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Abstract
Until now, no evidence has been found for dark matter in particle physics experi-
ments. The lack of any dark matter signal has put a lot of pressure on the most
popular paradigms for dark matter such as the Weakly Integrating Massive Par-
ticle. Therefore, it is time to consider other dark matter candidates beyond the
WIMP. We consider a simplified model where the standard model is extended with
one Majorana fermion and a charged scalar coupling to the standard model lep-
tons through a Yukawa interaction, hence a ”leptophilic dark matter model”. We
investigate a new mechanism for dark matter production in the early universe that
differs from the standard freeze-out which is relevant for the WIMP scenario. This
alternative mechanism is called conversion-driven freeze-out and will reproduce
the correct relic dark matter abundance if the mass-splitting between the dark
matter and charged scalar and the coupling constant are sufficiently small. This
regime opens a new window on dark matter phenomenology. In particular, the
small coupling constant leads to a macroscopic decay length of the charged scalars
giving rise to exotic signals at collider experiments like disappearing charged track
or displaced leptons plus missing energy.
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Introduction

The existence of Dark Matter (DM) in the universe has been established by a
number of astrophysical observations based on gravitational interactions. It is also
included in the standard model of cosmology to account for observations that can
not be explained without the presence of dark matter. For instance, DM is able to
explain the observed anisotropies of the CMB. From these observations, scientists
established that dark matter constitutes nearly 85% of the total matter content
in the universe we observe today. A large amount of models describing DM as a
fundamental particle have already been proposed, but none of these are confirmed
by experiments yet. Because we have been able to deduce the amount of DM in the
universe, it is very important to study how these fundamental DM particles can be
produced in the early universe. A number of production mechanisms are already
explored. In the WIMP paradigm, the DM shares sizeable interactions with the
visible sector such that the relic abundance is set by the freeze-out mechanism [1].
Alternatively, it could be that dark matter couples more weakly to the SM particles
and to itself such as in the case of so-called superWIMPs [2] and FIMPs [3]. These
hypothetical particles are produced via other mechanisms. Other possibilities are
that dark matter is very weakly coupled to the visible sector, but has substantial
couplings with a hidden sector to which it is equilibrated [4] or that there is an
asymmetry in the number densities of the DM and its anti-particle [5].

Despite many attempts to observe a clear DM signal, nothing has been seen
yet. The no-observation of dark matter is starting to put some pressure on pop-
ular models like the WIMP paradigm. Because these models are now under such
constraints by experimental results, other models are more and more considered.
In general, dark matter candidates should appear in the context of an extension of
the Standard Model (SM) that is UV complete. Alternatively, a more bottom up
approach of simplified models is often considered. These models can capture the
relevant phenomenological features without the complication of a complete UV
model. They are constructed by adding just a few particles to the standard model
and require some simple assumptions in order to be consistent (gauge invariance,
renormalizable, etc).

Simplified models may not be the complete description of nature, we can still
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INTRODUCTION

learn a lot from them. For instance, we can study how DM interacts with the SM
particles. This is very important for detection experiments. Due to the absence of
a clear DM signal, physicists are starting to look for more exotic signatures, like
displaced vertices plus missing energy at collider experiments. They occur when
the dark matter couples very weakly to the standard model particles. Simplified
models can be used to explain how these exotic signatures can arise. When such a
signature would be observed, simplified models can help interpreting the data to
gain knowledge about the properties of the DM.

In chapter 1 of this thesis, we start by introducing the concept of dark matter. A
review of the most convincing evidence and most popular dark matter candidates
are given. Some of the evidence implies that dark matter must be present already
in the early universe, right after the big bang. Therefore, we also review some
possible ways dark matter can be produced in the early universe. To conclude this
chapter, we discuss the main strategies how dark matter can be detected.

As we already mentioned, simplified models are useful to describe DM and
characterize their phenomenology at colliders as well in detection experiments. In
chapter 2 we introduce the simplified model that we will further consider in this
thesis. It consists in adding a Majorana DM candidate to the standard model
together with a co-annihilating scalar particle which is charged under the stan-
dard model gauge groups. The dark matter particle is coupled to the SM particles
through a Yukawa interaction involving the charged scalar particles and SM lep-
tons. Hence, we name the DM candidates in this simplified model as leptophilic
dark matter. The strength of the interactions is controlled by a coupling con-
stant λχ. Depending on the value of this coupling, the way the dark matter is
produced in the early universe changes. We give an overview of all the different
mechanisms and in which regimes they are important. Moreover, we go beyond the
standard mechanisms that we introduced in chapter 1 to explore a new window for
leptophilic DM. In particular, an alternative mechanism called conversion-driven
freeze-out is introduced. At the end of this chapter, the dependence on the initial
conditions of the production mechanisms is studied.

The conversion-driven freeze-out mechanism we introduced in chapter 2 is stud-
ied in more detail in chapter 3 in the context of the leptophilic dark matter sim-
plified model. We explain why we introduced it and in which region of parameter
space it is relevant. After this, we investigate the lifetime of the charged scalar
in this region of parameter space. This will be done to study when the model
exhibits exotic collider signatures at for instance the LHC.

In chapter 4, we discuss how exotic signatures such as displaced vertices can be
observed at collider searches. We first give an overview of the purpose of the most
important parts of a detector to then see how exotic signals can occur in these
detectors. The most important searches for such signatures are reviewed before
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INTRODUCTION

they are applied to the simplified model from chapter 2 in order to display the
reach of the LHC on conversion-driven freeze-out for leptophilic DM.

3



Chapter 1

Dark Matter

1.1 Short history of dark matter
Since the publication of Newton’s ”Philosophiae Naturalis Principia Mathematica”
in 1687, science made a great leap forward in explaining the motion of astrophys-
ical objects. Not only did his gravitation law teach us a lot, also deviation from it
deepened our understanding of the Universe. Whenever anomalies were observed,
one question came to mind. Is this anomaly an indication that the laws of grav-
itation are incorrect or a hint of something new and unseen. For instance, the
observed anomaly of the motion of Uranus led to the prediction of a new planet,
Neptune, which was later visually discovered in 1846. In this case, the second
option proved to be the correct one. One has to be careful by just assuming one of
the two options because later, the existence of a planet called Vulcan was predicted
to explain the anomalous motion of Mercury. This planet was never found, simply
because it does not exist. The problem of the anomalous motion of Mercury was
later resolved by Einstein’s theory of general relativity, which is more precise than
Newton’s law of gravitation.

In 1933, a very similar problem occurred. The Swiss-American astronomer Fritz
Zwicky studied the redshift of various galaxy clusters [7] that were published by
Edwin Hubble and Milton Humason in 1931 [8]. He was particularly interested in
the Coma Cluster, where he noticed differences in the apparent velocity of some
galaxies that exceed 2000 km/s. This fact triggered him to do a further analysis by
applying the virial theorem in order to estimate the mass of this cluster. Starting
from a velocity dispersion of 700 km/s, he found a conservative lower limit of
Mcluster > 4.5×1013M�. When assuming an average luminosity of L = 8.5×107L�
for the cluster galaxies, his results implied a very high mass-to-light ratio of about
500. This meant that there was some amount of mass that we were not able to
observe, which from then on is referred to as Dark Matter (DM).
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CHAPTER 1. DARK MATTER

Figure 1.1: Galactic rotation curve for NGC 6503 showing disk and gas contribu-
tion plus the dark matter halo contribution needed to match the data [10].

A second anomaly that was noticed some years later has to do with rotation
curves of galaxy clusters. In 1939, Horace Babcock presented the rotation curve of
M31 out to about 20 kpc away from its centre [9]. He found very high and quasi
constant values of the circular velocity at large radii. Later, the same behaviour
was found in many other galaxies, like NGC 6503 (see figure 1.1). This result was
quite surprising because one would expect that the circular velocity would go down
if we look at larger radii, vc ∝ 1/

√
R. Babcock calculated that this flat rotation

curve implies that there must be large amounts of mass in the outer parts of the
galaxy. With this second anomaly, the lack of observable mass was a problem that
could not be ignored any more.

Again, the same question did arise. Is this dark matter something real/physical
that we just have not observed yet, or might it be that this anomaly is just due to
the fact that we are applying a theory that is not valid on the large scales we are
applying it. This question split researchers into two groups. One group was eager
to find again a new correction of Newton’s law of gravitation to explain this flat
rotation curves. They came up with a new theory called MOND [11] (MOdified
Newtonian Dynamics). However, later evidence showed that the option of Dark
Matter being something physical is the more probably answer to the question.
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CHAPTER 1. DARK MATTER

1.1.1 More evidence for dark matter
CMB

Another clue for the dark matter comes from the Cosmic Background Radiation
(CMB). This background radiation originates from the propagating photons in the
early Universe, once they decoupled from matter. It is observed that the CMB
is isotropic up to the 10−5 level and behaves like a black body with temperature
T = 2.726K with an extraordinary precision. However, when COBE [12] (COsmic
Background Explorer) and later WMAP [13] (Wilkinson Microwave Anisotropy
Probe) started to take data, it became clear that there are small anisotropies
( δT
T

< 10−5). This can help to probe the seeds for matter density perturbations
at the origin of the large scale structure that we see in the sky today. From the
study of the CMB spectrum, comparing with what would result from a theoretical
cosmology model, it appears that there must have been some extra form of matter,
apart from baryonic matter, in the Universe at the time of decoupling such that
structure formation could start. From the WMAP data alone, cosmologist were
even able to extract the abundance of baryonic matter (Ωbh

2) and the total amount
of matter (Ωmh

2) in the Universe [14],

Ωbh
2 = 0.0224± 0.0009,

Ωmh
2 = 0.135+0.008

−0.009. (1.1)

In 2009, a new experiment was launched to take more data of the CMB. The Planck
Satellite was even able to determine a precise value for the relic DM abundance [15]

ΩDMh2 = 0.1198± 0.0015. (1.2)

Gravitational lensing

One of the consequences of the general theory of relativity (GR) described by
Einstein is that light rays do not always follow a straight trajectory but are bent
around gravitating masses. Thus, just like optical lenses, celestial bodies can
serve as gravitational lenses to refract light although the physics behind the two
processes is completely different. The amount of bending depends on the mass
of the bodies, whether it is baryonic or otherwise. Gravitational lensing can be a
very important tool in the search to dark matter. There are three types of lensing
(microlensing, weak and strong lensing [16]) and each of them can teach us new
things about the masses and mass distribution of celestial bodies. For instance,
it has been observed that individual galaxies are surrounded by a halo of dark
matter. Gravitational lensing can be used to probe the properties and distribution
of this halo, even to very large radii beyond the scope of other tracers of mass [17].
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Figure 1.2: An X-ray image of the bullet cluster, obtained with a 500 second
exposure with Chandra. The colors denote the X-ray temperature of the gas
where blue indicates the coolest. The white bar represents a distance of 200kpc
and the green contours denote the reconstructed lensing signal, proportional to
the projected mass in the system [18].

The bullet cluster

One of the most recent observations that has been seen as a direct empirical proof
of the existence of dark matter is the bullet cluster. This cluster is actually made
out of two clusters that crossed each other recently. The distribution of stars and
galaxies can be resolved from the hot X-ray emitting gas (which constitutes the
majority of the baryonic mass in the system). One can compare this X-ray map
with results from weak lensing where the total mass distribution is tracked. As
can be seen in figure 1.2, the comparison clearly reveals that most of the mass
does not trace the distribution of the baryonic mass in the system. This again
reveals that something else than usual matter must dominate the mass of the
cluster. Many researchers saw this observation as the ultimate argument to prefer
dark matter over theories such as MOND because this measurement does not
depend on dynamical assumptions, something MOND tries to adapt to explain
other observations.

1.2 Dark matter candidates
As we briefly discussed in the previous section, there is a compelling amount
of evidence for the existence of dark matter. The natural question to ask next is
”what is dark matter made of?”. This is a question that has been keeping scientists
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busy for several decades. Firstly, scientists started to look at what they knew
that existed, like for instance the particles in the Standard Model (SM). Most of
these particles could be almost immediately discarded (most of them are charged)
until only one remained, the neutrinos. They were considered as an excellent DM
candidate because they are neutral and only interact weakly with the other SM
particles. However, one can predict the relic density abundance [14]

Ωνh
2 =

3∑
i=1

mi

93eV
, (1.3)

where i is the generation of the neutrino. The mass of neutrinos are not known
exactly yet, but constraints are already available and come from experiments such
as the tritium β-decay at Troitsk and Mainz [19]. If we use the upper limits, we
also find an upper bound for the abundance

Ωνh
2 < 0.07, (1.4)

which is much smaller than the observed value of 0.12. This means that neutrinos
are not abundant enough to be the dominant DM component. Also other argu-
ments discarded SM neutrinos as a viable DM candidate [14] and therefore, there
is no known particle left that could be the DM. Since then, a lot of new models for
dark matter have been proposed, but until now, there is no experimental evidence
for one of these. Here, we shortly review some of the most discussed candidates.

1.2.1 Undiscovered fundamental particles
The standard model of particle physics is known to be incomplete, and this is not
only due to the lack of a DM candidate. Even from a theoretical point of view,
there are some severe problems. The hierarchy problem [20] is one of them. The
problem here is that the Higgs mass mH receives large quantum corrections from
the virtual effects of every particle that couples to the Higgs field. In order to solve
this and other problems, scientists started to predict extensions of the standard
model that could potentially resolve these problems. A lot of these models predict
new particles of which some of them are viable DM candidates. Here, we give a
short list of the most important ones:

• Sterile Neutrinos, a neutrino like particle that does not interact via the weak
force [21],

• Kaluza-Klein states appear in models with extra dimension [22],

• Axions are a solution for the strong CP problem of the standard model
[23, 24].
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Another important model is called supersymmetry (SUSY) and gives a possible so-
lution for the hierarchy problem. In the SM, there are two types of particles called
fermions, particles with half-integer spin, and bosons with integer spin. Supersym-
metry states that there is a new kind of symmetry such that every boson has a
fermionic partner with the same quantum numbers and vice versa [25]. This sym-
metry solves the hierarchy problem because the quantum corrections of fermions
and scalars with the same quantum numbers cancel each other exactly. If SUSY is
a symmetry of nature, at least the superpartners of the SM particles should exist.
The supersymmetric model that contains the minimal amount of particles and
also includes the standard model is called the Minimal Supersymmetric Standard
Model (MSSM). The MSSM predicts not only a superpartner for each SM particle,
but also a second Higgs doublet. Otherwise, the theory would be inconsistent [25].
The particle content of the MSSM is summarized in table 1.1. There are a lot
of new particles in this model and therefore, a lot of DM candidates. The most
important ones for DM purpose are the neutralinos, a mixture of the four neutral
superpartners of the Higgs, SU(2) and U(1) gauge bosons. To make the lightest
one stable, we need a Z2 symmetry under which all SM particles are even and their
superpartners are odd. Therefore, all superparticles can only decay to at least one
other superparticle. It is kinematically forbidden that the lightest superparticle
decays to other superparticles causing it to be stable. In SUSY, such a Z2 sym-
metry is assumed and is called R-parity [25]. Therefore, the lightest superparticle
is a possible DM candidate.

