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Abstract

In this thesis, a novel approach is introduced to constrain the value of the charm quark
Yukawa coupling yc using the CMS detector at the CERN LHC. By targeting specifically
the production of a Higgs boson in association with a jet from a charm quark (H+c), the
jet flavour information extracted from state-of-the-art charm tagging algorithms on top
of the event kinematical properties can be exploited to gain sensitivity to yc. After cre-
ating dedicated simulations of the H+c process up to the detector level, both kinemat-
ical and jet flavour information are combined as input into an artificial neural network
(ANN), which is trained on one hand to reduce the background processes, and on the
other hand to provide an observable with an increased sensitivity to yc. By means of a
binned maximum likelihood fit, expected 95% confidence level intervals are derived on
κc = yc/y

SM
c , assuming scenarios where 35.9, 300, or 3000 fb−1 of integrated luminosity

are collected. The results presented in this thesis demonstrate that, for these scenarios,
a relative improvement in the sensitivity of up to 8%, 14%, and 18% can be obtained re-
spectively using this ANN discriminator, as compared to traditional methods that only
rely on the transverse momentum of either the leading jet or the Higgs boson candidate.
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Chapter 1

Introduction

1.1 The Standard Model of particle physics

The field of particle physics studies a wide variety of physical phenomena, from study-
ing the smallest, most fundamental building blocks of matter with particle colliders, to
understanding observations on a cosmological scale, such as the yet unknown nature
of dark matter. Although these research subjects are seemingly different, they share a
common goal: to increase our understanding of the fundamental laws of nature. Some
of these laws manifest themselves only at the smallest scales, in the interactions between
elementary particles. The efforts made by physicists throughout history to study these
interactions have culminated in one of the most successful physical theories to date: the
Standard Model (SM) of particle physics.

1.1.1 The particles of the Standard Model

The idea that all matter is constructed from a finite number of building blocks has been
present for a large part of human history. Even in ancient Greece, followers of Aristo-
tle’s natural philosophy believed that matter is ultimately composed of a ratio of four
elements: water, earth, fire and air [1]. The same nomenclature is used in modern chem-
istry, where an element describes a pure substance made of atoms containing the same
number of protons. All chemical substances, from gas mixtures to metal alloys, are
formed by different combinations of atoms. Yet atoms can be broken down into fur-
ther constituents: The nucleus, which contains protons and neutrons, and one or more
electrons that are bound to the nucleus. Both the fundamental particles and forces of
particle physics come into play when investigating the inner workings of the atom. For
example, the electromagnetic force binds electrons to the nuclei of atoms, the strong
nuclear force holds the nuclei together, and the weak nuclear force governs the β− de-
cay of unstable atoms. Of the particles mentioned so far, only the electron is thought
to be fundamental. Protons and neutrons are both composed of up and down quarks.
Together with electrons and electron neutrinos, which are emitted in nuclear β− decay,
they form the first generation of elementary matter particles.

1
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Figure 1.1: The elementary particles of the Standard Model.

One objective of the SM is to categorize the elementary particles. This allows for the SM
to be summarized visually in a way similar to the periodic table, as seen in figure 1.1. A
first subdivision of the particles of the SM is into fermions and bosons. The fundamen-
tal fermions of the SM are spin 1/2 particles that follow the Pauli exclusion principle,
and hence obey Fermi-Dirac statistics. The fermions are made up of two families of
particles: the quarks and the leptons. The first generation of fermions were mentioned
earlier. The electron and electron neutrino form the first generation of the leptons, while
the up and down quark form the first generation of the quarks. The SM includes two
additional fermion generations. The second and third generation of the leptons consist
of the muon and muon neutrino, and the tau lepton and tau neutrino. Likewise, the sec-
ond and third quark generations are respectively composed of the charm and strange
quarks, and the top and bottom quarks. Particles in higher generations have a higher
mass than the corresponding particle in a lower generation, with the exception of the
neutrinos, which are considered massless in the SM1. Each of the rows in the quark and
lepton sector in figure 1.1 contain particles with the same electric charge. The up-type
quarks have charge +2/3 while the down-type quarks have charge -1/3. Likewise, the
neutrinos are neutral, while the remaining leptons having charge -1. The reason behind
the distinction between leptons and quarks lies in the nature of their interactions. In the
SM, these interactions are governed by three fundamental forces: the strong force, the
weak force and electromagnetism. Due to their non-zero electric charge, the quarks and
the charged leptons can interact electromagnetically. Quarks on the other hand carry an
additional charge related to the strong force, sometimes referred to as the color charge,
which allows them to have strong interactions as well. In the SM, each of these interac-
tions is mediated by the exchange of bosons. The photon mediates the electromagnetic
force, the W and Z bosons mediate the weak force and the gluons mediate the strong
force. All of these particles are of integer spin, and follow Bose-Einstein statistics. Lastly,

1Contrary to the SM assumption, the phenomenon of neutrino oscillations, first discovered by the SNO
[2] and Super-Kamiokande [3] Collaborations in 2001 and 1998, indicates that neutrinos are massive.
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there is the Brout-Englert-Higgs boson, or the Higgs boson in short. The neutral scalar
boson couples to all particles that have a non-zero mass. The particle was postulated
by Robert Brout, Francois Englert [4] and Peter Higgs [5] in 1964, and is a key com-
ponent of the Brout-Englert-Higgs mechanism, which is responsible for generating the
mass terms of the fermions and gauge bosons of the SM. The Higgs boson represented
the last missing piece of the Standard Model puzzle. In fact, its discovery was one of
the main goals of the LHC. As a result, in July 2012, the ATLAS [6] and CMS [7] ex-
periments at CERN’s Large Hadron Collider announced the discovery of a new particle
consistent with the Higgs boson predicted by the Standard Model.

1.1.2 The theoretical framework of the Standard Model

The mathematical description of the SM is constructed in the framework of Quantum
Field Theory (QFT). In QFT, particles are described as fields extended over spacetime.
The fermion fields are solutions of the Dirac equation of relativistic quantum mechan-
ics, which describes the dynamics of spin 1/2 particles. Technically, these fields are
expressed as Dirac spinors. The kinematics of these fields and their interactions are
captured by the Lagrangian density LSM. From the Dirac Lagrangian density,

LD = ψ (iγµ∂µ −m)ψ, (1.1)

one can derive the equations of motion of a free Dirac spinor field ψ. The adjoint spinor
ψ is defined as ψ†γ0, where γµ are the gamma-matrices and ∂µ is the space-time deriva-
tive. The Dirac equation has both positive and negative energy solutions, resulting in
particle and anti-particle spinors. Interaction terms can be added to this free-field La-
grangian by applying the gauge principle. Here, a global symmetry of the Lagrangian is
transformed into a local symmetry by adding gauge fields to the theory. Remarkably, the
theory of Quantum Electrodynamics (QED), and therefore Maxwell’s equations, can be
derived by applying this principle. Transforming the global U(1) symmetry of equa-
tion (1.1) into a local U(1) symmetry, requires the inclusion of one additional gauge
field, namely the photon field. As a result from this inclusion, interaction terms are
generated between the photon and the fermion fields. In other words, the generator of
the U(1) local gauge symmetry corresponds with the photon, the boson which medi-
ates the QED interactions. Likewise, the theory of Quantum Chromodynamics (QCD)
which describes the strong interactions, is derived by requiring (1.1) to be invariant
under local SU(3) gauge transformations. The eight generators of SU(3) are associated
with the eight massless gluons of QCD. The charge associated with SU(3) is called the
color charge, and is labelled as red, green or blue. A key principle in QCD is that of color
confinement, which states that colored particles only appear in color-neutral composite
states. An example of such a color-neutral state is the meson, composed of a quark and
an antiquark of different flavours and opposite color charges (such as red and anti-red).
QCD is an asymptotically free theory, which means that the strength of interactions be-
tween colored particles becomes weaker as the energy scale increases, or likewise as the
length scale decreases. As a consequence, increasing amounts of energy are required



4 CHAPTER 1. INTRODUCTION

to further separate a pair of quarks from one another. Ultimately, enough energy has
become available to spontaneously produce another quark-antiquark pair from the vac-
uum. These quarks can then bind with the separated ones, and form two new quark
pairs. Though an analytic description of this phenomenon has not yet been given suc-
cessfully, the above example serves as a qualitative explanation for color confinement.

At high energies, electromagnetism and the weak interaction are unified into a single
force, namely the electroweak force. The electroweak gauge fields are generated by the
SU(2)L×U(1)Y gauge symmetry. The electroweak theory is a chiral gauge theory, where
chiral right-handed components of Dirac fields transform as singlets under SU(2) while
the left-handed components transform as doublets under SU(2). As a consequence, bare
mass terms for fermions ∝ mψψ break the SU(2) gauge invariance of the theory. The
full SM gauge group can be written down as SU(3)c × SU(2)L ×U(1)Y.

