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Abstract

Study of the effect of the anti-neutrino energy resolution using the JUNO detector on the
measurement of the neutrino mass hierarchy, using Monte-Carlo simulations

by Pierre-Alexandre PETITJEAN

The general context of this work is the study of the elementary components of the matter and
their interactions in particular in the case of the neutrino sector. The Standard Model of par-
ticle physics describes already a large part of the particles and their interactions. In 2015 the
Nobel Prize in Physics was awarded jointly to Takaaki Kajita and Arthur B. McDonald for "
the discovery of neutrino oscillations, which shows that neutrinos have mass". The masses of
neutrinos are very small and only upper limits are obtained from direct mass measurement
experiments (mνe < 2 eV). The neutrinos are the less known particles in the SM, in particular
only their mass differences are measured. In addition to the unknown absolute values of the
neutrino masses, the neutrino hierarchy (normal or inverted) has to be determined. The Jiang-
men Underground Neutrino Observatory (JUNO) experiment is a medium baseline neutrino
oscillation experiment to measure the mass hierarchy of the neutrinos and several parameters
of the neutrino oscillations with a better precision than presently known. The precise measure-
ment of the energy spectrum of the anti-neutrinos will allow distinguishing between a normal
or inverted hierarchy. The object of this work is to study the effect of the anti-neutrino en-
ergy resolution on the measurement, in particular, to estimate what is the energy resolution
needed to conclude on the mass hierarchy in the JUNO experiment. The first step of this work
is to evaluate the anti-neutrino energy spectrum. To achieve this, a parametrization of the anti-
neutrino flux using data from KamLAND and a parametrization of the inverse β-cross section
were performed. To differentiate between the two hierarchies we compute Fourier transforms
of the anti-neutrino energy spectra and define two parameters: RL and PV. The way chosen
to simulate experiments is to use Monte Carlo simulations and to generate different pseudo-
experiments. The impact of 4 key parameters is computed: 1- the distance between the nuclear
plant and the reactor, 2- the oscillation parameter sin2(θ13), 3- the number of events, 4- the
resolution of data acquisition along the whole process. For each set of parameters, an analysis
is made on the discrimination probability between the normal and inverted hierarchy. For the
value of these 4 factors taken as in the JUNO facility specifications, our calculation shows that
the discrimination probability with a confidence level of 3 σ, is equal to 0.991.

Keywords: neutrino physics - neutrino oscillations - neutrino mass hierarchy - JUNO -
Fourier transforms- Monte Carlo.
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Resumé

Study of the effect of the anti-neutrino energy resolution using the JUNO detector on the
measurement of the neutrino mass hierarchy, using Monte-Carlo simulations

par Pierre-Alexandre PETITJEAN

Le contexte général de ce travail est l’étude des composants élémentaires de la matière et de
leurs interactions dans le cas particulier des neutrinos. Le Modèle Standard de la physique
des particules décrit déjà une grande partie des particules élémentaires et leurs interactions.
En 2015, le prix Nobel de physique a été décerné conjointement à Takaaki Kajita et Arthur B.
McDonald pour "la découverte des oscillations des neutrinos, démontrant ainsi que les neutri-
nos ont une masse". Les masses des neutrinos sont très petites et seules des limites supérieures
sont obtenues à partir d’expériences de mesure directe de masse (mνe <2 eV). Les neutrinos sont
les particules les moins connues du Modèle Standard, en particulier seules leurs différences
de masse sont mesurées. De plus la hiérarchie des neutrinos (normale ou inversée) doit être
aussi déterminée. L’observatoire souterrain de neutrinos de Jiangmen (JUNO) est une expéri-
ence d’oscillation de neutrinos de moyenne distance. Elle a pour but de mesurer la hiérar-
chie de masse des neutrinos et le paramètre des oscillations de neutrinos avec une meilleure
précision que celle actuelle. La mesure précise du spectre d’énergie des anti-neutrinos per-
mettra de distinguer une hiérarchie normale ou inversée. L’objet de ce travail est d’étudier la
résolution en énergie des anti-neutrinos, en particulier pour estimer son effet dans la déter-
mination de la hiérarchie de masse dans l’expérience JUNO. La première étape de ce travail
consiste à évaluer le spectre en énergie des anti-neutrinos. Pour y parvenir, une paramétri-
sation du flux d’anti-neutrinos est faite en utilisant les données de KamLAND ainsi qu’une
paramétrisation de la section efficace de désintegration β inverse provenant de J. Engels. Pour
différencier les deux hiérarchies, nous calculons les transformées de Fourier des spectres en
énergie des anti-neutrinos et définissons deux paramètres: RL et PV. La manière choisie pour
simuler l’expérience est d’utiliser des simulations de Monte Carlo et de génèrer des pseudo-
expériences. L’impact de 4 paramètres clés est calculé: 1- la distance entre la centrale nucléaire
et le détecteur, 2- le paramètre d’oscillation sin2(θ13), 3- le nombre d’événements, 4- la résolu-
tion de l’acquisition des données tout au long du processus de mesure. Pour chaque ensemble
de paramètres, une analyse est effectuée sur la probabilité de discrimination entre la hiérarchie
normale et inversée. Pour les valeurs de ces 4 facteurs, telles que reprises des spécifications de
l’installation JUNO, notre calcul montre cette probabilité de discrimination avec un intervalle
de confiance de 3 σ, est égal à 0.991.

Mots-clés: physique des neutrinos - oscillations des neutrinos - hiérarchie des masses
des neutrinos - JUNO - transformées de Fourier - Monte Carlo.
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Introduction

The description of Nature mechanisms has always been one of the greatest challenges for the
human kind and the methods to perform it have changed with centuries. Newton has posed
the main basis of the modern science in 1687 with the publication of the "Philosophiae naturalis
principia mathematica".

Physics aims to describe quantified observation of Nature with well defined theories
with a mathematical language. A theory is commonly accepted by physicists when it accu-
rately describes the results of experiments that have already been performed. The theory must
also make solid predictions that can be tested in future experiments. The start of the neutrino
physics follows the same idea. In 1930, physics was facing the possibility to defeat the con-
servation of energy, one of the best-tested precepts of modern science, by counterexample. In
the observation of the energy spectra of radioactive β-decay, the energy seems not to be con-
served. To save the conservation of the energy, physicists introduced a new invisible particle,
the neutrino. It is in 1956 that we have the first neutrino detection with the Reines and Cowan
experience [1].

Physics has constructed in the last century one of the most successful theories: the Stan-
dard Model of particle physics (SM), which describes the elementary particles and their inter-
actions. The SM has made extremely accurate predictions for the properties of the elementary
particles and the cross sections in particle interactions. However, even though the SM has had
such a great success, we know that it is not a complete description of the inner workings of
Nature. In 2015 the Nobel Prize in Physics was awarded jointly to Takaaki Kajita and Arthur B.
McDonald for "the discovery of neutrino oscillations, which shows that neutrinos have mass"
[2]. However in the minimal version of SM the neutrinos are massless. There is a need of new
physics beyond the SM to allow the possibility of massive neutrinos.

The neutrinos are the less known particles in the SM, in particular only their mass dif-
ferences are measured. The masses of the neutrinos are very small and only upper limits are
obtained from direct mass measurement experiments (mνe < 2 eV/c2 or mνe < 3.5 10−36 kg)
[3]. In addition to the unknown absolute values of the neutrino masses, the neutrino hierarchy
(normal or inverted) has to be determined.

The Jiangmen Underground Neutrino Observatory (JUNO) experiment is a medium
baseline neutrino oscillation experiment, in construction in China. The JUNO detector will
measure accurately the energy spectrum of the electronic anti-neutrinos produced in nuclear
plants situated at a distance of 53 km. The JUNO experiment has as main objective to measure
the mass hierarchy of the neutrinos and to measure some of the neutrino oscillation parameters
with a better precision than presently known.

The accurate measurement of the energy spectrum of the anti-neutrinos will allow to
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distinguish between a normal or inverted hierarchy. The goal of this work is to study the effect
of the anti-neutrino energy resolution on the measurement, in particular to estimate what is
the energy resolution needed to conclude on the mass hierarchy in the JUNO experiment.

The way chosen to investigate this question is to use Monte Carlo simulations and gen-
erate different pseudo-experiments where the anti-neutrino energy resolution is varied. For
each energy resolution hypothesis, an analysis is made on the discrimination power between
the normal and inverted hierarchies.

This master thesis begins with a brief overview of the SM and of the neutrino physics.
The chapter 2 presents the JUNO project. In chapter 3 the simulation of the anti-neutrino
energy spectrum is constructed. The Monte Carlo simulation validation is detailed in chapter
4. The results of the analysis of the simulations are given in chapter 5.
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Chapter 1

The Standard Model and the neutrino
sector

In this chapter the Standard Model of particle physics is briefly described. The neutrino sector is then
presented. The details of the neutrino oscillation computation in the case of 2 flavor and 3 flavor schemes
are given. Finally, the last section summaries the present knowledge in the neutrino sector in the Stan-
dard Model.

1.1 Standard Model

The actual theoretical formulation of the Standard Model (SM) was finalized in the middle of
the seventies. The basis of the model is to link elementary particles (fermions) to each other by
interacting force, described by the exchange of a virtual particle (boson). All these phenomena
can be developed mathematically using the quantum field theory. In this description each
particle is a quantization of the field associated to the interaction. So the particles are classified
according to the nature of the field of origin.

On one side there are the gauge bosons coming from interacting fields. In the SM we
have 3 distinguishable forces: the electro-magnetic force, the weak interaction and the strong
interaction. The gravitation is not described in the SM. For each of the interactions corresponds
a force carrier particle. For the electro-magnetic force it is the photon, for the weak interaction
the bosons W± and Z and for the strong interaction 8 gluons.

On the other side we have the fermions. The fermions are classified in two types: the lep-
tons and the quarks. For the leptons, due to some symmetries, the SM implies two main classes:
a charged one with a certain mass (electron-type) and a neutral mass-less one (neutrino-type).
Respecting the same symmetries for the quarks, the theory leads also to 2 main types of quarks:
the up-type (charge 2/3) and the down-type (charge -1/3). The first flavor family corresponds
to the up (u) and down (d) quarks and t be163089424o the electron (e) and the electronic neu-
trino (νe); the second flavor family corresponds to the charm (c) and strange (s) quarks and to
the muon and the muonic neutrino (νµ); the last flavor family corresponds to the top (t) and
bottom (b) quarks and the tau lepton (τ) and the tauic neutrino (ντ). Then, there is a total
of 12 fermions predicted in the SM. The SM predicts also that for each of the 12 fermions it
corresponds an anti-particle of the same mass but with opposite charge.
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The fermions and the bosons are also differentiated by their spin. The bosons have spin
1 and the fermions have spin 1/2. The elementary particles that compose the matter are only
formed with the first family: the u and d quark, and the electron. For example the protons and
the neutrons, which compose the nucleus of the atoms, are composed by 3 quarks: uud and
udd respectively. The elementary particles of the SM are presented in figure 1.1.