If supersymmetry is a real symmetry, all the particles of the MSSM must exist.
Nevertheless, this does not mean that we are restricted to those particles in the
search for dark matter. For instance, one of the main defects of the standard model
is that only three of the four fundamental forces are present. Therefore, physicists
have already postulated the existence of the graviton, a hypothetical spin-2 boson
that mediates gravity. If this particle really exists and SUSY is a correct symmetry
of nature, also its superpartner called the gravitino should exist. This is a stable,
neutral particle and is therefore often stated as a good DM candidate. Together
with the neutralino, the gravitino is currently the most studied supersymmetric
DM candidates.

1.2.2 Primordial Black Holes
When the dark matter problem was stated for the first time, the first candidates
to explain the problems were mostly compact astrophysical objects, such as black
holes. Very quickly, it was found that most of these objects are not suitable as
dark matter, except for Primordial Black Holes (PBH) [26]. PBHs are black holes
that are already formed very early in the history of the universe when the density
was very high, well before stars and therefore stellar black holes, which originate
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(a) Chiral supermultiplets

(b) Gauge supermultiplets

Table 1.1: Particle content of the MSSM [25]. The superpartners are denoted with
a tilde.
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from the collapse of a massive star, could form. Stellar BHs have already been
observed, in contrast to PBHs, for which no compelling evidence existed. However,
there is no clear evidence for any other DM candidate, so this is not something
that should stop us from investigating PBHs. Unfortunately, there is one major
problem for PBHs to be a good DM candidate. There are strong constraints on the
masses from observations (for more information about these constraints, see [26]).
There is only a small window of possibilities, which is shrinking throughout the
years. Therefore, PBHs were less considered as a viable DM candidate. Interest
regained when the LIGO collaboration detected gravitational waves coming from
two merging black holes with a mass which is larger than typically expected from
stellar black holes. This was seen as an indication for some new kind of BH, like
PBHs [27]. The masses of the observed BHs fell also inside the small accessible
region such that it could account for at least a part of the DM in the universe.
Also the observed merging rates are compatible with the PBH models. Since then,
research to PBH as a DM component has again been growing.

1.3 Dark matter production in the early universe
As already mentioned in section 1.1.1, we need dark matter in the early universe in
order to start the formation of the large structures we observe in the sky. Therefore,
it is necessary to study how the DM particles can be produced in the early universe.
Here, we review the most studied production mechanisms.

1.3.1 Freeze-out
When the universe was only a few seconds old, it was really hot and dense. All the
particles were very close together and because of that, their interactions occurred
more frequently than they do today. For example, a photon in the universe today
has a mean free path of about 1028 cm, while when the universe was only 1 second
old, its mean free path was about the size of an atom. This means that all the
particles in the universe were constantly scattering which kept them coupled to
what cosmologists call the thermal bath, where they are in equilibrium. As long
as the particles keep interacting fast enough with each other, they stay coupled to
the thermal bath. However, the universe is expanding, so all the particles move
away from each other and can not keep interacting fast enough, which means that
at some point, they decouple from the thermal bath. This way of producing the
dark matter is referred to as the freeze-out mechanism.

The freeze-out mechanism is used to predict the relic abundance of certain DM
particles like the WIMP. The WIMP or Weakly Interacting, Massive Particle is a
generic dark matter candidate that only interacts via the weak force (or another
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force with approximately the same strength) with the SM particles and has typ-
ically a mass of the order of the weak scale. In the freeze-out mechanism, the
WIMP is initially in chemical equilibrium with the SM particles. In order to be in
equilibrium, it must interact with the bath particles, for instance via the annihila-
tion reaction χχ ↔ B1B2 where χ is the DM and B1, B2 are thermal bath particles.
In general, any χ ↔ B reaction can keep the DM in equilibrium [28] but here, we
assume for simplicity that the annihilation of χ drives the freeze-out. The anal-
ysis for another type of process is very similar. The cross section of the reaction
must be large enough, otherwise equilibrium can not be maintained. To find the
final DM abundance, we have to solve the Boltzmann equation for this reaction,
which governs the evolution of the abundances ni of all the particles participating
in the reaction. We are typically interested in systems at temperatures smaller
than E − µ where E is the energy of the initial particles and µ is the chemical
potential. In this limit, we can neglect Bose-Einstein and Fermi-Dirac statistics
and just assume a general Maxwell-Boltzmann distribution. For a general reaction
1+2 → 3+4 with thermally averaged cross section 〈σv〉, the Boltzmann equation
is given by [29]

a−3d(n1a
3)

dt
= 〈σv〉n1,eqn2,eq

(
n3n4

n3,eqn4,eq

− n1n2

n1,eqn2,eq

)
, (1.5)

where
ni,eq = gi

∫
d3pi
(2π)3

fi(Ei). (1.6)

fi(E) is the phase space distribution and gi is the number of degrees of freedom of
the ith particle in the reaction. As already mentioned, we can approximate fi(E)
by the Boltzmann distribution,

ni,eq = gi

∫
d3pi
(2π)3

e−Ei/T =

{
gi
(
miT
2π

)3/2
e−mi/T for mi � T

gi
T 3

π2 for mi � T
. (1.7)

The thermally averaged cross section 〈σv〉 can be obtained by [29]

〈σv〉 = 1

n1,eqn2,eq

4∏
i=1

∫
d3pi

(2π)22Ei

(2π)4δ3(p1 + p2 − p3 − p4)

δ(E1 + E2 − E3 − E4)|M|2, (1.8)

where Ei and pi are the energy and three-momentum of the particles involved in
the reaction and M the Feynman amplitude. For the case of DM annihilation into
bath particles which are in chemical equilibrium (i.e. nB = nB,eq), the Boltzmann
equation becomes

a−3d(na
3)

dt
= 〈σv〉[n2

χ,eq − n2
χ], (1.9)
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where a is the cosmological scale factor. From equation (1.9) and the fact that

a−3d(na
3)

dt
=

dn

dt
+ 3Hn, (1.10)

where H = ȧ
a

is the Hubble constant, we can already predict how the DM abun-
dance behaves through the evolution of the universe. To compare the cross section
with the Hubble rate, we define Γ = n〈σv〉. If this rate is much larger than H,
the right hand side of equation (1.9) is much larger than the left hand side, unless
n ≈ neq. This means that as long as Γ > H, the annihilation process is efficient
and the dark matter is in chemical equilibrium with the bath particles. However,
from the moment the process becomes inefficient (Γ < H), the DM leaves equilib-
rium because there must be a large factor to compensate for the large Hubble rate
in the Boltzmann equation (1.9).

In order to confirm this behaviour, we need to solve the Boltzmann equation
exactly. To do this, we can rewrite equation 1.9. The density depends on the scale
factor (n ∝ a−3). We can define some new variable to get rid of this dependence,

Y ≡ n

s
and x ≡ m

T
, (1.11)

where m is the DM mass and s the entropy,

s = g∗,s
2π

45
T 3 = s(m)x−3. (1.12)

With this knowledge, and the fact that dT
dt

≈ −HT , we can rewrite the Boltzmann
equation to

dY

dx
=

〈σv〉s
Hx

[
Y 2
eq − Y 2

]
. (1.13)

In the radiation era, the era where radiation dominates over all other forms of
energy and also the era where freeze-out happens [29], the Hubble constant equals

H =

√
8πG

3
ρR =

√
g∗,ρ

π2

90

T 2

MPl

= H(m)x−2. (1.14)

Using this and equation (1.12), we are able to rewrite the Boltzmann equation
(1.13) as

dY

dx
=

〈σv〉s(m)

H(m)x2

[
Y 2
eq − Y 2

]
. (1.15)

Now we can solve this equation if we know 〈σv〉 as a function of x. In general,
this can be done by specialized software, but since the WIMP is a non-relativistic
particle, we can expand the thermally averaged cross section 〈σv〉 = a+ bv2+ . . . .
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Figure 1.3: The numerical solution of the Boltzmann equation (blue) for a p-wave
(p=2) and the equilibrium yield (red).

For a Boltzmann distribution, 〈v〉 ∝
√
T [30]. If the leading order term of the

cross section goes like the p-th power of v in the expansion, we may write
〈σv〉 = 〈σv〉0x−p/2 = 〈σv〉0x−n. (1.16)

Then, the Boltzmann equation becomes
dY

dx
=

λ

xn+2

[
Y 2
EQ − Y 2

]
, (1.17)

where λ is a new constant defined as

λ =
〈σv〉0s(m)

H(m)
. (1.18)

The Boltzmann equation in this form be solved numerically in a numerical software
package like Mathematica [31]. This we do with our own code for a WIMP with
mass m = 1 TeV. We take 〈σv〉0 = 10−10 GeV−2, which is a typical value for weak
interactions, and g∗,ρ = g∗,s = 100. The result of this integration can be found
in figure 1.3. We can see that the yield Y follows the equilibrium yield until it
decouples at a certain time and freezes out. This happens when the annihilation
of χ becomes inefficient due to the expansion of the universe, or in other words,
when the annihilation rates becomes smaller than the Hubble rate. Thus, the
higher the rate, the later the yield deviates from equilibrium and therefore, the
lower the value of the final abundance of dark matter.

1.3.2 Freeze-in
Dark matter only experiences freeze-out if it is initially kept in equilibrium with
the thermal bath particles. This is only possible if the coupling constant which
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drives this reaction is large enough. If it is too small to maintain equilibrium, we
can not use the freeze-out mechanism to find the final abundance. Instead, we can
have a Feebly Interacting Massive Particle (FIMP) which experiences the freeze-in
mechanism. In this scenario, it is assumed that there is no other DM production
mechanism such that the initial DM abundance is negligible. Then, the dominant
contribution of the abundance comes from the production via inefficient reactions
like the decay of a thermal bath particle into DM and another bath particle,
B1 → χB2, if mB1 > mχ +mB2 . Other reaction, like scattering, can also produce
DM [32], but here we focus on the decay, which is the most studied case. The
Boltzmann equation for this production mechanism reads [33]

a−3d(na
3)

dt
= gB1

∫
d3pB1

(2π)3EB1

mB1fB1ΓB1

=
gB1mB1ΓB1

2π2

∫
dEB1(E

2
B1

−mB1)
1/2e−EB1

/T

=
gB1m

2
B1
ΓB1

2π2
TK1(mB1/T ), (1.19)

where K1(x) is the first modified Bessel function of the second kind, ΓB1 the decay
width of the decaying bath particle and gB1 and mB1 the number of degrees of
freedom and mass of this particle. Just as before, we rewrite this in term of the
yield Y and the variable x =

mB1

T
,

dY

dx
=

gB1m
3
B1
ΓB1

2π2s(mB1)H(mB1)
x3K1(x). (1.20)

The final yield can be found by integrating this equation from the early universe
until now. This means that we start from really high and go to quite low temper-
atures (Ttoday = 2.7K), so we might as well integrate form 0 to ∞. The integral
of x3K1(x) gives a factor of 3π

2
, so we get

Y∞ =
3gB1m

3
B1
ΓB1

4πs(mB1)H(mB1)
=

135gB1

8π3(1.66)g∗,s
√
g∗,ρ

(
MPlΓB1

m2
B1

)
. (1.21)

For the second equality, we used equations (1.12) and (1.14). Knowing this, we
can calculate the final abundance,

Ωh2 =
ρ

ρcrit
h2 =

mχs0Y∞

3(H0/h)2MPl

=
1.09× 1027gB1

g∗,s
√
g∗,ρ

mχΓB1

mB1

. (1.22)

If we want to see the evolution of the yield through time, we have to integrate
equation (1.20) from zero to x for every value of x. This has been done with our
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Figure 1.4: The DM yield (blue) obtained by numerical integrating equation (1.20)
for a coupling constant of y = 10−8 and the DM equilibrium yield (red) obtained
from equation (1.7).

own code in figure 1.4 for χ being a scalar particle such that ΓB1 =
mB1

y2

8π
where

y = 10−8 is the coupling constant that drives the decay and mB1 = 1 TeV. We see
that we start out with a negligible yield that grows until it reaches the value we
calculated in equation (1.21) and freezes in. In equation (1.21), we also see that
the final abundance depends linearly on ΓB1 ∝ y2 and thus for a larger coupling
of the DM with the thermal bath particles, we obtain a larger final abundance.
This is in contrast with the freeze-out mechanism, where a larger coupling meant
a smaller final abundance. This behaviour is summarized in figure 1.5, where we
see that for a small coupling, we have the freeze-in mechanism where the final
abundance grows with the coupling constant and for larger values of y, we see
the inverse behaviour of the freeze-out mechanism. For intermediate values, many
scenarios exist which can be more complex as the behaviour we show in figure 1.5,
see for instance [28].

1.3.3 Co-annihilations
Until now, we discussed the freeze-out and freeze-in mechanism for only one par-
ticle. Of course, it can be that there is more than one particle in the Dark Sector
(DS) that couple to the DM. For the freeze-out mechanism, the situation can
change due to the presence of other particles that are being produced through
the same mechanism. The influence of other dark sector particles depends on the
moment of decoupling of the DM and of the other particles. If they decouple at
different times, we can separate the freeze-out processes for all different particles
and the above methods can still be applied to calculate the relic abundance. The
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Figure 1.5: A schematic representation of the dependence of the final abundance
on the coupling constant y of the DM with the thermal bath particles [34]. We
see that for small values of y the abundance rises because we are in the freeze-in
regime. For large values of y, the opposite happens because this is the freeze-out
regime. For intermediate values of y, more complex scenarios can exist, see for
instance [28].

moment of decoupling depends on the mass of the particle, so for two particles
with a similar mass (compared to the temperature when freeze-out happens Tf ),
we need to take into account that they may decouple simultaneously if they have
interactions of the same strength.

Let us consider that we have N dark sector particles χi that couple to the thermal
bath with masses mi and with degrees of freedom gi. We take mi < mj for i < j
such that χ1 is the lightest one. Here, we also assume that there is some kind of
Z2-symmetry under which all χi are odd and all the other (SM) particles are even.
Due to this symmetry, all χi decay into at least one DS particle. Therefore, it is
kinematically forbidden for the lightest DS particle χ1 to decay, making it stable
and thus a viable DM candidate.

