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Introduction

More than a century ago, Victor F. Hess discovered the extraterrestrial particles that
are now known as Cosmic Rays (CRs) [1]. Typically, these are considered to be charged
atomic nuclei, as will be done implicitly henceforth. Even though they have been
observed up to the highest energies ever detected in a particle, of the order of 1020

eV [2], their origin remains one of the unresolved problems in the field of astroparticle
physics. In particular, there is currently no evidence for the source of the CRs with
energies above 1018 eV, also called Ultra-High-Energy Cosmic Rays (UHECRs).

Because CRs are charged, they are deflected by magnetic fields. However, UHECRs
cannot be contained by the magnetic field of the Milky Way [3], and they are therefore
expected to have an extragalactic origin. Due to its charge, an (UHE)CR will not
point back to its source when detected at Earth. On its path, it will have traversed
unmapped (inter)galactic magnetic fields that deflect them in their trajectory. Thus,
observations of UHECRs cannot be used to determine their origin.

Fortunately, hadronic interactions of UHECRs within the high-energy environment
of their source are expected to produce high-energy cosmic neutrinos [4]. These cosmic
neutrinos have no charge and a low interaction cross section, so they can reach Earth
undeflected and quasi unattenuated. Therefore, they serve as ideal cosmic messengers
of the high-energy environment in which they were produced. The determination of
their source(s) will most likely resolve the problem of the UHECR origin.

The existence of high-energy cosmic neutrinos was not an established fact until
their discovery with the IceCube neutrino telescope in 2013 [5]. However, due to the
limited statistics at the highest energies, up to this date the origin of the observed
high-energy cosmic neutrinos has not been determined yet. In this thesis, the focus
lies on steady point sources of (high-energy) electromagnetic radiation as candidates
to account for the observed high-energy cosmic neutrino flux.

These steady point sources mostly comprise different subclasses of Active Galac-
tic Nuclei (AGN) [6]. The sources that have been investigated so far have relatively
low population densities but high electromagnetic luminosities, which could imply a
large flux of high-energy cosmic neutrinos coming from each of these sources. Yet,
these objects have been discarded as the sole origin of the observed high-energy cos-
mic neutrinos [7], and therefore the interest of steady point source searches is shifting
more towards objects with lower electromagnetic luminosities but higher population
densities, or transient sources.

Thus, if these latter candidate sources are the sole origin of high-energy cosmic
neutrinos, each of them is expected to produce a relatively low cosmic neutrino flux
compared with the objects that have already been investigated. Therefore, relatively
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2 Introduction

less neutrino events in IceCube are expected for each candidate steady point source
that corresponds with a high-density population. However, in the case of such a low
signal per source, it might be that other statistical methods give a higher potential for
a 5σ discovery compared to the standard statistical method applied in point source
analyses with IceCube, which is a maximum likelihood method. This is the main
motivation for the work presented in this thesis, in which four different statistical
methods, including the likelihood method, will be compared.

In the following, first a more detailed description of (UHE)CRs, high-energy cosmic
neutrinos, IceCube, and candidate steady point sources is given in Chapter 1. Sub-
sequently, Chapter 2 covers the frequentist techniques required to perform a statistical
analysis with IceCube. Then, a toy model of steady point sources is constructed in
Chapter 3, which will be used to compare the statistical methods that will be discussed
in Chapter 4. Finally, in Chapter 5 the results are presented of this comparison using
the toy model.
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Neutrino Astronomy

Introduction

In this first Chapter, a brief overview of neutrino astronomy is presented. To begin,
the link between Ultra-High-Energy Cosmic Rays and high-energy cosmic neutrinos is
made in Section 1.1. Subsequently, Section 1.2 covers the main aspects of the IceCube
neutrino observatory, such as the detection principle and the different signatures of
high-energy neutrinos in the detector. Lastly, the first observations of high-energy
astrophysical neutrinos, which mark the start of neutrino astronomy, are discussed in
Section 1.3, where also the current status of searches for steady point sources as the
possible origin of these observed high-energy cosmic neutrinos is presented.

1.1 High-Energy Cosmic Rays and Cosmic Neutrinos

1.1.1 The Unknown Origin of Cosmic Rays at the Highest Energies

The full Cosmic Ray spectrum above 10 TeV, including all detected compositions, is
shown in Fig. 1.1, which has been obtained through observations of the CR flux F (E)
over several orders of magnitude in energy E by multiple experiments [8–25]. It can
be seen that the spectrum clearly follows a broken power law, F (E) ∝ EΓ, where
the spectral index Γ depends on the energy range. Before the “knee” at 4 × 1015 eV,
Γ ≈ −2.7, after which it softens to Γ ≈ −3.1. Around 2 × 1017 eV, the “second knee”
marks a second steepening, so that Γ ≈ −3.3 up to the “ankle” at 4 × 1018 eV, which
benchmarks a hardening of the spectrum up to Γ ≈ −3. This last spectral index is
observed up to approximately 2× 1020 eV, after which there are no more statistics.

Because of the fact that their spectrum follows a (broken) power law, it can be
deduced that CRs must be accelerated non-thermally [3, 26]. Up to the knee, it is
expected that the CRs have a galactic origin, and in particular, that their energy is
gained from diffuse shock acceleration in supernova remnants [27–31], based on an
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4 Chapter 1. Neutrino Astronomy

Figure 1.1: The Cosmic Ray spectrum following a broken power law, where the observed
CR flux F (E) is scaled with E2.6 in order to clearly visualize the transitions in spectral
index. In particular, it can be seen that at the ankle the spectrum hardens, possibly
indicating that different, more powerful acceleration mechanisms start to dominate up
to the highest energies. The different experiments that contributed to this plot are also
indicated [32].

original proposal by Fermi [33]. The knee could then indicate the maximal achievable
energy in the acceleration process for protons. In the case of heavier elements, this
maximal energy would be proportional with their atomic number, so that the saturation
of iron acceleration could explain the presence of the second knee.

Furthermore, the steepening of the CR spectrum at the ankle is a strong indi-
cation that other acceleration processes give rise to Ultra-High-Energy Cosmic Rays.
Moreover, at these energies, the charged UHECRs cannot be confined by the galac-
tic magnetic field, as the Larmor radius becomes larger than the average scale of the
Milky Way. Therefore, the extremely energetic environments in which the UHECRs
are accelerated most likely have an extragalactic origin [3, 26].

The end of the CR spectrum could be due the saturation of these extragalactic
acceleration mechanisms. However, the fact that no UHECRs above this threshold are
observed could also be explained by the Greisen-Zatsepin-Kuzmin (GZK) effect [34,35],
which states that at these energies the UHECRs interact with the Cosmic Microwave
Background (CMB) through the ∆-resonance, thereby reducing the mean free path of
a proton in the Universe to a handful of megaparsecs. Moreover, heavier nuclei are
expected to photo-disintegrate at these energies. Note that this is based on the current
knowledge (at relatively low-energies) of the center-of-mass proton-photon interaction
cross sections. The existence of the GZK limit could be disputed if more energetic
UHECRs are observed, but this is unfeasible in current experiments as the UHECR
flux would become too low for regular detections at these energies (. 1 particle per
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square kilometer per century) [3].
In any case, the deflection of (UHE)CRs by (inter)galactic magnetic fields implies

that they do not point back to their source when detected at Earth. Since these
magnetic fields are unknown, the origin of (UHE)CRs cannot be determined through
direct observations. However, UHECRs are expected to produce non-charged high-
energy cosmic neutrinos, as explained in more detail in the following Section, which
will not be deflected. Moreover, since they interact rarely, high-energy cosmic neutrinos
could be the ideal messengers of the extreme environments in which UHECRs are
produced. Thus, determining the source of these high-energy cosmic neutrinos could
resolve the problem of the UHECR origin.

1.1.2 Production of High-Energy Cosmic Neutrinos

Through hadronic interactions of the (UHE)CRs with the ambient medium at their
production site, a large abundance of a.o. (charged) pions and kaons is expected to be
produced, which will always give rise to neutrinos in their final decay products1 [32].
Considering protons only for simplicity in this discussion—which can be generalized
directly for higher elements—, one of the important interactions will be that of an
energetic CR with ambient photons at the ∆-resonance [4, 36],

p+ γ −→ ∆ −→ π + n,

↘
µ+ νµ,

↘
e+ νe + νµ.

Here, the most likely decay chain after the pγ-interaction is indicated as well; the
neutron will also be able to interact hadronically or it will decay, in both cases producing
an additional neutrino component.

For example, in case the ambient photon is in the UV regime, i.e. if it has an energy
between 1 eV and 10 eV, then the threshold proton energy for the ∆-resonance is about
1016 eV (in the restframe of the ambient medium). Moreover, the high-energy cosmic
muon neutrino originating directly from the pion decay will obtain about 5% of the
proton energy, which would correspond with about 500 TeV in this case.

The higher the CR energy, the less the photon energy has to be in order to reach the
∆-resonance. In particular, protons with energies above about 1020 eV would start to be
sensitive for pγ-interactions with photons of the CMB, assuming that currently known
physics can still be applied at these energies. This is exactly the GZK effect discussed
previously, which would give rise to so-called cosmogenic neutrinos. Note that cosmic
neutrinos with energies above 100 PeV are also referred to as Extremely-High-Energy
(EHE) cosmic neutrinos.

It should be remarked that the decay ∆→ p+ π0 followed by π0 → γ + γ will also
occur, where two high-energy γ-rays result from the neutral pion decay. Consequently,
γ-ray astronomy can also be used to search for indications of hadronic acceleration.

1Note that in the text no distinction will be made between particles and antiparticles, as this is
not of direct relevance here and should also be clear from the context.
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However, γ-rays are easily absorbed by (inter)galactic dust in contrast with high-energy
cosmic neutrinos. Nevertheless, γ-ray astronomy is currently used in combination with
neutrino astronomy in so-called multi-messenger studies.

Another important interaction is that of the CRs with nuclei from ambient gas or
dust [4]. Again considering only protons, the multiplicity of cosmic neutrinos originat-
ing from pp-interactions is expected to be higher than in the case of pγ-interactions
[37], especially at relatively low energies, as indicated in Fig. 1.2. This can be ex-
plained by the fact that a large amount of π- and K-mesons will be produced in the
pp-interactions, where each of them will then obtain a relatively small fraction of the
original CR energy.

After their production, high-energy cosmic neutrinos can travel directly towards
Earth, where they can then be observed. Note that because of neutrino oscillations,
high-energy cosmic neutrinos are expected to reach Earth with equal abundances in the
three known neutrino flavours [38]. However, detecting high-energy cosmic neutrinos
is a non-trivial task, as there is a relatively low probability for a high-energy cosmic
neutrino to interact within a detector due to their low cross sections and low flux.
Therefore, in order to observe high-energy cosmic neutrinos on a regular basis, such
a detector must have a large enough volume, as is the case for the 1 km3 IceCube
neutrino telescope.

1.2 The IceCube Neutrino Observatory

1.2.1 Detection Principle and Event Topologies

Located deep in the Antarctic ice at the geographic South Pole, the IceCube detector
[39], depicted in Fig. 1.3, is an expansion of the former AMANDA-II experiment [40].
It consists of 86 hexagonally spaced vertical strings that reach depths of about 2.5 km,
each of which contain 60 Digital Optical Modules (DOMs), providing for a total of 5160
sensors.

These DOMs are essentially photon multipliers, which are designed to capture sin-
gular photons originating from Čerenkov radiation. This is emitted by highly energetic
charged particles that traverse the ice within the detector. The Čerenkov photons
will be observed in optical and UV frequencies, for which the South Pole ice is very
transparent [41]—hence the choice for the location of IceCube. The depth of the
DOMs ensures that background light from e.g. the sun is strongly suppressed, as well
as secondary particles from atmospheric air showers induced by Cosmic Rays. The
detection of a clear signature by the DOMs (see below), which cannot be produced by
background light, is called an event.

When a high-energy cosmic neutrino ν` interacts weakly with a nucleus N of the
ice near the detector, it will be through the exchange of a W -boson or a Z-boson,

ν` +N
W−−→ `+X,

ν` +N
Z−−→ ν` +X,

(1.1)

where ` is the corresponding lepton and X is a fragmenting hadronic state. These
are called Charged Current (CC) interactions and Neutral Current (NC) interactions,
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Figure 1.2: The simulated production of cosmic neutrinos in pp-interactions, indicated
by the full blue line, and in pγ-interactions, denoted by the black dashed line, under the
assumption that 80% of the CR interactions occur in the pp-channel, and 20% in the
pγ channel. It is clear that more neutrinos are produced in pp-interactions, especially
at energies below 1 TeV [37].

respectively. In both scenarios, the Čerenkov light emitted by the residual energetic
charged particles when they pass through the detector is what will be observed by the
DOMs.

The fragmenting hadronic stateX will develop itself as a hadronic shower [32] in the
detector. The corresponding topology is called a cascade, which is shown in Fig. 1.4a.
If this cascade is fully contained within the detector, then a good estimation can be
performed of the energy of X. Note that this will be a fraction of the original ν` energy,
which remains unknown. Yet, the arrival direction of the ν` is not well-determined
because of the “blob” structure of the cascade; the achievable angular resolution is
about 10° for ν` energies above 100 TeV, and worse for lower energies.

On the other hand, if a CC interaction occurs, the lepton flavour will determine how
the event manifests itself in the detector; the contribution of X in the topology remains
the same. For the scenario that ` = e, the electron will induce an electromagnetic
shower [32] on top of the hadronic shower2. Consequently, the topology will also be
a cascade. Although for this particular CC interaction the full energy of the original
νe is deposited in the detector, it can not be distinguished topologically from any ν`
interacting via the NC.

Furthermore, if ` = µ the produced muon will lose its energy mostly due to stochas-
tic losses and ionization; no second electromagnetic shower is induced. Moreover, be-
cause of its relatively long lifetime, it will be able to traverse the whole detector before
decaying, leaving behind a track of Čerenkov light, as depicted in Fig. 1.4b. The energy

2Note that the hadronic shower will produce its own electromagnetic component though the pro-
duction of neutral pions.
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Figure 1.3: A schematic of the hexagonal IceCube neutrino observatory, visualizing
the scale of the 86 strings, of which the DOMs are also shown, w.r.t. the Eiffel Tower.
The DeepCore component of IceCube and the IceTop array are indicated, as well
as the AMANDA-II detector which was the precursor of IceCube. The IceCube lab
is where the online triggering and data acquisition takes place [42].

of the νµ is poorly determined because of the fact that the muon is not contained in
IceCube. However, due to this topology, for νµ energies above about 200 GeV the
arrival direction of the µ, and thus of the νµ, can be determined with a resolution
. 1°. As a consequence, muon neutrinos play a vital role in the search for the origin
of high-energy cosmic neutrinos.

Lastly, the topology for the case ` = τ would depend on the energy of the ντ due to
the short lifetime of the τ . For relatively low energies, only a cascade would be observed,
making the ντ indistinguishable from a νe interacting via the CC and any ν` interacting
via the NC. At energies above approximately 6 PeV, the τ would be able to travel a short
yet detectable distance in the ice, thereby producing a short track just as in the muon
case. Afterwards, the τ could decay leptonically, producing a µ which would create
a second, brighter track, or it could decay hadronically, inducing a second cascade.
Thus, a ντ with a sufficient energy would also result in a good angular resolution and
a distinctive topology. However, no (astrophysical) tau-flavoured neutrinos have been
identified with IceCube so far [44].

Note that it can occur that the CC interaction for ` = µ does not occur inside
the detector, but that the muon track is still observed as it propagates through it.
Such an event becomes harder to distinguish from the main background observed with
IceCube, which are atmospheric muons originating from Cosmic Ray air showers de-
tected at a rate of about 2.8 kHz [45]. Therefore, typically a veto layer is constructed
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(a) Cascade (b) Track

Figure 1.4: The two main topologies observed in IceCube, showing the temporal
development of the Čerenkov radiation detected by the DOMs. First, a cascade is shown
in Fig. 1.4a, where it can be seen that it is almost fully contained in the detector, mea-
ning that the deposited energy can be estimated relatively well. Second, a track induced
by a muon neutrino is plotted in Fig. 1.4b, clearly indicating that its arrival direction
can be determined with a relatively high resolution; the cascade originating from the
fragmenting hadronic state produced in the CC interaction can also be distinguished
here. In both cases the depicted event was most likely produced by a high-energy
cosmic neutrino [43].

from the outer strings in order to only analyze events (both tracks and cascades, the
latter for energy confinement) that start inside the detector, as shown in Fig. 1.4.

1.2.2 DeepCore and IceTop

With the whole IceCube detector, good track reconstructions can be performed for
energies above about 200 GeV, as mentioned previously. However, a lower threshold is
required for studies concerning a.o. dark matter, solar flares, and neutrino oscillations.
For that purpose, six of the eight most central strings of IceCube have both a smaller
horizontal spacing and a smaller vertical DOM spacing, so that the track reconstruction
can be performed down to energies of the order of 10 GeV. These eight central string
comprise the so-called DeepCore component of IceCube [46], shown in Fig. 1.3.
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Additionally, Fig. 1.3 also indicates the 1 km2 IceTop array on the surface of
IceCube [47], which consists of 162 Čerenkov ice tanks for the study of Cosmic Ray
air showers. These studies have contributed to the determination of the CR spectrum
shown in Fig. 1.1 [21]. Because it detects the atmospheric muons originating from
the air showers, IceTop is also used as a veto to suppress the atmospheric muon
background in IceCube analyses.

1.2.3 Determination of a Neutrino Flux from an Event Rate

The conversion of a recorded neutrino3 event rate Ṅdet, representing an actual measure-
ment or a constraint such as an upper limit, into a (differential) flux Φν is a non-trivial
task, since a variety of factors have to be taken into account. These not only include
aspects of the IceCube detector, such as detection and reconstruction efficiencies, but
also inherent physical quantities, such as the cross sections of the ν`N -interactions
given in Eqs. 1.1. All this information is contained in the so-called effective area Aeff

of IceCube.
The effective area Aeff(E, θ) depends on both the neutrino energy E and the

IceCube zenith angle θ; it has no azimuthal dependency due to the geometry of
IceCube (see Fig. 1.3). As a consequence, the rate Ṅdet [s−1] is the convolution of
Φν(E,Ω) [GeV−1 cm−2 sr−1 s−1] with Aeff(E, θ) [cm2], where Ω denotes the solid angle
dependency,

Ṅdet =

∫
Aeff(E, θ) Φν(E,Ω) dE dΩ. (1.2)

Thus, in order to determine Φν from a certain Ṅdet, a deconvolution of Eq. 1.2 has to
be performed. The details of this process and of the determination of Aeff , done via
Monte Carlo simulations, lie beyond the scope of this thesis, but more information can
be found in [48–50].