In 2012, physicists at CERN discovered a new particle, the scalar boson H (spin 0), sup-
posed to explain the masses of all elementary particles in the Universe by spontaneous sym-
metry breaking through the Brout-Englert-Higgs (BEH) mechanism. The values of the masses
of the elementary particles (quarks, leptons and gauge bosons) are not predicted by the SM.
They are free parameters of the model and they have to be measured experimentally.

In this master thesis, we will focus more specifically on the neutrino particles. As it can
be seen in figure 1.1, the masses of the 3 neutrinos are unknown. In the minimal version of
the SM the ν masses are supposed to be zero. However we know now that at least two of the
three neutrinos should have non-zero masses as we observe the phenomena of ν-oscillations
(described in section 1.3). A more complex model is thus needed to describe this phenomenon.
By studying the neutrino oscillations we have a powerful tool to scrutinize the neutrino sec-
tor and to discover new physics beyond the SM. The section below gives an overview of the
neutrino sector and their unanswered questions.

FIGURE 1.1: Actual knowledge of the SM extracted from reference [4].
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1.2 Neutrinos physics

Neutrino physics today is one of the key challenges of our understanding of Nature. During
the last decades the new phenomenon of neutrino oscillations was observed. The 2015, the
Nobel Prize of physics was awarded to Takaaki Kajita and Arthur McDonald for the discovery
of neutrino oscillations. In 1998 at the Super-Kamiokande detector, an experimental facility
in a mine in Japan, T. Kajita and his team detected neutrinos created in reactions between
cosmic rays and the earth atmosphere. Measurements show deviation compared to the SM
predictions which were explained by the neutrino oscillations between the different neutrino
flavors. In the SNO (Sudbury Neutrino Observatory) facility in a mine in Canada, Arthur
McDonald and his team studied neutrinos created in nuclear reaction in the sun, and observed
a similar phenomena. These works solved the long standing problem of solar neutrinos, which
was a major discrepancy between the predicted and measured solar neutrino flux.

The neutrino oscillation phenomenon can be studied using natural sources (neutrinos
from the sun or atmospheric neutrinos) and from artificial sources (neutrinos produced in ac-
celerator facilities or in nuclear power plants).

The origin of this phenomenon can be explained by lepton mixing. The mass-state
(physical state) of the neutrinos can be expressed by a combination of the flavor states (in-
teracting states) and vice-versa. The main idea is to represent the mixing of neutrinos as a basis
change. The change from the flavor basis to the mass basis can be expressed as a rotation with
a certain set of angles, called the mixing angles. Neutrinos are created in their flavor eigen-
states, via the weak interaction. When a neutrino propagates, the quantum mechanical phases
of their mass states advance at slightly different rates due to the small difference in the neutrino
masses. There is then a change of mixture in the mass states when neutrino travels, leading
to an different mixture of electronic, muonic and tauic neutrinos. The probability to detect a
neutrino with a certain flavor state will vary with the distance propagation.

The usual formalism uses a matrix to express the passage from the mass basis to the
flavor basis. This matrix is a 3 × 3 unitary matrix if we consider no interaction with other
neutrino generation. A 3× 3 unitary matrix is characterized by 3 angles and one phase. The
expression of this matrix commonly used, is:

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (1.1)

This matrix is called the PMNS matrix (Pontecorvo-Maki-Nakagawa-Sakata matrix).
The elements are functions of the 3 mixing angles θ12, θ13 and θ23, with cij = cos(θij), sij =

sin(θij). We have also the Dirac phase δ. This phase is related to the CP violation1.

1CP violation is a violation of charge conjugation and parity symmetries.
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1.3 Neutrino oscillations

The neutrinos produced by the weak interaction are of a determined flavor sate. The notations
for the mass eigenstates are ν1, ν2, ν3 and for the flavor eigenstates are νe, νµ, ντ. So a neutrino
of a certain flavor can be expressed as a superposition of mass eigenstates2:

|νe〉 = Ue1 |ν1〉+ Ue2 |ν2〉+ Ue3 |ν3〉∣∣νµ

〉
= Uµ1 |ν1〉+ Uµ2 |ν2〉+ Uµ3 |ν3〉

|ντ〉 = Uτ1 |ν1〉+ Uτ2 |ν2〉+ Uτ3 |ν3〉
(1.2)

Where Ue1...Uτ3 are the 9 elements of the unitary PMNS matrix of equation 1.1.

1.3.1 Case of 2 flavor neutrino oscillation

We will first consider the case of two neutrino families. We do this simplification to illustrate
easily the situation. We chose two neutrinos, for example the electronic (νe) and the muonic
(νµ) ones:

|νi〉 =
2

∑
k=1

Uik |νk〉 (1.3)

where i = e, µ. We can understand the mixing as a rotation of the coordinate system. This
matrix can be written as:

U =

(
cosθ sinθ
−sinθ cosθ

)
(1.4)

where θ is the mixing angle. We can express now the two weak eigenstates as a function of the
mass eigenstates:

|νe〉 = cosθ |ν1〉+ sinθ |ν2〉∣∣νµ

〉
= −sinθ |ν1〉+ cosθ |ν2〉

(1.5)

The mass eigenstates are solutions of the Schrödinger equation:

H |νk〉 = Ek |νk〉 = ih̄
d
dt
|νk〉 (1.6)

Ek =
√

m2
k + p2

k corresponds to the energy of the mass state k and the Hamiltonian can be
expressed as:

H =

(
E1 0
0 E2

)
(1.7)

The solutions of the equation 1.6 are plane waves and in the vacuum the propagation states are
written:

|νk(t)〉 = e−i(Ekt−pkx) |νk(0)〉 = e−iφk |νk(0)〉 (1.8)

with φk = Ekt− pkx. Now we will consider that we have at t = 0 a νe which is created:

|νe(0)〉 = |1〉 and
∣∣νµ(0)

〉
= |0〉 (1.9)

2This development is extracted from the reference [5].
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So the mass eigenstates are expressed as follows:

|ν1(0)〉 = cosθ |1〉 and |ν2(0)〉 = sinθ |1〉 (1.10)

The evolution of the
∣∣νµ

〉
is given by this formula:∣∣νµ(t)

〉
= −sinθ |ν1(t)〉+ cosθ |ν2(t)〉
= −sinθe−iφ1 |ν1(0)〉+ cosθe−iφ2 |ν2(0)〉
= −sinθe−iφ1cosθ |1〉+ cosθe−iφ2sinθ |1〉

=
1
2

sin(2θ)(e−iφ2 − e−iφ1) |1〉

(1.11)

The probability of oscillation of the νe to νµ can be computed as:

Pνe→νµ =
∣∣〈νe(0)

∣∣νµ(t)
〉∣∣2

=
1
4

sin2(2θ)
∣∣∣(e−iφ2t − e−iφ1t)

∣∣∣2
= sin2(2θ)sin2

(
φ2 − φ1

2

)
= sin2(2θ)sin2

(
∆φ

2

)
(1.12)

In the last equality we pose ∆φ = φ2 − φ1. We will work in the ultra-relativistic limit i.e.
p � mi, and m1 is the mass of the state |ν1〉 and m2 is the mass of |ν2〉. We use natural units
with c = h̄ = 1.

E2 = p2 + m2 = p2
(

1 +
m2

p2

)
E ≈ p(1 +

1
2

m2

p2 ) = p +
1
2

m2

p

(1.13)

We have used the Taylor development of the function square root trunked at the first order. We
can express the ∆φ (using x = c.t):

∆φ = (E2 − p2)t− (E1 − p1)t ≈
m2

2
2p2

t− m2
1

2p1
t ≈ m2

2 −m2
1

2p
t ≈ m2

2 −m2
1

2E
t (1.14)

The probability of oscillation becomes:

Pνe→νµ = sin2(2θ)sin2

(
m2

2 −m2
1

4E
t

)
(1.15)

If we use now the international unit system, h and c will appear:

Pνe→νµ = sin2(2θ)sin2

(
(m2

2 −m2
1)c

4

4hE
t

)
(1.16)
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We can also replace the travel time t by the travel distance L by using this L = c.t:

Pνe→νµ = sin2(2θ)sin2

(
(m2

2 −m2
1)c

3

4hE
L

)
(1.17)

In general we use specific units for this formula: [m2] = eV2/c4, [E] = GeV and [L] = km and
Pνe→νµ becomes:

Pνe→νµ = sin2(2θ)sin2

(
1.27

∆m2
21L

E

)
(1.18)

where ∆m2
21 = m2

2 −m2
1. In this case there is only one mixing parameter θ, also labeled as θ12.

Figure 1.2 shows the Pνe→νµ oscillation pattern for a 3 MeV neutrino as function of the
distance. The amplitude of the oscillations is linked to the parameter θ. The period is a function
of the ratio between the neutrino mass difference and the energy.
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b
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Oscillation probability in function of the travel
distance for a given energy

Pνe→νµ

FIGURE 1.2: Graphic of the oscillation probability for νe to νµ as function of the
distance L in kilometer. The parameters: ∆m2

21 and sin2(θ12) are taken from the
table 1.1 and the neutrino energy is chosen at 3 MeV.

In figure 1.3, we represent the normalized oscillation probability as a function of the
variable E/L and we fix ∆m2

21 to 1 eV2.
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FIGURE 1.3: Graphic of the oscillation probability for νe to νµ as a function of the
distance L in kilometer (∆m2

21 = 1eV2).

1.3.2 Case of 3 flavor neutrino oscillation

The 2 flavor neutrino oscillation mechanism described in the previous section can be general-
ized in the case of 3 flavors. Starting from a να at t = 0, the probability for oscillation into a νβ

at a time t is given by:

Pνα→νβ
=
∣∣〈να(0)|νβ(t)

〉∣∣2 =

∣∣∣∣∣∑k
U∗αkUβke−im2

k
L

2E

∣∣∣∣∣
2

(1.19)

for k = 1, 2, 3. We will now compute the survival probability of one electronic neutrino (νe).
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The general expression for the survival probability is:3

Pνe→νe =

∣∣∣∣∣∑k
U∗ekUeke−im2

k
L

2E

∣∣∣∣∣
2

(1.20)

=
3

∑
k

U4
ek +

3

∑
k=1

3

∑
j>k

U2
ekU2

ej (e
−i

∆m2
kj L

2E + ei
∆m2

kj L

2E ) (1.21)

= c4
12c4

13 + s4
12c4

13 + s4
13 + 2c4

13c2
12s2

12cos

(
∆m2

21L
2E

)
(1.22)

+ 2c2
13s2

13

(
c2

12cos

(
∆m2

31L
2E

)
+ s2

12cos

(
∆m2

32L
2E

))
(1.23)

= 1− c4
13sin2(2θ12)sin2

(
∆m2

21L
4E

)
(1.24)

− sin2(2θ13)

(
c2

12sin2

(
∆m2

31L
4E

)
+ s2

12sin2

(
∆m2

32L
4E

))
(1.25)

where ∆m2
31 = m2

3 −m2
1 and ∆m2

32 = m2
3 −m2

2. In the last expression we can see that the
oscillation frequency is a function of the mass differences ∆m2

21, ∆m2
31 and ∆m2

32. On the other
hand we know from neutrino oscillation measurements that ∆m2

21 � ∆m2
32, ∆m2

31 .