The following reactions are able to change the abundances of the DS particles
in the early universe,

χiχj ↔ B1B2, (1.23)
χiB1 ↔ χjB2, (1.24)

χj ↔ χiB1B2, (1.25)

where B1 and B2 denote any of the thermal bath particles. Other reactions are
forbidden due to the symmetry we assumed. The abundances of the particles can
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be calculated by solving a set of N coupled Boltzmann equations,

a−3d(nia
3)

dt
=
∑
j,B

〈σijv〉[ni,eqnj,eq − ninj]

+(〈σ′
ijv〉ninB − 〈σ′

jiv〉njnB)

+Γij(ni − ni,eq), (1.26)

where we sum over all possible DS (summation over j) and bath particles (sum-
mation over B). We defined the cross sections as follows,

σij = σ(χiχj → B1B2), (1.27)
σ′
ij = σ(χiB1 → χjB2), (1.28)

Γij = Γ(χi → χjB1B2). (1.29)

Since χ1 is the lightest particle and it is stable, all other χi particles eventually
decay into χ1. Therefore, it is more relevant to track the quantity n =

∑N
i=1 ni

where i runs over the DS particles only. If we sum over equations (1.26), we obtain

a−3d(na
3)

dt
=

N∑
i,j=1

〈σijv〉[ni,eqnj,eq − ninj]. (1.30)

We see that due to the summation, the second and third term in eq. (1.26) drop
out because cross sections and decay rates remain the same if we reverse the
process. The reactions of type (1.23) dominate the freeze-out so we can assume
that ni

n
≈ ni,eq

neq
. This simplifies eq. (1.30) to,

a−3d(na
3)

dt
= 〈σeffv〉[n2

eq − n2], (1.31)

with,

σeff =
N∑

i,j=1

σij
ni,eq

neq

nj,eq

neq

. (1.32)

We see that this equation has te same form as eq. (1.9), so we can solve it with the
same techniques as in the simple freeze-out mechanism with just one DS particle. It
is just more complicated to compute the effective thermally averaged cross section,
because it contains more processes. Using equation (1.7), we can approximate ni,eq

neq
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if we assume that the DS particles are highly non-relativistic (mi � T, ∀i),

ni,eq

neq

=
gi
(
miT
2π

)3/2
e−mi/T∑N

j=1 gj

(
mjT

2π

)3/2
e−mj/T

=
gi(mi +m1 −m1)

3/2 e−mix/m1∑N
j=1 gj(mj +m1 −m1)3/2 e−mjx/m1

× m
3/2
1 ex

m
3/2
1 ex

=
gi(1 + ∆i)

3/2 e−∆ix∑N
j=1 gj(1 + ∆j)3/2 e−∆jx

=
gi(1 + ∆i)

3/2 e−∆ix

geff
, (1.33)

with ∆i =
mi−m1

m1
and geff =

∑N
j=1 gj(1 + ∆j)

3/2 e−∆jx. With this, the effective
cross section becomes

σeff =
N∑

i,j=1

σij
gigj
g2eff

(1 + ∆i)
3/2(1 + ∆j)

3/2 e−(∆i+∆j)x. (1.34)

1.4 Dark matter detection
The obvious next step in the DM search was to start up experiments that can
detect the DM. In the past decades, there have been three main strategies used by
researchers to detect DM interactions with SM particles, assuming of course that
DM is a particle itself and interacts in some way with matter. These strategies
are shown schematically in figure 1.6. Depending on how we look at this process
(where we do not know yet what happens inside the blob), we have to design a
specific experiment that can observe it. We quickly review the three main types
of experimental strategies that correspond to the three arrows in figure 1.6.

1.4.1 Direct detection
Through the comparison of the motion of stars and the amount of visible mass,
scientists observed that around most galaxies, even our own, there is a halo of
DM. This means that the earth is flying through this halo and that DM particles
are passing right by us constantly. Most DM does not interact with anything,
but a small fraction might scatter with atoms. That is why scientist have build
detectors to observe the recoil energies of these scattering events. The detectors
are typically placed deep underground to shield against cosmic ray backgrounds.
Cosmic radiation loses all of its energy before it can reach these underground
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Figure 1.6: A schematic representation of the three main detection strategies for
a DM particle.

detectors, but because DM interacts so weakly, it can reach the detector. Of
course, the probability that the DM flies through the detector without scattering
is still very large, depending on the cross section which we do not know. The
predicted interaction rate is typically small, which is why most of these detectors
require a large volume, just as in the case with neutrino experiments.

Direct detection experiments can give a lot of information about the interactions
(cross section) and the kinematics (mass) of the DM. Unfortunately, no significant
amount of scattering events have been observed yet. This gives large constraints
on the mass and cross section of specific DM models. For instance, the constraints
for WIMPs obtained by the XENON1T experiment [36] are summarized in figure
1.7.

1.4.2 Indirect detection
In addition to detecting the DM particles directly, it is also possible to observe
the end products of DM annihilation from regions of increased DM density such a
the ones observed in the centre of our galaxy or in dwarf galaxies. Possible signals
include antimatter (positrons and anti-protons), gamma rays and neutrinos. These
signals are affected by astrophysical processes, which makes the analysis of the data
very difficult. This is why the detection of DM has not been confirmed yet even
though some interesting fluctuations have already been put forward. For example,
in 2008, the positron and anti-proton data from the PAMELA satellite [39] was
released. The satellite observed a higher positron flux than would be expected.
This excess, later confirmed by AMS [40], could come from these DM annihilation
events, but it could also be explained by a number of pulsar as well as secondary
production in supernova remnants. This hypothesis has to be tested before a DM
detection can be claimed.

20



CHAPTER 1. DARK MATTER

Figure 1.7: The spin-independent WIMP-nucleon cross section σSI limits as a func-
tion of WIMP mass at 90% confidence level (black) for the last run of XENON1T
[36]. In green and yellow are the 1 and 2σ sensitivity bands. Earlier results from
LUX [37] (red) and PandaX-II [38] (blue) are shown for comparison.

1.4.3 Collider experiments
Classical searches

A third way of trying to detect DM is at accelerator experiments such as the Large
Hadron Collider (LHC) at CERN. In such colliders, SM particles are accelerated
to very high energies. If they reach a sufficiently high energy, they collide. In
these collisions, all SM particles can be produced by various processes. Therefore,
detectors are placed around the collision point to detect these particles. In the case
of the LHC, several detectors are placed around it of which CMS and ATLAS are
the largest and most important ones. If dark matter couples in some way to the
standard model, it is even possible to produce it too at LHC. However, since dark
matter is assumed to be electrically neutral, it can not be seen by the detectors.
Only charged particles leave a signal in the detector. However, if the DM would
decay, we could observe its decay products. The only problem with this strategy
is that dark matter should be stable or at least have a very long lifetime since it
is present in our universe already from the moment the first structures started to
form. Thus, if the DM particles would decay, it happens way outside the detector
and it is not possible to detect the decay products. Hence, dark matter can only be
directly detected as missing energy, just like any other neutral and stable particle.
The searches for stable, neutral particles are called mono-X searches [1] and look
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for visible particles or jets in an event with missing energy. These searches can
not distinguish DM from any other neutral and detector-stable particle meaning
that the detection of dark matter can not be claimed on the basis of collider data
alone. Direct or indirect detection methods provide a way to confirm whether a
potential signal is truly dark matter.

The fact that results from collider experiment can not give a complete proof of
dark matter does not mean these experiments can not be used to extract infor-
mation about possible DM candidates. For instance, if there are no DM signals
observed, constraints can be put on certain models. As a consequence, there is
already a lot of pressure on the WIMP paradigm due to the lack of any sign of
dark matter at LHC [41] but also in direct detection experiments.

Collider experiments are not only trying to detect the DM itself, but also other
undiscovered particles that potentially mediate the interactions between the DM
and SM particles. These particles could be for instance superparticles of the MSSM
like squarks or sleptons which are charged and thus can be detected at LHC [42].

Recent strategies

Nowadays, a lot of models that predict new particles exist and therefore, it is
hard to test every model at colliders. This has motivated more systematic, model-
independent studies which fall mainly into two categories. The first is making use
of effective operators describing the low energy interactions between the DM and
SM particles. This effective field theory [43] (EFT) approach does not depend
on the full theory of the dark sector which is still unknown. However, we can
only use the EFT approximation when the energy scale at which the processes
happen is smaller than the cut-off scale. An alternative approach that is often
used for collider studies is the framework of Simplified models [6]. These are
models constructed with a minimal particle content to describe certain signatures
of various experiments. Simplified models can be viewed as arising from integrating
out the irrelevant particles and taking a certain limit of the more detailed theory,
like the Minimal Supersymmetric Standard Model (MSSM). This is how data is
interpret very often nowadays in many sorts of experiments, but it is also used to
display the complementarity of the various experimental probes. Simplified models
have become the main vehicle for interpreting DM searches at LHC, but also for
projecting the reach of future colliders and comparing with direct and indirect
detection experiments. In the literature, many different simplified models can be
found, see [44–46].

Scientists are looking for other ways of producing more exotic signatures in
colliders (i.e. other than for instance the missing energy signal) like SM particles
that are produced somewhere inside the detector, rather than close to the place
where the collision happened. This is referred to as displaced vertices. They
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can occur when an unknown particle decays to this observed particle and another
unknown (potentially DM) particle inside the detector. Therefore, it is needed
that this decaying particle has a macroscopic decay, otherwise it would decay
immediately after it is produced in the collision. Simplified models of new physics
leading to such exotic signatures can be realized by adding two unknown particles
to the SM [47]. In the spirit of simplified models, these particles might be a part
of a way larger theory with more particles that are neglected for simplicity. In the
next chapter, we discuss an example of such a simplified model where one could
for instance consider the lightest neutralino coupling only to one of the sleptons
and its corresponding lepton. This captures not only the physics of the MSSM,
but of all models where DM couples to a charged scaler.
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Chapter 2

Simplified model for
co-annihilations

As we have discussed in section 1.3, there are a couple of ways the DM could
have been produced in the early universe, depending on the nature of the DM and
other dark sector particles. Already many searches, for instance at the LHC, have
been performed to try to detect the WIMP which is produced via the freeze-out
mechanism. Unfortunately, no experimental signals have been found yet meaning
that these searches are putting a lot of pressure on the WIMP paradigm. Therefore,
it is necessary to look at other possible production mechanisms. In this chapter,
we introduce a simplified model inspired by supersymmetry and study how the
DM candidate in this model can be produced. This DM candidate couples to
one of the superpartners of the fermions called the sfermions. How these particles
couple is discussed in section 2.1. After this, we look at how the DM abundance
can evolve in our model. To do this, we have to solve the complete Boltzmann
equation including all possible processes influencing the dark sector abundances.
These processes are discussed in section 2.2 where we also look at the Boltzmann
equation that describes the evolution of the DM abundance. A more detailed
study of how all the different processes can influence the DM relic abundance is
done in section 2.3. This largely depends on the value of the coupling constant
that drives the interactions between the DM and sfermion it couples to. For large
values of this coupling, we retrieve the same solution as the standard freeze-out
mechanism1, but decreasing the coupling changes the behaviour and other effects
start to play a role.

1When multiple dark sector particles play a role, we are in the co-annihilation regime. How-
ever, we will still refer to this as the standard freeze-out mechanism since the working principle
is the same. If we apply the equations we derived for co-annihilations in section 1.3.3 on just one
particle, we retrieve the equations for the freeze-out mechanism for just one particle we derived
in section 1.3.1
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2.1 The model
Let us start by introducing the most important particle of our model, the DM
candidate. Here, we consider a Majorana fermion which we denote by χ. The main
difference between a Majorana and Dirac fermion is that a Majorana fermions is
its own anti-particle (in the SM, all fermions are Dirac, except for the neutrinos
of which we do not know the nature yet [48]). Its kinetic and mass term in the
Lagrangian are

LDM =
i

2
χ̄γµ∂µχ− mχ

2
χ̄χ. (2.1)

From this, we see that χ does not couple to any of the gauge bosons directly. In
our model, it only interacts with the fermions (leptons and quarks). The interac-
tions are mediated by another new dark sector particles, a charged scalar f̃ . The
Lagrangian that governs these processes and the interactions of this scalar with
the other SM particles is

Lint = (Dµf̃)
† Dµf̃ − λχf̃ f̄

1− γ5
2

χ + h.c. (2.2)

Here, f denotes one of the SM fermions and Dµ denotes the covariant derivative
which contains all the interactions with f̃ and the SM gauge bosons. The quantum
numbers of f̃ are defined to be the same as the corresponding fermion. The second
term in the Lagrangian describes the yukawa interactions between the DS and
SM particles, where λχ is the yukawa coupling constant. In the MSSM, such
yukawa interactions appear with the charged scalar f̃ being the superpartner of
the fermion f named the sfermion. Therefore, we will refer to the charged scalar
as the sfermions, although we are only considering a simplified model, not the full
MSSM. There, all the superpartners of the fermions would be present with each of
them having their own coupling constant λχ that would be fixed by supersymmetry.
We do not sum over all possible fermions, only one at a time will couple such that
we have two dark sector particles with a free coupling constant. In the Lagrangian
can be seen that only the right handed fermions couple to χ due to the presence
of the projection operator. The left handed ones do not interact directly with χ
and are therefore not considered in this model.

Dark matter has been present in our universe almost since the beginning of its
existence. Thus, for χ to be a viable DM candidate, is should be stable. If we
assume that the DM mass mχ is less than the one of the sfermion mf̃ , then χ will
not be able to decay to f̃ . However, it is still possible that the DM decays to two
or more lighter SM particles. To prevent this, we impose a Z2-symmetry. Under
this symmetry, all SM particles are even. Only the DS particles χ and f̃ are odd.
This makes that if a DS particle decays, it must decay to at least one other DS
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particle, otherwise it breaks the symmetry. Due to this, the lightest DS particle,
which in our case will be χ, is stable.

On top of the gauge and Yukawa interactions between the DS en SM particles,
it is also possible to have a Higgs-portal interaction given by

LH = λHH
†Hf̃ †f̃ . (2.3)

This type of interactions do not involve the DM, but it could influence the anni-
hilation rate of f̃ . The extent of the influence depends on the coupling λH . We
assume in this thesis that such coupling is enough small to not interfere in the
dynamics leading to the relic DM abundance. We leave the study of effects when
this type of coupling does interfere for the future.

Now that we have defined the simplified model, we are interested in the free
parameters of the model. First of all, we already mentioned that the coupling
constant λχ will not be fixed. Also the masses of both χ and f̃ do not have fixed
values. The only restrictions is that the mass of χ has to be lower than the mass
of f̃ to keep the DM particle stable. Thus, we have three free parameters in our
model, mχ, mf̃ and λχ. For this thesis, we will further focus on the region in
parameter space where the mass difference ∆m = mf̃ −mχ between the sfermions
and DM is very small such that co-annihilation effects are important. Therefore,
we will make use of the parameters

mχ,∆m,λχ. (2.4)

Depending on the values of the coupling constant λχ, the mechanism of producing
DM can be very different. In the next sections of this chapter, we discuss the
possible cases in more detail.

2.2 Conversion driven freeze-out
The model we introduced in the previous section has two new or dark sector
particles, the dark matter candidate χ and a partner that mediates the interactions
between χ and the SM particles. We named this particle the sfermion f̃ which is
the superpartners of one of the fermions. From now on, we mainly focus on the
case where f̃ is the superpartner of one of the leptons, i.e. we consider f̃ = l̃. This
means that the leptons are the only SM particles χ couples to, hence we name it
leptophilic dark matter. The case for the squarks (superpartners of the quarks)
is very similar but has already been studied in the literature. Therefore, we are
only interested in the slepton case. For more details on the squarks, we refer to
appendix A or to the literature [49, 50].