1.1.3 Electroweak symmetry breaking

Consistency requires each of the terms in the SM Lagrangian density LSM to respect
these symmetries. As a consequence, a bare mass term for the gauge fields is also not
allowed. This is troublesome, since the W and Z bosons of the weak interaction are
massive. The problem of adding mass terms in a gauge invariant way can be solved
using the Brout-Englert-Higgs mechanism [4, 5], where a complex scalar field φ with a
degenerate groundstate is added to the SM theory. The scalar field φ is a doublet under
SU(2),

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (1.2)

where φi, i = 1, .., 4 are real-valued scalar fields. The free field Lagrangian for the scalar
doublet is given by

LH = |∂µφ|2 − V (φ), (1.3)
where the scalar field potential V (φ) is defined by

V (φ) = µ2|φ|2 + λ|φ|4. (1.4)

For µ2 < 0, the scalar field potential has a degenerate groundstate, with each of the
minima satisfying |φ|2 = v2/2, where v is the vacuum expectation value (VEV) defined
by
√
−µ2/λ. When the scalar field acquires this VEV, the Lagrangian in equation (1.3)

is no longer invariant under the SU(2)L × U(1)Y gauge symmetry: The symmetry has
been broken spontaneously. Because this happens in the electroweak sector, this process
is also called electroweak symmetry breaking. To be precise, the electroweak gauge
symmetry group SUL(2)×UY(1) breaks to the UEM(1) gauge group of electromagnetism.
Now the scalar field can be parametrized by

φ =
1√
2

(
φ1 + iφ2

v + η + iφ3

)
. (1.5)
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Goldstone’s theorem states that for each continuous symmetry of the Lagrangian that
has been broken, a Goldstone boson appears in the theory. These bosons are unphysi-
cal, and can be rotated away by means of an appropriate gauge transformation. After
applying this transformation, the scalar doublet takes the following form:

φ =
1√
2

(
0

v + σ

)
, (1.6)

where σ represents the scalar Higgs field. This particular gauge transformation is called
the unitary gauge. The local gauge principle can again be applied to equation (1.3), such
that the Lagrangian density of the scalar doublet is invariant under local SU(2)L×U(1)Y
gauge transformations. This introduces interaction terms between the scalar doublet
and the gauge bosons of the electroweak theory. From these interactions, mass terms
arise for the massive gauge bosons in a gauge invariant way. These mass terms are
related to the Higgs field VEV v and the electroweak gauge couplings g and g′ by the
following relations:

mW =
vg

2
, mZ =

v
√
g2 + g′2

2
. (1.7)

1.1.4 Yukawa interactions

In the previous section, mass terms were generated for the gauge bosons through elec-
troweak symmetry breaking. What remains is to generate mass terms for the fermions
in a gauge invariant way. This can be done by including interactions of the form ∝ ψφψ
in the SM theory. These are called the Yukawa interactions, named after the Japanese
theoretical physicist Hideki Yukawa. In the SM, the Yukawa Lagrangian density takes
the following form:

LYukawa = −yijd Q
i
Lφd

j
R − y

ij
u Q

i
Lφ̃u

j
R − y

ij
` LiLφejR + (h.c.), (1.8)

where φ̃ = iσ2φ and σ2 is one of the Pauli matrices. The right-handed quark fields
are represented by uR and dR, with the former representing the up-type quarks and
the latter the down-type quarks. Likewise, the charged right-handed lepton fields are
represented by eR. The index i and j run over the different generations of the quarks
and leptons. The left-handed quark and lepton doublets are respectively given byQL =

(uL, dL)T and LL = (eL, νL)T. Most important to the scope of this thesis are the Yukawa
couplings, denoted by y. Their values are a measure for how strongly the fermions cou-
ple to the scalar boson. In the unitary gauge, and after rotating into the mass eigenstates,
the relation between the Yukawa couplings (yq) and the quark masses (mq) is given by

LYukawa ⊃ −
yqv√

2
qq = mqqq, (1.9)

where q is the quark field. In other words, the SM predicts a linear relationship between
the Yukawa couplings y and the fermion masses m,

y =
√

2
m

v
. (1.10)
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Figure 1.2: The CERN accelerator complex, taken from [8]. The yellow dots denote the
locations on the LHC where the proton beams cross, and where the products of the
collisions are observed by particle detectors.

As a consequence of equation (1.10), the heavier particles of the SM, such as the third-
generation fermions, couple more strongly to the Higgs boson than the lighter parti-
cles. The values of the Yukawa couplings y are free parameters of the SM theory, and
therefore need to be probed experimentally. This can be done using the Large Hadron
Collider at CERN, where beams of protons are collided in order to test the predictions
of the SM at high energies.

1.2 Experimental setup

1.2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular particle accelerator located beneath the
France-Switzerland border near Geneva. The collider was installed in an existing tun-
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Figure 1.3: High-luminosity LHC project schedule, taken from [11].

nel that was previously in use by the Large Electron-Positron Collider (LEP). The LEP
tunnel measures 26.7 km in circumference, and lies between 45 m and 170 m beneath
the surface [9]. The LHC project was first approved by the CERN Council in 1994 with
construction commencing in 1998. The aim of the LHC is to accelerate and collide two
beams of protons at a centre-of-mass energy of up to 14 TeV. The beams cross in four
points located around the collider, denoted by the yellow dots in figure 1.2. These form
the locations of underground cavities wherein particle detectors are housed, like the
Compact Muon Solenoid detector (CMS) or the ATLAS (A Toroidal LHC ApparatuS)
detector. The beams consist of bunches of protons which are collided every 25 ns, with
each bunch containing 1.15 × 1011 protons with up to 2808 bunches per beam. During
the first run of the LHC, also called Run-1, between 2011 and 2013, the LHC provided
roughly 30 fb−1 of integrated luminosity at 7 and 8 TeV. During Run-2, the LHC reached
a peak luminosity of 2×1034 cm−2 s−1 and a centre-of-mass energy of 13 TeV [10]. Run-2
provided over 130 fb−1 of integrated luminosity. Run-3 is expected to start in 2022, and
should together with Run-2 provide a combined integrated luminosity of over 300 fb−1.
Future prospects include the High Luminosity LHC (HL-LHC), where the LHC will be
upgraded to achieve a luminosity of up to 5×1034 cm−2 s−1 at the design centre-of-mass
energy of 14 TeV [11]. In the HL-LHC, the combined integrated luminosity is expected
to reach over 3000 fb−1. The project schedule for the next runs of the LHC is given in
figure 1.3.
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Proton acceleration

Protons are injected into the LHC through a series of smaller accelerators, as shown in
figure 1.2. The first accelerator is Linac 2, a linear accelerator that drives the protons
up to an energy of 50 MeV using radiofrequency (RF) cavities. These metallic chambers
contain an electromagnetic field which oscillates at 400 MHz. If timed correctly, a proton
arriving in the RF chamber will only feel a force in the forwards direction, and will
hence be accelerated. After Linac 2, the protons reach the Proton Synchrotron Booster,
a circular accelerator or synchrotron which accelerates the protons to an energy of 1.4
GeV. Next, the protons are accelerated by the much larger Proton Synchrotron to 25
GeV. The last step in the accelerator chain is the Super Proton Synchrotron, CERN’s
second-largest accelerator measuring nearly 7 kilometers in circumference, where the
protons are accelerated to their LHC injection energy of 450 GeV. Finally, in the LHC
itself, protons are further accelerated through 16 RF cavities in each round trip, before
eventually reaching an energy of 6.5 TeV.

Bending and focusing magnets

Essential to the working of the LHC are the dipole and quadrupole magnets, of which
thousands are installed across the 27 km tunnel. The dipole magnets force the protons
in a circular path, requiring a magnetic field strength of up to 8.3 T to do so, depending
on the particle energy. This intense magnetic field is required to prevent the high-energy
protons from colliding with the beam walls. Since the field intensity is directly propor-
tional to the current travelling through the coil, the LHC’s electromagnets demand up to
11.000 amperes of current. The internal resistance of the coils would greatly hinder the
large current and cause massive energy losses. This is solved by using superconducting
materials such that, by cooling the coils to a temperature of 1.9 K, the phenomenon of
superconductivity can take over. At these low temperatures, current flowing through
the coils would not encounter any resistance. Additionally, quadrupole magnets are
utilised to act analogous to lenses, focusing the beams for example near collision points
to increase the rate of interaction.

Collider design

The LHC is a circular hadron collider, contrary to leptons used in the LEP collider. The
LEP collider generated electron-positron collisions at a peak centre-of-mass energy of
around 200 GeV. Despite having used the same tunnels in which now the LHC oper-
ates, it could not generate collision energies close to what the LHC is capable of. This
is mainly because of the physical limits imposed by synchrotron radiation: the radia-
tion emitted by charged particles when accelerated perpendicular to their velocity. The
power P emitted by a particle of mass m undergoing synchrotron radiation scales as
P ∼ m−4. Since the electron is around 2000 times lighter than the proton, the former
will emit a much larger proportion of its energy as synchrotron radiation. Therefore, in
order to achieve a higher collision energy, the LEP would have to counteract this effect
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Figure 1.4: Schematic overview of the Compact Muon Solenoid detector, taken from
[12].

either by putting more energy into the beam, or by increasing the radius of the collider.
On the other hand, the electron-positron collider has the advantage that it provides
clean event signatures and allows for precision measurements. This is less so in proton-
proton colliders, since protons are composite particles. As a result, proton-proton colli-
sions provide a larger variety of interactions at different center-of-mass energies, at the
cost of having more complex events that are difficult to analyse. Crucial for the analy-
sis of these events are the measurement of the energy and trajectory of stable particles
emerging from the proton-proton collisions. This is handled by detectors like ATLAS
and CMS, who are thought of as general-purpose detectors, capable of investigating a
wide range of physics. Other detectors at the LHC serve a more specific goal, for exam-
ple the LHCb detector which focuses on the interactions with b-hadrons, or the ALICE
detector, which is built to investigate collisions of heavy-ions rather than protons.