Of particular interest is the energy-dependency of Φν(E), i.e. the neutrino spec-
trum, which can be inferred directly from an energy-binning of Ṅdet and taking into
account Aeff(E), averaged over zenith angle θ for each energy bin. An example of this
dependency is shown in Fig. 1.5, where Aeff(E) was determined assuming an equal flux
of (anti)neutrinos for all flavours. The dependency is dominated by the ν`N -interaction
cross sections, which are rising functions of energy [32]. As a consequence, the recorded
event rate spectrum will be harder than the actual spectrum of the neutrino flux.

Different models of the spectrum can be found in the literature, see e.g. [51], but
the generic choice is a power law, Φν(E) ∝ Eγ . In case the rate represents actual
measurements, one fits the spectrum to the data, where the spectral index γ can be
chosen as a free parameter. Contrastingly, if the rate is a constraint, the parameters of
the spectrum have to be assumed a fortiori.

3The discussion in this Section is valid for all (anti)neutrinos, including atmospheric neutrinos and
high-energy cosmic neutrinos.
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Figure 1.5: An example of the effective area Aeff averaged over zenith angle plotted as
function of (anti)neutrino energy, for the three different flavours. The determination
was performed under the assumption that the total neutrino flux has a (1:1:1) flavour
abundance. It is clear that the effective area increases with energy. The peak around
6.3 PeV for the electron flavour is due to the Glashow resonance [52], resulting in an
excess in W -boson production from interactions of the ν̄e with atomic electrons [5].

1.3 The Birth of Neutrino Astronomy

1.3.1 First Observations of High-Energy Cosmic Neutrinos

The existence of high-energy cosmic neutrinos was unambiguously proven when they
were discovered by the IceCube Collaboration in 2013 [5]. For a detector livetime
of 988 days, the background-only hypothesis was rejected with a significance of 5.7σ
[43]—a detailed description of the assessment of significance is given in Chapter 2.
In these three years, a total of 37 candidate high-energy cosmic neutrino events were
observed with energies between 30 TeV and 2 PeV, two of which are shown in Fig. 1.4.

Generally, in high-energy cosmic neutrino studies with IceCube, the main back-
ground component is due to the aforementioned atmospheric muons. Furthermore,
atmospheric neutrinos that also originate from Cosmic Ray air showers provide a se-
cond important contribution to the background [53].

For the analysis discussed here of a three year detector livetime, the measured data
is shown in Fig. 1.6 together with these two contributions from the background. It
is clear that for deposited event energies above 100 TeV the measurements cannot be
described by the background alone. Two spectral power law fits were performed on the
data, one with the spectral index fixed as γ = −2, and another where the spectral index
was also determined from the fit, with a best-fit value γ = −2.3 ± 0.3. For the E−2

spectrum, the high-energy cosmic neutrino flux per flavour (including antineutrinos)
resulting from this analysis is given by

E2Φν = (0.95± 0.3)× 10−8 GeV cm−2 sr−1 s−1. (1.3)

It should be noted that this is a diffuse flux, as the data of this analysis were obtained
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Figure 1.6: The high-energy astrophysical neutrino spectrum observed with IceCube
after three years of performance. Above 100 TeV, the data clearly do not correspond
with a pure background contribution of atmospheric muons and atmospheric neutrinos.
Two power law fits of the spectrum are also shown, one with a fixed spectral index
(γ = 2) and one with a best-fit spectral index (γ = −2.3). Note that the slopes
of the fits in the plot are steepened w.r.t. their true spectral index because of the
IceCube effective area contribution to the detected event rate (see Fig. 1.5). For
further information on the composition of this plot, the reader is referred to [43].

over the whole sky without any preferred direction, in contrast with source investiga-
tions.

The discovery of high-energy cosmic neutrinos has laid the foundation for the field of
neutrino astronomy. Apart from IceCube, there are other active neutrino observatories
located in the Northern Hemisphere, such as the ANTARES and Baikal detectors [54,
55], although these have smaller detection volumes. Nevertheless, the northern 1 km3

counterpart of IceCube, called KM3NeT [56], is currently being commissioned in the
Mediterranean Sea. Furthermore, studies of (cosmogenic) EHE neutrinos with energies
above several EeV are performed with the ARA, ARIANNA, and ANITA experiments
[57–59]. Note that up to this date IceCube is the only detector with which high-
energy cosmic neutrinos have been observed. It should also be mentioned that there
is a proposal for an IceCube expansion with a volume of 10 km3 [60, 61], in order to
obtain high-energy cosmic neutrino statistics up to energies exceeding 10 PeV.

1.3.2 Status of Steady Point Source Searches with IceCube

Ever since the first measurement of the diffuse high-energy cosmic neutrino flux given
in Eq. 1.3, several candidate sources, including extended sources, time-dependent point
sources such as Gamma Ray Bursts (GRBs), and steady point sources such as Active
Galactic Nuclei, have been studied with the purpose to find the origin of this flux.
However, so far none of these investigations have resulted in a source determination.



1.3. The Birth of Neutrino Astronomy 13

As steady point sources are the objects of interest in this thesis, only the current
status of these particular searches will be shortly discussed here. This overview is
mainly based on [62], where the results of steady point sources searches with seven years
of IceCube data are presented in detail. For more information about the analyses of
the other source types, the reader is referred to [63–66]. Also, it is mentioned here that
in the following, several statistical concepts will be encountered that are rigorously
defined in Chapters 2 and 4.

The analysis with seven years of IceCube data focused exclusively on high-energy
astrophysical muon neutrinos, because of the . 1° resolution obtained on their arrival
direction based on their track reconstruction. The Northern and Southern hemisphere
were treated separately, because atmospheric muons from the Northern Hemisphere are
strongly suppressed by the Earth, resulting in a large reduction of the background.

Apart from individual candidate source analyses, that lead to non-significant results,
a scan of the full sky was performed using an unbinned maximum likelihood method
with an isotropic background as the null hypothesis. The sky was gridded isotropically
in patches smaller than the angular resolution, and for each grid segment, a value of the
likelihood test statistic was determined from the data with a corresponding pre-trial
p-value, which resulted in the all-sky map given in Fig. 1.7.

In the analysis, the lowest pre-trial p-values in the all-sky map, also called hotspots,
were found to have values p = 1.82×10−6 in the Northern Hemisphere, and p = 0.93×
10−6 in the Southern Hemisphere. However, these pre-trial p-values do not represent
a final assessment of significance since one has to correct for the fact that multiple
trials (1.9 × 105 per hemisphere) of the likelihood maximization were performed—
one for each segment of the grid. Taking this into account resulted in post-trial values
p = 29% and p = 17% for the Northern and Southern hemisphere hotspots, respectively.
Conclusively, no significant excesses over the background-only hypothesis were observed
in the all-sky search.

Furthermore, an analogous analysis was made of 74 individual galactic and extra-
galactic steady point source candidates of different types. Also here the results cor-
responded with a background-only expectation, as the lowest post-trial p-values were
37% and 9.3% in the Southern hemisphere4, and 54% in the Northern hemisphere.

Since no significant excesses were found over the expected background in both
analyses, constraints have been put on the high-energy cosmic neutrino flux per source,
denoted here as dφ/dEν with Eν the neutrino energy, and where an E−2

ν spectrum
is assumed5. These constraints were constructed as confidence upper limits at 90%
Confidence Level, which are shown in Fig. 1.8 for all declinations δ.

The upper limits were obtained for each of the candidate steady point sources, and
also for the two hotspots encountered in the all-sky search. Moreover, for the latter
analysis, at each declination δ the upper limit of the flux was determined such that if
a source at that δ would correspond with a flux higher than this limit, then in 90% of

4The reason why two southern p-values are mentioned here is because in the analysis the 74
sources were split into two categories, where one contained only southern sources, and the other
included objects from both hemispheres. Hence, per category the trial correction was performed for
each hemisphere.

5For constraints on other models, see the original paper [62].
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Figure 1.7: The map of the all-sky steady point source search obtained with seven
years of IceCube data, depicted in equatorial coordinates (the equinox corresponds
with a J2000 epoch). The pre-trial p-value is shown as − log10 p for each segment of
the gridded sky, from which it can be seen that no significant excesses were found w.r.t.
the background-only hypothesis. The full black line in the plot indicates the plane of
the Milky Way [62].

the experiments it would be detected with a significance larger than the one from the
hotspot in the corresponding hemisphere.

In summary, no steady points sources have been found so far that are responsible for
the diffuse high-energy cosmic neutrino flux measured with IceCube. Using a simple
argumentation given in [7], one can obtain an estimate of the steady point source
populations that could still account for the observed diffuse flux.

Let ρ be the population density of a specific source type, and L its characteristic
(high-energy) electromagnetic luminosity. Then Lρ roughly represents the total emis-
sion per volume of this source population, which, in order to be a candidate source,
should trespass the emission density corresponding with the measured diffuse flux. If
one takes d = (4πρ)−1/3 as a characteristic distance for the nearest source of the po-
pulation, then one can estimate the neutrino flux φps

ν = L/d2 of this nearest source
according to φps

ν ∝ ρ−1/3. Here it is assumed that a direct correlation is present of
high-energy electromagnetic emission and high-energy neutrino production.

Further details behind this estimation lie beyond the scope of this thesis, but they
can be found in [7]. The results of this analysis are shown in Fig. 1.9, where also
transient point sources (GRBs and different supernova types) are included, but these
will not be discussed here. Note that this plot was made with limits obtained using
four years of IceCube data, although the difference with the seven year upper limits
are not large enough to cause a significant influence on the shown plot.

There are six (extragalactic) steady point source populations considered in this
work, i.e. Flat Spectrum Radio Quasars (FSRQs), BL Lacertae (BL Lac), Fanaroff-
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Figure 1.8: The 90% CL upper limits on the flux dφ/dEν ∝ E−2
ν per source determined

from the analyses of the full sky and of the 74 individual candidate steady point sources
using seven years of IceCube data. The constraints are given for all candidate sources,
and also of the all-sky hotpots, from which the all-sky upper limits at other declinations
δ (full blue line) are determined as described in the text. Also shown are the 5σ
Discovery Potential and sensitivity determined for all declinations before the unblinding
of the data; as a comparison, the sensitivity of the ANTARES experiment is indicated
as well. It can be observed that stronger constraints are obtained in the Northern
Hemisphere, which is due to the fact that IceCube suffers less from atmospheric
muons produced in the northern sky. This effect is also seen in the IceCube Discovery
Potential and sensitivity [62].

Riley galaxies of types I and II (FRI resp. FRII), galaxy clusters, and starburst galaxies.
The first four sources are different types of AGN [6]. What can be seen from Fig. 1.9 is
that objects with relatively low population densities and high characteristic luminosities
are disfavoured to solely account for the observed diffuse neutrino flux. However, FRI
galaxies, starburst galaxies, and galaxy clusters, which have relatively low luminosities
and high population densities, are not constrained by this estimation.

It should be noted that e.g. starburst galaxies could have significant electromagnetic
obscuration at the highest energies due to the gas clouds in which the star formation
occurs. This could be an indication that neutrino production is significantly enhanced
through pp-interactions [37] (see Section 1.1.2). Moreover, hints for such obscured
sources as the possible origins of high-energy cosmic neutrinos also arise from γ-ray
observations with the Fermi-LAT satellite [67]. Therefore, the high-energy cosmic
neutrino flux corresponding with such an obscured source might be larger than the
estimated φps

ν given here.
Finally, it can be concluded that if steady point sources are accountable for the

diffuse high-energy cosmic neutrino flux measured in IceCube, they likely form part
of a population with a high source density but low neutrino emission rate. As a conse-
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Figure 1.9: An estimative depiction of several transient and steady point source popula-
tions, based on their population density and characteristic electromagnetic luminosity,
that have sufficient power densities to possibly be responsible for the diffuse high-energy
astrophysical neutrino flux observed with IceCube. The diagonal percentages indicate
the fraction of the corresponding power density that would be required to explain the
diffuse flux. The green region illustrates which sources are disfavoured by the flux up-
per limit φlimit determined with four years of IceCube data, based on an estimate of
the flux φps

ν for a characteristic distance d = (4πρ)−1/3 to the nearest source of each
population. The blue region is the analogous limit for transient point sources; for more
information on their interpretation, see [7].

quence, maximum likelihood analyses, such as the one discussed previously, of indivi-
dual sources which are expected to have signatures that are hardly distinguished from
background, might not be the most appropriate.

It is thus possible that other statistical methods perform better than the likelihood
for such low signal event rates. This is the main motivation for the work presented
in this thesis. In the following Chapters, the necessary statistics—of which several
concepts have been used in this Section—will be introduced in order to perform a
comparison of four statistical methods (including the likelihood) using a toy model of
steady point sources.
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Statistics in Neutrino Astronomy

Introduction

In experimental physics, measured data is analyzed through statistical methods in order
to claim discoveries or set constraints on theoretical models. However, such a dataset
will in general not exclusively contain information that is useful for the purpose of
the experiment. The data will be a combination of signal, i.e. the information that is
relevant to the tested model, and background, which are the remaining measurements.
In a source analysis with IceCube for example, the signal would correspond with the
neutrinos originating from the source (if they are present), while the background would
mainly consist of atmospheric muons and atmospheric neutrinos from cosmic ray air
showers.

Since the background typically dominates the dataset, it is a non-trivial task to
search for a possible signal signature. In terms of statistics, the distribution of the
full dataset, which contains signal and background, has to be distinguished from the
background-only distribution, where the contribution of signal to the former is relatively
small. This Chapter will cover the techniques to analyze such a dataset in the context
of neutrino astronomy. First, a short overview of some relevant statistics is given in
Section 2.1. Then, the statistical concepts needed for an IceCube analysis are defined
in Section 2.2, followed by some final remarks in Section 2.3.

2.1 An Overview of Statistics

To start, a short overview of some statistical concepts is given which are relevant for
this thesis. For a more detailed discussion of the most general topics, the reader is
referred to [68–70]. It should be noted that here the emphasis lies on the physical
interpretation of statistics rather than on the fundamental approach of mathematics.

17
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2.1.1 Probability Distribution Functions

A stochastic variable, or in short a statistic X, is defined as a physical quantity that,
when measured multiple times, will take on a different value for each measurement.
In other words, the value of a measurement of X will be random, although there is a
probability P that can be assigned for it to result in a value x, i.e. P(X = x). In case
one could perform an infinite amount of measurements, then one would know the whole
set Ω—the sample space, which can be continuous or discrete—of possible values for
X, with their probability of occurrence.

This information is contained in the Probability Density Function (PDF) fX(x|θ),
which gives the probability density that a measurement of X will result in a value1

x ∈ Ω, given some physics parameters θ = (θ1, θ2, ..., θm); Ω can also depend on these
parameters. Thus, the probability that X ∈ A, with A ⊆ Ω, is given by

P(X ∈ A) =

∫
A
fX(x′|θ) dx′,

where the integral should be appropriately replaced by a summation in the discrete
case, which will be implicitly assumed henceforth. Furthermore, since by definition
0 ≤ P ≤ 1, the PDF should be normalized to one,∫

Ω
fX(x′|θ) dx′ = P(X ∈ Ω) = 1.

One can generalize this by defining PDFs of multiple statistics, but these will not be
of relevance here.

The most important thing to remember is that given the true value θt of the para-
meters θ, the PDF fX(x|θt) can be used to determine the probability that a measure-
ment of X will result in a value x. Since physics parameters are always determined
from experiment, the exact value of θt is never known exactly due to systematic and
statistical uncertainties. The true PDF fX(x|θt) is therefore a theoretical concept; in
practice a set of estimators θ̂ = (θ̂1, θ̂2, ..., θ̂m) of θt are required. One method to obtain
such estimators is explained in the next Section.

2.1.2 Likelihoods

Let x = (x1, x2, ..., xn) be a set of independent measurements of a certain statistic X
which follows a PDF fX(x|θ). The likelihood L(x|θ) is defined as

L(x|θ) =

n∏
i=1

fX(xi|θ),

which could be interpreted as the plausibility that this set of measurements would be
the result of an experiment, given θ. However, the reasoning can be inversed: given
x, L(θ|x) is the likeliness that θ corresponds with these measurements. This is the
interpretation that is mostly used in practice. In the following, the distinction between
the interpretations will be implied by the used notation, i.e. L(θ|x) or L(x|θ).

1To avoid initial confusions, in this Section a statistic will be denoted by a capital letter, e.g. X.
The corresponding variable will then be labeled by the same, uncapitalized letter, e.g. x.
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As mentioned previously, in experimental physics one can only estimate θt. Given
a set of measurements x, one can e.g. obtain the estimators θ̂ that best fit the ob-
servations. In other words, those estimators θ̂ are to be found which maximize the
likelihood, i.e. the Maximum Likelihood (ML) estimators θ̂ML. In practice, the natural
logarithm of the likelihood is used,

lnL(θ|x) =
n∑
i=1

ln fX(xi|θ),

and since the logarithm is a monotonic function,

lnL(θ̂ML|x) = max
θ
{lnL(θ|x)}.

2.1.3 Classical Confidence Intervals and Confidence Limits

Since θ̂j = gj(x) with j ∈ {1, 2, ...,m}, where each gj(x) is a function of the measure-
ments x, the estimators are statistics themselves, and this gives rise to their statistical
uncertainty. As a consequence, one needs to set up a degree of confidence or Confi-
dence Level (CL) α with which θt is estimated, where 0 ≤ α ≤ 1 is usually expressed
as a percentage. Here, the procedure of Neyman2 [71] will be followed to construct
so-called confidence intervals, which follows a frequentist or classical approach. For
simplicity, let m = 1 such that the index j can be omitted; the upcoming discussion
can be generalized directly for m > 1.