In section 1.3, we saw that we can calculate the relic DM density through some
kind of mechanism called freeze-out. This was first described for one particle
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initial state final state scaling

χ χ l l̄ λ4
χ

χ l̃
l γ, Z,H

λ2
χ

W− νl

l̃ l̃†

γ, Z,W+ γ, Z,W−

λ0
χ

q q̄

H Z

e−, µ−, τ− e+, µ+, τ+

l̃ l̃ l l λ4
χ

Table 2.1: List of all included co-annihilation processes where l is one of the
leptons (e, µ, τ), depending on the case we are studying. Also the dependence of
the cross section on the coupling constant λχ is denoted in the last column. The
l̃l̃† annihilation into ll̄ also has contributions scaling with λ2

χ and λ4
χ.

species, but later generalized for more. In this scenario, all the dark sector parti-
cles were initially in chemical equilibrium with the SM particles through efficient
co-annihilation processes of which the rate Γ is larger than the Hubble rate H.
At a given time, the co-annihilation processes would cease to be efficient and the
DS particles would decouple. In our model, χ and l̃ co-annihilate via the pro-
cesses that are listed in table 2.1. If these processes are of the same order of the
weak interactions, they were efficient in the early universe and we can use the
freeze-out mechanism to determine the relic DM abundance. The dependence on
the coupling λχ is also denoted in table 2.1. We see that the annihilation pro-
cesses of l̃, l̃l̃† ↔ SM SM do not depend on λχ. Only weak interactions play
a role here making that the sleptons were initially in equilibrium. The other co-
annihilation processes including χ do depend on the coupling meaning that they
could be initially inefficient for low values of λχ (more on this in section 2.3.2).
However, we can still use the freeze-out mechanism if the conversion processes
l̃ ↔ χ like the ones in figure 2.1 are efficient such that the DM is still in equilib-
rium through its mediator. As long as the conversion processes are efficient such
that chemical equilibrium holds between χ and l̃, we do not have to include them
in the Boltzmann equation. We obtain the correct result by taking into account
only the co-annihilation processes and by assuming that χ is initially in chemical
equilibrium.
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initial state final state scaling

χ

l

l̃

γ, Z,H

λ2
χ

γ, Z,H l̄

W− ν̄l

νl W+

l̃ χ l λ2
χ

χ χ l̃ l̃† λ4
χ

Table 2.2: List of all included conversion processes and their dependence of the
cross section on λχ. l is one of the leptons (e, µ, τ), depending on the case we are
studying.

l̃

χ

l

(a)

χ

SM

l̃

SM

(b)

Figure 2.1: The Feynman diagrams for the most important conversion processes.
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In our model, the conversion processes that are all listed in table 2.2 depend
on the coupling constant λχ. This means that when this coupling is large enough
such that the conversion rates are larger than the Hubble rate H, we can use
the standard freeze-out mechanism. However, we would like to consider arbitrary
values for λχ. Thus, in order to solve for the relic abundance in general, we need to
solve the Boltzmann equation that takes into account all the conversion processes.
In particular, we have

dYχ

dx
=

−s

Hx

[
〈σχχv〉

(
Y 2
χ − Y 2

χ,eq

)
+ 2〈σχl̃v〉

(
YχYl̃ − Yχ,eqYl̃,eq

)
+

2Γχ→l̃

s

(
Yχ − Yl̃

Yχ,eq

Yl̃,eq

)
−

2Γl̃

s

(
Yl̃ − Yχ

Yl̃,eq

Yχ,eq

)

+ 〈σχχ→l̃l̃†v〉

(
Y 2
χ − Y 2

l̃

Y 2
χ,eq

Y 2
l̃,eq

)]
, (2.5)

dYl̃

dx
=

−s

Hx

[
〈σl̃l̃†v〉

(
Y 2
l̃
− Y 2

l̃,eq

)
+ 2〈σχl̃v〉

(
YχYl̃ − Yχ,eqYl̃,eq

)
−

2Γχ→l̃

s

(
Yχ − Yl̃

Yχ,eq

Yl̃,eq

)
+

2Γl̃

s

(
Yl̃ − Yχ

Yl̃,eq

Yχ,eq

)

− 〈σχχ→l̃l̃†v〉

(
Y 2
χ − Y 2

l̃

Y 2
χ,eq

Y 2
l̃,eq

)]
, (2.6)

where Yl̃ is the summed contribution over the sleptons and the anti-sleptons.
Therefore, we need to multiply some of the thermally averaged cross sections and
decay rates by two to account for the same processes that happen with the anti-
sleptons instead of the sleptons. The thermally averaged co-annihilation cross
sections include all processes that are denoted in table 2.1. They are defined as

〈σχχv〉 =
∑
i,j

〈σχχ→ijv〉, (2.7)

〈σχl̃v〉 =
∑
i,j

〈σχl̃→ijv〉, (2.8)

〈σl̃l̃v〉 =
∑
i,j

〈σl̃l̃→ijv〉, (2.9)

where i, j denote SM particles. For the conversion processes χ SM ↔ l̃ SM in
table 2.2, the interaction rate is defined as

Γχ→l̃ =
∑
i,j

〈σχi→l̃jv〉ni,eq, (2.10)

where i, j again represent SM particles.
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2.3 Relevant processes influencing the abundance

2.3.1 Calculating the cross sections and decay rate
If we want to solve the system of coupled Boltzmann equations (equations (2.5)
and (2.6)), we need to calculate first all thermally averaged cross sections and
decay rates. To facilitate this, we make use of specialized software. First, we
implement the model we defined in section 2.1 into FeynRules [51], a package that
allows us to calculate the Feynman rules for all tree level diagrams. Knowing the
Feynman rules, the amplitude squared |M|2 can be found analytically by using
another software package called CalcHEP [52]. FeynRules provides the input files
CalcHEP needs to generate |M|2. For all 2 → 2 processes in table 2.1 and 2.2, we
can now calculate the thermal averaged cross section which is defined in equation
(1.8) and can be simplified to

〈σijv〉ni,eqnj,eq =
gigj
256π5

T

∫
pijpab√

s
|M|2K1

(√
s

T

)
ds d cos θ, (2.11)

where Ki denotes a modified Bessel function of the second kind and pij and pab
are the absolute values of the three momenta of respectively the initial and final
state in the centre-of-mass (COM) frame. Because CalcHEP gives us an analytic
expression of the matrix element squared as a function of the Mandelstam variables
s and t, we rewrite this integral using [53]

t = (Eij − Eab)
2 − (pij − pab)

2 − 4pijpab sin
2

(
θ

2

)
. (2.12)

The integration becomes,

〈σijv〉ni,eqnj,eq =
gigj
512π5

T

∫
|M|2√

s
K1

(√
s

T

)
ds dt. (2.13)

The integration limits for t can be found by filling in θ = 0 and θ = π in equa-
tion (2.12). Now we can use Mathematica to do the integration of |M|2 over t
analytically. The integration over the COM energy s is too difficult to perform
analytically by Mathematica due to the Bessel function in the integrand. This
means that this integration has to be done numerically. In this process, there
appear a number of numerical problems. Our methods used to treat these issues
can be found in appendix B.

Besides the 2 → 2 processes of which we have already obtained the thermally
averaged cross section, there is also the decay of the slepton l̃ → χl that influences
the evolution of the yield. For this process, we need to calculate the decay width
Γ via [53]

Γ =
1

32π2

∫
|M|2 pab

mf̃

dΩ. (2.14)
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To solve the Boltzmann equations, we need the thermally averaged decay rate,
which is defined as

Γf̃ ≡ Γ〈γ−1〉 = Γ
K1

(
mf̃/T

)
K2

(
mf̃/T

) , (2.15)

where γ is the Lorentz factor and the brackets denote as usual the thermal average.
In the last equality, we ignored quantum statistical corrections and just assumed
a Boltzmann distribution. Now we have all the necessary ingredients to solve the
Boltzmann equation. To check that our own code reproduces the correct relic
abundance, we fixed our set of free parameters (equation 2.4) such that we are
in the standard freeze-out regime. There are some software packages such as
micrOMEGAs [54] that can calculate the relic abundance in this regime too. We
implemented the model under study here in micrOMEGAs with the same set of
parameters in order to compare the results. We found that both tools reproduces
more or less the same relic abundance2.

2.3.2 Comparison between the processes
In section 2.1, we mentioned that the model we introduced has three free pa-
rameters, the DM mass mχ, the mass-splitting ∆m between the DM and its co-
annihilation partner and the coupling λχ between the two, see equation (2.4). In
this section, we inspect the influence of this coupling on the conversion and co-
annihilation rates together with the influence on the evolution of the DM yield.
Therefore, the behaviour in four regimes characterized by the value of the coupling
is investigated while the DM mass and the mass splitting are kept fixed (mχ = 150
GeV and ∆m = 5 GeV). For this comparison, the co-annihilation partner is τ̃ . The
analysis for µ̃ and ẽ is qualitatively the same. We already summarize the main
points of the discussion below in table 2.3.

Regime 1: Freeze-out with co-annihilation (λχ ∼ 10−1)

We start in the regime where the coupling constant is rather large, of the order of
0.1. From table 2.1 and 2.2, we see that almost all processes relevant to compute
the DM abundance depend on λχ, except for the τ̃ annihilation processes. For
this coupling of the same order of the one of the weak interactions, we expect that
conversion rates are initially way larger than the Hubble rate. To check this, we can
take a look at figure 2.2a where we plotted the rates Γ = 〈σv〉n of all the relevant
processes. How these rates are defined is reported in appendix C. In this figure,
we see that initially, all processes are efficient. The red lines denote the conversion

2There are small numerical differences which account for the small discrepancy of about 5%.
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Name of the regime Most imporant processes Value of λχ

1 Freeze-out with co-annihilations
χχ ↔ SM SM

10−1χτ̃ ↔ SM SM

τ̃ τ̃ † ↔ SM SM

2 Freeze-out driven by τ̃ τ̃ † annihilation τ̃ τ̃ † ↔ SM SM 10−5

3 Conversion-driven freeze-out
τ̃ τ̃ † ↔ SM SM

5 · 10−7

χ ↔ τ̃

4 Freeze-in τ̃ → χl 10−8

Table 2.3: A summary of all the regimes with their important processes. The
values of λχ that are shown are taken as benchmarks. Larger ranges of λχ are
associated with the regimes.

processes and we see that especially for the processes τ̃ ↔ τχ and χ SM ↔ τ̃ SM ,
the rate stays well above the Hubble rate for a long time compared to the other
rates. Due to these processes, χ and τ̃ are in chemical equilibrium which means
that the standard freeze-out mechanism yields the correct answer. Also, the co-
annihilation rates (blue lines in figure 2.2a) are larger than the Hubble rate for
large temperatures (x = mχ

T
< 30) meaning that our two co-annihilation partners

are initially in thermal contact with the bath particles. Looking at the evolution
of the yield in figure 2.2b, the same behaviour is visible. Until x ≈ 30 the yield for
both χ and τ̃ follow their equilibrium values until they decouple at approximately
the same time, when the co-annihilation rates drop below the Hubble rate. From
then on, we see that the abundance of χ freezes out while the τ̃ keeps decaying.

Regime 2: Freeze-out driven by τ̃ τ̃ † annihilation (λχ ∼ 10−5)

As we expected, for a coupling of the order of the weak coupling constant, we
retrieve the same results as the standard freeze-out mechanism. Now we can
inspect what happens if we go to a regime with a smaller coupling constant. We
expect that all the rates depending on λχ decrease. And this is exactly what
happens in figure 2.3a. The annihilation rate of τ̃ τ̃ † stays at the same level, all
the others decrease. Two out of the three conversion processes still are larger
than the Hubble rate keeping χ in equilibrium with τ̃ meaning that we can still
use the standard freeze-out mechanism to calculate the final DM relic abundance.
However, when we look at the blue curves for the co-annihilation processes, we see
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Figure 2.2: LEFT: All the rates compared to the Hubble constant as a function of
x = mχ

T
. The conversion processes are depicted in red, the co-annihilation ones in

blue. The Black line depicts where Γ = H. RIGHT: The evolution of the yield of
χ (solid purple line) and τ̃ (solid orange line) and their equilibrium yield (dashed
lines) as a function of temperature. Both figures are calculated with the following
parameters: mχ = 150 GeV, ∆m = 5 GeV and λχ = 10−1, i.e. we are in the
freeze-out regime with co-annihilations. More details on the exact definitions of
the rates can be found in appendix C.

that the one depicting the annihilation of χχ into SM particles is so low, that it
does not play a role. Even the co-annihilation rate for χτ̃ ↔ SM SM is initially
of the same order of H, but decreases very fast. Therefore, only one process
influences the relic DM abundance, namely the annihilation of τ̃ into SM particles
τ̃ τ̃ † ↔ SM SM . It dominates the other two completely. This is also the only
process that does not depend on our coupling constant λχ. Because all processes
depending on λχ do not influence the DM abundance, we may conclude that in
this regime, the calculated relic abundance is always the same regardless of the
precise value of the coupling. We can vary it within the regime, the calculated
result will not change.

In figure 2.3b, we can find almost the same evolution of the yield as in the
previous regime, although some of the co-annihilation processes are suppressed
here. Just as in the previous case, the τ̃ τ̃ † annihilation is the dominating process.
Therefore, changing the coupling constant changed the final abundance only a
little bit. One thing that we might expect to happen is that χ would decouple
way earlier because of the small annihilation and co-annihilation rates. Due the
still efficient conversion processes, χ stays in equilibrium with τ̃ which at his turn
is coupled to the thermal bath because the annihilation of τ̃ does not depend on
λχ and is efficient in every regime. Therefore, both particles still decouple at the
same time, at x ≈ 30.
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Figure 2.3: LEFT: All the rates compared to the Hubble constant as a function of
x = mχ

T
. The conversion processes are depicted in red, the co-annihilation ones in

blue. The Black line depicts where Γ = H. RIGHT: The evolution of the yield of
χ (solid purple line) and τ̃ (solid orange line) and their equilibrium yield (dashed
lines) as a function of temperature. Both figures are calculated with the following
parameters: mχ = 150 GeV, ∆m = 5 GeV and λχ = 10−5, i.e. we are in the
freeze-out regime driven by τ̃ τ̃ † annihilation.

Regime 3: Conversion-driven freeze-out (λχ ∼ 5 · 10−7)

As we have been lowering the coupling, we have seen that the assumptions that
χ and τ̃ are in equilibrium is not that obvious. For an even lower coupling, the
assumption might break down. This is exactly what happens. For λχ ∼ 5 · 10−7,
we enter a regime where the ratio of the conversion and Hubble rate is very close
to or even smaller than one, as can be seen in figure 2.4a. We finally arrived in the
zone where we can not use the standard freeze-out mechanism. In the previous
regimes, the solution of the Boltzmann equation in section 1.3.3 would always
yield the same result as the solutions of the full set of Boltzmann equations we
presented in section 2.2. From now on, this is not the case and we must solve
the full set of Boltzmann equations where all processes in table 2.1 and 2.2 are
taken into account explicitly. We can see in figure 2.4a that not every process is
equally important. At early times, the annihilation of τ̃ is again the dominant
process. Now, not only the DM annihilation (χχ ↔ SM SM) and co-annihilation
(χτ̃ ↔ SM SM) processes are inefficient, also the conversion processes are on
the edge of being efficient. Therefore, χ loses contact with all the other particles
which makes it leave equilibrium almost immediately3. We can clearly see the DM
yield deviating from its equilibrium value in figure 2.4b, where it is also noticeable
that the yield of χ still stays close the τ̃ -yield until they both decouple from the
thermal bath. This is due to barely but still efficient conversion processes. The

3This also raises the question if assuming that Yχ(1) = Yχ,eq(1) is still valid. More on this in
section 2.4
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Figure 2.4: LEFT: All the rates compared to the Hubble constant as a function of
x = mχ

T
. The conversion processes are depicted in red, the co-annihilation ones in

blue. The Black line depicts where Γ = H. RIGHT: The evolution of the yield of
χ (solid purple line) and τ̃ (solid orange line) and their equilibrium yield (dashed
lines) as a function of temperature. Both figures are calculated with the following
parameters: mχ = 150 GeV, ∆m = 5 GeV and λχ = 5 · 10−7, i.e. we are in the
conversion-driven freeze-out regime.

decay rate of τ̃ (red dashed line in figure 2.4a) grows a bit for larger values of x.
Therefore, the χ-yield gets dragged down towards its equilibrium value without
reaching it because the conversion processes are not efficient enough.