1.2.2 The Compact Muon Solenoid Detector

The CMS detector has a cylindrical shape with a diameter of 15 metres and a length of
21 meters [13]. It is composed of several concentric layers of detector material suited
for making energy measurements and recording particle trajectories, as seen in figure
1.4. The central component of the CMS detector is a superconducting solenoid with
a diameter of 6 metres, capable of generating a 3.8 T magnetic field. The purpose of
this field is to bend the trajectories of charged particles. From the bending direction
and curvature, the charge and momentum of the charged particles can be inferred. The
solenoid contains three other layers of detectors inside its coil.
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Inner tracker

The innermost layer is the silicon tracker, which surrounds the interaction point where
the beams cross. It contains concentric layers of silicon pixels or strips, each producing a
hit when a charged particle travels through them. The collection of hits can be connected
to reveal the charged particle’s trajectory. The tracker acceptance runs up to a pseudora-
pidity of |η| < 2.5. The pseudorapidity η is a spatial coordinate derived from the polar
angle θ of a particle’s momentum with respect to the beam axis, and it is defined as

η = − ln

[
tan

(
θ

2

)]
. (1.11)

Electromagnetic calorimeter

The layer surrounding the tracker is the Electromagnetic Calorimeter (ECAL). This
component measures the energy of electrons and photons, stopping them completely
in the process2. The ECAL uses lead tungstate crystals, which have the property of pro-
ducing light proportional to the particle’s energy in the event of an electron or a photon
passing through them. This light can then be detected by sensors on the back of the
crystals.

Hadronic calorimeter

Other particles, like hadrons, generally travel straight through the ECAL. The energy of
hadrons is then measured by the Hadronic Calorimeter (HCAL), the detector surround-
ing the ECAL. The HCAL consists of alternating layers of absorbing and scintillating
material, which makes it possible to measure the energies of the showers of particles
produced when a hadron hits the absorbing material.

Muon system

Finally, positioned at the exterior of the CMS solenoid, the muon chambers handle the
detection of muons. Muon detection plays an important role in the CMS experiment,
as implied by its name. Many physics analyses rely on the reconstruction of muons,
including the one presented in this thesis. For example, one of the golden channels of
the Higgs boson is the decay into a pair of Z bosons, which can themselves decay into 4
leptons. If all of the leptons are muons, then these will be relatively easy to detect. As a
result of their higher mass, muons suffer less energy losses due to radiation or scattering
processes. They are therefore capable of penetrating several metres of dense material,
hence they can easily pass through the calorimeters. Since electrons do not travel past
the ECAL, and tau leptons have a very short lifetime, any charged leptons detected in
the muon chambers are very likely to be muons. Another advantage of muon final states
is the higher resolution on the 4-lepton invariant mass, since muons suffer less energy
loss from interactions with the tracker. This is especially relevant to the scope of this

2Occasionally, one of these particles can get through the ECAL. This incident is called punch-through.
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Figure 1.5: Schematic representation of a transverse slice of the CMS detector, and how
particles interact with the different components of the detector. Image taken from [14].

thesis, where the four-muon final states will be used to reconstruct the Higgs boson.
The CMS muon system consists of three different devices: drift tubes (DT), cathode strip
chambers (CSCs) and resistive plate chambers (RPCs). A DT detector is comprised of
drift cells. These cells are filled with a mixture of Ar and CO2 gas, and contain a metal
anode wire at the center. When a muon travels through this gas it leaves behind a track
of electrons produced from the ionisation of the gas. These electrons then drift along
the electric field lines towards the central wire. The information of where along the
wire the electrons hit and the drift time of the electrons can be combined for several of
these DTs to obtain a muon track. The cathode strip chambers are composed of seven
trapezoidal cathode strip panels which form six gas gaps. Inside each of these gaps is
positioned a plane of anode wires, perpendicular to the cathode strips. Its operation is
similar to that of a DT. Finally, the resistive plate chamber is a detector consisting of two
high-resistivity parallel plates, separated by a thin volume of gas. Electrodes on either
side of the plates generate a large voltage in between. External detecting strips pick up
the electrons produced by the muon track. The small gap between the plates allows
for a good time resolution, contrary to the DTs and CSCs where the time resolution is
constrained by the drift time of the electrons. Taken together, the three types of muon
detectors provide the CMS detector with an excellent spacial and time resolution for the
muon tracks, and allows for the high-quality reconstruction of muons.

Particle identification

The interactions of particles with a transverse slice of the CMS detector is visualised in
figure 1.5. Particles can be identified by combining the information from the different
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components of the CMS detector. Charged particles have their trajectories mapped by
the inner tracker, but this is not the case for neutral particles. Neutrinos are the only neu-
tral leptons in the SM, but they rarely interact with matter and generally pass through
the entire detector unaffected. Neutral hadrons however can also be produced, and will
be stopped by the hadronic calorimeter. Thus, an energy deposit in the HCAL that does
not match any of the trajectories in the tracker can be identified as belonging to a neu-
tral hadron. Photons can be found in the same way, but this time by looking for energy
deposits in the ECAL. For the identification of charged particles, the information from
the inner tracker is crucial, since the direction in which a charged particle curves under
the influence of the CMS magnetic field yields the charge sign of the particle. Electrons
can then be identified for example by matching an energy deposit in the ECAL with
a charged particle trajectory in the silicon tracker. Similarly, muons are identified by
matching trajectories in the tracker with hits or tracks in the exterior muon chambers.

Trigger system

The LHC provides the CMS detector with an event rate of 40 MHz. It would be impossi-
ble to store and process the data supplied by the tracker, calorimeters and muon cham-
bers for each event. As a consequence, the event rate needs to be reduced significantly
without throwing out interesting events. This challenge is handled by the CMS trigger
system. The 40 MHz detector output is reduced to a bandwidth of 100 kHz by the first
level (L1) trigger. Pipelines provide a delay of around 3 µs in which the L1 trigger has
to decide whether the event is interesting or not. This decision is made using only infor-
mation from the calorimeters and the muon system. The silicon tracker supplies a large
amount of data and requires complex algorithms in order to infer meaningful informa-
tion from the data, which would take up too much time of the small (3 µs) window in
which the L1 trigger has to operate. At this stage, only basic calculations can be made
by the hardware components which are partly housed on the detector itself. When an
event is deemed interesting by the L1 trigger (L1 accept), the readout process initiates,
and the high-resolution data is transferred from the electronic components of the CMS
detector to the High-Level-Trigger (HLT) processor farm. The HLT relies on software
to execute complex algorithms using the complete read-out data. Here the event rate is
decreased further to around 0.5 kHz before data storage.

1.3 Current status of Yukawa coupling measurements

1.3.1 The third-generation fermions

As described in section 1.1.4, the SM predicts a linear relationship between the mass
m of a fermion and the value of its Yukawa coupling y. In other words, fermions of
higher mass will couple more strongly to the Higgs boson than lighter fermions. The
SM however predicts neither the values of the fermion masses nor the values of the
fermion Yukawa couplings. These parameters of the SM theory need to be established
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Figure 1.6: Yukawa couplings of the the third generation fermions and vector bosons
compared to the SM prediction. The error bars represent 68% confidence level intervals.
The lower panel shows the ratio of the measured couplings to the SM prediction. Image
taken from [16]

through experimental means. At the time of writing, the Yukawa couplings of the third-
generation of fermions have been found to be compatible with the SM prediction. The
current estimates for the third generation fermion Yukawa couplings and the muon
Yukawa coupling are shown in figure 1.6. This figure shows the values and 68% confi-
dence level intervals of the coupling modifiers κW , κZ , κt, κτ , κb and κµ. The κ param-
eters are the measured coupling strength divided by the expected coupling strength in
the SM, or κ = y/ySM. The results in figure 1.6 were obtained through a (M, ε) fit on a
combined analysis of Higgs boson decay modes [15], where the previously mentioned
parameters are related to the fermion and vector boson masses by

κf = v
mf

M1+ε
and κV = v

m2ε
V

M1+2ε
. (1.12)

Here, v = 246.22 GeV is the vacuum expectation value of the Higgs field. κf refers to
fermions and κV refers to the vector (W and Z) bosons. Note that, when (M, ε) = (v, 0),
the SM expectation κi = 1 is obtained. The Higgs decay to two fermions, H → ff̄ is
directly sensitive to the fermion Yukawa coupling yf . For a SM Higgs boson with a mass
mH = 125.38± 0.14 GeV, which is currently the most precise measurement of mH [17],
the highest expected decay branching fraction is expected for the Higgs boson decay into
a bottom quark-antiquark pair,H → bb̄, with a branching fraction ofB(H → bb̄) ≈ 57.8%
[18]. The coupling modifier κb in figure 1.6 was studied by observing the decayH → bb̄
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of Higgs bosons produced in association with a vector boson [19]. Through the use of
b-tagging algorithms, the large background of QCD can be rejected in order to retain
a high enough signal sensitivity. Additionally, Higgs boson production in association
with a vector boson gives an increased signal purity compared to the inclusive Higgs
production case.
For the coupling modifier κt of the top quark, a different channel was used. Since
mH < 2mt, the Higgs boson cannot decay directly into a pair of top quarks. There-
fore, the production of a Higgs boson in association with two top quarks [20] is used in
the combined analysis. This production rate is directly sensitive to the value of yt.
The coupling modifier κZ can be studied through the H → ZZ∗ → 4` decay channel
[15]. Despite its low branching fraction B(H → ZZ∗ → 4`) ∼ 0.03%, the four lepton
decay channel provides a clean signal to be distinguished from other background pro-
cesses. Only backgrounds which produce purely leptonic final states need to be taken
into account, therefore a low background contamination is expected for this decay chan-
nel. Likewise, the H →WW ∗ decay channel [15] also has a low background final state
with two leptons and two neutrinos. Additionally, this decay channel benefits from hav-
ing the second highest expected branching fraction, even though mH < 2mW . One of
the W bosons is produced off-shell, but this effect is countered by the high coupling
strength of the W boson to the Higgs boson, which elevates the branching fraction to
21.6%. Another coupling modifier included in the fit is κτ . Similar to the H → WW ∗

channel, the analysis of the H → τ−τ+ decay channel also profits from having a rela-
tively high expected branching fraction (6.4%), since the tau lepton is the most massive
lepton. The measured value of its mass is mτ = 1776.86± 0.12 MeV [18], which means
that the tau lepton is the only lepton capable of decaying hadronically. Approximately
65% of tau lepton decays are into charged or neutral pions, which are observed as nar-
row, collimated jets containing few particles. In the combined analysis [15], four final
states of the H → τ−τ+ decay channel are used, including eµ, eτh, µτh and τhτh, where
τh represents a tau lepton that underwent a hadronic decay.
Lastly, the κµ coupling modifier is studied via the H → µ+µ− decay channel. As was
the case in measuring yZ , the muon decay channel suffers from a low expected branch-
ing fraction of B(H → µ+µ−) ≈ 0.02%. The analysis includes the final state with two
isolated and oppositely charged muons, and searches for a peak in the dimuon invariant
mass spectrum around the mass of the Higgs boson. The results in figure 1.6 include
the recent evidence for the observation of a Higgs boson decay to a pair of muons [16].
This concludes the discussion of the state-of-the-art coupling measurements of the third
generation fermions, vector bosons and the muon. In the next section, the current con-
straints on the coupling of the charm quark will be discussed.