Due to the small value of ∆m2
21 we make the following approximation: ∆m2

31 ≈ ∆m2
32 ≈

∆m2
f ast. This leads to a two ∆m2 regimes approximation to simplify the equation 1.20. The

probability of oscillation Pνe→νe can be rewritten as:

Pνe→νe ≈ 1− c4
13sin2(2θ12)sin2

(
∆m2

21L
4E

)
(1.26)

−sin2(2θ13)sin2

(
∆m2

f astL

4E

)
(1.27)

= 1− Pslow − Pf ast (1.28)

The fast oscillation regime is described by the ∆m2
32 and ∆m2

31. This part is also called
the atmospheric oscillation. The slow oscillation regime is described by the ∆m2

21 and is called
the solar oscillation. The survival probability Pνe→νe is represented in figure 1.4. The slow
oscillation (red curve) corresponds to the 2 flavors case from section 1.3.1. The green curve in

figure 1.4 is the oscillation due to the term in sin2(
∆m2

13L
4E ) and sin2(

∆m2
23L

4E ). These two sinuses
have a frequency much higher than the red curve. As we can see in table 1.1, the ∆m2

31 and
∆m2

32 are in the range of 2× 10−3 eV2 and the ∆m2
21 is more and less equal to 7× 10−5 eV2.

3The equation is for the normal hierarchy. A complete formula for the two hierarchies is presented in chapter
3.
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Parameter Best fit 3σ interval
∆m2

21 7.37 10−5 eV2 6.93-7.97
∆m2 2.5 10−3 eV2 2.37-2.63
∆m2

31 NH 2.536 10−3 eV2 2.404-2.67
∆m2

31 IH 2.423 10−3 eV2 2.335-2.6
∆m2

32 NH 2.463 10−3 eV2 2.335-2.6
∆m2

32 IH 2.496 10−3 eV2 2.404-2.67
sin2(θ12) 0.297 0.250-0.354
sin2(θ23) NH 0.437 0.379-0.616
sin2(θ23) IH 0.569 0.383-0.637
sin2(θ13) NH 0.0214 0.0185-0.0246
sin2(θ13) IH 0.0218 0.0186-0.0248

TABLE 1.1: Table of the parameters extracted from the particle data group’s book.
NH: normal hierarchy, IH: inverted hierarchy. Where ∆m2 = m2

3 − (m2
1 + m2

2)/2
and thus in case of NH (m1 ≤ m2 ≤ m3): ∆m2 = ∆m2

31 − ∆m2
21/2 and for the IH

case (m3 ≤ m1 ≤ m2): ∆m2 = ∆m2
31 + ∆m2

21/2 [3][6].
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FIGURE 1.4: Graphic of the oscillation probability for νe to νe as a function of the dis-
tance L in kilometer for a neutrino of 3 MeV. The parameters: ∆m2

21, ∆m2
f ast(chosen

equal to ∆m2), sin2(θ12), sin2(θ23) and sin2(θ13) are from table 1.1. The hypothesis
of the normal neutrino mass hierarchy is used.
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1.4 Actual knowledge of neutrinos in the Standard Model

Neutrino physics today is a very active research area. The parameters ∆m2
21 and θ12 are mea-

sured using solar neutrino oscillation experiment such as KamLAND [7] and Super-Kamiokande-
I [8]. The parameters θ23 and ∆m2

32 are measured using different experiments as for example
T2K which uses the muon neutrino disappearance to tau neutrino [9]. A recent key result is
the high precision measurement of the parameter sin2(θ13) by the Daya Bay experiment, and
the subsequent results obtained by the RENO, Double Chooz and T2K Collaborations [10–13].
The relatively large value measured for θ13 opens up particular possibilities for searching for
CP violation effects in neutrino oscillation experiments (see equation 1.1), and for determining
the structure of the neutrino mass spectrum.

The actual knowledge of the 3 mixing angles is4:

• θ12 = 33.0◦

• θ23 = 41.4◦

• θ13 = 8.4◦

Then the matrix U becomes (supposing δ = 0):

U =

 0.8294 0.5391 0.1462
−0.4899 0.5764 0.6539
0.2682 −0.614 0.7422

 (1.29)

Each of the elements, when squared, corresponds to the probability of measuring one of the
mass eigenstates for a given flavor. Taking for example the first line in equation 1.29, we see
that U2

e1 + U2
e2 + U2

e3 = 1 and U2
e1 gives 68.8%, U2

e2 gives 29.1% and U2
e3 gives 2.1% represented

by the red contributions (νe component) in ν1, ν2 and ν3 in figure 1.5.

Concerning the ∆m2 values we have 2 values determined by the same reference [14]5:

• ∆m2
21 = 7.37 10−5 eV2

• |∆m2| = 2.5 10−3 eV2

where ∆m2 = m2
3− (m2

1 + m2
2)

1
2 . We have still one unknown, namely the neutrino mass hierar-

chy: normal hierarchy (NH) or inverted hierarchy (IH).

Neutrino masses can only be generated through the Brout-Englert-Higgs (BEH) mecha-
nism if three additional neutrino states exist. These states are avoided in the minimal version
of the Standard Model (SM) of particle physics and we have no sign of their existence. Even
if they exist, we need to understand why SM neutrinos are so light. The heaviest neutrino is
at least 11 orders of magnitude lighter than the top quark. ”Is there something in addition of
the BEH mechanism that makes neutrinos so light?” is one of the open questions about the
neutrinos.

4The measurements are extracted from reference [14].
5The error are included in table 1.1
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Neutrino mass hierarchy

For the quarks and the charged leptons, we know that the mass hierarchy is normal. It means
that the top quark is heavier than the charm quark and heavier than the up quark, the obser-
vation is the same for the other down-quarks and for the charged leptons. But for the neutrino
we do not know the mass ordering. To understand the situation we use the figure 1.5:

FIGURE 1.5: Figure representing the neutrino mass hierarchy in the normal case
(on the left side) and in the inverted case (on the right side). The image is taken

from reference [15].

In figure 1.5 we have:

• NH: m1 < m2 < m3

• IH: m3 < m1 < m2

We define the mass square differences:

• ∆m2
21 = m2

2 −m2
1, which is always positive.

• ∆m2
32 = m2

3 −m2
2, which is positive for the NH case and negative for IH case.

• ∆m2
31 = m2

3 −m2
1, which is positive for the NH case and negative for IH case.

The parameter ∆m2 can be either positive or negative according to the NH or IH for the
neutrino mass spectrum. This parameter is determined in the reference [14] using a global fit.
For the NH we can write:
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• ∆m2
31 = ∆m2 + ∆m2

21/2

• ∆m2
32 = ∆m2 − ∆m2

21/2

and for the IH case:

• ∆m2
31 = ∆m2 − ∆m2

21/2

• ∆m2
32 = ∆m2 + ∆m2

21/2

The mass hierarchy will affect the oscillation probability. This impact will be used to
determine the mass hierarchy by studying the neutrino oscillations as it will be explained in
the chapter 3.

To study the neutrino oscillation and to resolve the neutrino mass hierarchy various
projects were approved:

• India-based Neutrino Observatory (INO) is working on matter effect on atmospheric neu-
trino flux. Indeed there is non-standard interaction between the earth matter and the
neutrinos. The detector is a magnetized iron calorimeter running in 10 years to have a 3σ
confidence level on the measurement of the mass hierarchy [16].

• The NOνA is a long-baseline neutrino oscillation experiment using a beam of neutrinos
coming from accelerators. To investigate the mass hierarchy of neutrinos it will focus on
the ν̄e/νe appearances and the ν̄µ/νµ disappearances. The objective of this experiment is
to achieve a precision of 3σ by taking data over 6 years [17].

• The JUNO experiment is a medium neutrino baseline experiment, medium referring to
the distance between the source of anti-neutrino and the detector. The neutrino flux is
coming from nuclear reactor. The precision achieved after the 6 years of acquiring data
would be 4σ [18].

This master thesis presents a study of the neutrino mass hierarchy measurement using
the future JUNO experiment. If the determination of the neutrino mass hierarchy is the prime
science goal of JUNO, the experiment will also determine the solar oscillation parameters with
unprecedented accuracy (< 1% level) and will test the three-flavor scenario of neutrino oscil-
lations. Other interesting measurements at JUNO concern the proton decay physics, possible
detection of neutrinos from supernovae explosion, and geo-neutrino studies. More details on
the science potential of JUNO can be found in the JUNO Collaboration publication “Neutrino
Physics with JUNO” [18].
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Chapter 2

The JUNO project

In this chapter, we will explain the various components of the JUNO detector and the measurement of
the neutrino mass hierarchy by the JUNO experiment.

2.1 The JUNO detector

The Jiangmen Underground Neutrino Observatory (JUNO) experiment [19] is a neutrino med-
ium baseline experiment in China, with the objective to determine the neutrino mass hierarchy
after 6 years of data taking and to perform accurate measurements of several neutrino mass
and mixing parameters [18, 20–24].

The experiment uses a large liquid scintillator (LS) detector aiming at measuring elec-
tronic anti-neutrinos issued from nuclear reactors at a distance of 53 km. The detector will be
located at 700 m underground and consists of 20 ktons of liquid scintillator contained in a 35
m diameter acrylic sphere, instrumented by more than 17000 20-inch photomultiplier tubes
(PMT), and about 25000 3-inch small PMTs, with a cathode coverage of about 77%. Figure 2.1
presents a schematic view of the JUNO detector.

Preliminary studies in JUNO [19] have shown that the required energy resolution ( σ
E ) to

discriminate between the normal and inverted neutrino hierarchies at a 3− 4σ confidence level
for about 6 years of data record is 3% at an energy of 1 MeV. This puts strong constraints on the
detector component quality, in particular on the PMTs. The layout of the PMT system has been
optimized with a array of small PMTs placed in between the large PMTs as shown in figure 2.2.
This is called a double calorimetry system. The addition of the small PMTs is to reduce residual
systematic errors that could affect JUNO. Such example is the charge extraction with the large
PMTs which is non-trivial. The charge reconstruction has also non-linearity and can introduce
an artificial non-uniformity. These effects are energy dependent and thus cannot be fully taken
out with calibration. The idea of double calorimetry is to exploit two independent energy
estimators experiencing different systematic uncertainties. One calorimetry is made with the
large PMTs which perform a charge integration. The second one is made with the small PMTs
operating predominantly in photon-counting mode and thus serving as a reference against
which to calibrate the large ones [26].

Around the detector vetoes are added to reduce the different backgrounds. The idea
of the veto is to determine if the event is coming from a cosmic muon or not. There are two
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FIGURE 2.1: Schematic view of the JUNO detector. The image is extracted from
reference [25].