Let Y denote the estimator statistic following a PDF fY (y|θ) which is assumed to
be known. In the frequentist approach, one can, for a value of the theoretical parameter
θ, obtain a statement about the probability P(Y |θ) of Y being in a specified interval
through the integration of fY (y|θ). In particular, for the true value θt and a value
y0 = θ̂ = g(x) determined from a set of measurements x, one could determine what
the probability P(y0|θt) is that the measured y0 corresponds with the true value θt (for
a certain interval of y). However, since the PDF of the statistic Θ is not known, one
can not obtain a statement about the probability P(θt|y0) of Θ = θt lying in a certain
interval of θ, given the measured y0.

The Neyman method works around this problem by finding an acceptance interval
[y1(θ), y2(θ)], typically simply connected, for each θ such that

P(y1 ≤ Y ≤ y2|θ) =

∫ y2

y1

fY (y′|θ) dy′ = α, (2.1)

with the complementary conditions

P(Y < y1|θ) =

∫ y1

−∞
fY (y′|θ) dy′ = β,

P(Y > y2|θ) =

∫ +∞

y2

fY (y′|θ) dy′ = 1− α− β.
(2.2)

2In the literature, the CL can alternatively be defined as 1− α, following the original notation by
Neyman.
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In practice, it is commonly chosen to set β = (1 − α)/2. Note that these conditions
are arbitrary and in principle free to choose, as long as they are not influenced by the
measured y0, which will be explained below in more detail. For a fixed α, y1(θ) and
y2(θ) form a so-called confidence belt {[y1(θ), y2(θ)]}, as depicted in Fig. 2.1a. Each
horizontal line thus represents the containment of a probability α within the belt, for
the corresponding value of θ.

In an experiment, one obtains a value y = y0, which is drawn as a vertical line in
Fig. 2.1a. The confidence interval I is now obtained by taking the union of all θ-values
which correspond with acceptance intervals intersected by the vertical line. In Fig. 2.1a
the confidence interval is simply connected, I = [θ1, θ2], although this is not required.
In general, I is a two-sided confidence interval, and in the case that β = (1 − α)/2, it
is also called a central confidence interval.

It is imperative to realize that the construction of a confidence interval I does not
imply that P(θt ∈ I|y0) = α. This would require the PDF of Θ which is not known. In
fact, if I is obtained at a CL of α, it means that if the experiment is repeated multiple
times, the resulting I will contain θt in a fraction α of all experiments, on average.
Furthermore, it is important to note that the only reason why this claim can be made
is because of the fact that each acceptance interval contains a probability α.

Thus, if α = 90% and the experiment is repeated 100 times, then on average 90
of the 100 obtained confidence intervals will contain the true value θt. That is what
is meant in the case that only one I is e.g. published (typically there is only one
experiment), and one states that this I was obtained at 90% CL.

Besides two-sided confidence intervals, one can also define confidence limits, i.e.
one-sided confidence intervals. An upper limit with CL α can be obtained by setting
y2 = +∞ for all θ in Eq. 2.1,

P(Y ≥ y1|θ) =

∫ +∞

y1

fY (y′|θ) dy′ = α,

with the reduction of Eqs. 2.2 to the single condition

P(Y < y1|θ) =

∫ y1

−∞
fY (y′|θ) dy′ = 1− α.

For a y0 from an experiment, one again takes the union of the θ-values that correspond
with acceptance intervals [y1(θ),+∞), as shown in Fig. 2.1b. This union is the one-
sided confidence interval I = (−∞, θ2] such that the confidence upper limit is θ2—in
the simply connected case, although otherwise one can still find an upper θ2.

Also here the confidence upper limit at a CL α does not mean that there is a
probability α for θt to be smaller than θ2. The correct statement is that for multiple
repetitions of the experiment, the resulting upper limit θ2 will be larger than the true
θt in a fraction α of the experiments, on average. Note that the construction of a
confidence lower limit is completely analogous, by setting y1 = −∞ in Eq. 2.1.

Terminologically, the constructed I has the correct coverage if

P(Y ∈ [y1(θ), y2(θ)]) = α, ∀ θ ∈ I.
In other words, each θ covers its corresponding acceptance interval [y1(θ), y2(θ)] at the
stated CL. In case

∃ θ ∈ I : P(Y ∈ [y1(θ), y2(θ)]) < α or P(Y ∈ [y1(θ), y2(θ)]) > α,
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(a) Confidence interval (b) Confidence upper limit

Figure 2.1: An illustrative template for the construction of a central confidence interval,
shown in Fig. 2.1a, and a confidence upper limit, depicted in Fig. 2.1b, following the
description in the text. The respective confidence belts are also indicated; typically
only the functions y1(θ) and/or y2(θ) are shown without depicting each acceptance
interval, which will also be done here subsequently. Adapted from [72].

one speaks of an undercoverage or overcoverage, respectively. This means that at least
one θ covers its corresponding acceptance interval with a probability less or greater
than the stated CL. The former scenario has to be avoided, since then one claims to
state a confidence interval with a CL of α, whilst the actual CL is less than α. In other
words, one claims that on average a fraction α of repetitions of the experiment will
result in an I which contains θt, whilst the average is actually less than α.

In the latter case one also speaks of conservatism. This is unavoidable in the
construction of confidence intervals of a discrete quantity: an acceptance interval for a
certain θ will generally not exactly contain a probability α due to the discreteness. Since
undercoverage is to be avoided, one choses the first interval that contains a probability
which trespasses α as the acceptance interval. The resulting confidence interval will
therefore lead to overcoverage.

Consider, for example, one of the scenarios illustrated by Feldman and Cousins3

[72], where one is trying to measure a small mass θ = µ (in arbitrary units), and that
the estimator Y of the mass follows a Gaussian distribution with a standard deviation
σ = 1,

fY (y|µ) =
1√
2π

exp

(
−(µ− y)2

2

)
.

The confidence belts for the construction of a central confidence interval and confidence
upper limit, both at 90% CL, are respectively shown in Figs. 2.2a and 2.2b. Since the
true mass µt ≥ 0, one limits the range of µ to positive values only, as done in the plots.
This limitation does not cause an issue; if e.g. the one-sided case is considered, then

3Unfortunately, Feldman and Cousins use the confusing notation P(µ ∈ [µ1, µ2]) = α to state that
on average a fraction α of the confidence intervals [µ1, µ2] contain the value µ.
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(a) Central confidence interval (b) Confidence upper limit

Figure 2.2: The confidence belts at 90% CL used to construct a central confidence
interval, shown in Fig. 2.1a, and a confidence upper limit, depicted in Fig. 2.2b, for
an estimator y which follows a Gaussian distribution with an expectation value µ ≥ 0
and a standard deviation of unity. This µ represents a mass of which the true value is
estimated by y. In both cases there is a correct coverage [72].

on average 90 of the 100 determined confidence intervals [0, µ2] (instead of the usual
(−∞, µ2]) with upper limit µ2 will contain µt, because of the known fact that µt ≥ 0.

However, it is perfectly possible that a measurement y0 < 0 is obtained. In the
scenario of the upper limit, one can see from Fig. 2.2b that if y0 = −1.8 for example,
the one-sided confidence interval would be empty. This does not mean that there is
a 90% probability for µt to be “nothing”, which is furthermore nonsensical. The true
interpretation is that, if the experiment had been repeated 100 times, the result from
the particular experiment with y0 = −1.8 means that this experiment lies in the average
10% which obtains a one-sided confidence interval that does not contain µt.

As an attempt to resolve this, one might opt to modify the correct confidence belt
of Fig. 2.1b by stating for each y < 0 the upper limit one would obtain is the one
corresponding with y = 0. This modification is shown in Fig. 2.3a. Nevertheless, this
will unavoidably introduce conservatism. This can be seen by taking any µ ∈ [0, 1.24],
for which the acceptance interval then contains the whole range of y, so the coverage
of this µ is 100% of the y-values instead of the stated 90%. Since at least a part of
the µ ∈ [0, 1.24] will be in the one-sided confidence interval, the stated upper limit will
always lead to overcoverage.

Another “self-made” confidence belt is constructed when the following “flip-flop”
reasoning is applied. If an experiments measures a y0 with a significance of at least 3σ
(see Section 2.2.1), i.e. y0 ≥ 3 in the Gaussian example considered here, then a central
confidence interval is obtained. On the other hand, if the significance is less than 3σ,
y0 < 3, then an confidence upper limit is acquired.

The resulting confidence belt can then be visualized by taking the belt of Fig.
2.2b up to y0 < 3, and “pasting” it with the belt of Fig. 2.2a for y0 ≥ 3. This is
shown in Fig. 2.3b. Now take e.g. µ = 2. For that µ, the acceptance interval is
[y1(µ = 2), y2(µ = 2)] = [0.72, 3.64], for which P(Y ∈ [0.72, 3.64]|µ = 2) = 85% < 90%.
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(a) Overcoverage (b) Undercoverage

Figure 2.3: Two alterations of the correct confidence intervals that were shown in Fig.
2.2. The first, shown in Fig. 2.3a, occurs when Fig. 2.2b is truncated at a value y = 0 in
order to avoid empty’ one-sided confidence intervals. This always leads to overcoverage.
Secondly, the confidence belt corresponding with a “flip-flop” reasoning is shown in Fig.
2.3b, which can be seen as the “pasting” of Fig. 2.2a with Fig. 2.2b at y = 3. Here, any
confidence limit which includes a µ ∈ [1.36, 4.28] will lead to undercoverage. Adapted
from [72].

Thus, µ = 2 undercovers its acceptance interval. Moreover, each µ ∈ [1.36, 4.28]
undercovers, with a coverage of 85% instead of the stated 90%. Each stated confidence
upper limit or confidence interval which contains a subset of [1.36, 4.28] will therefore
lead to undercoverage.

The reason why this “flip-flopping” goes wrong, is because the conditions of Eq.
2.2 were influenced by the (anticipation of the) measurement y0. Depending on the
value of y0, the conditions for a central confidence limit or a confidence upper limit
were applied. It is exactly this altering of the conditions which introduces acceptance
intervals that contain less than the stated probability of 90%. One must first choose a
set of conditions, i.e. decide if one wants to determine a central interval or an upper
limit, then construct a confidence belt based on these, respectively leading to Fig. 2.2a
or Fig. 2.2b, and afterwards look at the measurement y0 and thereby state the correct
one-sided or two-sided confidence interval.

In summary, the problems in the two examples given above are that empty confi-
dence intervals can be obtained, and that one does not know when to state a central
interval or an upper limit.

Feldman and Cousins [72] resolved this through the design of an ordering principle
serving as the measurement-independent conditions with which to construct acceptance
intervals. If θ is used again to generally denote a certain parameter, one first calculates
for each fixed value y of the estimator the physically allowed value θ = θbest which
maximizes the likelihood L(θ|y), i.e. which corresponds best with y. Subsequently, for
each fixed value of θ one calculates a likelihood ratio R(y|θ) for all y by determining
the likeliness L(y|θ), and normalizing it with the maximized likelihood L(θbest|y) at
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that y,

R(y|θ) =
L(y|θ)
L(θbest|y)

=
fY (y|θ)

fY (y|θbest)
.

Values of y are then added to the acceptance interval by starting with the largest
R(y|θ), and continuing towards lower R(y|θ) until the acceptance interval contains a
probability α. This ordering ensures that the acceptance interval for a θ contains the
values of y which are most likely to occur, given that specific θ.

When applying the ordering principle to the Gaussian example, one first realizes
that θbest = µbest ≥ 0, since physically µ represents a mass. Therefore, µbest = 0 for
all y < 0. The resulting confidence belt at a CL α = 90% is depicted in Fig. 2.4.
For the largest y-values, this belt corresponds with the standard two-sided belt of Fig.
2.2a. Going towards smaller values of y, the lower edge of the belt smoothly crosses
µ = 0, and from that point, one would quote an upper limit or a one-sided confidence
interval with a lower bound equal to zero. Furthermore, for y < 0, the upper edge of
the belt never goes below zero. Thus, the ordering method does indeed resolve the two
problems encountered before.

Finally, it should be mentioned that the construction of a confidence belt does not
require Y to be a direct estimator of θ = θt; this assumption was made for simplicity in
the discussion. If there is any statistic Y which can be calculated as a function of the
measurements x and which follows a known PDF fY (y|θ), then the techniques given
here can be applied to find the confidence interval of θ for a certain measured Y = y0.

2.1.4 Bayesian Credibility Intervals

As an alternative to the frequentist approach, one can use Bayesian statistics to obtain
a statement about a certain theoretical quantity θt. The discussion here will be limited,
since in the rest of this thesis exclusively frequentist principles will be applied, with one
exception in the description of a statistical method in Chapter 4. More information on
the topic of Bayesian statistics can be found in [73–76].

Consider two propositions A and B, and some priorly known information I. The
Bayesian principle finds its origin in the theorem of Bayes, which states that

P(B|AI) = P(B|I)
P(A|BI)

P(A|I)
, (2.3)

where P(B|AI) is the probability that B is true under the condition that A and I are
true, etc. In particular, using the same notations as in the previous Section, if y0 is a
measured value of the estimator of the theoretical quantity θ with a true value θt, then
one can set A = y0 and B = θt in Eq. 2.3,

P(θt|y0I) = P(θt|I)
P(y0|θtI)

P(y0|I)
.

The important implication of the theorem of Bayes is that if the PDF fY (y|θ)
is known, as is generally the case, one can determine the PDF fΘ(θ|y) of Θ using
fY (y|θ) and some prior information I. This is what distinguishes Bayesian statistics
from classical statistics. Credibility intervals or Bayesian confidence intervals with a
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Figure 2.4: The confidence belt at 90% CL that is obtained through the usage of
the ordering principle developed by Feldman and Cousins, for the Gaussian example.
The two problems of empty confidence intervals and choosing between two-sided and
one-sided intervals, which were unsuccessfully tackled in Fig. 2.3, are now righteously
resolved [72].

certain CL α—one-sided or two-sided—can then be obtained from a measured y0 by
constructing a range [θ1, θ2] for which

P(Θ ∈ [θ1, θ2]) =

∫ θ2

θ1

fΘ(θ′|y0) dθ′ = α.

Therefore, in contrast with a frequentist confidence interval, the Bayesian confidence
interval does correspond with a range [θ1, θ2] which has a probability α of containing
the true θt.

2.2 Techniques for a Statistical Analysis with IceCube

2.2.1 Test Statistics and Pseudo-Experiments

Given a set of measurements x = (x1, x2, ..., xn) of a certain stochastic physical ob-
servable X, one can define a so-called test statistic T = T (x) which can in principle
be any real function of the measurements. In IceCube, the physical observable is an
event in the detector where a.o. the energy, arrival direction, and time of detection of
the neutrino are used to determine T (although the latter is of less relevance in steady
sources). Since per experiment one dataset D is obtained, which contains both signal
and background, only one value4 T = TD will be acquired. The purpose of this TD
is to quantify the degree of belief in the hypothesis H0 that D exclusively contains
background5.

First, the PDF of T has to be considered under H0, i.e. the background-only PDF
T0(t|θ0), with θ0 a set of physical parameters (see below). The p-value of a certain Tp

4From this point onwards, the convention from Footnote 1 will usually be omitted to avoid an
excess in notations.

5Note that the discussion given here follows a frequentist approach.
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w.r.t. T0 is then defined as

p = P(T ≥ Tp|H0) =

∫ +∞

Tp

T0(t′|θ0) dt′.

In particular, if TD = Tp, the probability under H0 that a new experiment will result
in a value of T that is larger than the original TD is thus p. Consequently, the smaller
the value of p, the less the degree of belief in H0, or the higher the significance of TD.
In order to claim a discovery in (astro)particle physics, i.e. to have a significance that
is high enough to state that D cannot solely consist of background measurements, a
value p = 5.73× 10−7 is required. This is called a 5σ significance since it corresponds
with the integral of a one-sided Gaussian PDF from 5σ up to infinity, where σ is the
standard deviation. In general, a certain significance is expressed6 in units of σ.

It should be noted that here a one-sided test statistic has been considered. One
could also define a two-sided (central) test statistic, and in this case the two values
(T1)p and (T2)p are required to define the p-value as the probability for which

p

2
= P(T ≤ (T1)p|H0) =

∫ (T1)p

−∞
T0(t′|θ0) dt′,

p

2
= P(T ≥ (T2)p|H0) =

∫ +∞

(T2)p

T0(t′|θ0) dt′.

These are not of relevance for this thesis, but the discussion given here can directly be
generalized for two-sided test statistics.

Practically, there are two manners in which the T0-PDF can be obtained through the
usage of pseudo-experiments, which replicate the actual experiment. The first option
is to simulate a set of background events in a pseudo-experiment utilizing Monte Carlo
techniques, from which a value of T can be computed. One then performs many of
these background-only pseudo-experiments to obtain the full PDF.

The most challenging part of this method is that in order to obtain T0 up to a
significance of 5σ with enough statistical precision, one needs to performO(109) pseudo-
experiments. Therefore, the computation time will be large. This can in first instance
be remedied by performing e.g. O(106) pseudo-experiments and fitting an expected
functionality of T0 through the simulated measurements. As an example, Figs. 2.5a and
2.5b show the results of the same test statistic T = λ (see Chapter 4 for its definition)
for two different analyses, one with IceCube [77] and one with AMANDA-II [78]—the
precursor of IceCube—, using 109 pseudo-experiments and the combination of 5×106

pseudo-experiments with a fit, respectively.
On the other hand, one can opt to perform pseudo-experiments using experimental

data of which it is known to be background, although this will depend on the analysis in
question. In an IceCube steady point source analysis for example, one takes a certain
patch on the sky around the candidate source. Typically a declination band containing
this patch is then constructed. Subsequently, all (or a part) of the IceCube data

6For clarity, in the text the distinction will be made to express a p-value as a probability and
a significance in units of σ, although they are conceptually identical. Therefore, when stating the
expression “a significance of 5σ has been obtained” for example, it is equivalent to stating p = 5.73×
10−7. As a consequence, if p1 corresponds with 3σ and p2 corresponds with 5σ, then p1 > p2.
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(a) Without fit (b) With fit

Figure 2.5: Examples of the determination of the background-only PDF T0 for the test
statistic T = λ in two different analyses, indicating some significances and correspon-
ding Tp-values. Fig. 2.5a depicts the trial histogram of 109 pseudo-experiments, which
relates directly to T0 if normalized [77]. Alternatively, Fig. 2.5b shows the histogram of
the integrated T0, i.e. the p-value as function of λ. Here, the histogram was obtained
by performing 5 × 106 pseudo-experiments, and a fit was made through it, indicated
by the dashed line [78]. Note that the two plots should not be compared directly, as
they correspond with values of T = λ for two different analyses.

within this band are scrambled, that is, the azimuthal component of an event is given
a random value from a uniform distribution over [0, 2π] whilst keeping the declination
fixed. This is plausible due to the azimuthal symmetry of IceCube7. The scrambling
ensures that a possible signal signature in the source patch is washed away in the
declination band. Therefore, T0 can be obtained by scrambling multiple times—these
are thus the pseudo-experiments—and determining the value of T in this patch for each
scramble.

