a lot of effort has been put into developing theoretical models
that would serve as a basis for numerical simulations. One of the fundamental component
of such theoretical models is the set of equations of state (EoS) they are based upon. In
all generality, an EoS is a theoretical description of hot and dense nuclear matter which
when applied to a star’s core as a whole " determines the structure of compact objects
and their dynamics through its behavior of thermodynamic quantities" (K. Sumiyoshi,
2021). The particular combination of EoS describing the core’s dynamics eventually leads
to particular explosion mechanisms and content [39].

The EoS that are of interest in this work are the Shen EoS [40] and the Lattimer-
Swesty (LS) EoS [41], which both get their name from the people who introduced them.
The LS EoS set was the first CCSN EoS set to be introduced, it is based on the com-
pressible liquid-drop model for nuclei and doesn’t have any relativistic considerations.
The Shen EoS on the other side is constructed using the relativistic mean-field (RMF)
theory with the Thomas-Fermi approximation; the RMF theory considers relativistic ef-
fects by describing the nuclei as interacting Dirac nucleons [42] and the Thomas-Fermi
approximation proposes a description of poly-electronic systems by modelling them as a
degenerate Fermi-Dirac gas [43].
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This work makes use of the CCSN numerical model developed by the Garching group
[44] . The Garching 1D model, as used in this work, can use both the Shen EoS and the
LS EoS.

4.2 Supernova detection characteristics for JUNO
In addition to the theoretical supernova modelling, this work involves the equally impor-
tant simulation of the JUNO detector. The JUNO collaboration has developed a software
environment that simulates all aspects of the JUNO detector’s response [45]. This of-
fline data processing software is based on the Geant4 toolkit [46], a simulation package
computing particle-matter interactions, and built according to the SNiPER (Software
for Non-collider Physics ExpeRiments) architecture, a unifying software framework that
provides a common working environment for high-energy physics experiment [47].

The JUNO offline software, in line with the SNiPER framework, is divided into small
components that together are able to simulate the complete chain of events of a CCSN
(detection). Its 5-block structure is illustrated in Fig. 4.1 and is justified as follows [48]:

1. Physics generator: this block generates a neutrino flux, here a CCSN neutrino
flux. It is in this particular case a vast numerical model, such as the one developed
by the Garching group, which considers the star’s EoS, the physics of the core
collapse and the neutrino propagation. Then it convolves the neutrino flux with
the detector geometry (number of targets) and interaction cross-sections (detector
material). A Monte-Carlo based approach takes into account the detector geometry,
LS composition and LS response.

2. Detector simulation: this block models the photon signal generation after the
neutrino interaction, its propagation, absorption and the photomultiplier tube light
response.

3. Electronics simulation: this part of the simulation software uses a Monte Carlo
approach to simulate the electronics component to simulate the response of the
PMTs and the following electronics readout system. This includes the electronics
event trigger, as well as the PMT properties such as the transit time of photons.
It also enables the study of signal processing, noise effects (dark noise, afterpulse),
and the overall performance of the detector’s electronic systems.

4. Calibration : The calibration of the JUNO detector is simulated according to its
calibration system. It takes into account the physical and instrumental non-linearity
of the detector, systematic uncertainties, etc [49]. This block is not explicitly shown
on Fig. 4.1.

5. Reconstruction : The multiple reconstruction methods and blocks simulate the
process of correlating the PMT pulses to the physical characteristics of the particle
(energy, waveform, vertex (place of interaction)).

Figure 4.1: JUNO offline software’s SNiPER-based structure, adapted from [50]
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A perfect detection efficiency is considered at the detector simulation level, but a 0.1
MeV energy cut-off is applied on measured events as below 0.1 MeV JUNO cannot make
the distinction between background noise and such a low energy physics/neutrino event.
The JUNO project was initially designed with a 0.2 MeV trigger [51], but recent devel-
opments lead to believe 0.1 MeV will be possible [52].

This work does not consider the simulation blocks beyond the detector simulation
phase. Conclusions are drawn based solely on the CCSN and JUNO detector physics, the
electronics simulation and reconstruction blocks are disregarded. To sum up, this study
focuses on the CCSN neutrino flux generator, the interaction of neutrinos with JUNO
and the methods used to extract information on the NMO from them.

4.3 Supernova neutrino lightcurves: parametric-wise
analysis

The goal of this section is to present the main observable of interest when treating with
CCSN data: the time profile or lightcurve. The lightcurves will be compared for different
models and physics (i.e. EoS or NMO hypotheses). In this work, lightcurves are defined
as the time spectra of visible events in JUNO, they are curves containing the instants t
of every measured event. Lightcurves differ from luminosity curves (briefly shown in Fig.
2.3) as they do not contain energy information, but rather count measured events in the
detector and possibly identify their nature (eES, pES, IBD). They represent what JUNO
will, among other things, concretely be able to detect. This signal analysis of CCSNe is
not completely straightforward and several parameters need to be taken into account.

On one side, it is not known what mass the progenitor will be or at what distance
the next CCSN will occur, besides already the big uncertainty on when the next CCSN
will happen [53]. And on the other side, it is not known how CCSNe exactly occur and
thus several models describing the underlying physics have been developed to simulate
the explosion.