Regime 4: Freeze-in (λχ ∼ 10−8)

For all the previous regimes, there was some time in the evolution of the uni-
verse where the conversion processes were efficient, although sometimes just barely.
However, for really low values of the coupling, we would expect that this does not
occur any more. In figure 2.5a, the conversion rates for λχ = 10−8 are always
smaller than the Hubble rate. Thus, the evolution of the stau can only slightly
influence the DM abundance, but not enough to consider them in equilibrium. In
figure 2.5b, where the evolution of the yield is shown, the assumption was made
that we start out with a negligible amount of dark matter. In section 2.4, we
explain why we make this assumptions and not that the co-annihilation partners
are initially in equilibrium as we did before. If we assume initially a negligible
amount of DM, we see that the yield rises up to a certain value and from then
on, it stays constant. This is exactly the behaviour from the freeze-in mechanism
we discussed in section 1.3.2, were we made the same assumption concerning the
initial abundance. From this, we can conclude that for these small values of the
coupling, the co-annihilation partner does not play an important role in calcula-
tion the relic DM abundance. The only importance of the stau here is that it
provides a way to produce χ at early times through its decay τ̃ → χτ and the
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Figure 2.5: LEFT: All the rates compared to the Hubble constant as a function of
x = mχ

T
. The conversion processes are depicted in red, the co-annihilation ones in

blue. The Black line depicts where Γ = H. RIGHT: The evolution of the yield of
χ (solid purple line) and τ̃ (solid orange line) and their equilibrium yield (dashed
lines) as a function of temperature. Both figures are calculated with the following
parameters: mχ = 150 GeV, ∆m = 5 GeV and λχ = 10−8, i.e. we are in the
freeze-in regime.

other conversion process. For larger values of x, these processes are not efficient
enough to drag down the DM abundance towards its equilibrium value as was the
case in the previous regimes. Therefore, once it reached its maximal value, it stays
constant.

We now studied all the relevant regimes in which the coupling constant has
different values. In table 2.3, we summarized the important processes for every
regime. The freeze-out regime with co-annihilations has already been studied
extensively in the literature in the context of the WIMP [1, 35, 46, 59]. Already
many attempts have been made to discover the WIMP, but as we discussed in
section 1.4, no conclusive results have been found yet. Therefore, we will study in
the next chapter in which region in the mχ − ∆m plane the standard freeze-out
mechanism fails to reproduce the correct relic DM abundance.

2.4 Dependence on initial conditions
A very interesting feature of the freeze-out mechanism is that it does not depend
on the initial conditions. For small values of x (x & 1), the annihilation rates
are efficient and therefore, the yield always converges to the equilibrium value,
regardless whether we start with zero or with a very high abundance. This is very
useful because in general, we do not know yet how the abundance is set in the
first moments after the big bang (x < 1). For instance inflation or the reheating
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Figure 2.6: Solution of the Boltzmann equation for different initial conditions:
Yχ[1] = i · Yχ,eq with i ∈ {0.1, 1, 10, 100}. All different solutions are calculated
with τ̃ as the co-annihilation partner and for the following parameters: mχ = 150,
∆m = 5 and λχ = 5 · 10−7, i.e. we are in the conversion-driven freeze-out regime.

processes can influence the DM abundance in a way we do not know [60]. On the
other hand, scenarios with a very small coupling do suffer from this. In section
1.3.2 where we introduced the freeze-in mechanism, we explicitly assumed that
none of these processes influenced the abundance such that we could start our
analysis with a negligible amount of DM. There is no physical reason to state this
as a fact. Therefore, production mechanisms are more ”reliable” if they do not
depend on the initial conditions and we do not have to worry about what happens
before.

For the first three regimes in section 2.3.2, we used the fact that τ̃ and χ where
in chemical equilibrium with the bath particles as an initial condition to solve
the Boltzmann equation. This is definitely valid for large values of the coupling
(λχ ≥ 10−5 in the τ̃ case) because then, the τ̃ annihilation process τ̃ τ̃ † ↔ SM SM
and conversion processes τ̃ ↔ χ are highly efficient. As can be seen in figure
2.4a in section 2.3.2, for smaller values of the coupling, only the annihilation of
τ̃ is highly efficient and that is why χ decouples almost immediately from the
thermal bath as we can see in figure 2.4b. It seems that the only reason χ starts in
equilibrium is because we assumed it. Maybe choosing different initial conditions
might result in a different relic abundance. To check this, we plotted the solution
of the Boltzmann equation for the same parameters and only changed the initial
conditions, see figure 2.6. The three solutions converge relatively fast. This means
that there is no dependence on the initial conditions for this value of λχ and we
can still assume chemical equilibrium as an initial condition. Now we can ask
ourself the question: ”why does the yield converge if we start from different initial
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Figure 2.7: Plotting the evolution of the yield for different initial conditions:
Yχ[1] = i · Yχ,eq[1] with i ∈ {0.1, 1, 10}. Both figures are calculated with τ̃ as
the co-annihilation partner and for the parameters mχ = 150 GeV and ∆m = 5
GeV but for two different values of the coupling, λχ = 2 ·10−7 (left) and λχ = 10−7

(right). The dashed lines denote the equilibrium yield.

conditions?” The answer can again be seen in figure 2.4a. For small values of
x, we see that the conversion process χ SM ↔ τ̃ SM is still efficient, although
just barely. Due to the efficiency of this process, the dependence of the initial
conditions can be washed away. If the processes are highly efficient (Γ � H), the
convergence will be fast. For a coupling of the order of λχ ∼ 5 · 10−7, i.e. when
the conversion process is just barely efficient, it will take some time until they
converge.

We would expect that if the ratio Γ
H

is initially smaller than 1, there will be
no more convergence. This again can be checked by going to smaller couplings
and solving the Boltzmann equation for different initial conditions. In figure 2.7a,
we see that for λχ = 2 · 10−7, the solutions do seem to come closer, but only at
x ≈ 50. The reason for this is that the process τ̃ ↔ χτ becomes efficient at this
temperature (see in figure 2.8a), while all the other conversion processes are never
efficient. Going to a coupling of 10−7 tough, this effect of conversion does not
occur any more. In figure 2.8b, we see that the conversion rates are smaller than
the Hubble rate for almost all times. There is just a small window where Γ > H
for the process τ̃ ↔ χτ and the abundance is dragged down, but this window is
not large enough to let the curves for different initial conditions converge and thus,
they just run parallel to each other as can be seen in figure 2.7b. As a result, the
evolution of the abundance is very dependant on the initial value in this regime.
This makes that we cannot just pick a value for Yχ to start with.

However, we can make an assumption about the initial condition. For instance,
we can assume that for x < 1, there are no mechanisms that could influence the
DM abundance like a coupling to the inflaton [61] or other types of processes with
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(a) λχ = 2 · 10−7 (b) λχ = 10−7

Figure 2.8: Checking the efficiencies of all the co-annihilation (blue) and conversion
(red) processes as a function of the temperature. Both figures are calculated with τ̃
as the co-annihilation partner and for the parameters mχ = 150 GeV and ∆m = 5
GeV but for two different values of the coupling, λχ = 2 ·10−7 (left) and λχ = 10−7

(right).

other unknown particles. If this is true, we can start our analysis with a negligible
initial abundance. If we look at figure 2.9 which depicts the yield for small values
of x for different initial conditions, we see that for Yχ[1] ≤ 0.1 · Yχ,eq[1], the yield
first grows and converges to a fixed value. This means that for small values of the
initial yield, we do not need a exact value. Small deviations still converge. The
only problem is that we can not know for sure that this assumptions is true. There
are some mechanisms that might provide a respectable amount of dark matter at
x = 1, so in the further analysis, we will try to avoid values for the coupling lower
than 2 · 10−7. For λχ > 2 · 10−7, we can say that the error we make is relatively
small, so we will obtain more or less the correct answer by assuming chemical
equilibrium as a starting condition.
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Figure 2.9: Plotting the evolution of the yield for different initial conditions:
Yχ[1] = i · Yχ,eq[1] with i ∈ {0.01, 0.1, 1, 10, 100}. It is the same plot as in fig-
ure 2.7 zoomed in for small values of x, from 1 to 10. Both figures (a) and (b) are
calculated with τ̃ as the co-annihilation partner and for the parameters mχ = 150
GeV and ∆m = 5 GeV but for two different values of the coupling, λχ = 2 · 10−7

(left) and λχ = 10−7 (right).
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Chapter 3

Relevance of conversion-driven
freeze-out

An important aspect of the study of DM models is to look at how the DM is
produced in the early universe. If we know this, we can also calculate how abundant
the DM is today and compare it with the value obtained by the CMB, ΩDMh2 =
0.12. If a model produces too much DM, we know it can not be correct and we
need to implement some modifications. The same applies for an under-abundant
DM component, although here, we could also consider extra contributions to the
DM. However, we neglect this possibility in our analysis.

The freeze-out mechanism we introduced in section 1.3.1 is one of the most popu-
lar production mechanisms. However, the standard freeze-out mechanism can only
reproduce the correct relic abundance of 0.12 for a certain range of values of the
free parameters of the model under study (equation 2.4). To explore the viability
of the model in other ranges of the parameters, alternative production mechanisms
need to be considered, like the one we introduced in section 2.2. In this chapter, we
study the difference between the standard freeze-out mechanism and the alterna-
tive conversion-driven freeze-out mechanism. We do this for the simplified model
we introduced in section 2.1. First, we illustrate why the freeze-out is not able
to always reproduce the correct relic abundance and how the conversion-driven
freeze-out solves this issue. This is done in section 3.1. With this knowledge, we
can study in which region of parameter space the standard freeze-out is not able
to reproduce the correct relic DM abundance and the conversion-driven freeze-out
becomes important. All this is done in section 3.2. Finally, we do a more detailed
study of the lifetime of the slepton. This is particularly interesting in the context
of collider searches, which we will discuss later in chapter 4.
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Figure 3.1: The relic abundance for different values of λχ with mχ = 100 GeV
and ∆m = 5 GeV where the co-annihilation partner is µ̃. The blue dashed curve
denotes the constant value for the relic abundance in the freeze-out regime driven
by τ̃ τ̃ † annihilations. The thick black line denotes the observed relic abundances
(Ωh2 = 0.12).

3.1 Finding the correct relic abundance
As we mentioned in section 2.1, the model we introduced there has three free
parameters: the DM mass mχ, the mass-splitting ∆m between the DM and its
co-annihilation partner and the coupling λχ that governs the interactions between
the two partners. In the beginning of this chapter, we also said that the model has
to reproduce the correct relic abundance ΩDMh2 = 0.12. This puts a constraint
on our model, meaning that we have only two free parameters left. We will choose
mχ and ∆m freely and fix the coupling to reproduce the correct relic abundance.
How this can be done is illustrated in figure 3.1. Here, we have plotted in blue the
relic abundance of the DM co-annihilating with the superpartner of the muon for
some fixed masses (mχ = 100 GeV and ∆m = 5 GeV) while the coupling is varied
on the horizontal axis. The reason for choosing µ̃ as the co-annihilation partner
instead of τ̃ will become clear in the next section. The black thick line in the plot
denotes the observed relic abundance ΩDMh2 = 0.12. When the blue curve crosses
the black one, we know that for this value of the coupling, the model reproduces
the correct relic abundance. For all other values of the coupling, the model gives
a wrong relic abundance and is therefore disfavoured.

Inspecting figure 3.1 more closely, we see that we are in the regime where the
coupling is of the order of 10−1, i.e. we are in the freeze-out regime with co-
annihilations. However, it could still be that the blue line crosses the black one
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Figure 3.2: The evolution of 〈σeffv〉 as a function of x = mχ

T
for co-annihilation

(equation (1.34)) of χ with µ̃ for three values of ∆ = ∆m
mχ

. For the calculations,
the mass and coupling constant were fixed to mχ = 100 GeV and λχ = 10−5.

again for a smaller value of the coupling which is not shown in figure 3.1, but
this is not the case. We know that for a smaller value of the coupling we enter
the freeze-out regime driven by τ̃ τ̃ † annihilations where the relic abundance does
not depend on λχ and is therefore constant. This constant value is also shown in
figure 3.1 by the dashed blue line. For a coupling of the order of 10−2, the relic
abundance takes this value meaning that for smaller values of λχ and ∆m fixed,
the relic abundance does not change any more. This means that in the freeze-out
mechanism, the curve does not cross the 0.12 line a second time.

While applying this technique, it seems that the crossing between the blue and
black curve is always for a coupling large enough to assume chemical equilibrium
between the two co-annihilation partners. Indeed, for a coupling smaller than
10−2, the relic abundance in figure 3.1 stays constant. By going to higher values
for λχ, not only the annihilation of τ̃ , but also the other co-annihilation processes
become efficient. Therefore, the effective cross section we use to calculate the relic
abundance in the standard freeze-out mechanism (equation 1.32) increases keeping
the DM longer in equilibrium as we explained in section 1.3.1. This will cause a
decrease of the relic abundance for larger values of the coupling so that the blue
curve eventually crosses the 0.12 line. This means that as long as the dashed
line denoting the final abundance for small coupling lies above the black 0.12
line at fixed ∆m, the standard freeze-out mechanism is always able to reproduce
the correct relic abundance. This feature can be modified by changing the mass-
splitting ∆m.

In figure 3.2, we see that for a smaller mass-splitting, the effective cross section
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Figure 3.3: The relic abundance for different values of λχ with mχ = 100 GeV
and ∆m = 1 GeV where the co-annihilation partner is µ̃. The blue dashed curve
denotes the constant value for the relic abundance calculated in the freeze-out
regime driven by τ̃ τ̃ † annihilations. The thick black line denotes the observed
relic abundances (ΩDMh2 = 0.12). On the left, we are in the conversion-driven
freeze-out regime. The right picture denotes the standard freeze-out regime. We
see that they both converge to the intermediate freeze-out regime driven by τ̃ τ̃ †

annihilation.

is larger and stays large for higher values of x. Therefore, χ remains longer in
equilibrium resulting in a smaller abundance. This means that for small mass
differences, it could be that the relic abundance in the freeze-out regime driven by
τ̃ τ̃ † annihilations is smaller than 0.12. An example of such a case can be found in
figure 3.3b. In this regime, the standard co-annihilation mechanism cannot give
the correct relic abundance for any value of λχ because lowering the coupling (even
to extremely small values) does not change the final abundance. We know however
that for these very small values of λχ (of the order of 10−7), the assumption of
chemical equilibrium between τ̃ and χ breaks down because the conversion pro-
cesses become inefficient. This is when the conversion-driven freeze-out mechanism
becomes relevant. In chapter 2, we learned how to calculate the relic abundance
in this case. Figure 3.3a illustrates what happens in this regime. The calculated
final abundance starts to grow again if we move to smaller couplings.