FIGURE 2.2: Schematic layout of the PMTs. Small PMTs are in the gaps between
large PMTs [27].
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FIGURE 2.3: Schematic description of the inverse β-decay process of electronic anti-
neutrino. This image is taken from reference [28].

vetos. A 20 kton ultra-pure water Cherenkov pool around the central detector instrumented
by 2000 20-inch PMTs will tag events coming from outside the neutrino target. We need ultra-
pure water to avoid other background noise such as the disintegration of the impurities of the
water. It will also act as a passive shielding for neutrons and gammas originating from the rock
around the detector.

In addition a muon tracker will be installed on top of the detector (top muon veto). It
will tag cosmic muons and will be used to validate the muon track reconstruction performed
by the Cherenkov pool.

Due to the large dimension of the PMTs, the measure performed by the PMTs will be
affected by the earth magnetic field, and a double coil system is used as shielding.

The inverse β-decay (IBD) is the reaction used to detect the electronic anti-neutrino. The
equation of the reaction is :

ν̄e + p+ → e+ + n (2.1)

where ν̄e is the anti-neutrino coming from the nuclear plan, p+ a proton, e+ a positron and n
a neutron. The e+ annihilates with a e− generating 2 photons of 511 keV. The neutron slows
down and is then captured by an atom in the liquid and generates photons. These photons are
generated with a certain delay in comparison with the photons from the disintegration of the
e+. This is represented in figure 2.3. This process leads to two signals in the detector. The first
signal is the detection by the PMTs of the photons coming from the positron annihilation. The
second one is coming from the delayed absorption of the neutron.

The international JUNO collaboration was established in 2014, the civil construction
started in 2015, the R&D for the detector is on its final phase, and the production and test
have started for the main components (the large PMTs and the central detector structure). The
start of the data taking is expected at the end of 2021.
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2.2 The measurement of the mass hierarchy

There are two possible methods to determine the mass hierarchy. The first one uses matter
effects introduced by collective interactions of neutrinos with electrons in matter (experiments
NOνA and INO, see section 1.4). JUNO pursues a second method. It exploits an interference
effect between the 3-flavor oscillations in the disappearance of electronic anti-neutrinos emitted
from nuclear power reactors [18, 20–24]. The interference manifests itself in a rapid oscillation
pattern superimposed over the solar oscillation. The frequency of the pattern depends on the
mass hierarchy, as shown in figure 2.4. The various steps in order to obtain this energy spectra
are explained in details in chapter 3. The energy spectra is given here only to illustrate the
general method. This method provides a clean determination of the mass hierarchy. It does not
suffer from correlations with the leptonic CP-violation, which are intrinsic to the first method.

FIGURE 2.4: The (L/E) energy spectrum and the frequency pattern for normal
and inverted neutrino mass hierarchy. The parameters for the energy spectrum

are taken from table 1.1.

On figure 2.5 we have represented the oscillation probability for νe → νe as function
of the travel distance L (as in figure 1.4) for the two hierarchy cases. The normal hierarchy
is the blue curve and the inverted hierarchy is the green curve. The other experiments using
electronic anti-neutrinos are also represented. In figure 2.5a we observe that JUNO works in a
distance between the other experiments. At this distance (53 km), there is a minimum in the
solar oscillation (see section 1.3.2). Working with this distance will allow high precision on the
measurement of the solar parameters.

Figure 2.5b is a zoom of figure 2.5a. The distance of 53 km is the optimal distance to place
a detector in order to measure the neutrino mass hierarchy. One notices from figure 2.5 that
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the main challenge to distinguish the NH and the IH is to have an excellent neutrino energy
resolution.
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FIGURE 2.5: Graphic of the oscillation probability for νe to νe as a function of the
distance L in kilometer for a neutrino of 3 MeV. The parameters: ∆m2

21, ∆m2
31, ∆m2

32,
sin2(θ12), sin2(θ23) and sin2(θ13) are from table 1.1. The distances chosen by Daya
bay, KamLAND and JUNO experiments are represented in figure 2.5a. On the

lower panel we restrain the figure from 10 km to 100 km.

The neutrino interaction is identified observing the IBD signal in the liquid scintillator,
relying on the twofold coincidence between the prompt signal given by the positron ionization
and annihilation (1-10 MeV) and the delayed signal of 2.2 MeV given by the neutron capture
on hydrogen. The background is divided into an accidental and a correlated contribution. The
accidental background is given by radioactivity gammas (from PMTs or surrounding rock),
which fake a prompt or a delayed signal, and it can be reduced by passive shielding. The
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correlated background is mostly given by cosmogenic isotopes such as 9Li produced by muon
interactions in the detector or in the rock around it.

With the knowledge of the different origins of the backgrounds, a set of preliminary
anti-neutrino selection criteria can be listed below [18]:

• Fiducial volume: the interaction should be located inside the LS at a radius r < 17 m,
where the radius of the acrylic curve is 17.5 m. This cut allows to reduce most of the
accidental background noise coming from the PMTs surrounding the cuve.

• The prompt energy cut 0.7 MeV < Ep < 12 MeV, Ep is the energy of the positron.

• The delayed energy cut 1.9 MeV < Ed < 2.5 MeV, Ed is the delayed energy.

• The time interval between the prompt and delayed signal ∆T <1.0 ms. We cut the event
if the delay between the detection of the energy due to the positron and the detection of
the energy due to the neutron is too high.

• The prompt-delayed distance cut Rp−d < 1.5 m. Rpd is the distance between the point of
detection of the energy due the positron and the detection point of the energy due to the
neutron.

• Muon veto criteria:

– for muons tagged by the Water Pool, veto over the whole LS volume for 1.5 ms.
– for good muon tracks in central detector and water Cerenkov detector, veto over the

detector volume within Rd2µ < 3 m and Td2µ < 1.2 s. Rd2µ and Td2µ are respectively
the radius around the muon trajectory and the time of travel of the muon in the
detector.

– for the tagged, non-trackable muons in central detector, veto over the whole LS vol-
ume for 1.2 s.

The anti-neutrino selection efficiency due to the fiducial volume cut is 91.8 %. The en-
ergy cut, time cut, and vertex cut have efficiencies of 97.8%, 99.1%, and 98.7%, respectively.
Assuming 99% muons have good reconstructed track, the efficiency of the muon veto cut is
estimated to be 83%. After the background rejection cuts, a signal of about 60 events per day is
expected, with a remaining background of about 3.8 events per day, as shown in table 2.1 [18].

Selection IBD efficiency IBD Geo-νs Accidental 9Li/8He
- - 83 1.5 ∼ 5.7× 104 84

Fiducial volume 91.8% 76 1.4
410

77
Energy cut 97.8%

73 1.3 71Time cut 99.1 %
Vertex cut 98.7% 1.1 1.6
Muon veto 83 % 60 1.1 0.9 1.6
Combined 73% 60 3.8

TABLE 2.1: The efficiencies of anti-neutrino selection cuts, signal and background
rates per day (with reactors of 36 GW thermal power, located at 53 km and for a

20-kton LS detector) [18].
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Chapter 3

The parameterization of the anti-neutrino
energy spectra

In this chapter, we present the parameterization of the anti-neutrino energy spectra. We study the
impact of the neutrino mass hierarchy (NH and IH) on the anti-neutrino energy spectrum measured
in JUNO. A Fourier transform method is described to differentiate the energy spectra in the 2 neutrino
mass hierarchy cases. Finally the impact of the distance between the reactor plants and the detector
on the neutrino mass hierarchy measurement is presented, as well as the effect of varying the neutrino
mixing angles and the ∆m2 parameters.

3.1 The energy spectrum

In this section, we construct the anti-neutrino energy-spectrum that will be measured in JUNO.
This energy spectrum is the product of three terms:

• φ(E): the flux of electronic anti-neutrinos coming from the reactor plants

• σ(E): the cross section for a anti-neutrino to interact in the detector

• Pν̄e→ν̄e(E/L): the probability that a anti-neutrino produced at the reactor plants stays as
a electronic anti-neutrino when arriving in the detector. By CPT symmetry in the SM
Pν̄e→ν̄e(E/L) = Pνe→νe(E/L) and the equations used in the previous chapter can be used
here for Pν̄e→ν̄e(E/L).

The energy spectrum F(E/L) is then:

F(E/L) = φ(E)σ(E)Pνe→νe(E/L) (3.1)

3.1.1 Determination of the neutrinos flux

For the flux, we have taken the measurements from the KamLAND experiments [29]. We
suppose here that the composition of the reactor fuel is similar between KamLAND and JUNO.
The data point from KamLAND are represented in figure 3.1.
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FIGURE 3.1: Flux of electronic anti-neutrinos: data points extracted from reference
[29] (in blue) and fitted function (in green).

In order to construct our simulations, we will need a parameterization of the flux φ(E) as
function of the anti-neutrino energy. For this a commonly used parameterization from J. Engel
is considered and is explained in the reference [30]. In this publication the following formula is
taken to describe the anti-neutrino flux coming from a single production in a nuclear reactor:

dNν

dEν
= ea0+a1×Eν+a2×E2

ν (3.2)

If we have more than one-isotope producing anti-neutrinos, we can simply sum on the different
isotopes with a coefficient proportional to the fraction of this isotope in the composition of the
nuclear fuel. In this work we used the one-isotope formula.

The data from KamLAND and the result of the fit using equation 3.2 are presented in
figure 3.1. We found for the variable a0 = 35.51, a1 = −0.214 MeV−1, a2 = −0.0865 MeV−2. We
see that the fit is well contained in a band made of the error of 6% on the flux.

To verify the fit of the experimental data, we represent the relative error in figure 3.2.
The relative error is defined as:

δφ =
∆φ

φ
=

φ′ − φexp

φexp
(3.3)

where φ′ is the fitted value and φexp is the experimental value. The experimental error is 3%.
Figure 3.2 shows that on the useful interval (see latter) the relative difference is contained in
the experimental error range.

In table 3.1, we have the ai parameters in the case of a nuclear fuel composed with 235U
, 239Pu, 238U and 241Pu with a specific concentration as presented in reference [29]. We observe
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FIGURE 3.2: Relative difference between data and the fit in green. The blue lines
represent the error on the data points.

TABLE 3.1: Comparison between the fitted parameter values obtained in this mas-
ter thesis (last column) with the values obtained by KamLAND extracted from [29].

Isotope 235U 239Pu 238U 241Pu Fitted value
a0 0.870 0.896 0.976 0.793 35.51
a1 (MeV−1) -0.160 -0.239 -0.162 -0.080 - 0.2144
a2 (MeV−2) -0.0910 -0.0981 -0.0790 -0.1085 -0.08654

that our fitted values for a1 and a2 are in the same range than the ones of KamLAND. For a0 the
values are different due to a normalization factor. To validate the one-isotope approximation
we compare the shape of the flux in the case of a fitting with a single isotopes emitting electronic
anti-neutrinos with the case presented in the reference [29] where we have 4-isotope mixing.
The blue curve in figure 3.3b is the case of only one-isotope emitting neutrinos and the green
curve is the 4-isotope case.