In the hope of understanding how JUNO would be able to determine the NMO based
on CCSN neutrino signals, the impact of these simulation parameters need to be individ-
ually assessed and discussed.

4.3.1 Impact of the progenitor mass

Complete CCSN numerical models however do use the progenitor mass as a parameter
as it is an important initial condition.

Physically, the progenitor mass together with the radius and metallicity (i.e. the com-
pactness) is the most relevant parameter regarding the initial conditions of the collapsing
stellar core. Higher-mass progenitors have larger cores, which undergo more extensive
gravitational collapse due to their larger gravitational binding energy. During the core
collapse, the strength and energy of the shock wave are influenced by the progenitor mass
as higher-mass progenitors tend to produce more energetic shock waves. Finally, as 99%
of the explosion energy is emitted in the form of neutrinos, the progenitor mass affects
the neutrino emission characteristics, with higher-mass progenitors thus producing more
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intense neutrino fluxes.

When comparing the lightcurves for different progenitor masses, the previously hy-
pothesized influence is clear: heavier progenitors do generate more energetic supernova
explosions. The difference in the number of expected events starts to rise after the bounce
which can be seen in both plots of Fig. 4.2.

(a) Full νe burst phase (b) Zoomed around the bounce

Figure 4.2: Lightcurves for supernova bursts of different progenitor masses, for the Shen
EoS used by the Garching group numerical model. The CCSNe are taken to be at a 10
kpc distance. Solid lines represent the case of inverse neutrino mass ordering and the
dashed lines the normal ordering case.

4.3.2 Impact of the distance

The number of events detected in a neutrino observatory like JUNO after a supernova
burst is a function of the CCSN distance through an inverse square law [54].

(a) Lightcurves for different CCSN dis-
tances

(b) Number of events at the νe burst peak
in function of the SN distance with a 1

d2
fit

Figure 4.3: Influence of the distance of the CCSN on the lightcurve and the number
of events detected in JUNO. The simulated CCSNe are of 27 M⊙ and use the Garching
group LS EoS numerical model.
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As expected, the data matches the 1
d2

fit on Fig. 4.3b, the distance of the SN explosion
has no influence on the shape of the measured lightcurves and simply applies a scaling
factor to the number of events. Hence, for the sake of the NMO discrimination, it would
be advantageous to observe a relatively nearby supernova burst in order to have more
signal statistics. The ∼ 7300 events predicted (Fig. 3.1) over the whole supernova burst
at 10 kpc would double to about 29200 for a supernova at 5 kpc, which is not negligible
at all.

4.3.3 Impact of the equations of state

Given the different EoS simulated in Fig. 4.4, the equations of state do not seem to
have an impact on the early stages of the supernova explosion and around the νe burst
peak. However after about ∼ 20 ms and independently from the progenitor mass, the
lightcurves of each EoS start to diverge and show signs of model/EoS dependency.

The difference generally emerging after 20ms, or more generally becoming significant
at 20 ms, is consistent with the literature and stems from the fact that the νe burst is a
relatively well understood phase of the supernova, the behaviour of which is independent
from the used EoS or even the progenitor mass [36]. After the νe burst peak the lightcurves
follow each a different dynamic, proper to the EoS used. The Shen EoS produces a larger
number of events compared to the Shen EoS.

(a) M = 11.2 M⊙ (b) M = 25M⊙

(c) M = 27M⊙ (d) M = 40M⊙

Figure 4.4: Lightcurves for different progenitor masses comparing the Shen EoS and the
LS EoS using the Garching group numerical model. The CCSNe are at 10 kpc.
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4.3.4 Comparison of the interaction channels

The different stages of the supernova explosion are characterized by time-varying flavor
emissions and neutrino energy spectra. It is thus useful, in the broader aim of later as-
sessing the NMO, to separate the different interaction channels and assess their respective
lightcurves.

Proton elastic scattering

The proton elastic scattering (pES) is a NC interaction and it is, as has been described
before, a color-blind interaction channel. When observing CCSNe, NC reactions are
therefore of considerable importance as they allow to perform νx/ν̄x measurements.

(a) Lightcurves for different energy thresh-
olds

(b) Lightcurve for for JUNO global trigger
energy threshold

Figure 4.5: Lightcurves for the pES interaction channel showing the strong influence of
the energy-cut off on the time spectrum. The Garching group numerical model with the
Shen equation is used for this plot, simulating a 27 M⊙ at 10 kpc CCSN.

The proton elastic scattering channel is however very sensitive to the energy detection
threshold of the experiment. There is more than a factor 10 difference between the number
of events at the peak when no energy threshold is applied or only events above 0.2 MeV
are kept, as can be seen on Fig. 4.5a. The big discrepancy between these two situations
can be explained by looking at the event spectrum in JUNO for a 10 kpc CCSN (Fig.
3.6). At 0.20 MeV, the lower limit of the graph, ∼ 103 events are expected for the pES
channel. By slightly extrapolating the event spectrum, it becomes apparent that a lot
events are being discarded when applying an energy cut-off of 0.00, 0.10 or 0.20 MeV.