1.3.2 Measurements of the charm quark Yukawa coupling

From the direct search for Higgs boson decay to a bottom quark-antiquark pair [19,
21], and the production of a Higgs boson in association with a pair of top quarks [20,
22], the CMS and ATLAS Collaborations have found the Yukawa couplings of the third-
generation quarks to be compatible with the SM prediction. Recently, in the direct search
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Figure 1.7: Normalised Higgs boson transverse momentum (pT,h) distribution divided
by the SM prediction for different values of κc. Image taken from [23].

for Higgs boson decay into a pair of muons, the CMS Collaboration found the coupling
to the muon to also be consistent with the SM [16]. Apart from increasing the sensitiv-
ity on the above measurements, the next objective is to measure the Yukawa coupling
of the charm quark. This will however be significantly more challenging compared to
the measurement of the top and bottom quark couplings. The third-generation quarks
are considerably heavier than the charm quark, and are therefore expected to have more
interactions with the Higgs boson. The SM branching fraction of the Higgs boson de-
caying to a charm quark-antiquark pair is B(H → cc̄) ≈ 3%, which is relatively small,
especially when taking into account the large expected background from QCD multijet
events. Additionally, this decay channel requires the reconstruction and identification
of two jets formed by charm quarks, also known as charm jets. Distinguishing charm
jets from jets that were formed by other partons, such as bottom quarks, is a challenging
problem for which algorithms called c-taggers (or more general heavy-flavour taggers)
are constructed. These algorithms are discussed further in section 3.4.

The first direct bound on the coupling of the charm quark to the Higgs boson was
found by recasting the ATLAS and CMS findings on the H → bb̄ channel at 7 and 8
TeV, corresponding to an integrated luminosity of 5 and 20 fb−1 [24] respectively. The
approach here was to exploit the fact that jets originating from charm quarks may have
been mistagged as bottom-jets. Hence, the existing analysis on the H → bb̄ could be
recast to obtain similar information on the H → cc̄ rate. This resulted in a model-
independent upper limit of κc . 234 at 95% confidence level (CL). In another approach,
the bottom and charm quark couplings were probed by exploiting the transverse mo-
mentum distributions in Higgs production [23]. This method targeted Higgs plus jet
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events (H+j), which receives contributions from several channels such as gluon fusion
(gg → H+j) and production in association with a parton (qg → Hq and qq̄ → Hg). The
sensitivity of the Higgs boson transverse momentum distribution to the modification of
κc is shown in figure 1.7. Using Run-2 data (2016) corresponding to an integrated lu-
minosity of 35.9 fb−1 at 13 TeV, the CMS Collaboration obtained a 95% confidence level
(CL) interval κc ∈ [−33, 38] using differential cross section measurements [25]. A direct
search for theH → cc̄ channel was carried out by the CMS Collaboration, using proton-
proton collision data corresponding to an integrated luminosity of 35.9 fb−1, collected
at a centre-of-mass energy of 13 TeV at the LHC [26]. In this analysis, a strict limit is
imposed on the signal strength µ, defined as

µ =
σ(VH)× B(H → cc̄)

(σ(VH)× B(H → cc̄))SM
. (1.13)

The analysis targets Higgs bosons produced in association with a vector boson, the pres-
ence of which suppresses QCD multijet backgrounds. An observed (expected) upper
limit on µVH(H→cc̄) was found to be 70 (37+16

−11) at 95% confidence level (CL). A less sen-
sitive limit was found by the ATLAS Collaboration using 36.1 fb−1 of data collected with
the ATLAS detector at 13 TeV [27], corresponding with an observed (expected) upper
limit on µVH(H→cc̄) of 110 (150+80

−40) at 95% CL.

1.4 Proposal of a new method to probe yc

In the previous sections it was mentioned that the direct detection of the Higgs boson
decaying to a charm quark-antiquark pair H → cc̄ is extremely challenging. The chan-
nel suffers from a relatively low branching probability and a high background from
QCD multijet events, and relies on the reconstruction of two charm-tagged jets. A new
method is therefore proposed which relies on the observation of a Higgs boson in asso-
ciation with a charm-tagged jet (gc→ Hc). This method has two main advantages. The
first is that it relies on the reconstruction of one charm-tagged jet as opposed to two in
the direct search. As a result, a higher purity charm-tagging algorithm can be used to
further reduce the background from light and bottom jets, compared to the direct search
method. The second, and perhaps the biggest advantage, comes from the fact that the
sensitivity to yc does not originate from the Higgs boson decay, but from its production.
Therefore, the Higgs boson can be reconstructed from a much cleaner decay mode, such
as H → ZZ∗ → 4`. As a consequence, the non-Higgs background is significantly re-
duced.

In the SM, there are three leading-order diagrams which contribute to the production
of a Higgs boson in association with a charm quark. These are shown in figure 1.8.
Only the two diagrams on the left contain vertices where a direct yc-dependence enters,
highlighted by the solid orange dots. The diagram on the right does however contain
an effective vertex, where the quark triangle loop has been integrated out. In practice,
it is true that charm quarks could also run in this loop and introduce a yc-dependence,



1.4. PROPOSAL OF A NEW METHOD TO PROBE YC 17

Figure 1.8: Leading-order diagrams contributing to the process gc → Hc. The charm
quark Yukawa coupling yc enters in the vertices highlighted by the solid orange dot.

but since the charm quark is much lighter compared to the top and bottom quarks, this
contribution is expected to be relatively insignificant. Furthermore, because of the top
quarks running in the loop, this diagram is expected to form the dominant contribution
to the H + c production cross section when κc = 1.

In this thesis, the above process in which a Higgs boson is produced together with a
charm quark will be simulated up to the detector level. After applying an event selec-
tion, an artificial neural network (ANN) will be trained in order to further reduce the
background from events containing a pair of Z bosons that were not produced in the
decay of a Higgs boson. The outputs of this ANN will also be transformed into the Hc

discriminator, which is a newly constructed observable with an optimised sensitivity to
the charm quark Yukawa coupling yc. A constraint will then be placed on κc = yc/y

SM
c

using a binned maximum likelihood fit to the distribution of this new observable. The
result will be compared to the constraints that are obtained using only the reconstructed
transverse momentum of the Higgs boson candidate or the transverse momentum of the
most energetic jet, which are variables that were used in previous analyses [23, 28] to
constrain κc. In the next chapter, a general overview of ML algorithms and techniques
will be given, with a particular focus on artificial neural networks.
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Chapter 2

Machine learning and artificial
neural networks

2.1 The concept of machine learning

The field of machine learning (ML) involves the study of computer algorithms that are
capable of optimising themselves by learning from sample data. ML is seen as a sub-
field of artificial intelligence (AI), since the relevant computer algorithms mimic the way
humans learn and therefore possess certain intelligence. To be more precise, a ML al-
gorithm constructs a mathematical model from a training data sample in order to make
predictions on a sample that it has not seen before. Different approaches can be used
to train a ML algorithm, most notably supervised and unsupervised learning. In the
former approach, the algorithm learns by comparing its output to the desired (true)
output, whereas in the latter approach, this desired output is not available. Instead,
in unsupervised learning, the ML algorithm attempts to recognize patterns or certain
structures in the input data. One type of ML algorithms is the regression algorithm,
which tries to predict the value of a continuous variable rather than a discrete catego-
rization. A straightforward application of a regression model is in curve fitting, where
the model attempts to find a continuous function that most adequately describes the
distributed data. Particularly relevant to this thesis are classification algorithms or clas-
sifiers. The goal of a classifier is to predict in which category a certain event belongs,
given the input data. An example of this is heavy-flavour tagging, where a classifier
algorithm is constructed to label reconstructed jets according to the flavour of the quark
from which the jet most likely originated. Generally, the output of a classifier can be
interpreted as a probability for the event to belong to a certain category, for each of the
possible output classes. If the algorithm is only allowed to decide between two com-
plementary classes, then it is referred to as a binary classifier. Different ML approaches
with varying levels of complexity can be used to tackle a classification problem. In the
following section, models such as the decision tree and the artificial neural network will
be described.

19
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Figure 2.1: (a) Qualitative example of a two-dimensional training sample used by a bi-
nary decision tree to distinguish between signal (blue) and background (red). (b) Vi-
sualisation of the sequence of binary logic that is imposed on the input vector to classify
an event in a binary decision tree classifier.