Once T0 is known, one wants to determine how sensitive the test statistic T is for a
signal detection and what its potential for a discovery is. To achieve this, the behavior
of T in the presence of signal has to be known. Therefore, the background and signal
PDFs Ts(t|θs) of T are required for different values of the signal s > 0, where the
injection of signal a fortiori requires the usage of simulated pseudo-experiments (only
for the signal; experimental data can still be used for the background). Fortunately, in
these cases the necessary amount of simulations will be limited to O(104). This will
become clear in the following Sections, where the concepts of Discovery Potential and
sensitivity are quantified.

Note that Ts(t|θs) should be interpreted as fT (t|s) in the notation of Section 2.1 for
a PDF, that is, the amount of signal events s is the parameter which fully determines
the PDF of the statistic T , and it has an unknown true value. The other physical

7It is a common misunderstanding to state that the location of IceCube at the geographic South
Pole is the reason behind the azimuthal symmetry of the detector. In fact, it is because of the rotation
of the Earth (along the azimuth) that this symmetry is present.
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parameters θs are completely defined for a certain value of s ≥ 0; their inclusion in
the notation Ts(t|θs) is useful if the analytic expression of the PDF is known, which
is generally not the case. In practice it is always through the performance of pseudo-
experiments at a fixed s that the corresponding PDF is determined. If known a priori,
the functional form of the PDF serves as a natural choice to perform the fit with for
the case s = 0 ⇒ θs = θ0, in order to reach a 5σ significance (see Chapter 3 for an
example).

2.2.2 Discovery Potential

As mentioned previously, in order to obtain a discovery a significance of at least 5σ w.r.t.
the background-only PDF T0 is required. By determining the signal-plus-background
PDF Ts for different signal injections s > 0 through the usage of pseudo-experiments,
the probability to obtain a value T from Ts with a significance of at least 5σ can
be determined, which will be larger the more signal is injected. For the purpose of
calculating this percentage, the sufficient amount of pseudo-experiments per value s is
O(104).

The amount of injected signal for which in δ% of the trials8 a value T drawn from
Ts will have at least a p-value corresponding with kσ, is defined as the δ% Discovery
Potential (DP) at kσ significance. The 50% DP at 5σ significance, or in short, the
DP9, is of most relevance in the literature, and it is shown schematically in Fig. 2.6
for the exemplary case T = λ. The DP is the amount of signal required so that the
probability that a 5σ discovery can be claimed from the experiment is 50%.

Preferably, the DP is as low as possible, since this indicates that less signal is
required in the data D in order to claim a discovery. Therefore, an important part of
an analysis is its optimization to find the minimal DP. This involves a.o. the usage of
multiple test statistics and the optimization of cuts on the data resulting from Boosted
Decision Tree trainings.

Since for an injected signal corresponding with the DP, in 50% of the trials one
would not be able to claim a discovery, it might also be useful to determine the 90%
DP at 5σ significance. This is called the Least Detectable Signal (LDS). However, in
practice it often occurs that a discovery is precedented by a value TD with a lower
significance in the early stages of an experiment. Thus, for a first indication of a
strong excess in signal over background one might be interested in the 50% DP at
3σ significance. As an example, the 3σ DP, 5σ DP, and LDS for the analysis of [78]
(T = λ) are depicted in Fig. 2.7.

2.2.3 Sensitivity

Additional to the DP, one wants to know how much signal is required such that it
can be distinguished from a background fluctuation. This sensitivity is defined as the
amount of injected signal for which in 90% of the trials a value T drawn from Ts will
have at most a p-value of 50%. Rephrased, for a signal injection corresponding with the

8In principle, the amount of pseudo-experiments required should be scaled with δ, but O(104) will
suffice for the values of δ considered in this work.

9If the δ- and k-values are not mentioned explicitly, they are always assumed to be the ones
corresponding with the 50% DP at 5σ significance unless clear from the context.
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Figure 2.6: A schematic illustration used to define the concepts of Discovery Potential
and sensitivity for the example T = λ. The background-only PDF T0 is shown in black,
and the signal-plus-background PDFs Ts corresponding with the DP and sensitivity are
colored in blue and red, respectively [50].

Figure 2.7: The determination of the 3σ DP, 5σ DP, and LDS w.r.t. to the pure
background (BG) distribution T0 (cf. Fig. 2.5b), depicted in black. The PDFs Ts
corresponding with these quantities are shown respectively in red, blue, and green, and
the related amounts of injected signal events s are also indicated [78].

sensitivity, a trial T will be above the median of T0 at a CL of 90%. This is illustrated
in Fig. 2.6. As in the case of the DP determination, Ts is determined for different
signal injections s > 0, each requiring O(104) pseudo-experiments, until the sensitivity
is found.

An alternative and compatible definition of the sensitivity found in the literature is
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the average confidence upper limit at 90% CL, weighted with T0. That is, one uses the
ordering principle of Feldman and Cousins, discussed in Section 2.1.3, to construct for
each s ≥ 0 acceptance intervals that contain of 90% of the probability determined from
Ts. Hence, a confidence belt is obtained at 90% CL, from which one can determine the
upper limit s2(T ) for each T . The sensitivity ssens is now defined as

ssens =

∫ +∞

−∞
s2(T ′) T0(T ′) dT ′.

However, in this thesis solely the first definition of the sensitivity will be considered,
which determines the 90% confidence upper bound w.r.t. to the median rather than
calculating the weighted average.

In analogy with the DP, the optimization of the sensitivity is an important part
of the analysis, which is achieved through the same techniques as in the DP case.
Also here the optimal sensitivity is the lowest amount of injected signal needed to be
distinguishable from the background. Note that typically an analysis is optimized for
the DP or the sensitivity, but not both simultaneously.

Lastly, the sensitivity is typically not optimized in source analyses with IceCube,
since here the sources of the observed cosmic neutrino flux are yet to be discovered,
implying that an optimization of the DP is more relevant. Contrastingly, in analyses
concerning dark matter searches with IceCube, the sensitivity might be optimized
rather than the DP, since currently no evidence has been provided for (relatively low-
energy) neutrinos originating from dark matter interactions.

2.2.4 Analysis of Experimental Data

In order to prevent biases in the analysis, the DP and sensitivity are quantities deter-
mined from pseudo-experiments that are independent of the measurements. Note that
these quantities are merely used to optimize the analysis. After the optimization is
complete, the actually observed dataset D of the experiment becomes available10, from
which a single value TD of each considered test statistic is determined. This TD is then
compared with the background-only PDF T0 in order to obtain its p-value pD.

Depending on the value of pD, a different type of result will be given from an
analysis of the IceCube data. First, consider the scenario where pD corresponds with
a significance that is less than 5σ. In that case, the confidence belt at 90% CL is
constructed using the ordering principle of Feldman and Cousins. For the specific
value of TD, one thus obtains a confidence interval for s at 90% CL.

In contrast, if pD corresponds with a significance of at least 5σ, one wants to state
an observed value sobs and its ±1σ statistical uncertainties (note that the latter σ does
not refer to a significance of TD). This is done by constructing the confidence belt at
68.27% CL using the ordering principle of Feldman and Cousins. For the determined
TD, one then sets sobs = sbest, i.e. the value of s which best fits the likelihood in the
ordering principle. The upper limit and lower limit of the corresponding confidence
interval then comprise the +1σ and −1σ uncertainties, respectively.

10This is called data unblinding in IceCube analyses; the optimizations of the DP and sensitivity
form part of the blind analysis, where there is no knowledge of D in order to prevent biases.
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Yet, this choosing of the CL as function of the value of pD obtained from the data
is another form of the “flip-flop” reasoning discussed in Section 2.1.3. The confidence
belt “thins” from 90% CL to 68.78% CL after trespassing the 5σ threshold, which leads
to undercoverage w.r.t. the 90% CL region, and overcoverage w.r.t. the 68.78% CL
region. Hence the ±1σ uncertainties on an observation with at least a 5σ significance
will overcover, but this conservatism is not really an issue if a signal is discovered.
On the other hand, undercoverage is avoided for the lowest significances where the
most important constraints are performed, since the corresponding TD-values lead to
confidence intervals that do not contain any values of s that undercover.

However, undercoverage for more intermediate significances—which could be be-
tween 3σ and 5σ for example—does occur. One could argue that if an experiment
obtains a result with such an intermediate significance, it will definitely be performed
again with more data. This will probably lower the significance of the new result w.r.t.
the original result if the latter was a background fluctuation, or probably increase it
if there is an actual signal present. Therefore, this new result has a relatively large
likeliness of avoiding undercoverage. Unfortunately, this argument is not a justification
of the fact that undercoverage does occur in practice when a confidence interval at 90%
CL is given at these intermediate significances.

The discussion given above is based on the determination of one value pD from the
data D. Yet, it is common that in an analysis several values (pD)i with i ∈ {1, 2, ..., N}
are determined from N trials. In a steady point source analysis for example, such as
the one discussed in Chapter 1, for each of the N considered candidate sources a (pD)i
is determined, which are called pre-trial p-values.

Such pre-trial p-values do not correspond with a correct assessment of significance—
if e.g. N = 108 trials would be performed and no signal would be present, still several
(pD)i would be smaller than 5.73 × 10−7. As a consequence, one needs to correct
for the fact that N trials were performed. For that, one typically finds the smallest
(pD)min = mini{(pD)i}, and then one calculates the probability P to obtain a value
p < (pD)min in N trials. This is given by a binomial distribution,

P =
N !

(N − 1)!
(pD)min [1− (pD)min](N−1)

= N (pD)min [1− (pD)min](N−1).

The probability P , that would then correspond with the single pD mentioned above,
is therefore called the post-trial or trial-corrected p-value, of which a 5σ significance is
required to claim a discovery.

2.3 Additional Remarks

Firstly, it should be emphasized that the result of an analysis is to be interpreted
cautiously. Recall that a (frequentist) confidence interval at a CL α does not have of
probability α to contain the true value of the signal. The correct statement is that in
a fraction α of the experiments, the resulting confidence interval will contain the true
value. However, one should bear in mind that both overcoverage and undercoverage
do occur in practice.
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Secondly, when comparing different test statistics, there is in principle no unique
definition of “the best statistical method”. Considering the DP scenario—the following
reasoning can in principle also be applied to sensitivities, although in this case it is
typically not relevant in practice—, it might be argued that the optimal test statistic
is the one for which the lowest value of the DP is obtained, i.e. the value for which
δ% = 50% if the trials will trespass the kσ = 5σ threshold. However, it can occur
that a method gets a 10% probability to exceed 5σ when injecting a small number of
signal events, such that it becomes the optimal statistical method for a very low signal.
Thus, it might be useful to consider different values of δ for a fixed k and vice versa to
determine the best test statistic in each scenario. This will be taken into consideration
in Chapter 5.

Furthermore, from the experimental point of view, the DP and sensitivity are ex-
pressed as signal rates rather than number of signal events, which will also be done in
this thesis. Yet, in references of IceCube source analyses such as the one discussed
in Chapter 1, these quantities are typically denoted as cosmic neutrino fluxes. The
conversion from an event rate to a flux was also mentioned in Chapter 1, where one
has to take into account the effective area of the IceCube detector.

Also to be noted is that one has to be careful when using experimental data to
determine the background-only PDF T0. It is imperative to ensure that the optimiza-
tion of the statistical methods should not be biased towards the data D that has to be
analyzed. In the scrambling example given above, this is avoided since the data D is
mixed with other experimental data in the declination band.

Finally, it should be remarked that the frequentist techniques outlined in Section
2.2 are not exclusive in particle physics (where also Bayesian principles are used).
They are developed with the purpose to discover a signal signature in the data rather
than to obtain precision measurements, as is typically done in the determination of
Standard Model quantities in experiments at e.g. the Large Hadron Collider. In the
latter analyses, much more attention goes into uncertainties (statistical and systematic)
of parameters, to obtain results that are as exact as possible. This is, however, not
of immediate relevance in neutrino astronomy as this field is currently in a phase of
claiming discoveries rather than making precision measurements.
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Toy Model of Steady Point Sources

Introduction

In order to investigate different statistical methods for steady point source analyses
with IceCube, a framework is needed with which to perform pseudo-experiments. For
this purpose, a toy model is constructed in Section 3.1. Furthermore, to illustrate the
concepts of Discovery Potential and sensitivity developed in the previous Chapter, the
analysis of a simple counting experiment in the context of the toy model is given in
Section 3.2.

3.1 Toy Model

The toy model described here is based on the one given in [79], which was used to
generate events for a GRB analysis, i.e. it simulated both the time and angular position
of an event. Since the interest of this work lies in steady point sources, the event
generation needs to cover an extended time range, which was chosen to be one year.
Therefore, only the event position on the sky is of relevance here; the toy model does
not take the energy of an event into consideration.

Consider a steady point source (PS) with a location vector rPS on the sky. The
opening angle α of a certain point on the sky, given by a location vector r, w.r.t. the
PS can then defined through the scalar product of these two vectors. That is,

α = arccos

(
rPS · r
|rPS||r|

)
,

where 0 ≤ α ≤ π. Subsequently, a patch of size αmax around the PS can be defined as
the collection of points on the sky for which α ≤ αmax. For the choice of αmax, such a
patch will be used to define the region of the sky which is scanned for a signal coming
from the PS.

33
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The following Sections describe how α is generated for both background and signal
events. Note that the toy model can directly be generalized for multiple point sources,
but this will not be of relevance in this thesis.

3.1.1 Background Generation

The average background event rate Ṅb of atmospheric neutrinos detected by IceCube,
which is the only background component considered in the toy model, is roughly 10
events per hour from the Northern Hemisphere [53]. Note that for the purpose of
the toy model, the distinction between the background rates from the two different
hemispheres is not relevant. Therefore this rate Ṅb = 2.8 mHz is taken, from which
the average number of background events Λb in one year can be determined. The
probability to obtain a certain number of background events Nb in one year is given by
a Poisson PDF,

P(Nb events) =
(Λb)

Nb e−Λb

Nb!
. (3.1)

Thus, for each pseudo-experiment the number of background events to be simulated is
drawn randomly1 from this distribution.

In the toy model it is assumed that the background events are distributed isotro-
pically. Therefore, for each background event, cosα is chosen randomly from a uniform
distribution, which takes into account the solid angle effect. Explicitly, the background
PDF Bα of α (not cosα) is given by

Bα(α) =
sinα

2
.

3.1.2 Signal Generation

The rate of injected signal events Ṅs, or equivalently, the number of injected signal
events2 Ns corresponding with a time span of one year, is a free parameter in the toy
model. The generation of such an event takes into account the IceCube resolution
σα on the opening angle α (e.g. ∼ 1° for muon neutrinos as mentioned in Chapter 1).
Therefore, the signal PDF Sα of α is chosen to be a single-sided Gaussian PDF,

Sα(α) =

√
2

πσ2
α

exp

(
−(µα − α)2

2σ2
α

)
, (3.2)

where the expectation value µα = 0° is the opening angle corresponding with the
considered point source PS. For each simulated signal event, a random value is drawn
from this Sα.

It should be noted that Sα is not exactly normalized over the physical range [0°, 180°]
of α, but rather over all positive values [0°,∞), i.e.∫ ∞

0°
Sα(α′) dα′ = 1 =⇒

∫ 180°

0°
Sα(α′) dα′ < 1.

1Such a drawing is in practice always pseudo-random, but this detail will be omitted in the text.
2Note that Ns corresponds with the number s of the previous Chapter; from this point, “s” is

simply used as a label.
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However, for an angular resolution σα = 1° used in this work, the discrepancy is
negligible, and therefore Eq. 3.2 was used for the generation of signal events.

3.2 Analysis in a Simplified Counting Experiment

Take a patch of size αmax centered around the PS, and let N = Nb + Ns be the
total amount of generated events on the full sky corresponding with a timespan of one
year. The conceptually simplest statistical method is to count which fraction of N is
contained within this patch. This number n = nb + ns is therefore the test statistic
considered here, T = n, where nb and ns are the amount of background and signal
events in the patch, respectively3.

The goal of this counting experiment is to reproduce Fig. 2.6 for the choice T = n,
so that the determination of the Discovery Potential and sensitivity is illustrated in a
practical application. The patch size was chosen to be αmax = 5° such that quasi all
simulated signal events would fall within the patch for the choice of a muon neutrino
resolution σα = 1°. For simplicity and due to the illustrative purposes of this Section,
it was also chosen to let Nb = Λb fixed for all pseudo-experiments instead of drawing
this value from Eq. 3.1. Therefore, the PDF TNs of T = n for a certain signal injection
Ns ≥ 0 is a Poisson distribution,

TNs(n|λ) = P(n = nb + ns events in patch) =
λn e−λ

n!
, (3.3)

where λ = λ(Ns) = λb+λs(Ns) is the average number of events in this patch4, composed
of the average number of background and signal events (λb and λs, respectively), which
depends on Ns. Recall that in general, the analytic form of TNs is not known a priori.

Firstly, the background-only PDF T0 of the test statistic has to be determined, of
which the analytic formulation can be found by setting Ns = 0 and thus also ns = 0
and λ = λ(Ns = 0) = λb in Eq. 3.3,

T0(n|λb) = P(n = nb events in patch) =
λnb e

−λb

n!
. (3.4)

Since the functional form of T0 is known, 105 pseudo-experiments were performed and,
in order to reach a 5σ significance, a fit f(x) of the resulting histogram was made
according to Eq. 3.4,

f(x) =
(λfitb )x eλ

fit
b

x!
,

with λfitb the fit parameter. The histogram and fit corresponding with the background-
only PDF are shown in Fig. 3.1, and the result of the fit5 was a value λfitb = 167 ±
14 which corresponds well with the mean λhist0 of the histogram, λhistb = 167. The
uncertainty on λfitb will be omitted in the remainder of this illustrative discussion.