The extra statistical power coming from perfectly detecting all events regardless of
background noise would be very useful but it is not realistic, which is why the energy
threshold of 0.1 MeV achieved by the JUNO global trigger is used (see Fig. 4.5b).

Finally, concerning the NMO, the pES channel shows strictly zero NMO sensitivity
on its own. This is consistent with the fact that the NC p-ν scattering reaction is not
dependent on flavor transformations but only on number of neutrinos and the fact that
the NMO only impacts the flavor mix of a supernova explosion but not the total number
of evetns. This is valid for all masses and EoS as illustrated in Fig. 4.6.
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(a) Shen EoS (b) LS EoS

Figure 4.6: Lightcurves for the pES interaction channel, considering the 0.10 MeV en-
ergy cut-off, for both EoS using the Garching group numerical model and for different
progenitor masses. The CCSN is taken to be at 10 kpc.

Electron elastic scattering

The electron elastic scattering (eES) interaction channel is a neutral current interaction as
well, making it sensitive to all neutrino flavors. Things are changing however compared to
the pES channel as for the νe, the eES reaction can happen through NC or CC interaction
channel when the lepton flavors are identical [34]. This brings some NMO sensitivity as
the νe/ν̄e fraction changes between the NMOs. The slight NMO sensitivity can be seen
in Fig. 4.7a where the neutrino burst peak disappears in the NO case.

(a) Shen EoS (b) Different cut-off energies with Shen
EoS, 10 kpc, 27 M⊙ CCSN

Figure 4.7: Lightcurves for the eES interaction channel for both EoS using the Garching
group numerical model and for different progenitor masses. The CCSN is taken to be at
10 kpc.

The eES cross section is way smaller than the pES cross section, making it a weak
interaction channel on its own [36].

The eES channel does not suffer very much from having different energy detection
thresholds as can be seen in Fig. 4.7b. The slight - almost non-existent - discrepancy
in the lightcurves for the different energy thresholds is explained by looking at the 10
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kpc CCSN event spectrum for JUNO again (Fig. 3.6) and seeing that at 0.20 MeV ∼ 10
events are expected over the whole CCSN. Hence, the difference the energy threshold
makes is almost non-existent in an interval of a few ms around the burst.

Inverse beta decay

The inverse beta decay channel shows a few specific features.
First of all, in the early stages of the CCSN, only νe are emitted, making it then

impossible for IBD events to be recorded in JUNO. And secondly, the 0.1 MeV energy
threshold to qualify for a detectable event in JUNO has no influence on the IBD event
spectrum as its threshold energy is ∼ 1.8 MeV.

As shown in the plots in Fig. 4.8, the IBD signal starts at ∼ 4 ms, which is the
moment when ν̄e start to be created in the CCSN and escape of the interior of the star
(Fig. 2.3).

(a) Shen EoS (b) LS EoS

Figure 4.8: Lightcurves for the IBD interaction channel for both EoS using the Garching
group numerical model and for different progenitor masses. The CCSN is taken to be at
10 kpc.

Concerning the NMO discrimination, the IBD signal shows a certain NMO-sensitivity.
Firstly, the IO signal rise is constantly steeper than the NO signal. Secondly, quite some
time after the νe burst at around ∼ 40 ms depending on the mass, the IO and the NO
curves intersect and the behaviours are swapped.

The difference in rise slopes and the behaviour swap are reliable tools for the NMO
discrimination as they are dependent on the shape of the curve and not overall statistics,
which would be influenced by mass, distance, model, etc.
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Chapter 5

Statistical tools & methods for the
NMO determination

This chapter presents the statistical methods and tools that will be used in the last
section of this work to compute JUNO’s sensitivity to the NMO based on CCSN
neutrino signals. It starts by briefly putting back into context the general motivation
for the study of lightcurves, then it introduces the χ2-Poisson test and finally the toy
Monte Carlo and Asimov methods are discussed in the general context of JUNO’s
NMO sensitivity.

5.1 Context & motivation

It is now clear that the lightcurves contain NMO information, lightcurves show NMO-
dependent behaviours. In practice, the determination of the NMO is thus a matter of
fitting an experimental spectrum to the expected spectrum of each NMO and judging
which spectrum the experimental data best fits.

Sadly, there doesn’t exist a reliable experimental way to observe CCSNe on command,
which means that finding real experimental CCSN neutrino spectra to fit to the expected
CCSN neutrino spectra and determine the NMO is not possible, and needs to rely on
a pattern dependent on the parameters previously discussed. Therefore, rather than
fitting experimental data and directly drawing conclusions on the NMO, the challenge
is to compute how sensitive JUNO would be to the NMO discrimination when a CCSN
actually comes, ultimately predicting with a certain confidence level how effective the
JUNO experiment is in discerning the NMO based on CCSN neutrino signals.

To compute the NMO sensitivity of JUNO, experimental conditions are imitated
through two statistical methods, both based on a χ2 test : the Asimov method and the
toy Monte Carlo method.