2.2 The decision tree

A decision tree classifier is a ML algorithm that uses boolean logic to categorize data.
To be more precise, a decision tree takes an input vector x = (x1, x2, . . . , xD)T ofD vari-
ables xi, and assigns it to one of N classes by passing the variables through a series of
decisions. A binary decision tree, i.e. a decision tree for which N = 2, will be used to
demonstrate the workings of this algorithm. Suppose the input vector only contains
two variables, x1 and x2. The training sample can then be visualised as in figure 2.1a.
The events that are labelled red represent the background, while the events that are la-
belled blue represent the signal. From this training sample, it is clear that most of the
signal events are contained within the region defined by x1 ≥ 2 and x2 > 2. The bi-
nary decision tree will attempt to find this region by imposing cuts on the input data of
the training sample, such that an optimal separation between signal and background is
achieved. After the decision tree has been constructed, it can be visualised as in figure
2.1b. At the root node, the entire training sample is split into two subsets by comparing
the variable x1 to the threshold value T = 2. The leaf nodes, which are the outermost
nodes, are responsible for labelling the event as being either signal or background. In
this example, the decision tree obtains a signal purity of 88% (in the training data) in
the blue leaf node, which corresponds with the top-right region in the training sample
graph. Any input data that has not been seen before by the binary decision tree classifier
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will undergo the same series of cuts that were imposed on the training sample. These
new events will then be labelled depending on the leaf node they end up in. Both the
chosen variable that is used to split the training sample and the corresponding thresh-
old value at a given node are all trainable parameters which will be optimized during
the training procedure.

The previous example offers a simple qualitative explanation for the workings of the de-
cision tree. In most situations however, the training sample will be higher-dimensional
and the structure of the decision tree will become more complex. In these situations, it
becomes increasingly important to guide the construction of the decision tree by impos-
ing certain restrictions on its growth. The tree can for example be required to not grow
further than a set number of layers known as the tree depth. The final number of leaf
nodes can also be constrained for this purpose. If the values of these parameters are not
chosen optimally, the decision tree could become overtrained, a phenomenon that will
be discussed further in section 2.5. The decision tree classifier can be optimised further
through a method known as boosting. Instead of a single tree, an ensemble (called a
forest) of multiple shallow decision trees is constructed. These trees are trained sequen-
tially on weighted training samples, where higher weights are assigned to events that
were incorrectly classified by the previous trees. The resulting tree is called a boosted
decision tree (BDT).

2.3 Artificial neural networks

2.3.1 Single-layer perceptron

An artificial neural network (ANN) is a model composed of interconnected nodes or
neurons, the function of which is inspired by neurons in biological brains. The concept
of the artificial neuron was first developed in the 1950s and 1960s by Frank Rosenblatt
[29], who developed the perceptron, a mathematical model that approximates the func-
tion of a biological neuron. The perceptron takes in a number N of binary inputs, and
returns a single binary output. To be precise, the input vector x is composed of N vari-
ables xi ∈ {0, 1}, i ∈ {1, . . . , N}. Each of the input variables is associated with a weight
wi, which determines how important the respective input is to the output. These weights
can be subject to change to allow for further optimisation of the perceptron. Essentially,
the perceptron computes a weighted sum of the input variables,

S =
N∑
i=1

wixi, (2.1)

which is then compared to a threshold value T . The output of the perceptron is then
generalised by

output =

{
0 if S ≤ T
1 if S > T

(2.2)
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Figure 2.2: Diagram showing how the activation of a neuron in the first layer of an arti-
ficial neural network is calculated from the input variables and the associated weights.

In other words, the perceptron only outputs a ’1’ if the value of the weighted sum ex-
ceeds the threshold. This behaviour is analogous to a biological neuron outputting an
electrical signal shaped as a voltage spike, in response to the receipt of similar signals
from connections to neighbouring neurons. For this reason, another name for the per-
ceptron is the artificial neuron. Since the only computation performed by the perceptron
is the calculation of a weighted sum, it can only be applied successfully to linearly sep-
arable problems, i.e. problems where the signal and background can be separated by
a single hyperplane. More complex problems can be handled by a network of artificial
neurons, where the output of one layer of perceptrons is fed as an input to a subsequent
layer of perceptrons. Non-linear behaviour can be introduced by a specific choice of the
function that transforms the weighted sum into the output value of the artificial neuron.
These functions are called the activation functions.

2.3.2 Construction of an artificial neural network

The perceptron in the previous section is one example of an artificial neuron. The out-
put of an artificial neuron can be generalised by introducing the activation function f .
This function is responsible for transforming the weighted sum into the output value
of the neuron, the activation z. The conditional output of the single-layer perceptron is
produced by the Heaviside step function θ(x), which is zero for negative arguments and
one for positive arguments. In general, the activation z of an artificial neuron is given
by

z = f

(
N∑
i=1

wixi − T

)
. (2.3)

The threshold valueT is also referred to as the bias of the neuron. If chosen high enough,
the neuron will mostly output negative values, which in the case of the Heaviside step
function results in an output of zero. In the case of the single-layer perceptron, the bias
term prevents the artificial neuron from firing unless the weighted sum constructed from
the input variables has a high enough value to overcome this negative bias. Figure 2.2
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shows the general form of the activation zj which is calculated from the input variables.
A traditional feed-forward neural network is constructed out of layers of interconnected
neurons. The first layer is known as the input layer, and features the variables xi of
the input vector x. Each of the neurons in the input layer simply outputs the value of
the corresponding input variable to each of the neurons in the next layer. The layers
in between the input and output layers of a neural network are known as the hidden
layers. In the first hidden layer, the inputs are simply the weighted sums of the input
variables. Each neuron in the hidden layer has a different set of weights associated with
it. The activation zj of neuron j in the first hidden layer can be calculated by

zj = f

(
N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
, (2.4)

withN the dimension of the input vector x. The weights of the first hidden layer can be
represented by a weights matrix W(1), where the entries in column j represents the set
of weights used by the j-th neuron in the first hidden layer. The threshold value T has
been replaced by an additional entry in the weights matrix for each hidden neuron. The
notation can be simplified by introducing a dummy variable x0 which is always equal to
one. If we write z = (z0, z1, . . . , zM )T, withM the number of neurons in the first hidden
layer, then equation (2.4) becomes

z = f
(
W(1) · x

)
, (2.5)

In this notation, the activation function acts on each of the elements of the vector result-
ing from the dot product. The value of weight wji can be interpreted as the strength of
the connection between input neuron i and hidden neuron j. In other words, a larger
value ofwji indicates that the variable xi of the input vector x contributes more towards
the activation of the hidden neuron j. The activations of the neurons in a second hidden
layer can be calculated in the same manner. Instead of taking the vector x as input, the
neurons in the second hidden layer use the activations of the neurons in the first hidden
layer. Another weighted sum is computed, using another weights matrix W(2) which
represents the strength of the connections between the neurons of the first and second
hidden layer. The output of the artificial neural network is calculated by the neurons in
the output layer. The number of neurons in the output layer is equal to the number of
categories that are required to tackle a certain classification problem. An example of a
neural network with a single hidden layer is given in figure 2.3. The output values yk
are often normalised by the final activation function, which can be different from the
activation function that has been used throughout the network, such that ∑k yk = 1.
Additionally, the output values are usually re-scaled to the interval [0,1]. This allows
for a probabilistic interpretation of the network’s output variables. For instance, the ac-
tivation yi of the neuron i in the output layer can be interpreted as the probability for
the input event to belong to the i-th category. If yk is close to unity, then the ANN is very
confident that the event belongs to the corresponding class. An example of an activation



24 CHAPTER 2. MACHINE LEARNING AND ARTIFICIAL NEURAL NETWORKS

x1

x2

x3

x4

z1

z2

z3

z4

z5

z6

y1

y2

input layer hidden layer output layer

Figure 2.3: A diagram of an artificial neural network with one hidden layer containing
six neurons and an output layer containing two neurons. This neural network takes four
variables as an input.

function is the Rectifier Linear Unit or ReLu function, which is defined as

fReLu(x) =

{
0 if x ≤ 0
x if x > 0

(2.6)

In other words, this function returns the argument if it is positive, and returns zero if
this is not the case. Another activation function that is typically used in the output layer
is the softmax function, which is defined as

fSoftMax(zi) =
ezi∑M
j=1 e

zj
, (2.7)

where M is the number of neurons in the output layer. The term in the denominator
ensures that the outputs of the network sum up to one.

2.3.3 Training a neural network

In supervised training, every event in the training sample has been labelled with the true
category that the event belongs to. The performance of the ANN can be evaluated by
comparing its predictions on a training set of input vectors {xn}with the corresponding
set of target vectors {tn}. Suppose the ANN is tasked with classifying an event in one of
N categories, with the event truly belonging to the j-th class. If the output of the ANN
is the vector y = (y1, y2 . . . , yN )T, then the elements ti of the corresponding target vector
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t are all equal to zero, except for ti=j which is set to one. Optimally, for this event, the
neurons in the output layer should produce values that are somewhat in line with this
target vector.

The loss function

One way to quantify the performance of an ANN on a labelled sample is to introduce
a loss function L(w), where w represents the entire set of weights associated with the
neural network. An intuitive version of such a loss function is the squared-error loss
function, given by

L(w) =
1

2

M∑
n=1

‖yn − tn‖2, (2.8)

where yn represents the output vector of the network in response to the input vector
xn. If the difference between the target vector tn and the network prediction yn is small,
then the norm of this difference will also be small. This corresponds with the network
predicting a value close to one in the true category, labelled by the target vector, and
values close to zero in all other categories. In equation (2.8), the squared differences be-
tween the target and output vector are calculated for each event in the labelled sample,
and are then summed. Therefore, lower values of L(w) are associated with a network
that has a higher performance on the labelled sample. Another loss function is the cat-
egorical cross entropy function, which will be used to train the ANN in section 4.3.1.
This loss function is defined by

L = −
N∑
n=1

4∑
i=1

(tn)i log((yn)i), (2.9)

where (·)i signifies the i-th component of a vector.