3To avoid confusion, it is mentioned here that an upper-case N stands for the number of events
over the full sky, whilst a lower-case n stands for the number of events within a patch of size αmax. In
particular, ns ≤ Ns.

4This λ corresponds with θs in the notation of Chapter 2.
5Also because of this illustrative example, uncertainties on the amount of bin entries were not

taken into account.
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Figure 3.1: The reproduction of Fig. 2.6 in the context of the simplified counting
experiment. In black, the distribution of the background-only PDF T0 is shown together
with the fit through this histogram. The vertical lines represent the values Tp = T50%

(red) and Tp = T5σ (blue) determined from T0 which are required for the determination
of the sensitivity and the DP, respectively. The distributions of the background plus
signal PDFs TNs for Ns = N sens

s , the amount of injected signal events corresponding
with the sensitivity, and Ns = NDP

s , the amount of injected signal events corresponding
with the DP, are respectively depicted in red and blue.

Before continuing, a cross-check can be performed of the determined values of λfitb
and λhistb . Let λexpb denote the expected average number of background events in the
patch. Then, if Ω and Ωαmax respectively denote the solid angles of the full sky and
the patch of size αmax = 5°, one can find that, recalling that Nb = Λb is fixed,

λexpb = Nb
Ωαmax

Ω
= Nb

2π(1− cosαmax)

4π
= 167,

which is in good agreement with λfitb and λhistb .
Subsequently, the values Tp = np that mark the p-value of 50% and the 5σ signifi-

cance (noted as T5σ instead of Tp = T5.73×10−7) w.r.t. T0, needed for the determination
of respectively the sensitivity and the DP, were obtained. These are also indicated in
Fig. 3.1. Their values are T50% = n50% = 167 and T5σ = n5σ = 234. Note that the
former value was obtained using the histogram whilst the latter value was found using
the performed fit.

Finally, the distributions of TNs for different values of Ns were determined using
105 pseudo-experiments for each value. According to the definitions of Chapter 2, the
number of signal injections N sens

s corresponding with the sensitivity was determined as
the smallest Ns which exceeded the requirement that in 90% of the trials of TNs , an
obtained value of T = n would be larger than T50% = n50%. Analogously, the number
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of signal injections NDP
s corresponding with the DP was determined as the smallest Ns

which exceeded the requirement that in 50% of the trials of TNs , an obtained value of
T = n would be larger than T5σ = n5σ.

The distributions of TNs corresponding with N sens
s = 18 and NDP

s = 67 are shown
in Fig. 3.1, which can now be directly compared with Fig. 2.6. For completeness, the
resulting sensitivity Ṅ sens

s and DP ṄDP
s , denoted here as rates, are thus given by

Ṅ sens
s = 0.57 µHz,

ṄDP
s = 2.12 µHz.
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4
Statistical Methods

Introduction

This Chapter covers the different statistical methods that will later be compared using
the toy model. Since the interest of this thesis lies in steady point sources, event
distributions over time are irrelevant, as mentioned previously. Moreover, because
energies are not considered in the toy model, they are not taken into account in the
developed test statistics1. Here, the methods are developed for angular observation
windows of IceCube centered around a certain source2. In other words, a patch of size
αmax is taken centered around the source, and the test statistics will be constructed
from a set of n measured opening angles α = (α1, α2, ..., αn) of the events within the
patch3.

The considered statistical methods use different aspects of the (expected) angular
distribution Fα of α on the patch, which will contain both background and signal
components. The latter will depend on the angular resolution σα that causes the signal
events to be smeared on the sky around the point source.

First, in Section 4.1 a link is made with the simplified counting experiment of the
previous Chapter by considering a test statistic based on a counting method, which is
compatible with the integral

∫
Fαdα over the patch. Therefore, it will be most sensitive

for a relatively strong signal-to-noise event ratio, which is favoured by patch sizes that
are relatively small w.r.t. the angular resolution.

Subsequently, the construction of a likelihood test statistic using Fα is discussed
in Section 4.2, which is the method mostly used in IceCube analyses. The method

1It should be mentioned that the inclusion of the energy distributions would significantly influence
the test statistics, with the exception of the Li-Ma method (see below) in which the distributions are
essentially integrated over.

2To be exact, it should be called a “candidate source”, but this detail will be omitted in the text
since the toy model provides a fictitious source.

3Recall that here no real measurements will be used—pseudo-experiments are performed to deter-
mine α—, but the evaluation of the test statistics for actual measurements is completely analogous.

39
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can be shown to work best for a reasonable amount of signal events and a patch of
reasonable size, such that the signal contribution to Fα is prominent in the likelihood.

Furthermore, Section 4.3 focuses on a test statistic that is based on the variations of
the previous likelihood w.r.t. the signal strength η, which is essentially using ∂Fα/∂η.
This “needle in a haystack” method is therefore sensitive for a small amount of signal
events that will alter the “shape” of Fα, which will also occur for relatively small patch
sizes.

Finally, as an alternative to the three anticipated methods which are used in un-
binned analyses, a statistical method in which the background component of Fα is
binned will be considered in Section 4.4. The signal contribution of the total angular
distribution is not considered in this case. Thus, a reasonable amount of signal com-
bined with a relatively large patch size is required for the method to become optimal,
since then the contribution of the signal events will be most distinguishable w.r.t. the
overall “shape” of the expected background distribution.

4.1 Li-Ma Method

Just as in the simplified counting experiment of Chapter 3, the method developed by
Li and Ma [80] is based on counting the amount of events n in the patch of size αmax

around the source, and also the amount of events noff in a patch of the same size αmax

that does not contain the source. Both quantities follow a Poisson PDF, as in the
example of Chapter 3.

Li and Ma use a likelihood ratio to determine the significance Σ of the observed n
and noff w.r.t. a background-only hypothesis. Since the reasoning behind this likelihood
ratio method is analogous to the discussion given in Section 4.2, the details of the
determination of Σ, which can be found in [80], are omitted here. The result is given
by

Σ =
√

2

(
n ln

[(
1 + β

β

)(
n

n+ noff

)]
+ noff ln

[
(1 + β)

(
noff

n+ noff

) ])1/2

, (4.1)

where β = tn/tnoff with tn and tnoff the time used for the observations of n and noff,
respectively.

The factor β is of relevance in e.g. γ-ray astronomy, for which this method was
originally developed, because a γ-ray satellite such as the Fermi Large Area Telescope
[81] can only be focused on a limited region of the sky determined by its field of view.
Therefore, in γ-ray astronomy, n and noff are typically determined separately in time.
However, in neutrino astronomy with IceCube, data is taken continuously over the
whole sky, such that n and noff can be determined simultaneously. Thus, β = 1 can be
chosen for the purposes of this work, and then Eq. 4.1 reduces to

Σ =
√

2

(
n ln

[
2

(
n

n+ noff

)]
+ noff ln

[
2

(
noff

n+ noff

)])1/2

.

This Σ now denotes the Li-Ma test statistic. Note that from the definition of Σ, a kσ
significance will correspond with a value Σ = k, where k ≥ 0.
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4.2 Likelihood Method

Consider a set of n measurements α within a patch of size αmax centered around a
steady point source. The goal is to estimate from these measurements the number of
signal events ns that are present in the patch. As mentioned in Chapter 2, a possibility
is to determine the ML estimator n̂s = (n̂s)ML of ns through the maximization of the
likelihood L(ns|α).

One option is to determine this likelihood by omitting the angular information,
and simply count the amount of events n in the patch and determine their probability
of occurrence, given by a Poisson distribution. This is the reasoning behind the Li-
Ma method of Section 4.1. On the other hand, the likelihood can be obtained from
the expected angular PDF Fα of α within the patch. The latter will be the topic of
this Section and it will be used to construct the prominent test statistic in IceCube
analyses; this discussion is based on [77–79].

4.2.1 Expected Angular Distribution

Since the measurements α consist of both background and signal, the angular PDF
Fα is a linear combination of the expected background and signal distributions on the
patch of size αmax, denoted by Bα and Sα, respectively. This requires Bα and Sα to be
normalized on the patch. If there are ns signal events and n− ns background events in
the patch, then

Fα(α|ns) =
(ns
n

)
Sα(α) +

(
n− ns
n

)
Bα(α), (4.2)

which is also normalized on the patch by construction.
The expected atmospheric neutrino background in IceCube, which is the only

background component considered, is isotropic, and therefore Bα is given by

Bα(α) =
sinα

1− cosαmax
, (4.3)

where the solid angle effect was taken into account. Furthermore, the signal origina-
ting from a source is expected to be smeared because of the angular resolution σα of
IceCube (σα = 1° for muon neutrinos). Thus, Sα is taken as a one-sided Gaussian,

Sα(α) = N exp

(
−(µα − α)2

2σ2
α

)
, (4.4)

where by definition the expectation value µα = 0°, and where

N−1 =

∫ αmax

0
exp

(
− α

′2

2σ2
α

)
dα′,

which ensures a normalization of Sα on the patch. For completeness, both PDFs are
shown in Fig. 4.1 for the case αmax = 5° and σα = 1°.

To be mentioned is that Bα and Sα should not be confused with Bα and Sα of
Chapter 3, as they have completely different purposes. The latter are used to generate
background and signal events in the toy model, whilst the former denote the expected
distributions of the background and signal events within a patch of size αmax. Note
however that if a resolution σα is chosen for the generation of signal with Sα, it is the
same σα used in Sα.
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Figure 4.1: The expected background and signal PDFs Bα and Sα used for the deter-
mination of the likelihood test statistic, respectively shown in Figs. 4.1a and 4.1b, for
a patch size αmax = 5° and an IceCube resolution σα = 1°.

4.2.2 Maximization of the Likelihood

As mentioned in Chapter 2, typically the logarithm of the likelihood4 is used in practice,
i.e. lnL(ns|α) for a set of measurements α. To calculate the likelihood, Eq. 4.2 has to
be evaluated for each αi with i ∈ {1, 2, ..., n},

lnL(ns|α) =

n∑
i=1

lnFα(αi|ns)

=

n∑
i=1

ln
[(ns

n

)
Sα(αi) +

(
1− ns

n

)
Bα(αi)

]
. (4.5)

Recall that ns is an unknown parameter, which has to be determined from the observed
α.

The estimator n̂s that best fits the measurements α is the value of ns which maxi-
mizes the likelihood in Eq. 4.5. However, a lower bound on ns/n has to be introduced
in the maximization in order to prevent lnL(ns|α) to become infinite. This bound is
taken from [78], and is given by

ns
n
>

{
maxi{Bα(αi)/[Bα(αi)− Sα(αi)]} if ∃ αi : Sα(αi) > Bα(αi),

−1 else.

The reason why the unphysical values ns < 0 are allowed, is because it is perfectly
possible that, in case the amount of signal events is negligible in comparison with the
amount background events, a statistical fluctuation in the background results in a ML
estimator n̂s < 0. This will be taken into account when developing the test statistic in

4For brevity, the “log likelihood” will just be called the likelihood from this point onwards.
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Section 4.2.3. For the same reason, in case of a negligible amount background events
w.r.t. the amount of signal events, the physical bound ns/n ≤ 1 could also be exceeded
by n̂s/n, although this scenario is very unlikely to occur.

To illustrate the maximization in context of the toy model, Figs. 4.2a and 4.2b show
the likelihood and the corresponding values of n̂s/n for the cases of 0 and 20 injected
signal events, respectively. The patch was chosen to have a size αmax = 5° and the
IceCube resolution was taken as σα = 1°. In the example of Fig. 4.2a it can be seen
that the background fluctuated in such a way that n̂s < 0.

4.2.3 Construction of the Likelihood Test Statistic

In order to construct a valuable test statistic for a certain set of measurements α,
one cannot simply use lnL(n̂s|α), i.e. the likelihood evaluated at ns = n̂s in Eq. 4.5.
Consider a scenario where there are two sets α1 and α2 of which the former contains
many more events (both background and signal) than the latter, but which both give
rise to the same ML estimator n̂s. Purely because of the fact that there are more events
in α1, one would have that lnL(n̂s|α1) < lnL(n̂s|α2). This could then be interpreted
as “there is a smaller likeliness that there is signal present in set α1 than in set α2”,
which is erroneous since the same n̂s was obtained.

This issue is remedied by constructing a likelihood ratio lnRλ(n̂s|α) for a set α
which serves as a normalization of L(n̂s|α),

lnRλ(n̂s|α) = ln

(L(n̂s|α)

L0(α)

)
.
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Figure 4.2: The likelihood functions for 0 injected signal events, depicted in Fig. 4.2a,
and 20 injected signal events, shown in Fig. 4.2b, using the toy model, determined for
a patch size αmax = 5° and an IceCube resolution σα = 1°. For each case, the red line
indicates the maximum likelihood estimator n̂s/n; in the background-only scenario,
n̂s < 0 for the presented example.
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Here,

lnL0(α) = lnL(ns = 0|α)

=

n∑
i=1

ln [Bα(αi)] ,

which represents the likeliness that the same set α purely consists of background.
A common misinterpretation in how the normalization factor lnL0(α) of the like-

lihood ratio is determined occurs when one writes α = αb + αs as the sum of its
background component αb and its signal component αs. One could then erroneously
calculate the normalization factor as lnL0(αb) = lnL(ns = 0|αb), i.e. by only evalu-
ating the background events αb in the likelihood. This is not correct; one should use
the full set α of events. Moreover, if α would consist of experimental data, one would
not be able to distinguish αb and αs during the analysis, so that lnL0(αb) would be
non-determinable.

Finally, the likelihood test statistic λ is defined as

λ = 2 sign(n̂s) lnRλ(n̂s|α)

= 2 sign(n̂s) [lnL(n̂s|α)− lnL0(α)] .

The sign(n̂s) ensures that negative ML estimators n̂s < 0 can be distinguished from the
positive values n̂s > 0 in the test statistic, since the ratio lnRλ(n̂s|α) is not sensitive
for the sign of n̂s. The extra factor 2 is included because in that case, for n→∞ and if
the background-only hypothesis is true, λ ∼ χ2

ν , i.e. the likelihood test statistic follows
a χ2 distribution with ν degrees of freedom, which are the free parameters used in the
likelihood maximization, assuming that these are stochastically independent [69,78,80].
For the λ constructed here, the only free parameter was ns, such that ν = 1.

Note that it is this λ which was previously encountered in Chapter 1 for the steady
point source analysis [62] and in Chapter 2 for the analyses of [77, 78], although in
those examples the respective energy distributions of the events were also included in
the likelihood, as is standard for IceCube analyses. Then one typically performs a
likelihood maximization with two degrees of freedom, i.e. ns and the spectral index γ of
the energy distribution. Thus, in those cases one would expect that λ ∼ χ2

2. However,
ns and γ are typically correlated, such that ν < 2 in the χ2 distribution. In practice,
one typically fits a χ2

ν through the obtained background-only distribution of λ to reach
a 5σ significance, where ν is then taken as a free parameter. An example of such a fit
was shown in Fig. 2.5b.

4.3 PLT Method

Pilla, Loader, and Taylor developed their self-named PLT method [82] with the purpose
of finding “a needle in a haystack”, that is, a small signal component overwhelmed by a
dominating sea of background. The method essentially considers the variations of the
likelihood defined in the previous section, which might be a more promising approach
if the amount of signal in the data is severely suppressed.
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4.3.1 Signal as a Perturbation of the Background

First, the expected angular PDF Fα of Eq. 4.2 can be rewritten as

Fα(α|η, µα) = η Sα(α|µα) + (1− η)Bα(α),

with η = ns/n, where Bα and Sα are given by Eqs. 4.3 and 4.4, respectively, although
here µα is taken as a free parameter. In the PLT method, the signal is considered as a
perturbation of the background with a strength η ∈ [0, 1] located at µα.

For a set of measurements α, a so-called score S(µα|α) can be given to them by
considering the variation of the likelihood lnL(η, µα|α) (see Eq. 4.5) with the pertur-
bation strength η. This derivative is then evaluated for a perturbation strength equal
to zero,

S(µα|α) =
∂ lnL(η, µα|α)

∂η

∣∣∣∣
η=0

=

n∑
i=1

∂ ln [ηSα(αi|µα) + (1− η)Bα(αi)]

∂η

∣∣∣∣
η=0

=

n∑
i=1

Sα(αi|µα)− Bα(αi)

Bα(αi)
. (4.6)

The idea behind taking the derivative at η = 0 is that then the expectation value of
S(µα|α) is zero for all µα if the background-only hypothesis is true, whilst it would
peak at the true value of µα if signal would be present.

Note that for the development of the test statistic in [82], the score is normalized to
take into account the dependence of its random variability on the value of µα. However,
the exact value of S(µα|α) is not of real interest in this work since the goal is to
compare its background-only PDF with its signal-plus-background PDFs, for different
signal injections with the toy model. Therefore, this normalization is not taken into
consideration here.

4.3.2 Maximization of the Score

The PLT test statistic S is now defined as the score which is maximized for a value
µα = (µα)max ∈ [0°, αmax],

S = S((µα)max|α) = max
µα

S(µα|α).

To be completely correct in the interpretation of the PLT method, for each µα the
expected signal PDF Sα of Eq. 4.4 should be normalized correctly in the calculation of
S((µα)max|α); the normalization constant N depends on the value of µα,

N−1 = N−1(µα) =

∫ αmax

0
exp

(
−(µα − α′)2

2σ2
α

)
dα′.

However, taking this into account can result in erroneous maximizations of the
score if a few signal events are injected using the toy model. This is due to the fact
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that in those cases local maxima are hard to distinguish computationally from the
desired global maximum on the considered patch. Therefore, it was chosen to let
N = N (µα = 0) be fixed for all values of µα. This alters the value of the test statistic
S, but the exact value of S is not of relevance here, as mentioned previously. Figs. 4.3a
and 4.3b show, choosing αmax = 5° and σα = 1°, the respective maximizations of the
score for 0 signal event injections and of the score for 20 signal event injections using
the toy model.