5.2 The χ2-Poisson test

The NMO discrimination power of JUNO will be assessed through a minimum χ2 test.
The χ2 test will be computed for the IO and NO hypotheses. The likelihood ratio between
the two hypothesis will be the final test statistics. The χ2 test is constructed based on
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a Poisson likelihood ratio function that asymptotically approaches a χ2 distribution [55].
Indeed, the entries in the histogram’s 1 ms bins are predicted to be relatively small and
when considering an experimental lightcurve they are taken to follow a Poisson distribu-
tion, defined by the expected number of entries.

Let’s thus examine the goodness of fit problem of a histogram with a range of N bins,
an NMO-dependent expected number of events µi(NMO) for each bin i and considering
that the number of experimentally measured events in each bin ni follows a Poisson dis-
tribution with mean µi(NMO). The likelihood function of this histogram can be written
as [56]

L(ni;µi(NMO)) =
N∏
i=1

µi(NMO)ni
e−µi(NMO)

ni!
(5.1)

Here the likelihood function can be divided by its maximum value L(ni;ni) which is
the likelihood function where the same ni are measured but ni is indeed expected [56].
This gives the Poisson likelihood ratio Λ

Λ =
L(ni;µi(NMO))

L(ni;ni)
(5.2)

Assuming a NMO for the expected values µi and dropping the (NMO) in the equation,
the negative log-likelihood ratio χ2

Λ can be written as

χ2
Λ(NMO) = −2 ln

[
L(ni;µi)

L(ni;ni)

]
(5.3)

= −2 (lnL(ni;µi)− lnL(ni;ni)) (5.4)

= −2

(
N∑
i=1

ln

[
µni
i

e−µi

ni!

]
−

N∑
i=1

ln

[
nni
i

e−ni

ni!

])
(5.5)

= −2

(
N∑
i=1

ni lnµi − µi − lnni!−

(
N∑
i=1

ni lnni − ni − lnni!

))
(5.6)

= −2
N∑
i=1

ni − µi + ni ln

(
µi

ni

)
(5.7)

Wilks’ theorem states that when minimizing χ2
Λ with respect to the NMO (either

IO or NO) through the expected data µi, χ2
Λ asymptotically follows a non-central χ2

distribution with one degree of freedom [57], which is the square of a standard normal
distribution.

χ2
Λ ∼ χ2

1 (5.8)

Considering one data sample ni, the NMO discrimination sensitivity is computed
through the difference between the χ2

Λ fit to both NMOs

∆χ2 =
∣∣χ2

Λ(IO)− χ2
Λ(NO)

∣∣ = ∣∣χ2(IO)− χ2(NO)
∣∣ (5.9)
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where

χ2
Λ(NO) = −2

N∑
i=1

ni − µi(NO) + ni ln

(
µi(NO)

ni

)
(5.10)

χ2
Λ(IO) = −2

N∑
i=1

ni − µi(IO) + ni ln

(
µi(IO)

ni

)
(5.11)

The fact that χ2
Λ ∼ χ2

1 means that, if the inverse NMO is assumed for example, one
can conclude based on the data sample ni, that the IO can be excluded with certainty√

∆χ2 σ, where σ is the unit for the confidence level in terms of standard Gaussian
deviation [57].

In the sections that follow, the Λ subscript for the χ2 is considered implicit. To
summarize, the complete expression for the χ2 being fit to NMO’, possibly based on
measurements generated as following the NMO is written as

χ2(NMO;NMO′) = −2
N∑
i=1

ni(NMO)− µi(NMO′) + ni(NMO) ln

(
µi(NMO′)

ni(NMO)

)
(5.12)

Sometimes, the NMO-dependence is be dropped from the notation for readability
when it is obvious in a given context.

Lastly, as in this work complete lightcurves are considered, one must always consider
the combination of the three interaction channels’ events and thus add a sum over the
interaction channels c

χ2 = −2
∑
c

N∑
i=1

ni − µi + ni ln

(
µi

ni

)
(5.13)

The two methods that are used in this work to compute the NMO sensitivity of JUNO,
the toy Monte Carlo method and Asimov method, differ from each other in the way the
data sets ni are defined and how they compute JUNO’s expected or median sensitivity.

5.2.1 Asimov method

The Asimov method aims to assess the expected NMO sensitivity of JUNO by replacing
the measurements with the expected values of the experiment [58], which are in this case
the expected number of entries per bin of the histogram for a determined NMO. This
set of expected values, called the Asimov data set, puts the test in a kind of ideal case
where the prediction of the lightcurve shape is perfectly accurate and one of two results
are possible:

- The assumed NMO is correct: The χ2 test is strictly equal to zero, which
is expected as the χ2 test compares two spectra that are strictly identical (ni =

µi(NMO)): χ2(NMO) = −2
∑

c

∑N
i=1 µi − µi + µi ln

(
µi

µi

)
= 0

- The assumed NMO is incorrect, NMO’ is correct: The χ2 test is not equal
to zero and shows how sensitive the experiment is to the discrimination of the
corresponding NMO by comparing the two expected spectra (ni = µi(NMO′)):
χ2(NMO′) = −2

∑
c

∑N
i=1 µi(NMO′)− µi(NMO) + µi(NMO′) ln

(
µi(NMO)
µi(NMO′)