To only compare the shape and not the absolute value we have normalized the 4-isotope
case to the single isotope case. We observe that the shape is similar in the two cases. In figure
3.3b we observe that the relative difference between the one- isotope parameterization and the
4-isotope parameterization is very small. We can conclude that the one-isotope case is a good
enough approximation for the rest of the work.
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FIGURE 3.3: The figure 3.3a is the fitted fluxes of the electronic anti-neutrinos for
the different parameterizations: fit for one-isotope (blue) and fit for four isotopes (
green) using the parameters from table 3.1. The figure 3.3b represents the relative
difference between the one-isotope parameterization and the 4-isotope parameter-

ization.

3.1.2 Determination of the inverse β-decay cross section σ(E)

As explained in section 2.2, the anti-neutrino is detected when it interacts with a proton. We
have to parameterize the cross section of this interaction as function of the energy of the in-
cident anti-neutrino. We received as input of this work numerical result from the paper [31].
In this paper, the positron angular distribution is calculated, which at low energies is slightly
backward. It is also shown that weak magnetism and recoil corrections have a large effect on
the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher
energies. The paper explains also that the behavior of the cross section and the angular dis-
tribution can be well understood analytically for Eνe <∼ 60 MeV by calculating to O(1/M),
where M is the nucleon mass. Indeed we work with anti-neutrinos in the [0-10 MeV] energy
range. The following equation gives the cross section input (the green curve in figure 3.4) :

σ
(0)
tot =

2π2

m5
e · f R

p.s. · τn
E(0)

e · p(0)e (3.4)

where τn is the measured neutron lifetime, and f R
p.s. = 1.7152 is the phase space factor, includ-

ing the Coulomb, weak magnetism, recoil, and outer radiative corrections, but not the inner
radiative corrections [31]. E(0)

e = Eν − ∆ is the positron energy and the positron impulsion

p(0)e =
√

E2
0 −m2

0 , Eν is the energy of incident anti-neutrino and ∆ the mass difference be-
tween the proton and neutron.

To continue the work we need a parametrization of the theoretical value (given in the
green curve in figure 3.4) as function of the energy of the incident anti-neutrino. We have fitted
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FIGURE 3.4: Graphic of cross section in function of the energy of the neutrinos for
the inverse β decay.

the theoretical values with a cubic polynomial function of the energy of the anti-neutrino:

σ′(Eν) = a + b · Eν + c · E2
ν + d · E3

ν (3.5)

The result of this parameterization is the blue stripped line in figure 3.4. As for the flux, we
compute the relative difference between the theoretical value σ

(0)
tot and the parameterization σ′:

δσ =
∆σ

σ
=

σ′ − σ
(0)
tot

σ
(0)
tot

(3.6)

We represent this in figure 3.5. We observe that the relative error is small excepted a the
threshold (1.8 MeV). Indeed we lose the threshold comportment by using the cubic polyno-
mial parametrization.

3.1.3 Determination of the product φ(E).σ(E)

We compute the energy distribution by multiplying the anti-neutrino flux and the inverse β-
decay cross section taken from sections 3.1.1 and 3.1.2, respectively. In figure 3.6, the flux is
given as a function of the energy in red, the cross section for the invert β decay is given in blue,
and the product of the two is shown in green. We observe that the energy range goes from 1.8
MeV to about 10 MeV. Below 1.8 MeV, we are below the inverted β decay threshold (σ = 0)
and above 10 MeV the anti-neutrino flux is extremely small. The energy spectrum presented
as the green curve in the figure would be the result of the experiment if they are no oscillation
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(in blue). The parameters used for the flux description are taken from the equation
3.2 and table 3.1 (last column). The parameters used for the inverse β-decay cross

section are from figure 3.4
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phenomena. The following section highlights the effect of neutrino oscillation on the energy
spectra.

3.2 Impact of the different mass hierarchies

3.2.1 Expression of the oscillation probability with the mass hierarchy terms

From equations 1.24 and 1.25 to make the difference between the two mass hierarchies visible
we follow the procedure of the paper [32]. To begin this development we write the probability
as:

Pνe→νe(L/E) = 1− P21 − P31 − P32 (3.7)

where

P21 = cos4(θ13)sin2(2θ12)sin2

(
∆m2

21L
4E

)
(3.8)

P31 = sin2(2θ13)cos2(θ12)sin2

(
∆m2

31L
4E

)
(3.9)

P32 = sin2(2θ13)sin2(θ12)sin2

(
∆m2

32L
4E

)
(3.10)

(3.11)

First, we introduce the parameter ∆ij:

∆ij =
(m2

i −m2
j )L

4E
(3.12)

Then we consider the fast part of the probability : P31 and P32.

PFast = P31 + P32 (3.13)
= sin2(2θ13)(cos2(θ12)sin2(∆31) + sin2(θ12)sin2(∆32)) (3.14)

In the second term, we express ∆32 as function of the 2 other squared mass differences. Then
∆32 = |∆31 ∓ ∆21| (the − sign is for the normal mass hierarchy and the + is for the inverted
mass hierarchy) and thus we will express the factor sin2(∆32) = sin2(|∆31 ∓ ∆21|). By using
trigonometry formula and by doing some algebra, the expression of the sinus becomes:

sin2(|∆31 ∓ ∆21|) = sin2∆21cos(2∆31)∓
1
2

sin2(2∆21)sin(2|∆31|) (3.15)
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By introducing this result in equation 3.7 we obtain the following equation for the survival
probability of a electronic anti-neutrino:

Pνe→νe = 1− cos4(θ13)sin2(2θ12)sin2(∆21) (3.16)
− sin2(2θ13)(cos2(θ12)sin2(∆31) + sin2(θ12)sin2∆21cos(2∆31)) (3.17)

± 1
2

sin2(2θ13)sin2(θ12)sin2(2∆21)sin(2|∆31|) (3.18)

We see that only the last term of the equation is affected by the choice of the mass hierarchy;
the plus sign is for the NH and the minus sign for the IH.

3.2.2 Impact on the product of the cross section and flux

As reminder the energy spectra is given as follows:

F(E/L) = φ(E)σ(E)Pνe→νe(E/L) (3.19)

where the anti-neutrino flux (φ(E)), the cross section (σ(E)) and the oscillation probability are
given respectively in section 3.1.1, 3.1.2 and 3.2.1. Figure 3.7 1 shows the results of this equation.
The green curve is the product φ(E)σ(E) (as in figure 3.6) normalized such as the area below the
curve is equal to 1. The yellow curve is when we use instead of the total oscillation probability,
the solar oscillation (1− P21) in equation 3.19. The red (blue) curve is the energy spectrum for
NH (IH). We have also represented in figure 3.7b, the L/E spectrum to better differentiate two
hierarchy cases which are difficult to see in the energy spectrum in figure 3.7a.

3.3 Highlighting the different mass hierarchies using Fourier
transform

3.3.1 Mathematical background

The mathematical aspect was developed in [33]. We will resume it rapidly here. We will use a
Fourier cosine transform (FCT) and a Fourier sine transform (FST) defined as :

FCT(ω) =
∫ tmax

tmin

F(t)cos(ωt)dt (3.20)

FST(ω) =
∫ tmax

tmin

F(t)sin(ωt)dt (3.21)

1The figure 3.7b is the same as figure 2.4.
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(A) dependence in the energy (B) dependence in L/E

FIGURE 3.7: Energy spectrum (left) and L/E spectrum (right) for the anti-neutrino,
both for NH and IH. The normal hierarchy is given by the red spectra and the in-
verted hierarchy by the blue ones. The yellow line is the 1− P21 probability corre-
sponding to the solar oscillation. The green line is the product φ(E) · σ(E) obtained
at the figure 3.6. The distance parameter L is fixed at 53 km as in the JUNO experi-

ment.

where t = L/E and, for the bounds of the integral tmin = L
Emax

and tmax = L
Emin

. The func-
tion F(t) is the anti-neutrino energy spectrum from equation 3.1. The parameter ω is defined as
ω = 2 · 1.27 · δm2 in the reference [33].

3.3.2 Application of Fourier transform in case of neutrinos oscillations

We will now use this formalism on the neutrino oscillation both for the NH and for the IH.
By applying the formulas 3.20 and 3.21 to the energy spectra on the figures 3.7b we obtain the
FCT(ω) and FST(ω) distributions in figures 3.8a and 3.8b, respectively.
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FIGURE 3.8: Fourier cosine transform and Fourier sine transform for the curves in
the graphic 3.7b, as function of the parameter δm2. The blue curves are for the nor-
mal hierarchy and the green are for the inverted hierarchy. The chosen parameters
for the integral are tmin = 6625 and tmax = 29444 to obtain the agreement with

previously published results [18, 33].

To understand the influence of the different components of the oscillation probability on
the Fourier transforms we rewrite the oscillation probability as:

Pνe→νe = Psol + Patm1 + Patm2 (3.22)

where,

Psol = 1− cos4(θ13)sin2(2θ12)sin2(∆21) (3.23)
Patm1 = −sin2(2θ13)(cos2(θ12)sin2(∆31) + sin2(θ12)sin2∆21cos(2∆31)) (3.24)

Patm2 = ±1
2

sin2(2θ13)sin2(θ12)sin2(2∆21)sin(2|∆31|) (3.25)

Figure 3.9 shows the different Fourier transforms for the different components in the two cases
of neutrino mass hierarchy. The results of the Fourier transform are the black curves for the
total oscillation probability (Pνe→νe), the blue curves are for the solar oscillation (Psol), the green
curves for the first part of the atmospheric oscillation (Patm1) and the red curves for the second
part of the atmospheric oscillation (Patm2). We can first observe that the components of the
atmospheric oscillation dominate the FCT and FST spectra in the interested frequency range
of 2× 10−3 eV2 < δm2 < 3× 10−3 eV2 if the mass square ∆m2

31 and ∆m2
32 are in this range.

The contribution of the solar oscillation is very small because ∆m2
21 is infinitesimal compared

to ∆m2
31 and ∆m2

32 (see table 1.1). We see also that only Patm2 is affected by the neutrino mass
hierarchy. This is important because it gives to the global oscillation probability the following
properties:

• For the NH case, the shape of the FCT spectrum has the deepest valley on the right while
in the IH case the deepest valley is on the left.
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• For the FST spectrum, the peak has a bigger amplitude than the deepest valley for the
NH case and the deepest valley has bigger amplitude than the highest peak for the IH
case.

These features can be used to distinguish NH and IH.
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FIGURE 3.9: Fourier cosine and Fourier sine transform spectra for Psol component
(blue line), Patm1 component (green line), Patm2 component (red line) and all the

components of Pνe→νe (black line) in the cases of NH and IH.