Furthermore, it was checked that (µα)max still behaved as expected being inter-
preted as the location of the perturbation which maximizes the score. In fact, it should
converge to the true location (µα)max = 0° the more signal is injected with the toy
model. To do so, for each number of injected signal events Ns ∈ {0, 5, ..., 100} (re-
call from Chapter 3 that Ns is generally not equal to ns), (µα)max was determined 10
times from which the average 〈(µα)max〉 was computed. The result is given in Fig. 4.4,
where the expected convergence is present up to around Ns = 40, after which 〈(µα)max〉
remains relatively constant around 0.2°. This observed bias is due to the fixation of
N = N (µα = 0). For a simulated set α with 50 signal injections (αmax = 5° and
σα = 1°), Fig. 4.5 shows the evaluation of Sα(0°|αi) and Sα(0.2°|αi) (without the cor-
rect normalization) for the different αi of α. Since

∑n
i=1 Sα(0.2°|αi) = 43.68 deg−1 >∑n

i=1 Sα(0°|αi) = 37.94 deg−1, the former is favoured in the score maximization. Note
that for this particular α, (µα)max = 0.28°. The bias does not present an issue, how-
ever, since for a fixed µα and a growing sample α with increasing Ns, the test statistic
S will be larger on average due to the summation in Eq. 4.6. This still allows the
distinction of a PDF of S for e.g. 50 and 70 injected signal events, which is of most
relevance for this work.
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Figure 4.3: The score S(µα|α) as function of the location µα of the signal perturbation
for the choices αmax = 5° and σα = 1°, depicted in Figs. 4.3a and 4.3b respectively for
0 and 20 signal injections with the toy model. The red line in each scenario denotes the
score maximizer (µα)max, of which the corresponding score is the PLT test statistic S.
Note that for the examples shown here, the value of S for 20 signal injections is about
an order of magnitude larger than its value in the case of only background.
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Figure 4.4: The behavior of the average score maximizer 〈(µα)max〉 as a function of
the number of signal injections Ns with the toy model, where for each probed Ns the
average value was computed from 10 determinations of the score maximizer (µα)max.
Also here, αmax = 5° and σα = 1°. The expected trend towards zero is present up to
about Ns = 40, after which 〈(µα)max〉 remains relatively constant.
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Figure 4.5: The evaluation of the signal distributions Sα(αi|0°) and Sα(αi|0.2°), using
a fixed normalization N = N (µα = 0), for a simulated set of events α = {αi} with
50 signal injections and the choices αmax = 5° and σα = 1°. Mostly, the distribution
with µα = 0.2° has larger values which are favourable for the score maximization. This
causes the bias that is observed in Fig. 4.4.

Finally, an interesting remark of the PLT test statistic S can be made by examining
Eq. 4.6, and in particular, the division by Bα(αi) for a certain αi of the measurements
α. This can occasionally lead to large values of S if Bα(αi) is close to zero, which
occurs if an event has a value αi close to zero. However, assuming that the background
is isotropic—as done in the toy model—the probability that this occurs for α contai-
ning only background is rather low. On the other hand, since the detected signal is
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expected to follow a Gaussian peaking at the true source location, a signal event has a
relatively large probability to obtain an αi close to zero. Note that in order to avoid a
possible division by zero in Eq. 4.6, a lower limit of 10−8, corresponding with numerical
accuracies, was set for the values of Bα(α) for the smallest α.

Thus, signal events are expected to give these “outliers” in S-values much more
frequently than background events. For example, in Fig. 4.3b the resulting value of
S is, in this particular case, about an order of magnitude higher than the value of S
in Fig. 4.3a. As a consequence, it will be interesting to investigate the development
of the probability that a significance of 5σ is obtained as function of the amount of
signal events. In contrast, this probability is fixed at 50% for the determination of
the Discovery Potential. Moreover, the convergence towards the DP is expected to be
rather slow, since for more signal events the value of S does not increment much in Eq.
4.6, except if such an “outlier” is present. This will be taken into consideration when
examining the PDFs of S (and the other test statistics) in Chapter 5.

4.4 ψ Method

Up to this point, the discussed statistical methods do not require a binning of the data
to obtain their test statistic. As an alternative, the binning-based ψ method, originally
developed in [83], is considered here. Moreover, it is based on a Bayesian assessment of
significance, which serves as a complementary distinction with the previously mentioned
methods, where a frequentist reasoning was used to construct the test statistics.

4.4.1 Assessment of Significance in a Bayesian Approach

The ψ method uses the full power of the theorem of Bayes to construct its test statistic.
Let H0 be the hypothesis that the measurements D = α only consist of background,
andH1 any alternative toH0. Furthermore, suppose some prior information I is known.
Then, the evaluation of Eq. 2.3 leads to

P(H0|DI) = P(H0|I)
P(D|H0I)

P(D|I)
,

P(H1|DI) = P(H1|I)
P(D|H1I)

P(D|I)
.

(4.7)

One can now define the evidence e(H1|DI) for the alternative H1 relative to the
background-only H0, given the data D and prior information I, by taking the ratio
of Eqs. 4.7 on a decibel scale,

e(H1|DI) = 10 log10

[P(H1|DI)

P(H0|DI)

]
= 10 log10

[P(H1|I)

P(H0|I)

]
+ 10 log10 [P(D|H1I)]− 10 log10 [P(D|H0I)]

≤ 10 log10

[P(H1|I)

P(H0|I)

]
− 10 log10 [P(D|H0I)]

= e(H1|I) + ψ. (4.8)
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Here, the inequality was obtained using that 0 ≤ P ≤ 1. Also, e(H1|I) was used to
denote the evidence for H1 relative to H0 given I, and the Bayesian observable ψ was
defined as

ψ = −10 log10 [P(D|H0I)] . (4.9)

The result of Eq. 4.8 means that the evidence for H1 relative to H0 given D and
I cannot exceed e(H1|I) + ψ. Since e(H1|I) does not depend on the data D, it is ψ
which quantifies the degree of belief in H0. This can be seen by taking two datasets
D1 and D2 with respective ψ-values ψ1 and ψ2, and supposing that ψ1 < ψ2. In that
case, e(H1|D1I) < e(H1|D2I), because e(H1|I) remains the same for the two datasets.
Thus, the evidence for H1 relative to H0 given D = D1 and I is less than in the case
D = D2. As a consequence, the degree of belief in H0 is less if the value of ψ given the
data D is larger. Therefore, ψ is the quantity used as a test statistic here. Note that
although the construction of ψ is based on Bayesian principles, the evaluation of ψ as
a test statistic will still follow the frequentist approach outlined in Chapter 2.

4.4.2 Binning of the Expected Angular Background Distribution

Consider the expected background-only distribution Bα given in Eq. 4.3, and divide
the measurements α in m bins over the patch of size αmax, where the kth bin has a
width wk = αk − αk−1 with k ∈ {1, 2, ...,m}. A certain αk indexed by k indicates one
of the bin-edges, not a measurement αi of α in the patch, indexed by i ∈ {1, 2, ..., n}.
Then the expected probability pk of a background event α to fall in bin k is given by
the integration of Bα over the bin,

pk =

∫ αk

αk−1

sinα′

1− cosαmax
dα′

=
coswk−1 − coswk

1− cosαmax
.

By definition,
∑m

k=1 pk = 1.
The probability P(D|H0I) that the measurements D = α is supported by the

background-only hypothesis H0 is now given by a multinomial distribution [73],

P(D|H0I) =
n!

n1! n2! ... nm!
pn1

1 pn2
2 ... pnmm ,

where nk is the number of entries in bin k, such that
∑m

k=1 nk = n. Direct substitution
in Eq. 4.9 then leads to

ψ = −10

[
log10 n! +

m∑
k=1

(nk log10 pk − log10 nk!)

]
,

which is how the ψ test statistic is determined in this work.
However, the binning should be approached with care, since it can influence the

determined p-value for an actually observed dataset [84]. To avoid this, the bin widths
wk should be chosen small enough such that in most of the cases (preferably all), nk ≤ 1.
For a patch size αmax of some degrees, an appropriate way to take this into account is
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by setting the number of bins m = 104, each with a constant width wk = w = αmax/m.
As an example, Figs. 4.6a and 4.6b show the applied binning after choosing αmax = 5°,
respectively for 0 and 20 signal injections with the toy model. The resulting “bar code
plots” respectively contain no and one bin with nk > 1, for these particular examples.
The maximal amount of times that nk > 1 per background-only pseudo-experiment in
a set of 103 simulations was determined to be 8, which is reasonable for m = 104.
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Figure 4.6: The “bar code plots” illustrating the binning used in the determination of
the ψ test statistic with αmax = 5°, for 0 and 20 injected signal events using the toy
model, respectively depicted in Figs. 4.6a and 4.6b. The requirement that the majority
of bins should contain at most one (simulated) measurement is clearly fulfilled.
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5
Results of the Toy Model

Introduction

In this Chapter, the four different statistical methods are compared using pseudo-
experiments performed with the toy model. The full simulation code used for this
purpose can be found in Appendix A. For that, the angular resolution was chosen as
σα = 1°, according to the IceCube angular resolution for muon neutrinos. Further-
more, the size of the patch scanned for a signal signature was taken as αmax = 5σα = 5°,
to ensure that almost all of the signal events are contained within the patch, as is typ-
ically done in IceCube point source analyses.

The comparison of the four methods is presented in Section 5.1, where different
arguments will be considered to determine the optimal method(s). After that, the im-
plications of the obtained results on the current status of steady point source searches,
which was discussed in Chapter 1, are given in Section 5.2.

5.1 Comparison of the Statistical Methods

5.1.1 Background-Only Distributions

Firstly, the background-only PDFs of the different test statistics have been determined
by performing 109 pseudo-experiments without signal injection. This ensured that a
5σ significance, required for the determination of Discovery Potentials, was obtained
with enough statistical precision, as argued in Chapter 2.

The resulting histograms of the four distributions are plotted in Fig. 5.1, where
the probability densities have been calculated as the normalized bin entries. Note that
negative values of the likelihood test statistic λ are included in the first positive bin,
as is commonly done in IceCube analyses. Furthermore, it can be remarked that the
scale of the PLT test statistic S is logarithmic in contrast with the other test statistics,
which is expected from its construction in Chapter 4.
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Figure 5.1: The background-only PDFs of the four different test statistics considered
in this work. The test statistic values corresponding with both 3σ and 5σ significances
are also shown. It can be seen that in all cases a good statistical precision is achieved
up to a 5σ significance.

For each test statistic, it can be seen from Fig. 5.1 that up to a 5σ significance the
development of the distributions are relatively well-determined, as required. Above 5σ
the distributions become less stable; the probability densities per bin fluctuate since
the bin entries are low. Consequently, above 5σ there is a relatively large uncertainty
on the determined probability density. The reason why these uncertainties are not
indicated is because they will not influence the results of the presented study, since at
most a 5σ significance (p = 5.73 × 10−7) is needed in what follows, up to which the
uncertainties can be neglected. Note that this is due to the fact that 109 background-
only pseudo-experiments were performed.

5.1.2 Discovery Potentials and Sensitivities

In order to compare the statistical methods, for each signal injection Ns ∈ [1, 200],
representing the simulated amount of signal events in one year, the four signal-plus-
background PDFs were determined. These were obtained through the performance of
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105 pseudo-experiments per value of Ns. Some of the signal-plus-background PDFs are
depicted in Appendix B.

First, the 50% DPs at 3σ and 5σ, and the 90% DP at 5σ were determined for each
test statistic. Figs. 5.2a and 5.2b respectively show the development of the significance
exceeded by 50% and 90% of the trials in function of Ns, indicating the different
thresholds (3σ and 5σ) corresponding with each DP. It can be seen that the likelihood
method performs best in all cases, since for each DP it requires the least amount of
signal Ns in order to reach the DP threshold. Furthermore, the 5σ DPs are not reached
by the PLT method for Ns ≤ 200, which at small Ns-values is comparable with the
likelihood. Because of the relatively poor performance of the PLT method for the 5σ
DPs, which was also anticipated in Chapter 4, their values (corresponding with values
Ns > 200) were not determined here.

It should be mentioned that in Fig. 5.2 one can observe that the significances do
not always rise smoothly when incrementing Ns—see the PLT method, for example.
This is due to the fact that statistical fluctuations have an influence in the comparison
of the significances for e.g. Ns = 50 and Ns = 51. In other words, there is a statistical
uncertainty on the determined significances. However, they do not influence the conclu-
sions drawn here that the likelihood performs best. Yet, in practice one would typically
perform e.g. five sets of 105 pseudo-experiments for this example, and then take the
average of the five significances obtained for each Ns, per test statistic. Note that this
remark will also be valid for upcoming plots, although it will not be reemphasized.

Subsequently, the sensitivities were determined for each of the test statistics. In-
stead of significance, Fig. 5.3 plots the upper p-value for 90% of the trials as function
of Ns, thereby also showing the sensitivity threshold (50%). In this case, both the
likelihood and the PLT methods perform the best, since they trespass the sensitivity
threshold at the lowest value of Ns compared with the other statistical methods.

To put everything into perspective, Fig. 5.4 shows the sensitivities and all DPs
obtained for all statistical methods through the conversion of Ns to an injected signal
rate Ṅs = Ns/(1 yr). It is clear that the likelihood method performs the best overall,
since it has the lowest values for Ṅs corresponding with the sensitivity and the DPs.
The PLT method does well for the sensitivity and 3σ DP, but the worst for the 5σ
DPs. Moreover, it can be seen that overall the ψ method performs better than the
Li-Ma method. A comparison per test statistic of the signal-plus-background PDFs
with the background-only PDFs for all the Ns-values shown in Fig. 5.4 can be found in
Appendix B, where these Ns-values and corresponding Ṅs-values are also tabulated.

5.1.3 Probabilities for Discovery

In Chapter 2 it was mentioned that the best statistical method is not solely defined
by the one with the smallest DP (sensitivities will not be considered in the remainder
of this discussion), where 50% or 90% are of the trials are required to exceed a 3σ
or 5σ significance. It is also useful to investigate which method performs best for an
exceeding percentage of e.g. 10%, that is, the method for which the least injected signal
is required such that the probability for a 3σ or 5σ significance would be 10%.

Thus, in contrast with the development of significance for a fixed exceeding per-
centage shown in Fig. 5.2, the exceeding percentage was plotted for a fixed significance
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Figure 5.2: The plots of the significance exceeded in 50% of the trials, illustrated in
Fig. 5.2a, and in 90% of the trials, depicted in Fig. 5.2b, as function of the amount
of injected signal events Ns. The thresholds corresponding with the different DPs are
also shown (horizontal black lines). It can be seen that the likelihood method behaves
the best, since it requires the least amount of signal injections in order to obtain all
different DPs.
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Figure 5.3: The p-value exceeded in 90% of the trials as function of the amount of
injected signal events Ns. The threshold corresponding with the sensitivity is also
indicated. One can observe that both the likelihood and PLT methods perform the best,
by trespassing the threshold for the sensitivity at the smallest value of Ns compared
with the Li-Ma and ψ methods.

as a function of Ns. Figs. 5.5a and 5.5b respectively show these dependencies for fixed
significances of 3σ or 5σ, thereby also indicating the different DP thresholds (50% and
90%). For the 3σ case, it can be seen that the PLT and likelihood essentially coin-
cide up to an exceeding probability of about 10%, after which the likelihood method
dominates. The Li-Ma and ψ methods perform worse than the likelihood and the PLT
methods.

Yet, the more relevant scenario is that of a 5σ significance, as this is the significance
required for a discovery. From Fig. 5.5b it can be observed that for the major part,
the likelihood method performs best. However, for the lowest values of Ns—a zoomed
version of Fig. 5.5b for the smallest Ns-values is given in the next Section—the PLT
method has a higher probability of discovery than the other methods, up to approxi-
mately 0.1% after which the likelihood method starts to dominate. This behavior of
the PLT method was anticipated in Chapter 4. For the larger Ns-values, the PLT
method also becomes worse compared with the Li-Ma and ψ methods.

5.2 Implication for Steady Point Source Studies

With the use of Fig. 1.9, in Chapter 1 an estimate was made of the steady point source
types that could solely be responsible for the diffuse high-energy cosmic neutrino flux
measured with IceCube. Recall that to do so, the flux of the nearest candidate steady
point source of a certain population was determined assuming a strong correlation
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Figure 5.4: A plot showing the sensitivities and all DPs for the four statistical methods,
with the exception of the two 5σ DPs for the PLT method, which were not determined.
Also note that the likelihood and PLT sensitivities coincide. It can be concluded from
this comparison of the different methods that the likelihood performs best overall.

between high-energy electromagnetic and high-energy neutrino emission. Also, the
electromagnetic emission per volume from the entire population was required to at
least equalize the emission per volume corresponding with the diffuse flux.

The result of this estimation was that if there would be such a steady point source
population, it would most likely be one with a relatively high population density ρ,
but a rather low neutrino emission rate per source. Therefore, the event rate Ṅs that
could be detected by IceCube for such a candidate source would be relatively small.
The goal is now to obtain a rough estimate of Ṅs per source for the six different steady
point source populations of Fig. 1.9, and see where they fall in the context of Fig. 5.5b.
Then it can be determined, based on the latter plot, which statistical method would
give the highest probability for a discovery per singular candidate source of each type.

First, for each population, the number of sources Nsources within an arbitrarily
chosen distance R = 100 Mpc was estimated as

Nsources = ρ
4πR3

3
,

where ρ was taken directly from Fig. 1.9. Next, it was assumed that all the sources
within 100 Mpc would be responsible for the observed diffuse flux, which has a rate
Ṅdiffuse = 37/(988 days), as given in [43]. Therefore, the event rate per source was
roughly approximated as Ṅs = Ṅdiffuse/Nsources, without taking into account differences
in neutrino flavours.

The resulting values of Ṅs for the six different considered candidate sources are
given in Tab. 5.1. Here, it is furthermore indicated which sources have been excluded
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Figure 5.5: The plots depicting the probability to exceed 3σ and 5σ significances,
respectively shown in Figs. 5.5a and 5.5b. Also here the threshold for the different
DPs are indicated. Mostly, the likelihood reaches a certain exceeding probability the
fastest as function of Ns. However, in the 5σ case, it can be seen that for exceeding
probabilities below 0.1% the PLT method performs best. A zoomed version of Fig.
5.5b can be found in Fig. 5.6.
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as the sole origin of the observed diffuse flux based on Fig. 1.9. For the different Ṅs-
values, one can determine which statistical method would give the highest probability
for a discovery through a direct comparison with Fig. 5.6, which is a zoomed version
of Fig. 5.5b for injected signal rates. The results are also included in Tab. 5.1.