)
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The Asimov method thus measures the sensitivity of JUNO to the discrimination of
the NMO in the cases of the NMO being inverse or normal, based on the difference in
expected spectrum they have respective to each other. The sensitivity computed with
the Asimov method, can also be quantified with the units of Gaussian deviation through
the same relation as mentioned before [58]:√

∆χ2 =
√

χ2(NMO′)− χ2(NMO)︸ ︷︷ ︸
=0

=
√

χ2(NMO′) σ. (5.14)

However, the Asimov method, or more generally the χ2 test, is based on the fact
that the experimental spectrum’s timeline can be perfectly superimposed on that of the
spectrum it is being fit to. In other words, the origins of both spectra have to be perfectly
known in order for the test to give a consistent sensitivity. When looking at the exper-
imental setup of a CCSN observation, it becomes apparent that there are uncertainties
when determining the bounce time t = 0 of the measured lightcurve and that it cannot
be determined exactly. This uncertainty about the bounce time will reduce the overall
NMO determination sensitivity of JUNO.

The uncertainty on the bounce time, i.e. on the start time of the signal window,
is taken into account in the χ2 test by simply considering the worst case scenario. A
time shift ∆t is added as fitting parameter to the χ2 test, this time shift is applied to
the expected number of events, with respect to the true bounce time (set at t = 0) and
eventually the χ2 test is minimized over the possible time shifts. This minimization will
lead to a situation where the expectation shifted of ∆t fits better the data set, hence
accounting for a realistic situation where the bounce time will not be accurately known a
priori, and the search window start will have an uncertainty which may lead to a "fake"
better NMO sensitivity.

Considering for example the sensitivity of JUNO to the determination of the NMO
when the IO is assumed (expected) but the neutrinos follow a NO (true), the Asimov
method with ∆t minimization works as follows:

1. The general χ2 is set up with ni = µi(NO) and µi = µi(IO) (NMO dependence is
dropped in the equation for readability):
χ2(NO; IO) = −2

∑
c

∑N
i=1 ni − µi + ni ln

(
µi

ni

)
2. The time shift ∆t is added to the expected data and the minimum χ2 is computed

to find the so-called worst case scenario regarding the calibration of the bounce
time:
χ2
min(NO; IO) = −2

∑
c

∑N
i=1 ni − µi(∆t) + ni ln

(
µi(∆t)

ni

)
3. The sensitivity to the determination of the NMO, assuming initially an IO, of JUNO

is computed via the relation previously mentioned:
√
χ2
min(NO; IO) σ

5.2.2 Toy Monte Carlo method

One way of assessing the sensitivity of the ∆χ2 test is through a Monte Carlo approach
with the toy Monte Carlo method [59]. The toy Monte Carlo method relies on generating
pseudo CCSNe or so-called pseudo-experiments by randomly sampling values from the
Poisson distribution with as mean the expected number of entries, for each bin:



37 Chapter 5. Statistical tools & methods for the NMO determination

ni ∼ Pois(µi) , i = 1, . . . , N (5.15)

The method consists of 5 steps:

1. With the Asimov method and for the same reasons as explained in the previous
section, the ∆t shift for which the χ2(NMO) is minimum is computed for both
NMOs, yielding two time shifts ∆t(IO) and ∆t(NO).

2. For each NMO a large number N of pseudo-experiments are generated through
random Poisson sampling of the expected number of entries per bin. This results
in 2 data sets of pseudo-experiments of equal size N , one data set per NMO.

3. The minimum χ2 is computed for each of those pseudo-experiments, with the NMO
data being minimized with respect to the time delay ∆t(NMO). The four following
χ2 values are computed, for each pseudo-experiment, and each ∆t:

(a) N values for the NO data sets fit to the NO expected values: χ2(NO;NO)

(b) N values for the NO data sets fit to the IO expected values: χ2(NO; IO)

(c) N values for the IO data sets fit to the NO expected values: χ2(IO;NO)

(d) N values for the IO data sets fit to the IO expected values: χ2(IO; IO)

4. Two different ∆χ2 are computed, one for each NMO :

(a) ∆χ2(IOtrue) = χ2(IO; IO)− χ2(IO;NO)

(b) ∆χ2(NOtrue) = χ2(NO;NO)− χ2(NO; IO)

5. The medians of those two ∆χ2 distribution are computed. These medians represent
the expected experimental sensitivity of JUNO for the NMO discrimination. The
experimental sensitivity, as for the Asimov method, is NMO-specific: the median
of ∆χ2(IO) represents the NMO sensitivity of JUNO if neutrinos follow an inverse
NMO, and ∆χ2(NO) if they follow a normal NMO. In units of Gaussian deviation
the sensitivity is computed as

√
∆χ2 σ



38

Chapter 6

Sensitivity to the NMO determination
with CCSN neutrinos: results

This chapter discusses the application of the statistical methods developed in Chap-
ter 5 to the simulated lightcurves described in Chapter 4 in order to assess the NMO
discrimination power of JUNO. It begins by discussing the Asimov method’s results
and performance in function of certain parameters, followed by a similar discussion
for the toy Monte Carlo method.