With the knowledge we gained in chapter 2, we are able to explain this behaviour
for very small values of the coupling. We know that if the conversion processes
are efficient, i.e. for couplings larger than 10−6, χ is in equilibrium with its co-
annihilation partner which at his turn is in equilibrium with the SM particles
through the annihilation process τ̃ τ̃ † ↔ SM SM . Therefore, the DM abundance
tracks its equilibrium value. The equilibrium abundance is decreasing, so the
DM abundance too gets dragged down. However, for smaller values of λχ, the
conversion rates eventually becomes smaller than the Hubble rate. Indeed, as seen
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in figure 2.8, initially, the conversion processes are inefficient and the DM yield is
not influenced and stays constant. At a certain moment, the decay rate becomes
larger than the Hubble rate. At that point in time, conversion is efficient and tries
to bring the DM abundance to its equilibrium value. Because this value is already
quite low compared to its initial value, the DM yield is dragged down. After a
while, the decay ceases to be efficient and the DM yield stays constant again. The
timespan where Γ > H is not long enough to bring χ completely in equilibrium.
The shorter the period, the less the abundance gets dragged down. This means
that we obtain a larger relic abundance for smaller values of the coupling because
the timespan where Γ > H is shorter in this case. As a consequence of the rising
abundance, the curve in figure 3.3a eventually crosses the black 0.12 line and we
are able reproduce the correct relic abundance, even when the standard freeze-
out mechanism fails to give a solution. The main difference is that the coupling
constant λχ is very small compared to the solutions where chemical equilibrium is
assumed.

3.2 Looking for the viable parameter region
The next step in our analysis is to really dive into parameter space and look
where the standard freeze-out mechanism fails to reproduce the observed relic
abundance. This is exactly the region where we need the conversion-driven freeze-
out to produce the DM meaning that in this region, λχ is rather small, of the
order of 10−7. This is an interesting region because such a small coupling makes
the lifetime of the slepton macroscopic. It is particularly interesting because most
collider searches mainly focus on prompt (immediate) decay while still a lot can
be done for displaced decay. We will focus more on this in the next section.
First we need to find out how we can retrieve the region where freeze-out fails to
reproduce the correct DM abundance. We saw in the previous section that this
happens when the relic abundance predicted by freeze-out is smaller than 0.12 in
the freeze-out regime without co-annihilations, i.e. for values of λχ smaller than
10−2. To find the desired region in parameter space, it is sufficient to calculate the
relic abundance with the standard freeze-out mechanism with a sufficiently small
coupling (λχ ∼ 10−5) and see where the solution is smaller than 0.12. Indeed, in
such region, the conversion-driven freeze-out mechanism can lead to an increase
of the DM relic abundance if we set the coupling to a smaller value, of the order
of 10−7. The results for the three flavours of sleptons separately can be found
in figure 3.4. To obtain these curves, the relic abundance was calculated with
the standard freeze-out mechanism presented in section 1.3 with λχ = 10−5 for a
certain amount of points on a grid. More specific, the grid was ranging for mχ

from 50 to 200 GeV, with a 25 GeV interval between points, and for ∆m ranging
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form 0.1 to 2.1 with an interval of 0.2 and one additional point ∆m = 0.01. To
obtain the position of the 0.12 line in the mχ −∆m plane, we interpolated these
results.

Let us first have a look at the most heavy lepton of the three, the tau. The
calculated result for the 0.12 curve is denoted by the green curve in figure 3.3a. The
DM mass range where we can have conversion-driven freeze-out is not very large,
we can only go up to masses around 180 GeV. To have a mass of about 150 GeV, a
mass splitting less than 1 GeV is needed. However, if ∆m < mτ = 1.777 GeV, the
decay process τ̃ → χτ is kinematically forbidden and three or four body decays
like the ones in figure 3.5 become dominant. These processes are suppressed by the
off-shell intermediate particles and the multi-body phase space which makes the
decay rate small. The decay of the stau is the most important conversion process
that keeps χ coupled to his co-annihilation partner, but if it is too small, this
chemical contact is broken. Therefore, the freeze-in mechanism would determine
the relic abundance in the regime where ∆m < mτ . Another consequence is that
the results in figure 3.4 are not correct in this regime because we assume chemical
equilibrium. We hence have covered this portion of parameter space in red and
we will not further study it. More studies on this region can be found in [62].
We want to discuss where the conversion driven freeze-out mechanism can provide
the correct relic abundance and therefore, we shall not consider this region. This
restricts our possibilities significantly. Now we can go only to masses up to 80
GeV for the DM. This is not very high taking into account the mass limits on the
stau [55]. These limits are mainly obtained by the Large Electron-Positron collider
(LEP), the predecessor of the LHC at CERN. In the analysis of the LEP data,
different assumptions were made which probe slightly different limits. Most limits
for the three flavours lie between 80 and 100 GeV. We take the one that depends
the least on the underlying model. For the stau, the limit is 90 GeV [56], for the
smuon 88 GeV [57] and for the selectron 73 GeV [58]. The limits are denoted by
the grey regions in figure 3.4. It is now clear that in the stau case, nothing of
our available green parameter space is left. This basically means that conversion-
driven freeze-out with τ̃ as co-annihilation partner is not able to reproduce the
correct relic abundance in the available parameter space. Thus, we can already
exclude the stau-Majorana DM model as a working example for conversion-driven
freeze-out.

There are still two other possible leptophilic models, with the smuon and selec-
tron as the dark sector partner for the DM. The green region in figure 3.4 where
conversion-driven freeze-out is the DM production mechanism that reproduces the
correct relic abundance is about the same for all three possible co-annihilation
partners. The main difference is where the two body decay becomes kinemati-
cally forbidden. Due to the smaller masses for the electron (me = 511 keV) and
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(b) µ̃ co-annihilation
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(c) ẽ co-annihilation
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Figure 3.4: Some contours of the relic abundance in the standard freeze-out
paradigm when the annihilation of the l̃ is driving the abundance, i.e. when
ΩDMh2 is independent of λχ. The thick green curve denotes an abundance of 0.12.
This is the border between the regions where chemical equilibrium can be assumed
(above) and where it does not hold (below). This last region is coloured in green
because it is the region where conversion-driven freeze-out is able to reproduce the
correct relic abundance. The analysis has been done for each of the three slep-
tons coupling to the DM. The red line denotes when the mass splitting equals the
mass of the corresponding lepton. Below this line, our results can not be trusted.
Therefore, this region is coloured in red. In black, the mass limits of the sleptons
coming from LEP are displayed. For the stau, the limit is 90 GeV [56], for the
smuon 88 GeV [57] and for the selectron 73 GeV [58]
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Figure 3.5: Feynman diagrams of the three (left) and four (right) body decay of τ̃
that would have to be taken into account when ∆m < mτ .

muon (mµ = 106 MeV), the forbidden region in red becomes smaller and a region
where the conversion-driven solution can reproduce the correct relic DM abun-
dance opens. If the smuon is the co-annihilation partner, the DM mass can go
up to 180 GeV. For the selectron, it can go even a bit above this value. In this
case, the mass limits for LEP do not constrain all of our parameter space. This
leaves us enough room for conversion-driven freeze-out to be a possible production
mechanism for dark matter with µ̃ or ẽ as the co-annihilation partner.

3.3 Lifetime of the sleptons
In the previous sections, we have determined in which region of parameter space
the standard freeze-out mechanism is valid and when we have to use conversion-
driven freeze-out. We also studied which values the coupling constant typically
takes in these two possible cases. In figure 3.1 and 3.3, we see that for the freeze-
out, we have a coupling somewhere between 10−2 and 1 while for the conversion-
driven freeze-out we need a rather small coupling, of the order of 10−7. This has
important consequences for the lifetime of the sleptons because they decay via the
process l̃ → χl. The decay rate depends on the square of the coupling constant,

Γl̃ = λ2
χ

(m2
l̃
−m2

l −m2
χ)

√[
m2

l̃
− (mχ −ml)2

] [
m2

l̃
− (mχ +ml)2

]
16πm3

l̃

, (3.1)

≈
λ2
χ∆m2

4πmχ

[
1− 2∆m

mχ

+ . . .

]
, (3.2)

where in the last line, we neglected the lepton mass (ml � mχ,ml̃) and expanded
for small ∆m. We see that Γl̃ ∝ λ2

χ meaning that for a small values of the coupling,
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Figure 3.6: Contours of the coupling constant λχ for different values of the DM
mass mχ and the smuon lifetime cτ . A fixed mass splitting ∆m = 1 GeV is
assumed during the calculations.

the rate is small too. A small rate implies a long lifetime because τl̃ =
1
Γ
l̃

and
therefore also a long decay length cτl̃. In figure 3.6, we can see the dependence
of the decay length on the coupling when the slepton is a smuon and a fixed
mass splitting of ∆m = 1 GeV is assumed. The stau and selectron have a very
similar dependence because the decay rate (equation (3.1)) is the same for the
three flavours, only the mass of the lepton is different.

The lifetime of a particle is an interesting property in the context of collider
searches. If the lifetime is very short, particles decay prompt, i.e. before they
reach the tracker. Therefore, only the decay products leave a signal inside the
detector. On the other hand, if the lifetime is very long, the particles might fully
traverse the detector. Depending on this, different signatures are to be looked for
in the data coming from collider experiments. We will discuss this in more detail
in chapter 4. Because it is such an important property, it is useful to study the
decay of the sleptons in the model we presented in section 2.1. We look for which
values of the decay length conversion-driven freeze-out reproduces the correct relic
abundance. In the previous section, we saw that conversion-driven freeze-out with
the τ̃ as the co-annihilation partner only reproduces the observed abundance in a
region that has already been excluded by LEP. Therefore, we do not consider the

49



CHAPTER 3. RELEVANCE OF CONVERSION-DRIVEN FREEZE-OUT

(a) µ̃ co-annihilation
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(b) ẽ co-annihilation
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Figure 3.7: Lines where we are able to reproduce the correct relic abundance in
the cτ −mχ plane for different values of the mass-splitting ∆m ∈ {0.2, 0.5, 1, 1.5}
GeV. The left one contains the results when χ couples to the smuon, on the right
we find the case for the selectron. The black line denotes the approximate border
where the co-annihilations (standard) Freeze-Out (FO) or the conversion-driven
freeze-out mechanism reproduce the correct DM abundance that is shown as a
guide for the eye.

case of the staus here, only the smuons and selectrons.
In figure 3.7, it is shown for which values of the decay length cτ , the DM mass

mχ and mass-splitting ∆m it is possible to obtain the correct relic abundance
with the conversion-driven freeze-out mechanism. This plot has been obtained in
a similar way as the ones in figure 3.4. We calculated the relic abundance for some
grid points, mχ ranging from 50 GeV to 250 GeV with an interval of 25 GeV and
cτ (m) ranging on a log scale from −3 to 1 with an interval of 0.5, and interpolated
those results.

The shape of the curves in figure 3.7 can be explained by the behaviour we
saw in the different regimes in section 2.3.2 and the things we learned in the
previous sections of this chapter. In section 3.1, we investigated how the relic
abundance depends on λχ. Because the decay length is strongly correlated to the
coupling constant as we saw in equation (3.1) and figure 3.6, the behaviour is
very similar. For instance, for large decay lengths, the coupling is small enough
such that conversion-driven freeze-out plays a role. In this production scenario,
the relic abundance changes significantly if we change λχ a little bit. If we go to
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smaller values of cτ around 10 cm (depending on the mass splitting), we enter
the freeze-out regime driven by τ̃ τ̃ † annihilations. In this regime, λχ plays no
role and therefore, the final abundance will not change for different values of cτ .
Thus, the curve denoting a fixed abundance of 0.12 will become vertical. This
means that for the value of the mass where the vertical line is located for a fixed
∆m, the decay length is not fixed by the constraint that the relic abundance
should be 0.12. A whole range of possibilities is open, and there is no reason why
we can prefer one value over another. This is a strange feature, but to obtain
this, the mass and mass-splitting must be perfectly tuned. The border between
the conversion-driven freeze-out regime (where the curve bends) and the standard
freeze-out regime (where the curve is vertical) is approximately shown with a black
solid line in figure 3.7 as a guide for the eye. If we would decrease the coupling (or
equivalent, the decay length) even further, the straight line would start to bend
again because the coupling is large enough such that the co-annihilations processes
χχ ↔ SM SM and χl̃ ↔ SM SM start to play a role. However, the coupling
constant in this region is such that the slepton has a very short lifetime. This
effect is not shown in figure 3.7 because we are interested in long-lived sleptons
with a decay length of a few millimetres to a couple metres. The reason why we
are only interested in this type of sleptons will become clear in chapter 4.

The fact that the relic abundance curve becomes vertical in figure 3.7 has some
very important consequences for our model. The value for the DM mass where
this happens is the maximal value we can achieve for a fixed value of ∆m in the
conversion-driven freeze-out mechanism. It is possible to reproduce the correct
relic abundance for every value of the DM mass lower than this maximal value
(and above the LEP constraints), but the lifetime is larger, as we can deduce from
figure 3.7. We can not go to higher masses, unless we go to the standard freeze-out
regime with co-annihilations (λχ > 10−2), which we do not consider here. If we
compare the curves for different values of the mass-splitting, we see that if we
lower ∆m, we can achieve higher masses. This is something we already predicted
from the results in section 3.2.

From the knowledge we obtained in section 3.2, we can also predict something
else. By studying figure 3.4, we can deduce at which masses we enter the standard
freeze-out regime for a fixed value of ∆m. This border is denoted in figure 3.4 by
the thick green curve. For instance for the case of the smuons, we see that for a
mass splitting of 1 GeV, this border is at about 135 GeV. In figure 3.6a, we can
find the vertical part of the line representing a mass splitting of 1 GeV at about
the same mass of 135 GeV1.

1If we reduce the mass-splitting, we observe a small discrepancy (about 15%) between figures
3.3b and 3.6a. This is because for figure 3.3b, we used the approximated equations for the
standard freeze-out mechanism we introduced in section 1.3.3 while in figure 3.6a, we used the
complete set of coupled Boltzmann equations from section 2.2 to obtain the results for the
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Another important effect is that for smaller values of the mass-splitting, the
curve denoting the correct relic abundance starts to bend at larger lifetimes. This
makes that the conversion-driven freeze-out regime starts at larger values of the
lifetime if we decrease the value of ∆m. Therefore, when the DM has a fixed mass,
the lifetime becomes longer if we decrease the mass-splitting. This is something
we would expect because for a smaller mass-splitting, the conversion processes
are larger making that the co-annihilation partners stay in equilibrium for smaller
values of the coupling. For conversion-driven freeze-out to become important, this
contact has to be broken.