One can conclude that for the three candidate steady point source types with
the highest population densities, and thus lowest expected neutrino emission rate per
source, the PLT method might give a higher probability for a 5σ discovery when a-
nalyzing a single source of that type. Note that these three populations, i.e. galaxy
clusters, starburst galaxies, and FRI galaxies, are those which were not excluded by
the argumentation given in Chapter 1.

Thus, the PLT method might be considered for future steady point source studies
with IceCube, even though the probability of detecting such low high-energy cosmic
neutrino fluxes per source is small for a detection volume of 1 km3. Larger detectors
will be needed to significantly enhance this detection probability if no discoveries of
the high-energy cosmic neutrino origin are made in the near future.

Furthermore, it should be remarked that one can also apply a stacking of the data,
which is typically done in IceCube analyses if low signal rates are expected. This
means that for each candidate steady point source of a population one takes a patch
with size αmax centered on the source, and then “stacks” all the different patches on
top of each other. One would therefore essentially scan one patch in which the data
corresponding with all candidate sources are combined.

Stacking would thus increase the amount of signal events on the patch, which would
make the “shape” of a possible signal more prominent w.r.t. the background, although
the signal-to-noise ratio would remain the same. Consequently, the likelihood and ψ
methods are expected to improve from stacking (see for instance [83]), in contrast with
the Li-Ma method, which is not sensitive to this “shape”. Moreover, the probability to

Table 5.1: A summary of parameters and conclusions drawn for six different populations
of candidate steady point sources. For each source type these include the population
density ρ; if the population is excluded as the sole population for the observed diffuse
neutrino flux; the estimated event rate Ṅs that would be observed per source; and
the statistical method which would give the highest probability for a discovery. This
tabular can be compared directly with Fig. 5.6.

Population ρ [Mpc−3] Excluded Ṅs [µHz] Method

FSRQ 1× 10−9 Yes 1.0× 102 Likelihood

BL Lac 3× 10−8 Yes 3.4 Likelihood

FRII 5× 10−8 Yes 2.1 Likelihood

G. Clusters 2× 10−6 No 5.2× 10−2 PLT

Starburst 6× 10−5 No 1.7× 10−2 PLT

FRI 3× 10−4 No 3.4× 10−4 PLT
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10−4

10−3

10−2

10−1

P
ro

b
ab

ili
ty

to
ex

ce
ed

a
5σ

si
gn

ifi
ca

n
ce

−→
BL Lac
FSRQ
FRII

Starburst
G. Cluster
FRI

←−

Likelihood

PLT

Figure 5.6: The plot given in Fig. 5.5b, for signal rates Ṅs, zoomed around the region
where the comparison is made between the likelihood and PLT methods. For the
six different candidate steady point source populations, it is indicated with the red
vertical line which method could give the highest probability for a 5σ discovery in a
single-source analysis.

obtain a 5σ significance with the PLT method might increase slightly. Nevertheless, a
future study (using the toy model) should be performed to quantitatively investigate
the effect of stacking on the statistical methods.

Finally, it should be mentioned that a threshold of 0.1% for the discovery probability
is rather low in order to make a decisive statement on the PLT method being favourable
in future analyses. However, the choices of αmax = 5° and σα = 1°, which are typical
in IceCube analyses since these are optimal values for the standardly used likelihood
method, are expected to play a role in the comparison given here. Therefore, altering
αmax and σα might give different results; the Li-Ma and ψ methods could then also
play an important role in the comparison. Unfortunately, such an investigation has not
been performed here, as it would require a significant amount of additional computation
time that does not fall within the time scope of this thesis.
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Conclusions and Outlook

In this work, a toy model of steady point sources was constructed with which to compare
four different statistical methods through pseudo-experiments. Only the angular dis-
tributions of events were taken into consideration. Background events were generated
isotropically, whilst signal events were smeared w.r.t. the location of a fictitious steady
point source by taking into account the angular resolution σα of the detector. The test
statistics corresponding with the different methods were then determined by scanning
a certain patch with size αmax centered on the fictitious source. For consistency with
standard IceCube analyses, it was chosen to set αmax = 5σα = 5°.

Of the considered methods, the Li-Ma method only took into account the amount of
events within the patch, without applying any angular information. Comparatively, the
likelihood method, which is the standard statistical method applied in (steady) point
source analyses with IceCube, did consider the angular distribution of the events.
This was also done with the PLT method, in which essentially the derivative of the
likelihood was considered. Finally, to provide some contrast with these three unbinned
methods, the ψ method was based on a binning principle of the angular distributions.

The first main conclusion of the statistical method comparison was that the likeli-
hood method performs best overall in the context of Discovery Potentials (DPs) and
sensitivities. It is the method for which the 50% DPs at 3σ and 5σ, and the 90% DP at
5σ were determined to be the lowest. Moreover, it has the lowest sensitivity, although
this value is the same as obtained with the PLT method, which performs well for small
signal injections, but poorly for larger signal injections. At these large values, the ψ
and Li-Ma methods are better than the PLT. Moreover, the ψ method performs better
overall than the Li-Ma method.

Secondly, the likelihood method also performs well in the context of probabilities
for a 5σ discovery. However, for the smallest injected signals, up to a discovery pro-
bability of about 0.1%, the PLT method performs best. This corresponds well with
its interpretation as a “needle in a haystack” method. For the largest injected signals,
the PLT method is the worst one, and overall the ψ method performs better than the
Li-Ma method.

As a consequence, it was investigated if there are populations of candidate steady
point sources for which the PLT method might be preferred for an analysis. To do
so, for six populations a rough estimation was made of the signal event rate required
per source within 100 Mpc in order to be fully accountable for the diffuse high-energy
cosmic neutrino flux measured with IceCube.

It was found that for three populations, i.e. galaxy clusters, starburst galaxies, and
FRI galaxies, the PLT method could be considered in future analyses of these candi-
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date sources. Moreover, these source types have relatively large population densities
but small expected high-energy neutrino emission rates, which were determined to be
the candidate steady point sources that could still likely be solely responsible for the
observed diffuse flux. This is based on the fact that up to this date, no steady point
sources have been found that could be the origin of this diffuse flux.

However, it can be argued that less than an 0.1% probability for a discovery might
not be enough in order to consider the PLT method in future analyses. Yet, the
standard choices αmax = 5° and σα = 1° are typically made in IceCube analyses since
these are optimal values with which to perform a likelihood analysis. Therefore, a first
outlook for future work is to consider different combinations of αmax and σα—a value
σα = 10° would e.g. correspond with the angular resolution of a cascade in IceCube—
in order to determine which values of these parameters optimize each method.

In particular, for a small αmax/σα ratio, the amount of signal that will fall in the
scanned patch will be relatively small. As such, the PLT method might give higher
probabilities for a discovery, since its strength lies in very low signals compared with
a dominating background. This will become interesting for future IceCube analyses
if these probabilities are found to be in the 1% to 10% regime. Note however that the
signal event rates for which the PLT method becomes prominent might be too low to
be detectable with IceCube in the near future, meaning that a larger detector might
be required to discover a signal from the corresponding candidate steady point sources.

Furthermore, for low expected signal rates one would typically stack the data of
different candidate steady point sources in IceCube analyses. Consequently, the effect
of this stacking on the four statistical methods should also be investigated in the future
using the toy model. This is expected to be most beneficial for the likelihood and ψ
methods. In addition, it might also be useful to include energy distributions in the toy
model, as this is typically done in IceCube (steady) point source analyses, and which
is expected to significantly influence the different test statistics.

In short, it can be concluded that for αmax = 5σα = 5° the likelihood method has the
best DPs, and also the best sensitivity together with the PLT method. Furthermore,
for the lowest signal rates, the PLT is expected to give the highest probability for a
5σ discovery, which makes the PLT method a possible candidate statistical method for
future steady point source analyses with IceCube and larger detectors that are yet to
be built.



Summary

Since the discovery of high-energy cosmic neutrinos with the IceCube experiment, no
sources have been found that are responsible for the detected diffuse high-energy cosmic
neutrino flux. In particular, constraints have been put on the steady point sources that
could be the sole origin of these high-energy cosmic neutrinos, favoring the sources
belonging to a population with a high number density and a low expected high-energy
neutrino emission rate per source.

Therefore, in this thesis it has been investigated if different statistical methods, i.e.
the Li-Ma, PLT, and ψ methods, perform better than the standard maximum likelihood
method used in IceCube analyses, with a particular interest for the best method at
low signal rates. For that, a toy model of steady point sources has been developed
with which to perform simulated pseudo-experiments based exclusively on the angular
distributions of signal and background.

Overall, the likelihood method has been found to perform best for a scan over
a patch of 5° on the sky around the source and an angular resolution of 1°. It has
the lowest Discovery Potential and lowest sensitivity compared to the other methods,
although the latter was found to be shared with the PLT method, which performs
well for small signal event rates but poorly for large signal event rates. On the other
hand, the ψ method globally performs better than the Li-Ma method. Moreover, it
was determined that for the lowest signal event rates, the PLT method has the largest
probability for a 5σ discovery, up to about 0.1%, after which the likelihood method
dominates.

Furthermore, it has been studied if the PLT method could be used in future steady
point source analyses with IceCube. An estimate has been made of the expected high-
energy neutrino rate per source for six different steady point source populations that
could be responsible for the observed diffuse high-energy cosmic neutrino flux. It has
been found that for FRI galaxies, starburst galaxies, and galaxy clusters the estimated
rates are low enough for the PLT method to be considered as an alternative to the
standard likelihood method. These three source types also correspond with candidate
steady point source populations that have high population densities.
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Samenvatting in het Nederlands

Het bestaan van hoog-energetische kosmische neutrino’s werd ontegensprekelijk beves-
tigd door hun ontdekking met het IceCube experiment. Nochtans zijn de bronnen
van de gedetecteerde diffuse hoog-energetische kosmische neutrinoflux momenteel nog
niet geïdentificeerd. De tot nu onsuccesvolle zoektochten naar de oorsprong van de
hoog-energetische kosmische neutrino’s hebben geleid tot beperkingen voor de mogelij-
ke bronnen die deze diffuse flux zouden kunnen verklaren.

In het bijzonder zijn er limieten opgesteld voor de mogelijke populaties van vaste
(punt)bronnen die verantwoordelijk zouden kunnen zijn voor de diffuse flux. De types
van vaste puntbronnen die niet onder deze restricties vallen, en dus van bijzonder
belang zijn voor toekomstige zoektochten naar vaste puntbronnen, komen overeen met
objecten die een hoge populatiedichtheid hebben, en waarvan er per bron een lage
neutrino-emissie wordt verwacht.

Voor deze lage emissies, die zouden corresponderen met een zwak signaal in de
IceCube detector, is het mogelijk dat andere statistische methoden betere resultaten
opleveren dan de likelihood methode die standaard in IceCube-analyses wordt ge-
bruikt. Bijgevolg is er in deze thesis een vergelijking van statistische methoden gemaakt
met een focus op de optimale methode voor een zwak signaal. Hiervoor werden, de
Li-Ma, PLT, en ψ methoden gebruikt als mogelijke alternatieven voor de likelihood
methode. Bovendien werd er een startmodel geconstrueerd voor de simulaties van
pseudo-experimenten, waarbij er exclusief gebruik werd gemaakt van de hoekdistribu-
ties van het signaal en de achtergrond.

Een eerste resultaat van dit onderzoek is dat, voor data genomen in een lgebied op
de hemel met een grootte van 5° gecentreerd op de bron en een hoekresolutie van 1°, de
likelihood methode over het algemeen de beste resultaten oplevert. De likelihood me-
thode heeft allereerst het hoogste potentieel om te leiden tot een ontdekking. Bovendien
heeft de likelihood methode de beste gevoeligheid voor een signaaldetectie, hoewel dit
optimum wordt gedeeld met de PLT methode, dewelke goed is voor zwakke signalen,
maar het slechtst voor sterke signalen. De ψ methode is voor alle signaalsterktes beter
dan de Li-Ma methode.

Een tweede resultaat is dat voor de zwakste signalen, de hoogste kans op een ont-
dekking wordt gegeven door de PLT methode, tot ongeveer een kans van 0.1%. Voor
hogere kansen corresponderend met hogere signaalsterktes levert de likelihood methode
de beste resultaten op.

Tenslotte werd er onderzocht of men de PLT methode zou kunnen gebruiken in
toekomstige studies omtrent vaste puntbronanalyses met IceCube. Hiervoor wer-
den er zes populaties van vaste puntbronnen beschouwd die mogelijk de diffuse hoog-
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energetische kosmische neutrinoflux zouden kunnen verklaren. Voor elke populatie is
er een afschatting gemaakt van de verwachte emissiefrequentie van hoog-energetische
neutrino’s per bron. Er is geconcludeerd geweest dat FRI sterrenstelsels, starburst-
stelsels, en clusters van sterrenstelsels zouden kunnen corresponderen met een signaal
dat laag genoeg is opdat men de PLT methode zou kunnen gebruiken als een alternatief
voor de standaard likelihood methode. Deze bronnen komen bovendien overeen met
vaste puntbronpopulaties die een hoge populatiedichtheid hebben.
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A
Simulation Code of Pseudo-Experiments
with the Toy Model

This Appendix contains the Python script used for the Monte Carlo simulations of
pseudo-experiments in the context of the toy model. For each performed pseudo-
experiment, the four different test statistics considered in this work are calculated.
After the completion of all pseudo-experiments, the simulated test statistic values are
stored in an external file.

1 import numpy as np
2 import argparse
3 import os
4 import time
5 from scipy import integrate
6 from scipy.optimize import minimize
7 from scipy.special import factorial
8
9 ####################################

10 # TOY MODEL OF STATISTICAL METHODS #
11 ####################################
12
13 # This code is used to simulate pseudo -experiments via Monte Carlo techniques.
14 # A pseudo -experiment generates one year of IceCube atmospheric neutrino events
15 # as background. The signal is injected through a Gaussian distribution.
16 # Different test statistics are calculated for each pseudo -experiment , i.e.
17 # different statistical methods are applied. These are then written onto a file
18 # so that they can be analyzed in other scripts.
19
20
21 ########## ABBREVIATIONS ##########
22
23 # TS = Test Statistic
24 # sim = simulation
25 # bkg = background
26 # sign = signal
27 # norm = normalization constant
28 # LLH = likelihood
29 # MC = Monte Carlo
30
31
32 ########## DEFINITIONS ##########
33

67
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34 # Simulate signal and background events and return the opening angles alpha of the events
within a certain patch around a ficticious source

35 # Also return the amount of events (without alpha info , because only needed for the Li -Ma
method) for a patch of the same size on the opposite side of the sky

36 def SimulateEvents(N_bkg ,N_sign ,alpha_max ,mean_sign ,sigma_sign):
37 # N_bkg = Number of background events
38 # N_sign = Number of injected signal events
39 # alpha_max [deg] = Opening angle of the considered patch = maximal allowed opening

angle to accept
40 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
41 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
42
43 # Without loss of generality , consider source at spherical coordinates (theta ,phi) =

(0,0)
44 # In that case , alpha = theta
45 # phi will not be needed , since the TSs used only require theta
46
47 # List of opening angles
48 alphas = []
49
50 # Number of events in the patch that does not contain the source
51 N_off = 0
52
53 # The background is simulated isotropically on the sky , i.e. cos(alpha) is uniform
54 for i in range(0,N_bkg):
55 alpha = np.rad2deg( np.arccos( np.random.uniform(-1.,1.) ) ) # [deg]
56 if alpha < alpha_max: # Only accept the events within the specified patch that

contains the source
57 alphas = np.append(alphas ,alpha)
58 if alpha > 180. - alpha_max: # Only accept the events within the specified patch

that does not contain the source
59 N_off += 1
60
61 # The signal is simulated according to a gaussian distribution centered on the source (

phi = 0) located at mean_sigm with a standard deviation sigma_sign
62 for i in range(0,N_sign):
63 alpha = np.abs( np.random.normal(mean_sign ,sigma_sign) ) # [deg]
64 if alpha < alpha_max: # Only accept the events within the specified patch that

contains the source
65 alphas = np.append(alphas ,alpha)
66 if alpha > 180. - alpha_max: # Only accept the events within the specified patch

that does not contain the source
67 N_off += 1
68
69 return alphas , N_off # [deg]
70
71
72 # Returns the background PDF value of a certain opening within a patch of size alpha_max
73 def BkgDistribution(alpha ,alpha_max):
74 # alpha [deg] = Opening angle
75 # alpha_max [deg] = Opening angle of the considered patch
76
77 # Isotropic PDF , definition can be found in L. Brayeur , Ph.D. thesis , 2015
78 return ( np.sin( np.deg2rad(alpha) )/(1. - np.cos( np.deg2rad(alpha_max) ) ) )/np.rad2

deg(1) # [deg^-1]
79
80
81 # Returns the normalization factor for the signal PDF within a patch of size alpha_max
82 def NormalizeSignDistribution(alpha_max ,mean_sign ,sigma_sign):
83 # alpha_max [deg] = Opening angle of the considered patch
84 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
85 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
86
87 # Gaussian PDF centered around alpha = mean_sign , i.e. the source location
88 # Integrate Gaussian PDF over whole patch
89 return integrate.quad(lambda x: np.exp( ( (mean_sign - x)**2 )/(-2.* sigma_sign **2) ), 0

, alpha_max)[0] # [deg]; "[0]" to get the value of the integral
90
91
92 # Returns the background PDF value of a certain opening angle alpha within a patch of size

alpha_max with the correct normalization
93 def SignDistribution(alpha ,alpha_max ,mean_sign ,sigma_sign ,norm_sign):
94 # alpha [deg] = Opening angle
95 # alpha_max [deg] = Opening angle of the considered patch
96 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
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97 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
98 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
99

100 # Gaussian PDF centered around alpha = mean_sign , i.e. the source location , definition
can be found in L. Brayeur , Ph.D. thesis , 2015

101 return np.exp( ( (mean_sign - alpha)**2 )/(-2.* sigma_sign **2) )/norm_sign # [deg^-1]
102
103
104 # ---------- LIKELIHOOD METHOD ----------
105
106 # Returns the minus log likelihood of a set of simulated opening angles
107 # This function is coded such that scipy.optimize.minimize can work with it
108 def minuslogLLH(x,alphas ,alpha_max ,mean_sign ,sigma_sign ,norm_sign):
109 # x = Fraction of the number of signal events in the patch over the total (signal +

background) number of events in the patch
110 # alphas [deg] = Array of simulated opening angles
111 # alpha_max [deg] = Opening angle of the considered patch
112 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
113 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
114 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
115
116 # Definition can be found in J. R. Braun , Ph.D. thesis , 2009
117 return (-1.)*sum( np.log( (1.-x[0])*BkgDistribution(alphas [:], alpha_max) + x[0]*