6.1 Asimov method : discussion & results

6.1.1 Set-up

The Asimov method relies heavily on the model used of the expected lightcurve, for each
NMO. As it has been discussed in Chapter 4, several parameters induce noticeable dif-
ferences in lightcurves, which can eventually lead to a different expected sensitivity in
JUNO and must therefore be avoided. The purpose of this section is to take these pa-
rameters that may impact the results into account in order to yield robust and consistent
sensitivity values.

First, the fact that CCSNe are not well understood has repercussions on the con-
clusions that the Asimov method, and other statistical tests, can draw about the NMO
sensitivity of JUNO. Indeed, lightcurves show some model dependency (cf. Section 4.3.3)
and as no model is taken to be more accurate than the other, the sensitivity in case an
explosion occurs will depend on the correct model and progenitor star characteristics.
As the model dependence seems to be stronger after the neutrino burst (Fig 4.4), it is
sensible to focus on the neutronization burst only in order to avoid as much as possible
that model dependency.

Secondly, the progenitor mass also has an influence on the lightcurve which leads to
big differences in the number of observed events, specially in the accretion phase (Fig
4.2). The progenitor mass can obviously not be chosen when observing a CCSN but the
lightcurve mass dependency can be avoided by focussing on a short time window from
the start of the signal.
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Based on the different plots of Chapter 4, the overall mass-model dependency of the
lightcurves has thus been qualitatively assessed to be important starting from ∼ 20 ms
after the bounce. Thus, limiting the χ2 analysis range (number of bins N considered for
the χ2) to a range around the bounce would remove some of the mass-model dependency
of the measured signal. The plots in Fig. 6.1 illustrate the mass-model dependency of
the Asimov method by plotting the computed sensitivity ∆χ2 as a function of the end of
the time window for a fixed starting time of -20 ms, with respect to the bounce time at
t = 0 ms.

For both NMOs and all progenitor masses of the CCSN, the computed sensitivities
seem to be spread out the bigger the time window is. The spreading out of the sensitivities
becomes too consequential starting from tmax = 20 ms, as is more precisely illustrated in
Fig. 6.2. For the rest of this chapter, the time window for the Asimov method is thus
assumed to be [−20; 20] ms.

(a) IO scenario (b) NO scenario

Figure 6.1: NMO sensitivity of JUNO computed with the Asimov method for a CCSN at
10kpc, in function of the time window ending time tmax considering a fixed starting time
of tmin = −20 ms

(a) IO scenario (b) NO scenario

Figure 6.2: Zoomed in plot of Fig. 6.1, showing more clearly the sensitivities getting too
spread out for time windows ending after 20 ms.
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6.1.2 Benchmark result

As a pseudo-reference sensitivity test, the Asimov method has first been applied to a very
generic CCSN observation scenario: a 27M⊙ CCSN at a distance of 10 kpc described by
the Shen EoS. The expected lightcurves are represented below in Fig. 6.3.

(a) IO scenario (b) NO scenario

Figure 6.3: Expected lightcurve for each NMO given a 27 M⊙ CCSN at 10kpc

For the determination of the NMO in case IO is the true hypothesis (IO data) when
neutrinos are expected to follow the NO, the Asimov method reports a sensitivity of
χ2
min(IO) = 8.73 or

√
χ2
min(IO) = 2.95 σ, which is consistent with Fig. 6.2a, and ∆t =

+2 ms as the time shift that when applied to the IO lightcurve makes it resemble the
most to the NO lightcurve. Just as expected, when comparing the IO data with the IO
alternative hypothesis, the minimum χ2 test finds a minimum at a time shift ∆t = 0 ms
which yields a strict zero sensitivity

√
χ2
min = 0 as in this situation the χ2 is comparing

two identical spectra which are indeed indistinguishable when they are overlapped with
the same bounce time as reference. The χ2(IO) distribution with respect to ∆t is plotted
in Fig. 6.4a and in Fig. 6.4b a parabolic is applied to the distribution. The parabolic fit
not being very satisfactory comes from the fact that strictly speaking χ2 ∼ −2 lnΛ, which
only has a parabolic shape in the Gaussian limit of the data distribution and therefore
here in the Poisson limit the χ2 deviates from the perfect parabolic shape [56].

(a) Asimov χ2 minimization w.r.t ∆t (b) Parabolic fit applied to χ2(∆t).

Figure 6.4: ∆t minimization with the Asimov method, given a NO data set ni = µi(IO)
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In the case of the NMO determination based on NO data and assuming an IO nature,
the sensitivity of JUNO is slightly worse. The Asimov method yields a sensitivity of
χ2
min(NO) = 7.55 or

√
χ2
min(NO) = 2.74 σ with a negative time shift ∆t = −1 ms. The

negative time shift is consistent with the fact that when shifting an IO spectrum to fit
a NO spectrum, the shift is positive, and thus the time shift is negative when fitting an
NO spectrum to an IO spectrum.

(a) Asimov χ2 minimization w.r.t ∆t (b) Parabolic fit applied to χ2(∆t).