Optimisation of the weights

For a fixed architecture, the performance of an artificial neural network is entirely de-
pendent on the weights associated with each layer. As a consequence, the problem of
training a neural network becomes a problem of finding a set of weights w that min-
imises the loss function. Because of the highly non-linear dependence on the weights,
numerical approaches need to be used to find a solution to this optimisation problem.
One approach is that of gradient descent, where the weights are updated in the direction
of the negative gradient of the loss function,

w′ = w − η∇L(w), (2.10)

where η is the learning rate, which should be chosen small enough such that the weights
are updated in small steps towards the minimum of the optimisation problem. Each
cycle during which the ANN processes all the training data and updates its weights
accordingly is known as an epoch. One can also split the training sample into smaller
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batches, enforcing an update of the weights after each batch has been processed. As a
result, the weights are updated multiple times in each epoch, before reusing the same
data again in the next epoch.

Backpropagation

Calculating the gradient in equation (2.10) is certainly a challenge. One approach which
is widely used in training is backpropagation. The general idea behind backpropagation
is to introduce a small change in the weights of the network layer-by-layer, observe the
effect on the result of the loss function, and then update the weights accordingly. For
a given neuron, the loss function is dependent on the weights corresponding to that
neuron, and the weights of any neurons in the subsequent layers including the output
layer. The problem simplifies when one starts out at the final hidden layer. Here, the
loss function’s dependence on the next layer’s neurons is known, since the next layer is
simply the output layer. By varying the weights of each neuron in the final hidden layer,
the neural network makes slightly different predictions which are then compared to the
targets by the loss function. The weights associated with these neurons are then updated
such that lower values of the loss function are obtained. Now that the dependence of
the loss function on these neurons is known, one can move back one layer and repeat the
same process. This process, where one runs through the layers of the neural network in
reverse and updates the weights layer-by-layer, is referred to as backpropagation. It is
discussed in more detail in appendix A.

2.4 Receiver operator characteristic curve

The performance of a binary classification algorithm can be visualised using a receiver
operating characteristic (ROC) curve. Here, the true positive rate (TPR) or signal selec-
tion efficiency is plotted against the false positive rate (FPR) or background acceptance
for different discrimination thresholds. These quantities can be calculated after the clas-
sifier has made a series of predictions on a sample that contains events that were not
used in training. The binary classifier outputs a probability P for the event to belong to
the signal class, with the complement 1 − P representing the probability for the event
belonging to the background class. As mentioned before, these outputs are typically
continuously distributed over the interval [0, 1], contrary to the perceptron which out-
puts either one or zero. The output of the perceptron is straightforward to interpret: the
event either belongs to a certain class or it does not. In general classifiers, this is not the
case. Instead a threshold T needs to defined, such that an event is predicted to belong
to the signal class if P > T . The choice of T is arbitrary, and different choices produce
different performances of the classifier. When a signal event is classified as signal, then
the prediction of the classifier is a true positive (TP). If that event is classified as back-
ground instead, then the prediction is a false negative (FN), which is also called a type
II error. Likewise, a false positive (FP) prediction (or type I error) corresponds with
a background event being classified as signal, while a true negative (TN) prediction
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means the background event was classified correctly. Using this terminology, the signal
selection efficiency ε can be defined as

ε =
NTP

NTP +NFN
. (2.11)

The signal selection efficiency ε is also known as the probability of detection, since it is
defined as the fraction between the number of correctly classified signal events and the
total number of signal events. In the same way, the specificity or background rejection
r can be defined as the fraction between the number of correctly identified background
events and the total number of background events. Relevant to the creation of the ROC
curve is the background acceptance 1− r, defined by

1− r =
NFP

NFP +NTN
. (2.12)

The background acceptance is also known as the probability of false alarm, since it keeps
track of the number of background events that were incorrectly classified as belonging to
the signal class. For each value ofT ∈ [0, 1] the signal efficiency ε and the background ac-
ceptance 1−r can be calculated. The ROC curve is then generated by plotting the points
(ε, 1 − r) for the different selection thresholds. The performance of a classifier can be
quantified by introducing the area under the curve or AUC-value. A better performance
is associated with classifiers whose ROC curves lie closer to the lower-right corner (1, 0)
of the (ε, 1 − r) plot, since this point corresponds with a classifier that identifies 100%
of the signal events correctly, with not a single background event being misidentified.
Points on the diagonal ε = 1− r correspond with classifiers that are no different from a
classifier which randomly distributes the events, i.e. a classifier that uses the result of a
coin-toss to decide to which class an event belongs.

In the case of a multi-class or non-binary classifier, a ROC curve can still be used to
visualise the performance of the model. In the general case ofN output classes, one can
study the performance of the classifier for distinguishing between two classes i and j by
constructing a binary discriminator

i vs. j discriminator =
P(i)

P(i) + P(j)
. (2.13)

This discriminator is naturally also distributed between 0 and 1, and can be used to cre-
ate the ROC curve for distinguishing between these two classes. A multi-class classifier
can also be converted into binary-classifier by constructing a ”1 vs. all” discriminator.
Here, the performance of the classifier can be studied for distinguishing between a sin-
gle output category i and all other output categories. In this case the discriminator is
simply defined as P(i).
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2.5 Overtraining

An important concept in ML is that of overtraining or overfitting. In general, a model
is overtrained when it has learned unwanted behaviour. An example of this is when a
model learns the training data by heart instead of identifying any underlying patterns.
This behaviour can show up in any supervised training problem. In a regression prob-
lem, such as one-dimensional curve fitting, the model attempts to find a function that
most adequately describes the observed distribution of a continuous variable. These ob-
servations will have some inherent noise, which causes them to diverge from their true
distribution. In extreme cases, an overfitted function will pass through each of the data
points, and this way obtain a perfect match with the observations. Here, the model has
decided to fit the noise of the data instead of finding the underlying distribution. The
performance of this model on the training sample is perfect, but when another set of
observations is pulled from the same distribution and is compared with the overfitted
model, the performance drastically decreases. This is the defining signature of an over-
trained model. For general ML algorithms, this can be quantified by introducing the
loss and accuracy curves on a training and an independent validation sample. On the
training sample, the value of the loss function should decrease after each subsequent
training, while the accuracy should increase. After each training, the performance of
the model can be checked in a separate validation sample. Here, the same trend should
be observed. An overtrained model would have a very high accuracy and a low value
of the loss function on the training sample, but a very low accuracy and a high value of
the loss function on the validation sample.

A decision tree can also become overtrained. In extreme cases, the decision tree could
grow indefinitely until splitting is no longer possible, and the leave nodes of the deci-
sion tree will contain a very small but pure subset of the training sample. This decision
tree would have a perfect accuracy in classifying the events of the training sample, but
would drastically underperform when confronted with a testing sample containing new
events. This overtraining can be prevented by more carefully choosing the parameters
that regulate the growth of a decision tree, such as limiting the maximum depth of the
tree or requiring a minimal amount of events to be contained in the leaf nodes. Another
procedure used to prevent overtraining is pruning, where some of the redundant nodes
in a decision tree are cut, resulting in a less complex decision tree that is less sensitive to
overtraining.

A popular way to avoid the overtraining of an artificial neural network is via dropout.
This method is similar to pruning in decision trees. In each training epoch of the ANN, a
certain percentage of neurons is randomly frozen. These neurons are effectively dropped
out of the ANN during that epoch. As a result, the model is prevented from depending
too much on a select few neurons, allowing it to optimise the other neurons as well.



Chapter 3

Simulation and reconstruction of
proton-proton collisions

The Standard Model (SM) of particle physics has withstood decades of experimental
verification. Despite the many successes of the SM, many its predictions still need to be
tested and refined over an energy range spanning many orders of magnitude, with the
highest energies being reached at particle colliders such as the Large Hadron Collider
at CERN. At one of the four interaction points on the LHC, the CMS detector attempts
to observe and reconstruct the outgoing particles resulting from the generated proton-
proton (pp) collisions. In order to compare this experimental data with theory predic-
tions, a detailed understanding of the pp collision process is needed. In the first part
of this chapter, a description of this process will be given. The predictions of a theory
model on this scattering process are then transformed into the signals that a detector
would observe using Monte Carlo simulation techniques. This is discussed in the sec-
ond part of this chapter. Finally, the methods used by the CMS detector to reconstruct
physical objects from detector outputs are described in the final part of this chapter.

3.1 Proton-proton collisions

At the LHC, proton-proton collisions are used to test the limits of the SM. It is impor-
tant that the pp collision process is well understood, such that precision measurements
become possible. In the following paragraphs, the pp collision will be described in sev-
eral steps, from the fundamental process described by theory models such as the SM
Lagrangian, to the multitude of outgoing final-state particles that are observed in the
detector.

3.1.1 The scattering process

Protons are composite particles, composed of two up quarks and one down quark. It is
therefore more accurate to think of proton-proton collisions as collisions between their

29
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Figure 3.1: Schematic overview of the hard-scattering process in a proton-proton colli-
sion, followed by the final-state parton shower and hadronisation process.

constituent quarks. This alone increases the difficulty in describing the collision pro-
cess, but there is an additional complication: protons are dynamic systems. On top of
the up and down quarks, which are referred to as the valence quarks, there is a constant
creation and annihilation of quark-antiquark pairs of any flavour within the proton sys-
tem [30]. Additionally, gluons are exchanged constantly between the valence quarks
and the additional sea quarks. It is therefore possible that, in a proton-proton collision,
an interaction between two gluons takes place, each originating from one of the collid-
ing protons. The initial state of the interaction process can be described by introducing
the parton distribution functions of the proton, which give the probability of finding a
parton (quark or gluon) within the proton with a certain fraction of the proton’s energy.