3.3.3 Definition of RL and PV

To differentiate between the NH and the IH, two quantities are defined, called RL and PV [33].
The sign of these parameters will characterize the type of mass hierarchy. For the FCT, we take
the value of the amplitude of the right valley denoted by R and the amplitude of the left valley
denoted by L. This is represented in figure 3.10a. In figure 3.10a, we see the two different sets
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(A) FCT (B) FST

FIGURE 3.10: Theoretical Fourier cosine transform and Fourier sine transform. On
the left we have the FCT and the parameters R (amplitude of the right valley) and
L(amplitude of the left valley) in the case of NH and IH. The FST is presented on
the right with P (amplitude of the peak)and V (amplitude of the valley) parameters

in the case of NH and IH.

of value for the normal (in blue) and inverted (in green) hierarchy. The RL parameter is defined
as:

RL =
R− L
R + L

(3.26)

The sign of this parameter gives the type of hierarchy. Indeed we see in figure 3.10a that the
parameter is positive for normal hierarchy and negative for inverted hierarchy .

For the FST, we take the value of the amplitude of the highest peak denoted by P and
the amplitude of the deepest valley denoted by V (as it is shown in figure 3.10b). We define the
parameter PV as :

PV =
P−V
P + V

(3.27)

As for the Fourier cosine transform, the sign of the PV parameter gives the type of mass hier-
archy. The plus sign is for normal hierarchy and the minus sign is for inverted hierarchy.

Each point in figure 3.11 corresponds to a pseudo-experiment of 100 000 events sim-
ulated using Monte Carlo simulations. The x-value corresponds to the parameter RL com-
puted for the pseudo-experiment and the y-value to parameter PV. We have done 5000 pseudo-
experiments for each mass hierarchy. The detailed explanation is provided in chapter 4. The
figure illustrates the data clouds corresponding to a given mass hierarchy. Indeed the cloud
for the normal hierarchy corresponds to the zone where RL and PV are positive (in blue). And
for the inverted hierarchy, all the values are contained in a cloud in the green part of the figure
where RL and PV are negative.
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FIGURE 3.11: Example set of 5000 pseudo-experiments simulated by Monte Carlo
method using a distance L of 53 km, a statistic of 100 000 events and a perfect

energy resolution.

3.3.4 Impact of the distance

In this section, we study how the Fourier transforms are affected by changing the distance be-
tween the anti-neutrino source and the detector. We already know that the distance is a key
parameter in the neutrino oscillations and affects the anti-neutrino energy spectrum. Conse-
quently the distance also affects the RL and PV parameters. Figure 3.12 shows the evolution
of the Fourier transforms FCT (left plots) and FST (right plots) when the distance is changed.
The reference distance for JUNO is 53 km. The graphics show indeed that the Fourier trans-
forms are changing with the distance. We see that for a distance of 35 km the two hierarchies
are less separated that for a distance of 53 km. The general shape of the Fourier transforms is
the same for the two cases but the amplitude of variation is smaller in the case of a distance
of 35 km. This is explained by considering the equations 3.20 and 3.21. When the distance is
decreasing, the upper and lower limits in the integral are also decreasing and the value of the
integral also decreases. For the distance of 75 km the value of RL and PV are the same for the
two hierarchies.
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FIGURE 3.12: Shape of the Fourier transform of the spectrum for different dis-
tances: 35, 53 and 75 km.
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3.3.5 Impact of the parameters on the shapes of the Fourier transforms

We have 4 parameters (sin2(θ13), sin2(θ12), ∆m2
21 and ∆m2) playing a role in the anti-electronic

neutrino oscillation. These parameters are measured by various experiments with a certain
precision. In the following we will study how the experimental errors on these measurements
impact the shape of the Fourier sine and cosine transforms. The method used is to take 3
values (the measured value −3σ, the measured value, and the measured value +3σ) for each
parameter independently and to observe how the FCT and FST are affected. The 3σ error range
is taken from table 1.1.

• sin2(θ13): Figures 3.13 show the Fourier transforms when varying sin2(θ13). When sin2(θ13)
is increasing the amplitudes of the Fourier transforms increase also. This is explained by
looking at the survival probability:

Pνe→νe = 1− cos4(θ13)sin2(2θ12)sin2(∆21) (3.28)
− sin2(2θ13)(cos2(θ12)sin2(∆31) + sin2(θ12)sin2∆21cos(2∆31)) (3.29)

± 1
2

sin2(2θ13)sin2(θ12)sin2(2∆21)sin(2|∆31|) (3.30)

The blue part of the equation corresponds to the solar oscillation. The green and the
red terms are the atmospheric oscillation terms. In the green and red term we have the
same factor sin2(2θ13) as explained in section 3.3.2. Consequently we expect when the
value of θ13 increases, the amplitudes of the Fourier transforms increase also. This is
indeed observed in figure 3.13. The variation of the amplitude affects the value of RL and
PV and then, the discrimination of the mass hierarchy. A study of this is performed in
chapter 5

• sin2(θ12): We have computed the Fourier transforms for the three values of sin2(θ12). We
present this computation in figure 3.14 . We observe that the Fourier transforms change
with this parameter. The amplitude of the Fourier transforms decreases when the value
of sin2(θ12) decreases.

• ∆m2: The value ∆m2 plays a role inside the equations 3.29 and 3.30 through the parame-
ters ∆31 and ∆32. As presented in figure 3.15 it does not affect the amplitude of the Fourier
transforms, but the curves are shifted along the x-axis. As the shape of the Fourier trans-
forms do not vary the power of discrimination is not affected.

• ∆2m21: Figure 3.16 shows the shape of the Fourier transforms for the different values of
∆m2

21. As for sin2(θ12) we do not see differences between the 3 cases. The explanation is
also the same. ∆m2

21 is a parameter that matters for the solar term but it doesn’t appear in
the atmospheric oscillation while the methods study only this oscillation.

As conclusion, we have shown that only the factor sin2(2θ13) affects significantly the
shapes of the Fourier transforms of the oscillation spectra, and then affect also the pa-
rameters PV and RL.
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FIGURE 3.13: The Fourier transforms FCT (left plots) and FST (right plots) for vari-
ous values of the sin2(θ13) parameter : the measured value−3σ (top), the measured

value (middle) and the measured value +3σ (bottom).
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FIGURE 3.14: The Fourier transforms FCT (left plots) and FST (right plots) for vari-
ous values of the sin2(θ12) parameter : the measured value−3σ (top), the measured

value (middle) and the measured value +3σ (bottom).
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FIGURE 3.15: The Fourier transforms FCT (left plots) and FST (right plots) for var-
ious values of the ∆m2 parameter : the measured value −3σ (top), the measured

value (middle) and the measured value +3σ (bottom).
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FIGURE 3.16: The Fourier transforms FCT (left plots) and FST (right plots) for var-
ious values of the ∆m2

21 parameter : the measured value −3σ (top), the measured
value (middle) and the measured value +3σ (bottom).



40

Chapter 4

Monte Carlo simulation

In this chapter, we present the Monte Carlo simulations to generate pseudo-experiments. We gener-
alize the Fourier transforms defined for a continuous energy spectra to a discrete energy spectra. We
implement a Gaussian incertitude to simulate errors on the anti-neutrino energy from the data acqui-
sition system. We study the impact of the anti-neutrino energy resolution on the Fourier transform
distributions.

4.1 Monte Carlo principle

The name Monte Carlo was applied to a class of mathematical methods first used by scientists
working on the development of nuclear weapons in Los Alamos in the 1940s. Monte Carlo
Simulation is a mathematical technique that generates random variables to give a solution
using probabilistic methods to non-probabilistic problems [34].

In our case, we sample the anti-neutrino energy spectra F(E/L) using Monte Carlo meth-
ods (see chapter 3 in [34]). To sample this distribution we uniformly generate two random
numbers x and y using a pseudo-random number generator (specifically the mrg32k3a gener-
ator [35]). x is the energy value chosen in the [1.8, 8.0 MeV] energy range. We have chosen this
energy interval to be able to compare the theoretical values of the FST and FCT to the value
generated using the Monte Carlo simulation. y is generated in the [0.0, 0.1] range and gives the
amplitude of the energy spectrum of the anti-neutrino flux (see figure 3.7a).

The rejection rule is the following : If the value that y takes is lower than the value of
the theoretical oscillation energy spectrum (F(x/L) (see equation 3.1) we consider this couple
of number as an event (as explained in section 2.2), otherwise we reject it. An example is seen
in figure 4.1.

We divide the energy interval [1.8, 8 MeV] into a certain number of bins. A bin takes a
hit if, for an event (x,y), x falls within the energy interval of the bin. The histograms in figure 4.2
represent each bin as a blue bar. The height of each bar gives of the number of hits of the bin.
The Monte Carlo simulation allow to study how the statistical error affects the discrimination
between the two mass hierarchies (see below).

To continue the analysis according to chapter 3, we have to compute the discrete Fourier
sine and cosine transforms of the spectrum. The integral over L/E is converted to a sum over
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FIGURE 4.1: Example of the Monte Carlo process. The energy spectra for NH (in
blue) and for IH (in green) are represented for a distance of 53 km.
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FIGURE 4.2: Histograms of 100 000 events simulated by Monte Carlo method for
the normal (left) and inverted (right) neutrino mass hierarchies.



Chapter 4. Monte Carlo simulation 42

0.0020 0.0022 0.0024 0.0026 0.0028 0.0030

δm2

−6000

−4000

−2000

0

2000

4000

6000 NH
IH

(A) FCT

0.0020 0.0022 0.0024 0.0026 0.0028 0.0030

δm2

−6000

−4000

−2000

0

2000

4000

6000 NH
IH

(B) FST

FIGURE 4.3: Fourier cosine (left) and Fourier sine (right) transforms of the discrete
spectra of figure 4.2 with prefect energy resolution and 150 bins.

all the events as follows:

FCT(ω) =
∫ tmax

tmin

F(t)cos(ωt)dt→ FCTdisc(ω) =
Nevent

∑
i

cos(
ωL
Ei

) (4.1)

and

FST(ω) =
∫ tmax

tmin

F(t)sin(ωt)dt→ FSTdisc(ω) =
Nevent

∑
i

sin(
ωL
Ei

) (4.2)

Applying the formula 4.1 and 4.2 to simulated data (in figure 4.2) we obtain discrete Fourier
transforms. In figure 4.3a, we have the Fourier cosine transform and in figure 4.3b the Fourier
sine transform. Comparing figures 3.8 and 4.3 we see that the Fourier transform depends on
the methods being used. The main difference is due to the fact that Monte Carlo technique has
statistical errors, distinguishing it from the theoretical methods. This is interesting in our case
as it reproduces the reality of detection system.

4.2 Impact of the energy resolution on the shape of the Fourier
transforms

The resolution affects the results the simulations into two ways. The first one is the number of
chosen bins. This is a fixed parameter chosen before each simulation. It affects the resolution as
it defines the degree of discretization of the energy interval. The important point is that events
with different energies will be put in the same small discrete interval and this leads to error on
the Fourier transforms.