Figure 6.5: ∆t minimization with the Asimov method, given a NO data set ni = µi(NO)

As for the LS EoS, it produces similar results as can be seen in Fig. 6.6

(a) IO scenario (b) NO scenario

Figure 6.6: ∆t minimization with the Asimov method given different NMO data sets for
CCSNe described by the LS EoS.

6.1.3 Sensitivity of the interaction channels

Each interaction channel, on their own, shows very little sensitivity to the NMO discrim-
ination as the overall number of events around the bounce are quite low, thus weakening
the overal statistical test. A few things can however still be noted. The strict zero sen-
sitivity of the pES channel is expected as the pES channel is a colorless interaction with
no flavor sensitivity, hence no NMO sensitivity (cf. Section 4.3.4). Next, the eES channel
being not very sensitive to the NMO is consistent with the fact that the NMO difference
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in the eES lightcurves comes in the form of an overall scaling bringing no shape difference
and the fact that the eES represents a very low statistics.

(a) IO data ni = µi(IO) (b) NO data ni = µi(NO)

Figure 6.7: Asimov method applied to the IBD interaction channel for both NMOs.

(a) IO data ni = µi(IO) (b) NO data ni = µi(NO)

Figure 6.8: Asimov method applied to the eES interaction channel for both NMOs.

(a) IO data ni = µi(IO) (b) NO data ni = µi(NO)

Figure 6.9: Asimov method applied to the pES interaction channel for both NMOs.
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6.1.4 Impact of the distance

The distance d of a CCSN influences the number of events recorded by JUNO with a
factor of 1

d2
, this scales the lightcurve as was shown in Fig. 4.3a and 4.3b. Starting from

the 1
d2

scaling of the number of events, one shows that the sensitivity follows a 1
d2

scaling
too:

χ2(d) = −2
∑
c

N∑
i=1

ni ·
1

d2
− µi ·

1

d2
+ ni ·

1

d2
ln

(
µi · 1

d2

ni · 1
d2

)
(6.1)

= −2 · 1

d2
·
∑
c

N∑
i=1

ni − µi + ni ln

(
µi

ni

)
= χ2 · 1

d2
(6.2)

This scaling is illustrated in the plots in Fig. 6.10 where the sensitivity is fit to a
1
d2

curve for both NMOs. In the plot of Fig. 6.10b the distances for which the NMO
sensitivity is at least 3 or 5σ are indicated with the black dashed line. One concludes based
on this plot and assuming the Shen EoS, that for a 27 M⊙ CCSN JUNO discriminates
either NMOs with a 3 (5) σ confidence level for CCSNe closer than ∼ 10 (7) kpc.

(a) Sensitivity ∆χ2 (b) Sensitivity with the 3 and 5σ threshold in
the dashed black line

Figure 6.10: Sensitivity in different units for both NMOs, in function the CCSN distance.

6.2 Toy Monte Carlo method: discussion & results

6.2.1 Poisson fluctuating lightcurves

The toy Monte Carlo implements Poisson fluctuations of the expected number of events
in each of the lightcurve’s bins to simulate an experimental situation (Eq. 5.15). The
lightcurves with Poisson fluctuations are plotted in Fig. 6.11 for both NMOs.

The Poisson fluctuations naturally lead to spectra that are harder to tell apart than
in the ideal case of the Asimov method. The toy Monte Carlo method is thus expected
to yield slightly worse sensitivities than the Asimov method.
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(a) IO scenario (b) NO scenario

Figure 6.11: Lightcurves with Poisson fluctuations for a 27M⊙ CCSN at 10kpc described
by the Shen EoS.

6.2.2 Minimization over ∆t

For the reasons listed in Sections 5.2.1 and 5.2.2, the toy Monte Carlo method implements
a minimization over the time shifts ∆t to compute a sensitivity in a worst case scenario
regarding the bounce time calibration. There are two ways to proceed to apply the ∆t
minimization for the toy Monte Carlo method:

1. Fixed time shift: The χ2 minimization over the ∆t is computed through the
Asimov method and then implemented in the ∆χ2 test. This procedure thus uses
a fixed ∆t for the totality of the ∆χ2 tests.

2. Fluctuating time shift: The χ2 minimization over the ∆t is individually com-
puted for each pseudo-experiment and then implemented in each ∆χ2 test. Thus,
this procedures yields a fluctuating time shift ∆t for each ∆χ2 test.

Fixed time shift

For the fixed time shift method, the toy Monte Carlo method reports sensitivities of√
|∆χ2(NO)| = 2.79 σ and

√
|∆χ2(IO)| = 2.52 σ. These sensitivities are, as expected,

worse than the sensitivities computed with the Asimov method, but show a peculiar EoS
dependence. Indeed, when the Shen EoS is used the toy Monte Carlo method predicts
that the NO is easier to discriminate than the IO, which is the opposite of what the
Asimov method predicted (Fig. 6.4). However when the LS EoS is used, the test shows a
bigger sensitivity to the IO, which was predicted by the Asimov method (Fig. 6.6), and
an overall better performance.
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(a) Shen EoS (b) LS EoS

Figure 6.12: ∆χ2 distributions for 10 000 pseudo-experiments of a 27 M⊙ CCSN at 10
kpc, with the median indicated by the red dashed line.