Parton interactions

An interaction between partons can be broken down into several stages. Before enter-
ing the interaction, the partons can radiate gluons or photons. This is referred to as the
initial-state radiation (ISR). Similarly, final-state radiation (FSR) can be emitted by the
partons which leave the interaction. At sufficiently high energies, a gluon emitted by a
quark could split into a quark-antiquark pair or into a pair of gluons, which can then
themselves split into another pair of partons. As a result, the initial and final-state radi-
ation can produce a cascade of particles. The shower of particles that results from the
emissions from one initial parton is referred to as the parton shower.

Underlying event and pile-up

While proton bunches cross in the LHC interaction region, it is possible that more than
one proton in the bunch interacts with protons in the crossing bunch. The interaction
with the highest energy is the hard scattering event, while the larger number of addi-
tional lower-energy collisions are referred to as pileup. For the protons participating in
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the hard scattering, only one parton of each proton will be involved in the hard scatter-
ing event. The remnants of the protons will however also give rise to some activity in
the detector, which is referred to as the underlying event. An example of a hard scattering
event is visualized in figure 3.1.

3.1.2 Jets

The partons emerging from the hard scattering suffer energy losses as a consequence
of their QCD and QED emissions. After a certain energy scale is reached, the particles
leaving the parton showering process will start forming hadrons. This is a consequence
of the principle of confinement, which states that colored particles cannot be isolated.
Even though this process has not yet been described analytically from first principles,
it can be described by using phenomenological models, called fragmentation functions,
which give the fraction x of the parton energy that is carried away by the hadron. Most
of the hadrons formed by this process are unstable and will eventually decay into the
particles that are either stable or live long enough to be detected. As a result, the pres-
ence of a parton in the final state of an interaction can be observed as a group of particles
whose trajectories are roughly aligned. This stream of particles with similar trajectories
is referred to as a jet. Any variables associated with the original parton have to be in-
ferred from the properties of the jet. It is therefore important that jets are reconstructed
optimally. For this purpose, different algorithms exist which will be explored further in
later sections. The hadronisation of a parton is often accompanied by the production of
an additional jet, which introduces additional challenges to reconstruct the kinematics
of the original parton.

3.2 The simulation chain

The previous section highlighted the different steps in which a proton-proton collision
is thought to take place. Starting from a theory model, such as the SM or an extension
thereof, a differential cross section can be calculated for a process of interest. Most of
the time, the particles that leave the fundamental interaction process can not be detected
directly. Unstable particles will decay into other particles, gluons and quarks hadronize
and form jets, and some particles like neutrinos traverse the detector without any in-
teraction and hence without leaving a direct signature. Therefore, the predictions of a
model cannot be compared directly to the results of the experiment. Only by simulating
the different physical effects that the particles of interest undergo, from the interaction
point all the way to the detector level, a comparison between theory and experiment
can be made. These simulations rely on the use of Monte Carlo methods, which are
techniques that use random number generators to obtain the stochasticity of physics
phenomena, such as generating probability distributions predicted by theory. For the
purpose of simulating a pp-collision, each of the steps described in the previous section
is handled by a different simulation program. In this section, the methods that are used
to simulate the collision process up to the detector level will be described.
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3.2.1 Matrix element generator

At the heart of the proton-proton collision process lies an interaction between funda-
mental particles. The details of this interaction, such as the properties of the outgoing
particles, are described by theory models such as the SM. A complete description of
the interaction, i.e. a transition from an initial state to a final state, is given by the ap-
propriate matrix elements. For simulation purposes, one usually starts out with the
calculation of the matrix elements of the process of interest. This step involves the com-
putations of tree-level, next-to-leading order (NLO) and sometimes even higher order
(NNLO) cross-sections for this process. One example of a computer program capable of
handling these computations is the MadGraph5_aMC@NLO matrix element generator [31],
which is also used to generate the necessary simulations in this thesis. Essential to the
working of the matrix element generator is the theory model that it needs to be supplied
with. The theory model contains information on the Lagrangian of the theory and the
parameters that are associated with it, such as the couplings and masses of the relevant
particles. From this model, a set of Feynman rules is derived that will be used by the
matrix element generator to reproduce the correct matrix elements. This procedure is
automated by FeynRules, a Mathematica-based package [32]. The theory model, to-
gether with the process of interest, are supplied to the matrix element generator from
which it computes the relevant Feynman diagrams. It then also calculates phase space
integrals (based on the defined kinematic phase space) and allows to generate events
whose kinematics follow the predicted probability distributions.

3.2.2 Parton shower simulation

As mentioned previously, the parton shower follows the hard scattering process in the
pp collision. In some way, the parton shower is the first process which transforms the
fundamental process of interest, which contains two or more outgoing particles, into the
complex event that is observed in detectors. The main processes which contribute to the
formation of a parton shower are gluon radiation from a quark q → qg, a gluon splitting
into two gluons g → gg and a gluon splitting into a quark-antiquark pair g → qq̄. With
each of these processes is associated a probability of occurrence, which can be calculated
from the DGLAP (Dokshitzer – Gribov – Lipatov – Altarelli – Parisi) evolution equations
[33]. Any partons involved in the hard scattering will undergo these branchings until a
certain energy scaleQ2 is reached. In the case of a final-state parton shower, this energy
scale is the QCD scale, Q2 = λ2

QCD, where the strong coupling constant becomes close
to unity and therefore results from perturbation theory can no longer be applied. It is
assumed that the hadronisation process kicks in when the partons of the shower have
evolved downwards in energy to the QCD scale. The parton shower can be simulated
using a program such as Pythia8 [34], which is used for the hard scattering events
generated by MadGraph5_aMC@NLO.
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3.2.3 Hadronisation

The next important step in the pp collision is the hadronisation of the partons that leave
the interaction, along with the colored particles that are produced by the parton shower.
Following the principle of confinement, the partons cannot be isolated and as a conse-
quence start forming hadrons by producing quark-antiquark pairs from the vacuum.
This process cannot yet be described analytically from first principles. There do how-
ever exist two models that provide an accurate description: the string model and the
cluster model. Both use an iterative approach to describe the hadronisation process. In
the string model, when the distance between a quark-antiquark pair increases, energy
is lost to the colour field, whose field lines connect the pair in a string-like configuration
[35]. With this string is associated a uniform energy per unit length, which causes the
string to break up into a quark-antiquark pair when sufficient energy has become avail-
able. These string breakups will keep occurring as long as the partons have enough
energy. Eventually, a set of colorless hadrons is obtained. In the cluster model, the color
connections of the particles in the parton shower are used to form color-singlet states.
Any gluons that are present in the shower will split into a quark-antiquark pair and form
color-singlet states with surrounding quarks. This way, the partons are clustered into
colorless hadrons.

3.2.4 Detector simulation

The stable particles which emerge from the pp collision are observed by the CMS de-
tector, which is comprised of several layers of detector material. Therefore, a detailed
model of the CMS detector is needed to describe how these final-state particles interact
with the detector material. Such a model is included in the Geant4 simulation toolkit
[36], which is generally used to simulate the passage of particles through matter. The
model takes into account the effect of the intense magnetic field of the CMS detector
on the trajectories of charged particles, and also handles the interactions of the particles
with the dead zones of the detector, for example the support structures.

3.3 Reconstruction of physics objects

For each collision event that takes place, the CMS detector outputs a variety of sig-
nals from each of its components. From the energy clusters in the electromagnetic and
hadronic calorimeters to the hits produced in the inner tracker, all of these signals still
need to be somehow converted into physics objects before any analysis can be started. In
this section, the reconstruction algorithms that are used to obtain these physics objects
are described. At the CMS detector, the signals from each of the detector components
are collected and used to obtain an improved event description, in which the properties
of each detected final-state particle are reconstructed. The approach that is used in the
CMS detector to achieve this reconstruction is called the particle-flow (PF) reconstruc-
tion algorithm [37].
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3.3.1 Track reconstruction

An important feature of the inner tracker is that it allows for the measurement of the
momentum of the charged particles that pass through it. From the geometry of the
track, a set of helix parameters can be derived that directly relate to the particle momen-
tum. It is therefore important that this trajectory is reconstructed accurately. In the PF
algorithm, this is done using the Kalman Filtering (KF) method, where the tracks are
reconstructed in three separate stages. The first stage is the initial seed generation, where
a few hits from the inner tracker are used to obtain a first estimation of the charged par-
ticle’s trajectory. Next is the trajectory building stage. Here, hits are gathered from all
tracker layers along the particle trajectory that was seeded in the first stage. The final
particle trajectory is then fitted to this collection of hits to obtain the origin, transverse
momentum and direction of the charged particle.

3.3.2 Muon reconstruction

Essential to the analysis presented in this thesis is the reconstruction of muons. The
momentum of the muon is obtained through the reconstructed trajectory of the muon,
obtained from hits in the inner tracker and the exterior muon chambers. Dependent on
the way the muon trajectory is reconstructed, the high-level muon physics object can
be one of three types. The first is the standalone muon, where exclusively hits from the
muon system are clustered to form track segments, which are ultimately fitted to obtain
a standalone-muon track. Tracks in the inner tracker (inner tracks) are matched with each
of these standalone-muon tracks if they are compatible. A fit to the combined collection
of hits from the standalone-muon track and inner track results in a global-muon track,
which corresponds with the second muon type, the global muon. The third type is the
tracker muon. Here, inner tracks are matched with track segments in the muon system.
If a match is obtained with just one of these segments, then the inner track becomes
known as a tracker muon track. The benefit of this inside-out approach is that, for low
muon momenta, the tracker muon reconstruction is more efficient than the global muon
reconstruction, since the former requires only one muon segment in the exterior muon
system. The global muon reconstruction on the other hand has a high efficiency for
muons penetrating through multiple muon stations. Almost all muons produced within
the acceptance of the muon system are reconstructed either as a global muon or as a
tracker muon [37]. A large amount of muons are even reconstructed as both. Global
and tracker muons that share the same inner track are merged into one muon object.