SignDistribution(alphas [:],alpha_max ,mean_sign ,sigma_sign ,norm_sign) ) )
118
119
120 # Returns the an array of the log likelihoods of a set of simulated opening angles for

different x-values
121 # This function is used for plotting the log likelihood as function of x
122 def logLLH_ForPlotting(x_array ,alphas ,alpha_max ,mean_sign ,sigma_sign ,norm_sign):
123 # x_array = Array of fractions of the number of signal events in the patch over the

total (signal + background) number of events in the patch
124 # alphas [deg] = Array of simulated opening angles
125 # alpha_max [deg] = Opening angle of the considered patch
126 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
127 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
128 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
129
130 # Array of log likelihoods
131 logLLHs = []
132
133 for x in x_array:
134 logLLHs = np.append( logLLHs , -1.* minuslogLLH ([x],alphas ,alpha_max ,mean_sign ,

sigma_sign ,norm_sign) )
135 # The "[]" are used because x[0] in minuslogLLH doesn’t exist if x is a float
136
137 # Returns an array corresponding with the given x-values dedicated for plotting
138 return logLLHs
139
140
141 # Returns the lower log likelihood bound of x given a set of simulated opening angles
142 # Ensures that the log doesn ’t become infinite in scipy.optimize.minimize
143 def GetMinimizerLowerBound(alphas ,alpha_max ,mean_sign ,sigma_sign ,norm_sign):
144 # alphas [deg] = Array of simulated opening angles
145 # alpha_max [deg] = Opening angle of the considered patch
146 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
147 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
148 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
149
150 # Definition of the bound can be found in J. R. Braun , Ph.D. thesis , 2009
151
152 # List of lower bound candidates
153 bound_candidates = []
154
155 for alpha in alphas:
156 B = BkgDistribution(alpha ,alpha_max)
157 S = SignDistribution(alpha ,alpha_max ,mean_sign ,sigma_sign ,norm_sign)
158 if S > B: # Condition to add to bound_candidates
159 bound_candidates.append( B/(B-S) )
160
161 # The lower bound is strict , but scipy.optimize.minimize uses closed intervals
162 # Add 0.01 (arbitrary choice) to the bound to take this into account , then the log will

never become infinite in scipy.optimize.minimize
163 if len(bound_candidates) == 0:
164 return -1 + 0.01
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165 else:
166 return max(bound_candidates) + 0.01
167
168
169 # Returns the Maximum Likelihood (ML) estimator for a set of simulated opening angles
170 def GetMLestimator(alphas ,alpha_max ,mean_sign ,sigma_sign ,norm_sign):
171 # alphas [deg] = Array of simulated opening angles
172 # alpha_max [deg] = Opening angle of the considered patch
173 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
174 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
175 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
176
177 # Get the lower bound for the minimizer
178 # This is not just 0 because statistic fluctuations in the background PDF can lead to

negative values
179 lower_bound = GetMinimizerLowerBound(alphas ,alpha_max ,mean_sign ,sigma_sign ,norm_sign)
180
181 # The log likelihood is to be maximized , or , the minus log likelood is to be minimized
182 # The upper bound of x is 1 by definition
183 minimum = minimize(minuslogLLH ,(0.5,),args=(alphas ,alpha_max ,mean_sign ,sigma_sign ,

norm_sign),bounds =(( lower_bound ,1.) ,))
184
185 return minimum.x # ".x" to obtain the value of the minimum from the minimizer
186
187
188 # Returns the likelihood TS for a set of simulated opening angles
189 def GetLLH(alphas ,alpha_max ,mean_sign ,sigma_sign ,N_sign ,norm_sign):
190 # alphas [deg] = Array of simulated opening angles
191 # alpha_max [deg] = Opening angle of the considered patch
192 # mean_sign [deg] = Expectation value for the Gaussian signal PDF , i.e. the source

location
193 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
194 # N_sign = Number of injected signal events
195 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
196
197 # Get the correct normalization for the signal PDF
198 #norm_sign = NormalizeSignDistribution(alphas ,alpha_max ,mean_sign ,sigma_sign)
199
200 # Obtain the ML estimator
201 MLestimator = GetMLestimator(alphas ,alpha_max ,mean_sign ,sigma_sign ,norm_sign)
202
203 # For the definition of the TS, see e.g. J. R. Braun , Ph.D. thesis , 2009
204 # We define -logLLH -> take into account in formula
205 return 2.*np.sign(MLestimator)*( minuslogLLH ([0.],alphas ,alpha_max ,mean_sign ,sigma_sign ,

norm_sign) - \
206 minuslogLLH ([ MLestimator],alphas ,alpha_max ,mean_sign ,

sigma_sign ,norm_sign))
207
208
209 # ---------- PLT METHOD ----------
210
211 # Returns the minus score of a set of simulated opening angles
212 # This function is coded such that scipy.optimize.minimize can work with it
213 def minusScore(x,alphas ,alpha_max ,sigma_sign ,norm_sign):
214 # x [deg] = Expectation value for the Gaussian signal PDF , i.e. the source location
215 # alphas [deg] = Array of simulated opening angles
216 # alpha_max [deg] = Opening angle of the considered patch
217 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
218 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
219
220 # Calculate the values of the bkg PDF for the set of simulated opening angles
221 BkgValues = BkgDistribution(alphas [:], alpha_max)
222
223 # Set a lower bound on the bkg distribution values to not devide by zero in the PLT TS
224 for value in BkgValues:
225 if value < 1e-8:
226 value = 1e-8
227
228 # Definition can be found in R. S. Pilla , C. Loader , and C. Taylor , 2005
229 return (-1.)*sum( ( SignDistribution(alphas [:],alpha_max ,x,sigma_sign ,norm_sign) -

BkgValues ) / BkgValues )
230
231
232 # Returns the maximizer of the score for a set of simulated opening angles
233 def GetScoreMaximizer(alphas ,alpha_max ,sigma_sign ,norm_sign):
234 # alphas [deg] = Array of simulated opening angles
235 # alpha_max [deg] = Opening angle of the considered patch
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236 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
237 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
238 # MLestimator = Maximum Likelihood estimator calculated from the simulated opening

angles
239
240 # The score is to be maximized , or, the minus score is to be minimized
241 minimum = minimize(minusScore ,(0.5 ,),args=(alphas ,alpha_max ,sigma_sign ,norm_sign),

bounds =((0.,10.) ,))
242
243 return minimum.x # ".x" to obtain the value of the minimum from the minimizer
244
245
246 # Returns the PLT TS for a set of simulated opening angles
247 def GetPLT(alphas ,alpha_max ,sigma_sign ,N_sign ,norm_sign):
248 # alphas [deg] = Array of simulated opening angles
249 # alpha_max [deg] = Opening angle of the considered patch
250 # sigma_sign [deg] = Standard deviation for the Gaussian signal PDF
251 # N_sign = Number of injected signal events
252 # norm_sign [deg] = Normalization factor for the Gaussian signal PDF
253
254 # Get the correct normalization for the signal PDF
255 #norm_sign = NormalizeSignDistribution(alphas ,alpha_max ,mean_sign ,sigma_sign)
256
257 # Obtain the score maximizer
258 ScoreMaximizer = GetScoreMaximizer(alphas ,alpha_max ,sigma_sign ,norm_sign)
259
260 # For the definition of the TS, see R. S. Pilla , C. Loader , and C. Taylor , 2005
261 # We define -Score -> take into account in formula
262 return (-1.)*minusScore(ScoreMaximizer ,alphas ,alpha_max ,sigma_sign ,norm_sign)
263
264
265 # ---------- PSI METHOD ----------
266
267 # Returns the probability that an angle falls in a certain bin based on the uniform

background PDF
268 def GetBinProbability(N_bin ,bin_width ,alpha_max):
269 # N_bins = Number of bins for the histogram of opening angles
270 # bin_width [rad] = The width of the bins for the histogram of opening angles
271 # alpha_max [deg] = Opening angle of the considered patch
272
273 # The definition can be found in D. Bose , et al , 2014
274 return ( np.cos( (N_bin -1)*bin_width ) - np.cos( N_bin*bin_width ) )/( 1 - np.cos( np.

deg2rad(alpha_max) ) )
275
276
277 # Returns the binning based psi TS for a set of simulated opening angles
278 def GetPsi(alphas ,alpha_max ,N_bins ,N_sign):
279 # alphas [deg] = Array of simulated opening angles
280 # alpha_max [deg] = Opening angle of the considered patch
281 # N_bins = Number of bins for the histogram of opening angles
282 # N_sign = Number of injected signal events
283
284 # Make the histogram of opening angles
285 # Preferably you want N_bins to be large enough so that the histogram has 0 or 1 entry

most of the time
286 hist , bin_edges = np.histogram(alphas ,N_bins ,(0,alpha_max))
287
288 # Calculate the bin width
289 bin_width = np.deg2rad(alpha_max/N_bins) # [rad]
290
291 # For the definition of the TS, see N. van Eijndhoven , 2008
292 psi = -10*sum( np.log10( range(1,len(alphas)+1) ) ) # [dB]
293
294 for k in range(0,N_bins):
295 bin_value = hist[k]
296 if bin_value != 0.:
297 psi += -10*( bin_value*np.log10( GetBinProbability(k+1,bin_width ,alpha_max) ) -

np.log10( factorial( bin_value ) ) )
298
299 return psi # [dB]
300
301
302 # ---------- LI-MA METHOD ----------
303
304 # Returns the Li -Ma TS for a set of simulated opening angles
305 def GetLiMa(alphas ,N_off):
306 # alphas [deg] = Array of simulated opening angles
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307 # N_off = Number of events that lie in a patch of size alpha_max that does not contain
the source

308
309 # Calculate the total number events in the patches centered on and off the source
310 N_on = float(len(alphas))
311 N_off = float(N_off)
312
313 # For the definition of the TS, see Li and Ma, 1983
314 return np.sqrt( 2.*( N_on*np.log( 2.*N_on/(N_on + N_off) ) + N_off*np.log( 2.*N_off /(

N_on + N_off) ) ) )
315
316
317 ########## APPLICATIONS ##########
318
319 # Make a parser
320 parser = argparse.ArgumentParser ()
321
322 # Argument (required) that allows to choose the amount of times the TSs have to be

simulated
323 parser.add_argument("--sim",dest="sim",help="REQUIRED: give amount of times the TSs have to

be simulated",required=True)
324
325 # Argument (required) that allows to choose the amount of signal you want to inject in your

TS simulations
326 parser.add_argument("--sign",dest="sign",help="REQUIRED: give amount of signal that has to

be injected",required=True)
327
328 # Argument (required) that specifies the set number of the file you are exporting
329 parser.add_argument("--set",dest="set",help="REQUIRED: give the set number of the export

file",required=True)
330
331 # Argument (optional) that sets the angular size of the patch around the source
332 parser.add_argument("--patch",dest="patch",help="OPTIONAL: give the angular size of the

patch around the source [deg]")
333
334 # Argument (optional) that sets the source location , i.e. the expectation value for the

Gaussian signal PDF
335 parser.add_argument("--loc",dest="loc",help="OPTIONAL: give the source location (the polar

angle) on the sky [deg]")
336
337 # Argument (optional) that sets the standard deviation for the Gaussian signal PDF
338 parser.add_argument("--sigma",dest="sigma",help="OPTIONAL: give the standard deviation for

the Gaussian signal PDF [deg]")
339
340 arguments = parser.parse_args ()
341
342 # Number of times you want to simulate
343 N_sim = int(arguments.sim)
344
345 # Number of signal injections you want to make
346 N_sign = int(arguments.sign)
347
348 # The set of the file you are exporting
349 file_set = str(arguments.set)
350
351 # Angular size of the patch around the source
352 if arguments.patch is None:
353 alpha_max = 5. # [deg]; DEFAULT
354 else:
355 alpha_max = float(arguments.patch) # [deg]
356
357 # Expectation value for the Gaussian signal PDF , i.e. the source location
358 if arguments.loc is None:
359 mean_sign = 0. # [deg]; DEFAULT
360 else:
361 mean_sign = float(arguments.loc) # [deg]
362
363 # Standard deviation for the Gaussian signal PDF
364 if arguments.sigma is None:
365 sigma_sign = 1. # [deg]; DEFAULT
366 else:
367 sigma_sign = float(arguments.sigma) # [deg]
368
369
370 # IceCube atmospheric neutrino background rate (roughly)
371 rate_bkg = 1./(6*60) # [Hz]; 10 per hour
372
373 # Average number of background events in 1 year
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374 average_N_bkg = int(rate_bkg*365*24*3600)
375
376 # Set the seed for the random number generator
377 newseed = int( time.time()*1e6 - int(time.time()*1e-3)*1e9 ) # repeat period of the order

of 10 years
378 np.random.seed(newseed)
379
380 # Number of bins , chosen large enough so that the histogram (for psi) has 0 or 1 entry most

of the time
381 N_bins = 10000
382
383 # Normalization factor for the Gaussian signal PDF
384 norm_sign = NormalizeSignDistribution(alpha_max ,mean_sign ,sigma_sign) # [deg]
385
386 # Make an array of N_sim rows and 4 columns for each of the TSs
387 TS_array = np.zeros((N_sim ,4))
388
389 # Get all TSs for a set of simulations
390 for i in range(0,N_sim):
391 # Obtain the number of bkg events in one year from a Poisson PDF with expectation value

average_N_bkg
392 N_bkg = np.random.poisson(average_N_bkg)
393
394 # Simulate a set of opening angles
395 alphas , N_off = SimulateEvents(N_bkg ,N_sign ,alpha_max ,mean_sign ,sigma_sign)
396
397 # Fill in the TS array
398 TS_array[i][0] = GetLiMa(alphas ,N_off)
399 TS_array[i][1] = GetLLH(alphas ,alpha_max ,mean_sign ,sigma_sign ,N_sign ,norm_sign)
400 TS_array[i][2] = GetPLT(alphas ,alpha_max ,sigma_sign ,N_sign ,norm_sign)
401 TS_array[i][3] = GetPsi(alphas ,alpha_max ,N_bins ,N_sign)
402
403
404 # Export the TS_array in an .npz file with the given set number
405
406 # Set the output directory where the .npz file will be exported , specified by the parser

parameters
407 outdir = "/data/user/pcorcam/StatisticalMethods/MC_output_npz/signal_%i_patch_%f_mean_%

f_sigma_%f/" % (N_sign ,alpha_max ,mean_sign ,sigma_sign)
408
409 # Check if the output directory exists
410 if os.path.exists(outdir):
411 print "WARN: ** output dir already exists:", outdir
412 if not os.path.isdir(outdir):
413 raise RuntimeError("output directory exists and is not a directory")
414 else:
415 os.makedirs(outdir)
416
417 # Set the title of the .npz file
418 filetitle = "MC_toymodel_signal_%i_patch_%f_mean_%f_sigma_%f_set_%s.npz" % (N_sign ,

alpha_max ,mean_sign ,sigma_sign ,arguments.set)
419
420 # Save the TS_array in the .npz file , also include the parser parameters for easy

identification
421 np.savez(outdir+filetitle ,[N_sign ,alpha_max ,mean_sign ,sigma_sign],TS_array)
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Distributions for Discovery Potentials and
Sensitivities

In this Appendix, some signal-plus-background distributions, determined with 105

pseudo-experiments, are plotted together with the respective background-only distri-
butions, determined with 109 pseudo-experiments, for each test statistic. This is done
for the values of the injected signal Ns corresponding with the sensitivities (Fig. B.1),
the 50% DPs at 3σ (Fig. B.2), the 50% DPs at 5σ (Fig. B.3), and the 90% DPs at
5σ (Fig. B.4). These Ns-values are given in Tab. B.1 together with the corresponding
event rates Ṅs = Ns/(1 yr).

75
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Table B.1: The values for the injected signal Ns and signal rate Ṅs corresponding with
the different DPs and sensitivities for all four statistical methods. The only exceptions
are the 5σ DPs of the PLT method, which were not determined.

Sensitivities Ns Ṅs [µHz] 50% DPs at 3σ Ns Ṅs [µHz]

Li-Ma 38 1.2 Li-Ma 60 1.9

Likelihood 7 0.2 Likelihood 10 0.3

PLT 7 0.2 PLT 16 0.5

ψ 12 0.4 ψ 27 0.9

50% DPs at 5σ Ns Ṅs [µHz] 90% DPs at 5σ Ns Ṅs [µHz]

Li-Ma 106 3.4 Li-Ma 132 4.2

Likelihood 19 0.6 Likelihood 26 0.8

PLT / / PLT / /

ψ 47 1.5 ψ 58 1.8
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Figure B.1: The signal-plus-background distributions (empty histograms) correspond-
ing with the sensitivities of the four statistical methods. The background-only distri-
butions (filled histograms) are also shown for comparison.



78 Appendix B. Distributions for Discovery Potentials and Sensitivities

0 1 2 3 4 5 6 7 8
Σ

10−9

10−7

10−5

10−3

10−1

P
ro

b
ab

ili
ty

D
en

si
ty

−→ 3σ

Li-Ma

0 10 20 30 40 50 60
λ

10−9

10−7

10−5

10−3

10−1

P
ro

b
ab

ili
ty

D
en

si
ty

−→ 3σ

Likelihood

1 2 3 4 5 6 7
log10 S

10−9

10−7

10−5

10−3

10−1

P
ro

b
ab

ili
ty

D
en

si
ty

−→ 3σ

PLT

2000 2500 3000 3500 4000 4500 5000 5500
ψ

10−9

10−7

10−5

10−3

10−1

P
ro

b
ab

ili
ty

D
en

si
ty

−→ 3σ

ψ

Figure B.2: Same as Fig. B.1 for the 50% DPs at 3σ.
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Figure B.3: Same as Fig. B.1 for the 50% DPs at 5σ. Note that the DP corresponding
with the PLT method was not determined.
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Figure B.4: Same as Fig. B.1 for the 90% DPs at 5σ. Note that the DP corresponding
with the PLT method was not determined.
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