Varying time shift

When the time shift ∆t fluctuates as a result of the Poisson fluctuations as well, the
results are not very promising. The median sensitivities as computed by the toy Monte
Carlo method are listed in Table 6.1

IO data NO data
Shen EoS ∆χ2 = −4.12 ∆χ2 = 1.94
LS EoS ∆χ2 = −4.79 ∆χ2 = 2.37

Table 6.1: ∆χ2 sensitivities computed with the toy Monte Carlo method with fluctuating
∆t, for each EoS.

The values of the different sensitivities show that the toy Monte Carlo method predicts
a significantly bigger sensitivity for the NMO discrimination in the IO case than in the
NO case. Moreover, they show that the variation of the ∆t leads to predict a very weak
sensitivity to both NMOs.

(a) Shen EoS (b) LS EoS

Figure 6.13: ∆χ2 distributions for 2500 pseudo-experiments of a 27M⊙ CCSN at 10 kpc,
with a fluctuating ∆t minimization.
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It is also interesting to look at the minimum ∆t distribution the toy Monte Carlo
method yields for the LS EoS (Fig. 6.15) and for the Shen EoS (Fig. 6.14).

(a) IO scenario (b) NO scenario

Figure 6.14: ∆t distributions as a result of the χ2 minimization for 2500 pseudo-
experiments of a 27 M⊙ CCSN at 10 kpc described by the Shen EoS.

(a) IO scenario (b) NO scenario

Figure 6.15: ∆t distributions as a result of the χ2 minimization for 2500 pseudo-
experiments of a 27 M⊙ CCSN at 10 kpc described by the LS EoS.

Here, the toy Monte Carlo method shows mixed results.
The ∆t distribution does not show a clear peaked distribution around t = 0ms in the

case where the assumed NMO (NMO PDF on the plots) is the correct NMO (NMO data
on the plots). Instead the distributions show a small peak at t = 0ms and a pronounced
distribution tail in the IO case (Fig. 6.14a and 6.15a). In the NO case the ∆t distribution
is a plateau with a peak at ∆t = +10 ms which is the highest possible ∆t considered in
the fit with the toy Monte Carlo simulations.

For the opposite situation, meaning when the wrong NMO is assumed, in the NO
data case one observes a peak centered around ∆t = +1 ms with some distribution tail
just as expected. For the IO case however, a big peak can be seen for the biggest time
shift ∆t = +10 ms with a small tail distribution.

All in all, the ∆t fluctuate too much using this method and it is thus hard to predict
a consistent median sensitivity. A careful investigation of these results will be done.
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Conclusion

In this work, CCSN lightcurves have been generated using the Garching group numerical
model and based on the Shen or LS EoS. Next, a ∆χ2 test based on the Poisson likelihood
ratio has been constructed to apply the Asimov method and the toy Monte Carlo to
the lightcurves in order to eventually compute the expected sensitivity of the JUNO
experiment to the determination of the NMO.

In order to draw consistent conclusions regarding the said NMO sensitivity, the impact
of the numerical model, the progenitor mass, the NMO, the CCSN distance and the
different the interaction channels on both the lightcurves and the statistical methods
have been assessed.

The uncertainty on the exact bounce time of an experimental lightcurve has also been
considered and taken into account. For this, a time shift has been applied to the ex-
pected spectrum and a minimum χ2 test over the possible time shifts was implemented
in order to account for a realistic experimental situation where the bounce time would be
calibrated in the worst way possible. This gives a conservative but robust measurement
of the expected sensitivity.

When applied to the generic case of a 27 M⊙ CCSN at 10 kpc described by the Shen
EoS, the Asimov method yields a sensitivity of 2.95 σ in the IO case and 2.75 σ in the
NO case. The toy Monte Carlo method on the other hand, when a fixed ∆t minimization
is implemented, reports a sensitivity of 2.52 σ in the IO case and 2.79 σ in the NO case.
When the ∆t is implemented to fluctuate with each pseudo-experiment the toy Monte
Carlo method reports a less satisfactory sensitivity of 2.02 σ in the IO case.

Furthermore, expecting a discrimination power of at least 3σ has been assessed to be
possible only for either relatively nearby CCSN, relatively massive progenitors and/or at
the overall cost of the sensitivity being model dependent.

In order to draw a complete picture of the NMO sensitivity of JUNO with CCSN
neutrinos, several perspectives could be considered.

First, not all interaction channels have been considered, the 14C and 12N interaction
channels could be implemented in the lightcurves as well.

Other CCSN numerical models, such as the Bollig or Nakazato model can be inves-
tigated. Understanding how they work and how they influence the expected sensitivity
could draw a clearer picture of the NMO sensitivity.

In this work, only lightcurves have been considered but the energy reconstruction and
spectrum of CCSN neutrinos could also bring additional results and NMO information.

The neutrino detection in this work was considered perfect, the application of CCSN
neutrino signals detection to the PMT response, electronic data acquisition system, back-
ground noise etc. should be assessed to get a complete view of the JUNO’s experiment
NMO sensitivity.
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