The difference between the cases where a different slepton flavour couples to the
DM is the corresponding lepton that plays a role. The mass of the lepton is the only
constant in our model that has a different value in the three different cases. In the
previous section, we saw that the differences between the relic abundance contours
in the three cases were minor. Also now, when we are using the conversion-driven
freeze-out mechanism, the results of the µ̃ and ẽ in figure 3.7 are very similar. The
value of the lepton mass does not impact the results because it is dominated by
the slepton and DM mass which are much larger. The only importance is that it
restricts the mass-splitting we can use, because when ∆m < ml, three and four
body decay start to play a role changing the decay rate (see section 3.2). Thus,
for the case of the selectrons, we can use a smaller values for mass-splitting.

In the next chapter, we discuss how collider searches can probe the parameter
space of the model in the conversion-driven freeze-out regime. This is done with
the results in figure 3.7 which have been thoroughly discussed here. This pro-
vides a connection between the simplified DM model, the DM abundance and the
corresponding collider signatures.

conversion-driven freeze-out mechanism.
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Chapter 4

Collider constraints

The largest particle collider in the world today is located under the Swiss-French
border. At CERN, the Large Hadron Collider (LHC) is a circular collider that has a
circumference of 27 kilometres and currently collides protons with each other at en-
ergies up to 13 TeV. LHC can already account for some very important discoveries.
Not only did it very accurate measurements of various fundamental parameters,
it is also responsible for the ground-breaking discovery of the Brout-Englert-Higgs
boson [63,64]. With this detection in 2012, the standard model of particle physics
was fully confirmed and the search for new physics started. Theorists expected to
see new particles appearing at electroweak scales, but unfortunately, this has not
happened so far. The popular extension of the standard model called Weak-scale
supersymmetry, with the neutralino as a very popular DM candidate, is therefore
subjected to more and more stringent constraints as time passes. The absence
of clear signals of new physics can mean three thing. First, it might be that we
are looking for a type of particle that does not exist and that something else like
PBHs make up DM. It could also be that they are just around the corner such
that they will be discovered in the near future. A third option is that they are
somehow hidden for the existing searches. The majority of the DM LHC searches
are focussing on prompt signatures, meaning that only very unstable particles
which decay immediately after they are produced can be seen in these searches.
This means that the dark matter would be only visible via missing energy as we
already explained in section 1.4. Because such signals are not observed yet, a va-
riety of mechanisms have been devised that could hide new physics from collider
searches. New particles with macroscopic decay lengths for instance can escape
the searches that focus on prompt decays. In theories like Gauge-Mediated SUSY
Breaking [65] (GMSB), particles with macroscopic decay lengths arise. Also in the
simplified model we introduced in chapter 2, this is possible because the value for
the coupling constant λχ is not fixed. If we take this to be small, the decay rate
for l̃ → l χ is small, making the sleptons long-lived.
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To understand what kind of exotic signatures can occur at colliders, we first need
to know a bit about how these detectors work. Therefore, we start this chapter
by going over the main detection mechanisms used in these detectors. Once we
did this, we can go on and think about the different signatures that can be related
to long-lived sleptons. There are already some searches that have been done at
LHC, so to end this chapter, we look at how these searches constrain our simplified
model.

4.1 Collider detectors
At accelerators, particles are boosted to very high energies before they are made to
collide. These collisions happen at specific places where detectors are build around
the pipe in which the collision happens. The detectors are build in such a way
that they could measure properties like the speed, mass and charge of the particles
that are created in the collision. To do this, the detector is made out of layers
of sub-detectors each designed to look for particular properties or specific types
of particles. First of all, the produced particles travel through a tracking device.
This reveals the paths of electrically charged particles as they pass through and
interact with suitable substances. The tracker records tiny electrical signals that
are triggered by these interactions which are later used by a computer program to
reconstruct the track. Normally, the particles would just travel in straight lines
but in the presence of a magnetic field, their paths become curved. Therefore,
electromagnets are placed around particle detectors to exploit this effect. From
the curvature of the particles track, it is possible to calculate its momentum:
particles with a high momentum travel almost in straight paths while ones with
very low momentum move forward in tight spirals. In this way, the momentum of
all particles can be found. However, there is one exception. The muon interacts
very little with matter and can therefore travel through meters of dense material
before being stopped. For this reason, tracking devices specially made to detect
muons usually make up the outermost layer of the detector as can be seen in figure
4.1 for the CMS detector at LHC.

The second layer of the detector is made out of the calorimeters. These devices
measures the energy a particle loses as it passes through. They are usually thick
enough to stop or absorb most of the particles coming from a collision and in this
way, it is possible to find the energy it had at the time it was produced. There are
two types of calorimeters. The electromagnetic calorimeter measure the energy of
the electrons and photons as they interact with the electrically charged particles
in matter. Besides that, there is also the hadronic one which does effectively the
same but for hadrons when they interact with the atomic nuclei.

If a particle has passed through the tracker and calorimeters, there are two
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Figure 4.1: A slice of the CMS detector and where all different particles are de-
tected [66].

other methods of narrowing down its identity. They both rely on the Cherenkov
radiation a particle emits when it travels faster than light does through a given
medium. This radiation is emitted under a certain angle which depends on the
velocity of the particle. Together with the measured momentum, it is possible
to calculate the mass and therefore determine the identity of the particle. Also,
when charged particles cross the boundary between two electrical insulators with
different resistance, it emits radiation. The phenomena is related to the energy
of the particle and can therefore be used by physicists to distinguish the different
types of particles.

Collecting all these clues from the different part of the detector, it is possible
to build up a snapshot of what was in the detector when the collision happened.
When some exotic things happen that cannot occur in the standard model, they
are included in this snapshot and physicist can start interpreting this data [67].

4.2 Collider searches
There are already several existing searches for long-lived particles at the LHC. One
of the motivations for these searches in the context of SUSY appear in models of
GMSB, where the long-lived τ̃R is the Next to Lightest SuperParticle (NLSP) with
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Figure 4.2: Diagram for slepton pair production at LHC with direct decay into a
leptons and DM which is denoted by a dotted line because it can not be directly
detected [68].

the gravitino G̃ as the Lightest SuperParticle (LSP). Searches targeting the stau
can be relevant for the model studied in this thesis. Depending on the lifetime of
the stau, there are mainly three types of signatures that can occur in the detector.
We quickly review them here in the context of the simplified model introduced in
chapter 2 where the long-lived particles are the sleptons.

Heavy stable charged particles

In the detectors at LHC, the tracking devices are able to reconstruct the paths of
particles traversing the detector. Only charged particles can be detected with these
trackers and therefore, the neutral DM particle can not be seen in the detector.
However, other dark sector particles like the sleptons in our model can give a clear
signal. We have seen in chapter 2 that the sleptons can decay to dark matter via
l̃ → χl. This process depends on the coupling constant λχ which can take arbitrary
values. Therefore, if λχ is very small, the lifetime of the sleptons can become quite
long (cτ > 1 m) such that they can traverse the tracker completely. When this is
the case, we call the slepton ”detector-stable”, meaning its decay length is larger
than the radius of the detector. In this regime, the Heavy Stable Charged Particles
(HSCP) searches performed at the CMS detector [69] can become very useful not
to put constraints directly on DM but on the sleptons. Limits on the mass of
detector-stable sleptons are already available. Of course, if we specify the mass
splitting ∆m, the HSCP searches can give constraints on DM too, but this is model
dependent.
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Kinked and disappearing tracks

The coupling constant λχ is not fixed in our model, so it can still be that the
sleptons are not detector-stable. For instance, if the decay length of the sleptons
is of the order of 50 cm, they decay inside the tracking device and this signal is not
included in the HSCP searches. They only look for events that leave a complete
track in the detector. Nevertheless, there are some other strategies for finding
particles with a macroscopic decay length. We know that the sleptons decay into
their corresponding lepton and the DM. Because the DM is neutral, it can not
be detected in the tracker. However, the other daughter particle, the lepton, can
leave a track. If the sleptons decay while traversing the tracker, its track suddenly
stops, but a new one coming from the lepton starts where the slepton track has
ended. Thus, there is a complete track going through the tracker, but the lepton
is emitted under an angle and therefore, the track shows a kink where the slepton
has decayed. These types of tracks were investigated at LEP [70], but at LHC,
it is more difficult. Due to the busier environment, the track associated with
the daughter lepton is typically not reconstructed or may not be associated with
the parent slepton track. Therefore, triggering on these kinked tracks is nearly
impossible. Since the lepton track is often not detected and the DM leaves no
track at all, the slepton track just stops in the middle of the tracker. These tracks
are named disappearing tracks and have already been investigated at LHC by both
CMS [71] and ATLAS [72]. These searches give limits on l̃ if the decay length is
of the order of 50 cm.

Opposite-sign displaced leptons

A third thing that can happen is that the decay is not prompt, but still happens
before the slepton enters the tracker. Then, the daughter leptons leave a complete
track inside the detector, while the DM just flies through. Now we can ask ourself
how we can distinguish these leptons coming from the decay of the sleptons from
the other ones produced in the collision. The difference is that the daughter leptons
does not originate from the collision vertex but rather from the place where the
slepton decays. This can be a couple millimetres up to some centimeters away
from the primary vertex. We refer to this as a displaced vertex.

In figure 4.2, we can see how two opposite-sign leptons can be created from the
proton-proton collision together with two DM particles. Unfortunately, there are
not many searches performed for opposite-sign displaced leptons yet. At LHC, the
CMS displaced eµ search [73] is currently the only one existing. This search is
mostly concentrating on a stop that can decay into a bottom quark and a lepton.
In a similar way as two opposite sign sleptons are produced in figure 4.2, two
opposite sign stops can be produced from the collision and decay into a pair of
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opposite sign leptons. This process has been studied by looking at a displaced
eµ pair. The analysis was recasted to give limits on the decay of sleptons which
produce a pair of opposite sign same flavour leptons [74].

4.3 Constraints from collider searches
In the previous section, we explained how researchers already tried to observe
long-lived sleptons at the LHC depending on the lifetime. However, no clear
signal has been observed yet and this sets bounds on the long-lived sleptons (or
long-lived particles in general). Not all these bounds are very strong because
there has not been much interest in these kind of signals for a long time. This is
because these searches are difficult to perform, especially the disappearing tracks
and displaced lepton searches. Therefore, the limits coming from these searches
are not as stringent as the limits coming from prompt or HSCP searches. The
long-lived slepton limits are shown in figure 4.3. We also want to see how these
searches constrain the model we introduced in chapter 2. Therefore, we add the
curves which depict when the conversion-driven freeze-out mechanism reproduces
the correct relic abundance for different values of the mass-splitting ∆m. These
curves were already presented in figure 3.7 but are here denoted in the ml̃ − cτ
plane instead of the mχ − cτ plane. This change is made because all the limits
are on the slepton mass since this is the particle that can be observed at colliders,
contrary to DM. However, the change is not very radical because we assume a
small splitting between the slepton and DM mass. The excluded regions by OPAL
at LEP [70] are also denoted in this figure by the grey area.

In figure 4.3, the 95% exclusion limits of the HSCP search are depicted by the
red, solid curve, together with a 25% uncertainty band to the modelling of this
search. Everything above is excluded. As we can see, these limits for long-lived
sleptons are only important for a large lifetime, i.e. when cτ is of the order of
a meter. This is because only then, the particles fully traverse the tracker and
are included in the search. This means that there are no limits set on particles
that does not pass completely through the tracker by this search. The constraints
coming from the HSCP searches are very important because they are present in a
large mass range (which is not the case for the other two types of searches). We see
that for larger masses (mχ > 200 GeV), the bound becomes less strong. However,
in our model, we are more interested in masses smaller than 200 GeV. For this
mass range, particles with a decay length longer than approximately 3 meter can
be excluded with a high probability.

The second kind of searches that study particles with macroscopic decay lengths
are disappearing track searches at for instance CMS and ATLAS. These searches
focus on tracks that suddenly stop in the detector indicating that the particle
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(a) µ̃ co-annihilation
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(b) ẽ co-annihilation
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Figure 4.3: Lines where we are able to reproduce the correct relic abundance in the
cτ −ml̃ plane for different values of the mass-splitting ∆m. The left one contains
the results when χ couples to the smuon, on the right we find the case for the se-
lectron. The black line denotes the approximate border where the co-annihilations
(standard) Freeze-Out (FO) or the conversion-driven freeze-out mechanism repro-
duce the correct DM abundance that is shown as a guide for the eye. Together
with this, constraints from various searches at LEP and LHC are shown. The red
solid line is the 95% exclusion limit coming from the CMS heavy stable charged
particle search [69]. The band denoted by the red dashed lines represents a 25%
uncertainty to the modelling of this search. The 95% exclusion limit from the
disappearing track searches performed at CMS [71] and ATLAS [72] are denoted
in green with a 50% modelling uncertainty band (green dashed line). Only the
stronger of the two is shown. The grey area is the region excluded by OPAL at
LEP [70]. The bounds from the recasting [74] of the CMS displaced eµ search [73]
falls well below the OPAL bound and is therefore not show.
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responsible for this track has decayed. Therefore only particles which have a
lifetime long enough to reach the tracker but not that long such that they traverse
it completely are constrained by these searches. The bounds coming from the
disappearing track searches performed by CMS and ATLAS are depicted in green
in figure 4.3. Here, the strongest bound of the two is shown (for a comparison,
see [74]). Again, an modelling uncertainty band is added, this time of 50%. This
is primarily because of additional uncertainty introduced by the decay product
originating from the displaced secondary slepton vertex. The excluded region for
the disappearing track searches is way smaller than the HSCP search. The limits
are most stringent for cτ ≈ 50 cm, but even the strongest bound only restricts
masses up to about 110 GeV which is only slightly above the bounds set by LEP.
This mean that models with a coupling constant such that the lifetime of the
sleptons is of this order are not constrained very strongly.

The third option we discussed in the previous section is the one of displaced
leptons. Here, we look at leptons that leave a complete track but are produced
a few millimetres to a couple centimetres away from the collision point. This
can indicate the decay of a slepton that is produced in the collision and decays
after a few centimetres. Therefore, the constraints coming from these searches are
important only for particles with a decay length of this order. However, not much
data has already been collected for these searches. This makes that the constraints
are not very stringent, they fall well below the LEP bound and are therefore not
shown in figure 4.3.

If we consider all limits together, we can see in general where our model is
already constrained. In section 3.3, we noticed that in the conversion-driven freeze-
out regime a smaller mass-splitting yields a longer lifetime. The strongest bounds
are due to the HSCP searches, which constrain the sleptons with a long lifetime
(cτ > 3 m for mχ ≈ 100 GeV). For instance, if we look at the curve representing
the case where ∆m = 0.2 GeV the conversion-driven freeze-out starts to become
important when the decay length is about 1 m for both the µ̃ and ẽ case. The
bounds from the HSCP searches already become important around for cτ ≈ 3 m.
If we then look at how this restricts the slepton mass, we see that for a small mass-
splitting, already a large mass range is excluded. For ∆m = 0.2 GeV, only slepton
masses between 175 and a approximately 200 GeV are allowed for both slepton
cases. If we do the same analysis for a larger mass splitting, we see that the HSCP
constraints play a less important role here because we obtain smaller lifetimes for
the sleptons. Therefore, a larger DM mass range opens where we can reproduce
the correct relic abundance with the conversion-driven freeze-out mechanism. For
instance in the smuon case, for a mass-splitting of 0.5 GeV, masses ranging from
about 100 GeV to 170 Gev are allowed.