The other factor influencing the resolution is the Gaussian error of the detector. In-
deed, in order to simulate results close to those ones produced by actual particle detectors, we
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brought a slight modification to the Monte Carlo technique as explained in Section 4.1. We
simulate a Gaussian distribution (via its standard deviation) around each x point.

4.2.1 Impact of the number of bins

To study the impact of the number of bins, we vary the number of bins in the pseudo-experiments.
To make the graph more clear we consider no Gaussian energy resolution in these simulations.
We started the numerical experiments with a small number of bins. Figure 4.4a shows the his-
togram of the energy spectrum for NH when the number of bins is set to 100. Figure 4.4b is
a zoom of figure 4.4a in the energy interval [1.8, 4 MeV]. We chose this interval for the fine
oscillation pattern in it. With this small number of bins the oscillation pattern is vanishing.
Comparing this histogram to the energy spectra in figure 4.1 we see that some of the finest
oscillations have disappeared. Indeed large bin takes the mean value of the oscillations.

Figures 4.5a and 4.5b1 show the histogram of the NH energy spectrum in the energy
interval [1.8, 4 MeV], when the number of bins is set to 150 and 200 respectively. They both
give an accurate representation of the energy spectra of figure 4.1. We conclude that in our
simulation 150 bins are high enough to see the oscillation pattern. It is also important to notice
that increasing the number of bins beyond a certain limit does not make sense as it implies that
the detectors measure energy levels with an arbitrarily high precision. 200 bins correspond to
a energy resolution of 3% which will be the maximum obtained in JUNO experiment.

The graphs in figure 4.6 represent the Fourier cosine transforms in the case of 100 bins
(left) and of 150 bins (right). In the case of 100 bins, we observe more oscillations than in the
150 case. We conclude as the number of bins decreases, this results in a smoother curve and in
additional frequencies appearing in the Fourier transforms.

4.2.2 Impact of the Gaussian detection resolution

We study the impact of the Gaussian resolution in our simulations while fixing the number of
bins to 150. Figure 4.7a shows the histogram of the energy spectrum for NH with a Gaussian
energy resolution of 0.01. With this small resolution the histogram represents the energy spec-
trum in figure 4.1 fairly accurately. The increase of the resolutions (worst resolution) makes a
worst representation of the energy spectrum as we see comparing figures 4.7b and 4.7d. The
oscillations are still present (even the finest ones), however their amplitudes is less clear. The
reason behind this observation is that higher resolution (higher standard deviation) leads to a
energy value of an event falling more frequently in the wrong bin. Therefore the number of
hits per bin is more uniformly distributed.

The graphs in figure 4.8 represent the Fourier cosine transforms for the case of a res-
olution of 0.01 (left) and 0.03 (right). As the resolution increases (become worst) the figures
are more deformed compared to the Fourier transforms of the energy spectra in figure 4.3.
Moreover the difference between the NH and IH curve becomes less apparent which leads to
difficulties in discriminating the mass hierarchy, for the same reason as above.

1The complete set of the following figures is presented in A.
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(B) Zoom of figure 4.4a
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FIGURE 4.4: Histogram of the Monte Carlo simulation for different binnings: 100
and 150. The number of events is 100 000 and we have a infinite resolution. The
plot for the energy interval [1.8, 8 MeV] (right) and zoom for the energy interval

[1.8, 4 MeV] (left).
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FIGURE 4.5: Histograms of the Monte Carlo simulation for different binnings: 150
and 200. The number of events is 100 000 and we have a infinite resolution.
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FIGURE 4.6: FCT spectra simulated by Monte Carlo simulation for different bin-
nings: 100 and 150. The number of events is 100 000 and we have a infinite resolu-

tion (see appendix C to complete set of figures).
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(C) NH and resolution of 0.03
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FIGURE 4.7: Histograms of the Monte Carlo simulation for a resolution of 1% (top)
and 3% (bottom). The number of events is 100 000 and the number of bins is 150.
The plot for the energy interval [1.8, 8 MeV] (right) and zoom for the energy interval

[1.8, 4 MeV] (left).
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FIGURE 4.8: FCT spectra simulated by Monte Carlo simulation for different resolu-
tions: 1% and 3%. The number of events is 100 000 and we have a number of bins

equal to 150 (see appendix C to complete set of figures).
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Chapter 5

Analysis of the Monte Carlo simulations

In this chapter we compute the probability of discrimination between the two cases of mass hierarchy.
We also analyze the impact of the 4 most important parameters of the simulation: the distance between
the electronic anti-neutrino source and the detector, the parameter sin2(θ13), the anti-neutrino energy
resolution and the number of events, on the discrimination probability.

5.1 Principle

In chapter 4 we have built a Monte Carlo simulation in which each event corresponds to an
inverse β-decay interaction resulting in the detection of an electronic anti-neutrino. To eval-
uate the neutrino mass hierarchy discrimination probability, we use the parameters PV and
RL defined in section 3.3.3. We use the Monte Carlo simulations to evaluate the distribution
of the parameters PV and RL. For each set of parameters, we perform 2000 simulations. For
each of them we compute the FCT and FST spectra and deduce the values of PV and RL. The
distribution of these two parameters is represented in two different ways in figure 5.1.

Figure 5.1a shows PV as function of the parameter RL. The two hierarchies form two
distinguishable clouds but it does not allow to determine a distribution law. The histogram
in figure 5.1b addresses this previous issue by transforming the graph using the technique
already seen in paper [36]. We draw a histogram of the blue (resp. green) points where the x-
axis represents the sum of the PV and RL coordinates of blue (resp. green) points of the cloud.
The resulting distribution is fitted by a Gaussian distribution. With this feature, we are able to
compute the neutrino mass hierarchy discrimination probability.

Assuming a normal hierarchy, we compute the validation probability of this hypothesis
with our numerical experiment. We first fit the PV+RL histogram with a Gaussian distribution.
Figure 5.2a shows the interpolation with a Gaussian function. We denote the distribution in the
NH case as N(PV + RL) and the distribution in the IH case as I(PV + RL).

We now fix the confidence level at 3σ ≈ 99.73%. We define the discrimination probabil-
ity at 3σ as the following integral:

P(σ) =
∫ ∞

x(σ)
N(PV + RL)d(PV + RL) (5.1)
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where σ is the confidence interval, x(σ) (the vertical black line in figure 5.2b) is the value
PV+RL such as I(PV + RL) = σ . I(PV + RL) is the green line in figure 5.2b and N(PV + RL)
the blue curve. The integral defined in equation 5.1 corresponds to the colored area in figure
5.2b. If the two clouds of figure 5.1a are well distinguishable, the two Gaussian distributions
of figure 5.2a do not overlap and result resulting in a discrimination probability of value 1.
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FIGURE 5.1: Simulation of 2000 experiments of 100 000 events each to study the
distribution of the parameters PV and RL with a resolution of 4% at 1 MeV.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

RL+PV

0

1

2

3

4

5

6

7
Gaussian fit
IH
NH

(A) Histogram of PV+RL with a Gaussian fit.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

RL+PV

0

1

2

3

4

5

6

7
NH
IH
x(σ)

area corresponding to the
discrimination probability

(B) Gaussian fits of the histograms.

FIGURE 5.2: Simulation of 2000 experiments of 100 000 events each to study the
distribution of the parameters PV and RL with a resolution of 4% at 1 MeV. The
blue area is the integral defined in equation 5.1 that representing the discrimination

probability.
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FIGURE 5.3: Discrimination probability at 3σ as a function of the distance between
the anti-neutrino source and the detector. The other parameters are the standard
ones: the detector resolution equal to 3% at 1 MeV, sin2(θ13) equal to the measured

value and number of events for each simulation equal to 100 000.

5.2 Impact of the distance

In figure 5.3 we have plotted the discrimination probability as a function of the distance be-
tween the anti-neutrino source and the detector. We note that only a distance of 53 km gives
a discrimination probability close to 1. The discrimination probability decreases when the dis-
tance deviates from 53 km. The shape of the data plots is explained by comparing the Fourier
transforms in figure 3.12 . For instance, for a distance of 35 km, the difference between the val-
leys of the blue curve are the same as those of the green curve resulting in very similar PV+RL
values. Consequently, as shown in figure 5.4 , the two histograms overlap strongly resulting
in a small value for the discrimination probability. However, the exact opposite happens at a
distance of 53 km. Indeed, as shown in figures 3.12c and 3.12d, the RL and PV values are pos-
itive in the NH but negative in the IH.The same reasoning applies to the other distances. The
only peculiar behavior happens at a distance of 50 km where unexpectedly the discrimination
probability has a very small value. This results from of a second green cloud appearing due to
statistical errors, as shown in figure 5.5 . Note that the distance chosen for the JUNO facility is
53 km to have the maximum discrimination probability.
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FIGURE 5.4: PV+RL plots for 2000 experiments of 100 000 events each, resolution
of 3% at 1 MeV, a distance of 35 km and the measured value for sin2(θ13).
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FIGURE 5.5: PV+RL plots for 2000 experiments of 100 000 events each, resolution
of 3% at 1 MeV, a distance of 50 km and the measured value for sin2(θ13).



Chapter 5. Analysis of the Monte Carlo simulations 52

0.00 0.01 0.02 0.03 0.04 0.05 0.06

sin2(θ13)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

cr
im

in
at

io
n

pr
ob

ab
ili

ty

FIGURE 5.6: Discrimination probability at 3σ as a function of the parameter
sin2(θ13). The other parameters are the standard ones: the detector resolution equal
to 3% at 1 MeV, the distance between the anti-neutrino source and the detector

equal to 53 km, number of events for each simulation equal to 100 000.

5.3 Impact of the parameter sin2(θ13)

In figure 5.6 we have plotted the discrimination probability as a function of the parameter
sin2(θ13). The reason behind the behavior of the points on the graph can be explained by
comparing their corresponding FCTs and FSTs. Some of these graphs are shown in figure 3.13.
We observe that as sin2(θ13) increases, the amplitude of Fourier transform becomes larger and
therefore the blue and green histograms are more separated. We see that at the expected value
of sin2(θ13) the discrimination probability is close to 1.

5.4 Impact of the resolution and the number of events

In figure 5.7 we have plotted the discrimination probability as a function of the resolution of
the detector. The shape of the data plot can be explained by comparing their corresponding
FCTs and FSTs. Some of these graphs are shown in figure 4.8. We observe that as resolution
decreases, discrete Fourier transforms are closer to the theoretical Fourier transforms are there-
fore the blue and green histograms are more separated. At the expected value of resolution (3%
at 1 MeV) the discrimination probability is near 1. Note that minor changes of this parameter
to its value have a huge effect on the discrimination probability. Thus important choice have
to be made while designing a detector (see chapter 2).
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FIGURE 5.7: Discrimination probability at 3σ as a function of the detector resolu-
tion. The other parameters are the standard: the distance between the anti-neutrino
source and the detector equal to 53 km, sin2(θ13) equal to the measured value and

number of events for each simulation equal to 100 000.

In figure 5.10 we have plotted the discrimination probability as a function of the num-
ber of events. We corroborate it by comparing the corresponding FCTs and FSTs. Some of
these graphs are shown in Figure 5.8. We observe that as the number of events increases, the
amplitude of the discrete Fourier transforms increases while their unwanted oscillations de-
crease. These unwanted oscillations are due to statistical error. As shown in figure 5.9, these
two effects make the distinction between the green and the blue clouds easier and eliminate
the parasitic cloud due statistical error. In turn, the discrimination probability increases.

As a remark, the number of events is determined by the time during which the detector
is taking data, the size of the detector and the incoming anti-neutrino flux from the nuclear
plants.

We conclude this section by highlighting the difference between the resolution of the
detector and the number of the events. The comparison of figure 5.7 and figure 5.10, shows
that the discrimination probability grows faster with the resolution than the number of events.
In a practical point of view, this means that while designing detectors, we could increase the
discrimination probability more easily by lowering the resolution rather than increasing the
number of events.
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FIGURE 5.8: Shape of the Fourier transform of the spectrum simulated by Monte
Carlo simulation for different number of events: 50 000, 100 000 and 150 000. The

resolution is 3% at 1 MeV and we have a have chosen a binning of 150.
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(A) PV+RL plots for a number of events = 50
000
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FIGURE 5.9: PV+RL histograms for the two neutrino mass hierarchies. With a num-
ber of simulations of 2000 experiments of with a number of events 50 000 and 100
000. The resolution is the standard 3% at 1 MeV for a distance of 53 km and the

measured value for sin2(θ13).
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FIGURE 5.10: Discrimination probability at 3σ as a function of the number of
events. The other parameters are the standard ones: the detector resolution equal
to 3% at 1 MeV, the distance between the anti-neutrino source and the detector

equal to 53 km and sin2(θ13) equal to the measured value.
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Conclusion

Monte-Carlo simulations of this present work shows that the experimental set-up of the JUNO
detector - i.e., 100,000 events, a distance between the source and the detector of 53 km, an
energy resolution of 3% at 1 MeV, will allow the accurate measurement of the neutrino mass
hierarchy with a confidence level of 3 σ, in the inverse β-decay process where electronic anti-
neutrinos produced by the nuclear plant are detected when they interact with protons.

By using the data from KamLand, we have expressed the neutrinos flux as a function
of the anti-neutrino energy, with very little differences between the experimental data and the
fitted function. We have also shown that a single isotope case is appropriate for performing the
Monte-Carlo simulations. A parametrization of the theoretical values of the inverse β-decay
cross section σ(E) with a cubic polynomial function is used, as a function of the energy of the
anti-neutrino.

A formulation of the oscillation probability with the mass hierarchy terms has been de-
rived to express the spectra of the JUNO detector as a function of the energy (MeV) and L/E
(km/MeV) for both the normal and the inverted hierarchy.

Fourier transforms have been applied to the different components of the oscillation
probability (i.e., the solar oscillation, the first part of the atmospheric oscillation, the second
part of the atmospheric oscillation). The atmospheric oscillation parts show important prop-
erties which can be used to differentiate between NH and IH. Indeed the shape of the Fourier
cosine transform and Fourier sine transform are strongly different as function of the chosen
mass hierarchy. Our study also shows that only measurement errors on one of the 4 parame-
ters playing a role on the neutrino oscillation, i.e. : sin2(θ13), did affect significantly the shape
of Fourier transforms. To characterize the shape of these curves, the parameters PV and RL are
defined. Moreover these parameters are especially convenient for the numerical simulations.

On the numerical side, Monte-Carlo simulations are intrinsically a very appropriate ap-
proach to validate the experimental set-up of the JUNO detector, as it replicates through a ran-
domized numerical sampling, the actual data acquisition process. The statistical errors of our
Monte Carlo techniques, as developed by randomly sampling the anti-neutrino energy spectra,
did properly reproduce the measurement variability of JUNO detection system. 100,000 events
falling in an optimal number of 150 simulation bins of the [ 1.8, 8 MeV] energy interval gets a
fairly accurate shape of Fourier transforms and energy spectra.

Monte-Carlo calculations have been run to estimate the impact of 4 key parameters: 1-
the distance between the nuclear plant and the detector, 2- the mixing angle sin2(θ13) , 3- the
number of events, 4- the resolution of data acquisition, along the whole process. For the value
of these 4 factors as in the JUNO facility specifications, our calculation shows that the discrim-
ination probability with a confidence level of 3 σ, is equal to 0.991. An important additional
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insight, derived from the fact that discrimination probability grows faster with the energy res-
olution than with the number of events, means that while designing detector lowering, the
measurement system resolution is more important than increasing the number of measure-
ments.

As mentioned, this work did focus on the validation and the influence of the 4 most
critical parameters of the JUNO experimental set-up on the mass hierarchy measurements.
Further work should assess the influence of each experimental parameter of JUNO, such as
PMT sensitivity, background noise, noise from electronic data acquisition system resolution,
. . .



58

Appendix A

Graphics of impact of the energy resolution
on the shape of the Fourier transforms of
the spectrum



Appendix A. Graphics of impact of the energy resolution on the shape of the Fourier
transforms of the spectrum 59

2 3 4 5 6 7 8

Energy (MeV )

0

200

400

600

800

1000

1200

1400

1600

1800

nu
m

be
r

of
hi

ts

Simulated data
normal hierachy

(A) NH and 100 bins

2 3 4 5 6 7 8

Energy (MeV )

0

200

400

600

800

1000

1200

1400

1600

1800

nu
m

be
r

of
hi

ts

Simulated data
inverted hierachy

(B) IH and 100 bins

2 3 4 5 6 7 8

Energy (MeV )

0

200

400

600

800

1000

1200

1400

nu
m

be
r

of
hi

ts

Simulated data
normal hierachy

(C) NH and 150 bins

2 3 4 5 6 7 8

Energy (MeV )

0

200

400

600

800

1000

1200

1400
nu

m
be

r
of

hi
ts

Simulated data
inverted hierachy

(D) IH and 150 bins

2 3 4 5 6 7 8

Energy (MeV )

0

200

400

600

800

1000

nu
m

be
r

of
hi

ts

Simulated data
normal hierachy

(E) NH and 200 bins

2 3 4 5 6 7 8

Energy (MeV )

0

200

400

600

800

1000

nu
m

be
r

of
hi

ts

Simulated data
inverted hierachy

(F) IH and 200 bins

FIGURE A.1: Histogram of the Monte Carlo simulation for different binnings: 100,
150 and 200 The number of eventsis 100 000 and we have a infinite resolution.
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FIGURE A.2: Shape of the Fourier transform of the spectrum simulated by Monte
Carlo simulation for different binnings: 100, 150 and 200. The number of events is

100 000 and we have a infinite resolution.
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FIGURE A.3: Histogram of the Monte Carlo simulation for different resolutions:
0.01, 0.03 and 0.09. The number of events is 100 000 and the number of bins is 150.
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FIGURE A.4: Shape of the Fourier transform of the spectrum simulated by Monte
Carlo simulation for different resolutions: 0.01, 0.03 and 0.09. The number of events

is 100 000 and we have a have chosen a binning of 150.
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FIGURE A.5: Histogram of the Monte Carlo simulation for different number of
events: 50 000, 100 000 and 150 000. The resolution is 3% at 1 MeV and we have a

have chosen a binning of 150.
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FIGURE A.6: Shape of the Fourier transform of the spectrum simulated by Monte
Carlo simulation for different number of events: 50 000, 100 000 and 150 000. The

resolution is 3% at 1 MeV and we have a have chosen a binning of 150.
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B.1 PV as function of RL plots for different distances
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FIGURE B.1: PV as function of RL for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of 100 000 events each a resolution of

3% at 1 MeV for a distance of 35, 50, 53 and 75 km.
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B.2 PV as function of RL plots for different value of sin2(θ13)
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(B) PV as function of RL plots for measured
value +3σ

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

RL

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

P
V

IH
NH

(C) PV as function of RL plots for measured
value

FIGURE B.2: PV as function of RL for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of 100 000 events each a resolution of
3% at 1 MeV for a distance of 53 km for 3 value of sin2(θ13): measured value −3σ

(top left), measured value +3σ (top right) and measured value (bottom).
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B.3 PV as function of RL plots for different detector resolution
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FIGURE B.3: PV as function of RL for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of 100 000 events each for a distance
of 53 km and the measured value for sin2(θ13). The resolution of the detector is

different for each plot.
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B.4 PV as function of RL plots for different number of events

(A) PV as function of RL plots for a number
of events = 50 000

(B) PV as function of RL plots for a number
of events = 80 000

(C) PV as function of RL plots for a number
of events = 100 000

(D) PV as function of RL plots for a number
of events = 150 000

FIGURE B.4: PV as function of RL for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of with a variating number of events:
50 000, 80 000, 100 000 and 150 000. The resolution is the standard 3% at 1 MeV for

a distance of 53 km and the measured value for sin2(θ13).
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Additional PV+RL plots

C.1 PV+RL plots for different distances

(A) PV+RL plots for a distance of 35 km (B) PV+RL plots for a distance of 50 km

(C) PV+RL plots for a distance of 75 km 53 (D) PV+RL plots for a distance of 75 km

FIGURE C.1: PV+RL histograms for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of 100 000 events each a resolution of

3% at 1 MeV for a distance of 35, 50, 53 and 75 km.
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C.2 PV+RL plots for different value of sin2(θ13)
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(A) PV+RL plots for measured value −3σ
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(B) PV+RL plots for measured value +3σ

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

RL+PV

0

2

4

6

8

10

12
gaussian
fit
NH
IH

(C) PV+RL plots for measured value

FIGURE C.2: PV+RL histograms for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of 100 000 events each a resolution of
3% at 1 MeV for a distance of 53 km for 3 value of sin2(θ13): measured value −3σ

(top left), measured value +3σ (top right) and measured value (bottom).
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C.3 PV+RL plots for different detector resolution
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(A) PV+RL plots for a resolution of 1%
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(B) PV+RL plots for a resolution of 3%
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(C) PV+RL plots for a resolution of 4%
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(D) PV+RL plots for a resolution of 7%

FIGURE C.3: PV+RL histograms for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of 100 000 events each for a distance
of 53 km and the measured value for sin2(θ13). The resolution of the detector is

different for each plot.
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C.4 PV+RL plots for different number of events
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(A) PV+RL plots for a number of events = 50
000
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(B) PV+RL plots for a number of events = 80
000
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(C) PV+RL plots for a number of events =
100 000
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(D) PV+RL plots for a number of events =
150 000

FIGURE C.4: PV+RL histograms for the two neutrino mass hierarchies. With a
number of simulations of 2000 experiments of with a variating number of events
50 000, 80 000, 100 000 and 150 000 events each. The resolution is the standard 3%

at 1 MeV for a distance of 53 km and the measured value for sin2(θ13).
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