The larger the value of ∆m, the less the bounds from HSCP searches constrain
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the model. But assuming a larger mass-splitting has some other consequences
too. In section 3.3, we explained that this reduced the maximal allowed slepton
mass. This also narrows the possible mass range, because at small slepton masses,
constraints from LEP and in minor extent disappearing tracks come into play. If
we look for instance to the smuon case for ∆m = 1 GeV, we obtain a possible
mass range between 110 and 135 GeV due to the constraints of disappearing track
searches. These searches constrain only a small part of the parameter space, so for
an even larger mass-splitting, the lifetime can become small enough to avoid these
bounds. Only then, the maximal allowed slepton mass is so low that it almost
coincides with the LEP bounds. For instance, looking at the curve representing
∆m = 1.5 GeV for the smuon case in figure 4.3, we obtain an allowed mass range
from about 95 to 110 GeV, which is even more narrow than the range when ∆m = 1
GeV. Thus, it seems that we can achieve the broadest mass range for a mass
splitting around 0.5 GeV, but this does not mean that all the other possibilities
are already excluded. They are just more constrained.
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The last few decades, a considerable amount of theoretical and experimental efforts
have been made to determine the nature of dark matter. Nowadays, a commonly
used strategy is to make use of simplified models to describe what are the possible
DM signatures in collider or other experiments. We introduced such a simplified
model inspired by SUSY with a non-minimal dark sector consisting of a Majorana
DM particle χ that interacts with a charged scalar l̃ and a SM lepton l. There are
three free parameters in this model, the DM mass mχ, the mass-splitting between
the DM and the charged scalar partner ∆m and the coupling constant λχ.

Because we know how abundant DM is in our universe, we started by studying
how the DM particle in our model could have been produced in the early universe.
This is largely dependent on the free parameters of our model. Especially the
coupling constant λχ plays an important role. We were able to define four different
regimes where different production mechanisms are important:

1. The freeze-out regime with co-annihilations (λχ ∼ 10−1),

2. The freeze-out regime driven by l̃l̃† annihilation (λχ ∼ 10−5),

3. The conversion-driven freeze-out regime (λχ ∼ 5 · 10−7),

4. The freeze-in regime (λχ ∼ 10−8).

We focussed on the conversion-driven freeze-out regime as it has not yet been
much studied in the literature. For this mechanism, we had to carefully threat
the conversion processes χ ↔ l̃ that are suppose to happen fast in the standard
freeze-out mechanism. For the latter purpose, we implemented our own code in
Mathematica that included these processes such that we were able to calculate the
relic abundance in every regime.

With a fully working code, we started to investigate the conversion-driven freeze-
out mechanism in the context of the leptons coupling to the DM and the charged
scalar. We were able to find a window of the DM mass between about 100 GeV
and 200 GeV for a mass-splitting smaller than 2 GeV where the conversion-driven
freeze-out reproduces the correct relic abundance. For the three cases where the
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DM couples to one of the leptons, we were able to find these regions. When χ
couples to τ , the interesting region where conversion-driven freeze-out reproduces
the DM relic abundance is already completely excluded by searches at LEP. In the
other two cases, there is still a portion of this region unconstrained by LEP. From
this point onwards, we focussed only on muon and electron coupling to the DM
and studied how the charged scalar can give new signatures at collider experiments
compared to the traditional prompt decay searches.

If the coupling constant λχ is small enough, the decay length of the slepton
can become macroscopic. This happens for the model under study when the
conversion-driven freeze-out mechanism reproduces the correct relic abundance
which makes this region interesting. If the charged scalars have a long lifetime,
they are not included in the traditional prompt decay searches. We have reviewed
the most important long-lived slepton searches and looked at how they constrain
our model. We saw that especially the searches for heavy stable charged particles
poses strong bounds on the charged scalars with a decay length of the order of a
few meters. However, for smaller lifetimes, the constraints are not as stringent.
The most important limits come from LEP which constrain small masses of the
charged scalar (ml̃ < 100 GeV). Besides searches from LEP, also disappearing
track searches sets bounds on charged leptons with a decay length of about 50
cm. If the mass-splitting between the DM and charged scalar is small enough, our
model can accommodate the observed relic DM abundance for masses up to 200
GeV. This means that there is still a reasonably large phenomenological viable
mass range which is unconstrained.

These results are obtained for the simplified model where we ignored the term in
the Lagrangian describing possible interactions between the Higgs and the charged
scalars. Our results are still valid if the coupling that governs these reactions is
sufficiently small. Including the term in the Lagrangian might be a topic for future
research.

The general conclusion we can make is that charged particles with a macroscopic
decay length smaller than a few metres are still largely unconstrained and that
there are models that can predict the correct relic abundance with a coupling
small enough such that the decay length is of this order. It is therefore very
interesting to investigate the displaced lepton and disappearing track signatures
in collider experiments more extensively. This might lead to the dark matter signal
researchers are already looking for a long time.
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Appendix A

Analysis for the squarks

All the important processes that influence the abundance of χ if it couples to
one of the squarks are very similar as for the slepton case. For instance, the
co-annihilation and conversion processes for b̃ can be found respectively in tables
A.1 and A.2. The main difference with the case of the sleptons is that here,
strong processes with gluons occur. These are strong interactions and that is
why the rates including processes with gluons are larger than with the sleptons.
These higher rates result in the fact that decoupling happens later and therefore,
the final abundance is smaller. In section 3.1, we saw that if the relic abundance
calculated while chemical equilibrium is assumed is below 0.12, conventional freeze-
out cannot be the correct production mechanism and we get into the realm of
conversion-driven freeze-out. This means that for the staus, the region parameter
space where we need the conversion driven solution is larger due to the higher rates.
If we compare the analysis done here for the sleptons with the literature (see [49]
and [50]), we can see clearly that we can go to higher values for the mass and
mass splitting and still obtain the correct abundance with the conversion-driven
freeze-out mechanism.
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initial state final state scaling

χ χ b b̄ λ4
χ

χ b̃
b g, γ, Z,H

λ2
χ

W− b

b̃ b̃†

g, γ, Z,W+ g, γ, Z,W−

λ0
χ

q q̄

H Z

e−, µ−, τ− e+, µ+, τ+

b̃ b̃ b b λ4
χ

Table A.1: List of all included co-annihilation processes when χ couples to the
sbottom b̃. Also the dependence on λχ for each process is presented. The b̃̃b†

annihilation into bb̄ also has contributions scaling with λ2
χ and λ4

χ.

initial state final state scaling

χ

b

b̃

g, γ, Z,H

λ2
χ

g, γ, Z,H b̄

W− t̄

t W+

b̃ χ b λ2
χ

χ χ b̃ b̃† λ4
χ

Table A.2: List of all included conversion processes when χ couples to the sbottom
b̃. Also the dependence on λχ for each process is presented.
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Numerical integration of the cross
sections

In order to find the thermally averaged cross sections as a function of the temper-
ature, we need to integrate the amplitude M as follows,

〈σijv〉ni,eqnj,eq =
gigj
512π5

T

∫
|M|2√

s
K1

(√
s

T

)
ds dt. (B.1)

This integration can be done quite simple by making use of numerical software.
The amplitude is different for every process and also depends on the parameters
of our model: mχ, ∆m and λχ. If we do the calculations numerically, they have
to be done for every different set of parameters. This makes it hard to do scans
and therefore, it is useful to do at least a part of the calculations analytically. For
this, we can use Mathematica which is a software package for both numerical and
analytical calculations. Two integrations need to be done, one over the Mandelstam
variable t and one over s. The integration over t runs from [53]

tmin =

[
m2

1 −m2
2 −m2

3 +m2
4

2
√
s

]2
− (p1 + p3)

2, (B.2)

to

tmin =

[
m2

1 −m2
2 −m2

3 +m2
4

2
√
s

]2
− (p1 − p3)

2, (B.3)

where p1 and p3 are the momenta in the COM frame of the respectively incoming
and outgoing particles. These integration limits are process dependent which en-
sures that the calculation has to be done for every process separately. We calculate

Mint = gigj

∫ tmax

tmin

|M|2dt, (B.4)
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χ

l−

l̃−

γ

l̃−

Figure B.1: Feynman diagram for the conversion process that experiences a s-
channel divergence.

which includes all the process dependant information. This calculation is done
analytically and the result are saved so that it only had to be done once, even if
we want to do scans for different values of the parameters of the model.

Next, we have to integrate over the centre-of-mass energy s from smin, which is
the minimal COM energy that is needed for this process to kinematically happen,
to infinity. For a general 1, 2 → 3, 4 process, smin is the maximum of (m1 +m2)

2

and (m3 +m4)
2, where mi is the mass of the ith particle. The remaining integral

reads

〈σijv〉ni,eqnj,eq =
1

512π5
T

∫ ∞

smin

Mint√
s
K1

(√
s

T

)
ds. (B.5)

Due to the presence of the Bessel function, we can not do this integration ana-
lytically. Therefore, for every set of parameters, we define the thermally averaged
cross section as a function the temperature T . This function can be obtained by
calculating integral B.5 for certain values of the temperature and interpolate them
to obtain a continuous function of T . To get the cross sections that are used in the
Boltzmann equation, we need to group and sum the cross sections of the correct
processes. How this is done can be found in appendix C.

For some processes, the calculation are not as straight forward as we mentioned
here due to the presence of divergences. For instance for the process χl → l̃γ, of
which the Feynman diagram can be found in figure B.1, an s-channel divergence
can occur because the slepton is also the mediator for the process. In general, the
amplitude squared scales like,

|M|2 ∝ 1

s−m2
, (B.6)

where m is the mass of the mediator. For this process, smin = m2
l̃

which means that
the amplitude diverges at this COM energy. To solve this problem, we introduce
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Figure B.2: Dependence of the relic DM abundance the regularization parameter
mcut ∈ {0.001, 0.02} · ml̃ when χ couples to µ̃. The calculations are done with
the parameters mχ = 100 GeV, ∆m = 0.5 GeV. The blue dashed line denotes the
solution when chemical equilibrium is assumed.

a cut-off such that we do start the integration at smin = (ml̃ +mcut)
2 and we do

not integrate the divergence. Of course, introducing this cut alters our results.
To be certain that these changes are not large, we calculated the relic abundance
for some parameters in the region we are interested and some different values for
mcut. The result of these calculations can be found in figure B.2. It is clear that
the final DM abundance does not change dramatically, indicating that most of
the interactions occur at energies well above the lepton mass. This validates the
introduction of the cut on the COM energy.

A similar thing happens for the t-channel processes in figure B.3 where the
mediator is the slepton with momentum pl. The amplitude for these kind of
processes scales like

|M|2 ∝ 1

t−m2
, (B.7)

where t = (pχ − pl̃)
2 = p2l and m is again the mass of the t-channel mediator. For

some values of the COM energy, the lepton can go on-shell meaning that p2l = m2
l

and the amplitude diverges. This happens at the edge of our integration range so
we can again introduce a cut such that we integrate from tmin + tcut to tmax and
thus evade the divergence. We take as small as possible, tcut = 10−4 · tmin, such
that the error we make is negligible. The dependence of this cut can be seen in
figure B.4, where we plotted the relic abundance calculated for mχ = 100 GeV,

68



APPENDIX B. NUMERICAL INTEGRATION OF THE CROSS SECTIONS

χ

H0

l̃−

l+

l−

(a)

χ

Z0

l̃−

l−

l−

(b)

χ

W−

l̃−

ν̄l

l−

(c)

Figure B.3: Feynman diagrams for the conversion processes that experience a
t-channel divergence.

∆m = 0.5 GeV and λχ = 5 · 10−7 and some values of tcut. There is almost no
noticeable difference for small values of the cut. And even if we choose tcut = tmin,
the difference is less than one percent. This indicates that the processes where we
introduced the cut are sub-leading and do not change the result much. Therefore,
by introducing this cut, we still arrive at the same relic abundance while avoiding
the divergence.
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Figure B.4: Dependence of the relic abundance on the cut we made in the inte-
gration over t. The calculations are done with the parameters mχ = 100 GeV,
∆m = 0.5 GeV and λχ = 5 · 10−7.
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Appendix C

Defining the rates included in the
Boltzmann equation

In table 2.1 and 2.2, all the processes that influence the relic abundance are sum-
marized. All of them have a different influence and therefore, we compare all the
cross sections in section 2.3.2. More precise, we want to compare the efficiency
of the processes, i.e. how they compare to the Hubble rate. If Γ > H, they are
efficient and the interactions happen fast enough such that the process is in equi-
librium. For Γ < H, this is not the case. To check the efficiency, we have to know
how the rate Γ is defined in order to compare it to the Hubble rate. Here, we give
a list of all the definitions of the rates for every process.

χχ → ll̄ : Γ =
〈σχχ→ll̄v〉neq

χ neq
χ

neq
χ

, (C.1)

χl̃ → SMSM : Γ =
Σi,j〈σχl̃→ijv〉neq

χ neq

l̃

neq

l̃

, (C.2)

l̃l̃† → SMSM : Γ =
Σi,j〈σl̃l̃†→ijv〉n

eq

l̃
neq

l̃

neq

l̃

, (C.3)

χSM → l̃SM : Γ =
Σi,j〈σχi→l̃jv〉neq

χ neq
i

neq
χ

, (C.4)

l̃ → χl : Γ = Γl̃→χb

K1

(
ml̃/T

)
K2

(
ml̃/T

) neq

l̃

neq
χ
, (C.5)

χχ → l̃l̃† : Γ =
〈σχχ→l̃l̃†v〉neq

χ neq
χ

neq
χ

. (C.6)

If one compares the list above with tables 2.1 and 2.2, one can spot that there
is one process missing, namely l̃l̃ → ll. This process has the same influence as
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APPENDIX C. DEFINING THE RATES INCLUDED IN THE
BOLTZMANN EQUATION

l̃l̃† → SMSM on the relic abundance, but it is suppressed by λ4
χ. It is always

sub-leading (unless λχ ≈ 1, a regime we are not interested in) and therefore, it is
not include in the plots where we compare the efficiencies of the different rates or
in the Boltzmann equation. If we want to go to a regime where λχ ≈ 1, we have to
add the thermal averaged cross section of this process to the one of l̃l̃† → SMSM .
One thing we have to consider is that in the Boltzmann equations (2.5) and (2.6),
we sometimes added a factor of two to account for processes with anti-sleptons.
For the l̃l̃ → ll, we to have to add this factor too because also the process l̃†l̃† → l̄l̄
needs to be taken into account. This means that the Boltzmann equation for l̃
reads,

dYl̃

dx
=

−s

Hx

[
(〈σl̃l̃†v〉+ 2〈σl̃l̃→llv〉)

(
Y 2
l̃
− Y 2

l̃,eq

)
+ 2〈σχl̃v〉

(
YχYl̃ − Yχ,eqYl̃,eq

)
−

2Γχ→l̃

s

(
Yχ − Yl̃

Yχ,eq

Yl̃,eq

)
+

2Γl̃

s

(
Yl̃ − Yχ

Yl̃,eq

Yχ,eq

)

− 〈σχχ→l̃l̃†v〉

(
Y 2
χ − Y 2

l̃

Y 2
χ,eq

Y 2
l̃,eq

)]
. (C.7)
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