Selection quality

Different reconstruction qualities are assigned to the muon objects. A selection require-
ment that will be used in later sections of this thesis is the tight muon ID. A tight muon
is a global muon with a higher track fit quality of χ2/d.o.f. < 10 and with at least one
muon chamber hit included in the fit [38]. The muon is also required to be reconstructed
inside-out as a tracker muon, using more than 10 inner-tracker hits.
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3.3.3 Jet reconstruction

Partons produced in proton-proton collisions give rise to sprays of collimated particles
known as jets. A jet can have different features depending on the properties of the par-
ticle from which it originated. It is therefore important that the outgoing particles are
clustered together correctly, such that the jet can be optimally reconstructed. One clus-
tering algorithm adopted by the CMS collaboration is the anti-kT algorithm. It can be
seen as belonging to a broader class of sequential recombination jet algorithms [39]. In
these algorithms, two distance measures are defined as

dij = min
(
k2p
ti , k

2p
tj

) ∆2
ij

R2
and diB = k2p

ti , (3.1)

where ∆2
ij = ∆y2

ij + ∆φ2
ij and kti, yi and φi are respectively the transverse momentum,

rapidity and azimuth of particle i. The CMS collaboration uses a default value of 0.4
for the radius parameter R, which is a measure for the radius of the conical shape that
defines the geometry of a jet. The general approach of this algorithm is to loop over each
pair of reconstructed particles, and compare the values of dij and diB . If the smallest
distance is dij , the two particles are merged into a new entity, the pseudo-jet. The algo-
rithm then proceeds in the same way by considering the pseudo-jet as another particle,
such that it can cluster together with other particles or pseudo-jets. If instead diB was
the smallest distance, then the particle (or pseudo-jet) is considered a reconstructed jet
and is removed from the list of entities.

3.4 Jet flavour-tagging algorithms

3.4.1 Heavy-flavour jets

Knowledge of the flavour of the quark that initiated a jet is vital in many situations. An
algorithm that attempts to find the jet flavour using its observed properties is known as
a jet flavour tagger. Important to the subject of jet flavour tagging is the terminology
described below, which is used to denote the jet flavours in simulated events. In the
simulation, the flavour of the jet can be defined by a procedure called ghost-matching.
In this procedure, the reconstructed jets are reclustered, but this time together with the
generator-level hadrons. These hadrons are also called ghost hadrons, because their mo-
menta are set to a negligibly small number such that the reconstructed jet momentum
is not affected. The flavour of the reconstructed jet in a simulation is then one of the
following options:

b jet: The reconstructed jet contains at least one ghost hadron containing a bot-
tom quark, or a b (ghost) hadron in short.
c jet: The reconstructed jet contains at least one c (ghost) hadron, and no b
(ghost) hadrons. This is important, since a bottom quark is heavier than the charm
quark and therefore a b hadron can decay into a c hadron. It is therefore possible
that a b jet contains c hadrons, but not vice-versa.
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Figure 3.2: Depiction of a heavy-flavour jet produced from the decay of a b or c hadron,
which displaces the charged-particle tracks from the primary interaction vertex (PV) to
a secondary vertex (SV). The track displacement is characterised by the impact param-
eter (IP), defined as the distance between the PV and the point of closest approach of
the displaced tracks. Image taken from [40].

light (udsg) jet: The reconstructed jet does not contain any c or b (ghost) hadrons.
As a result, the jet was generated either from a gluon or from one of the lighter
quarks (u,d,s), and is therefore referred to as a light jet.

The b and c jets are collectively known as the heavy flavour (HF) jets. An algorithm
whose main objective is to identify c jets over a background of b jets and light jets is
referred to as a c-tagger. Likewise, a b-tagger attempts to identify b jets over a back-
ground of c jets and light jets. The development and further optimisation of b-taggers
and c-taggers is essential, since they play an important role in many physics analyses.
An example application is in the study of the properties of the top quark. The lifetime of
the top quark is shorter than the timescale at which hadronisation occurs, and therefore
top quarks are the only quarks that do not hadronize. Instead, in nearly all cases, the top
quark decays into a W boson and a bottom quark. Any analysis related to the top quark
that makes use of this decay is therefore heavily dependent on b-taggers. Likewise, c-
taggers are used in the analysis presented in this thesis, and are vital to identifying the
charm quark that is produced along with a Higgs boson in the process qg → Hc.

3.4.2 Properties of heavy-flavour jets

Quarks leaving the hard scattering will form a jet of hadrons. Hadrons containing bot-
tom quarks are called b hadrons and have relatively long lifetimes of the order of 1.5 ps
[18], and are therefore capable of travelling a small distance (up to about a cm) away
from the collision point, which is also referred to as the primary interaction vertex (PV).
The decay of the b hadron results in charged-particle tracks that are displaced from the
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Figure 3.3: Secondary vertex (SV) mass mSV distribution for bottom (red), charm
(green) and light jets (blue) in tt̄ events, taken from [40]. The last bin contains the
overflow of jets for which the SV mass was greater than 10 GeV.

PV. Because of this, a secondary vertex (SV) can be reconstructed from the displaced
inner tracks. Since the lifetime of b hadrons is typically an order of magnitude higher
than the lifetime of c hadrons, a longer flight distance from the PV to the SV is a strong
indicator towards b jets. The track displacement can be characterised further by in-
troducing the impact parameter (IP), as in figure 3.2, which is defined as the distance
between the PV and the point of closest approach of the displaced tracks. Another im-
portant variable in distinguishing b jets from c jets is the SV massMSV, which is defined
as
√
MSV + p2 sin θ + p sin θ, where MSV and p are respectively the invariant mass and

momentum of the tracks associated with the SV, and θ is the angle between the SV and
the flight direction (the vector which points from the PV to the SV) [40]. The SV mass
MSV is directly related to the mass of the heavy hadron and is therefore an important
discriminating variable. This can be seen in figure 3.3, which respectively shows the SV
mass distributions for bottom, charm and light jets in red, green and blue. The shapes
as well as the peaks of the SV mass distributions are different for each of the jet flavours.
As a result, the SV mass is indeed a very useful variable for jet flavour tagging. Another
property of heavy-flavour jets is that, because of the higher mass of the bottom and
charm quarks, more energy is redistributed among the decay products of the heavy-
flavour hadron, and therefore a larger transverse momentum relative to the jet axis is
expected.
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Figure 3.4: The ROC curve for several tagging algorithms including DeepCSV. Image
taken from [40].

3.4.3 The DeepCSV tagger

The heavy-flavour tagger currently in use by the CMS collaboration is DeepCSV. The
tagger is an artificial neural network (ANN) classifier which takes in a collection of track
and SV related variables and has four output classes, corresponding with the possible
flavours of the jet (b, c and udsg) and an additional bb output class. This last category
targets jets containing two b hadrons formed from the gluon splitting process g → bb̄.
To be precise, the architecture of DeepCSV is a feed-forward artificial neural network
[41] with four hidden layers containing one hundred interconnected neurons per layer,
and therefore qualifies as a deep neural network. DeepCSV was trained on a mixture of
simulated tt̄ and QCD multijet events with jet transverse momentum between 20 GeV
and 1 TeV [40]. Figure 3.4 shows the ROC curve of the DeepCSV tagger compared to
other tagging algorithms which were previously used by CMS during the Run-1 of the
LHC. The outputs of the heavy-flavour jet tagger can be interpreted as probabilities
P (b), P (c), P (udsg), P (bb), one for each of the jet flavour categories. From these outputs,
discriminating variables can be derived whose aim is to distinguish between the output
categories (or combinations thereof). These variables are also called discriminators. One
example is the b-tagging discriminator used in DeepCSV, which is simply defined as
P(b) + P(bb). This discriminator distinguishes bottom jets from charm and light jets.
For c-tagging purposes, DeepCSV uses two separate discriminators. One is the charm
versus light (CvsL) discriminator, which is defined as

CvsL discriminator =
P(c)

P(c) + P(udsg)
. (3.2)
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Figure 3.5: Two-dimensional distribution of the CvsL and CvsB discriminators from the
DeepCSV model for heavy- and light-flavour jets taken from simulated multijet events.
Image taken from [42].

The CvsL discriminator aims to distinguish charm jets from light jets. If DeepCSV is
confident that the reconstructed jet is a charm jet, then it will output a value close to one
for P(c) and a lower value for P(udsg). As a result, the CvsL discriminator will have a
value close to unity for jets that DeepCSV predicts likely to be charm jets. Similarly, a
charm versus bottom (CvsB) discriminator can be defined,

CvsB discriminator =
P(c)

P(c) + P(b) + P(bb)
. (3.3)

The CvsB discriminator attempts to distinguish charm jets from bottom jets. Just like
the CvsL discriminator, the CvsB discriminator is close to unity for jets that are likely to
be charm jets as predicted by DeepCSV. Values close to zero then indicate that the jet is
likely to be a bottom jet. In figure 3.5, the distribution of heavy- and light flavour jets in
the two-dimensional phase space of the CvsL and CvsB discriminators is shown. The
scattered red, green and blue points respectively correspond with bottom, charm and
light jets. Charm jets are mostly concentrated near high values of the CvsL and CvsB
discriminators, i.e. near the top-right corner of figure 3.5. The bottom jets are mostly
distributed in the bottom-right corner, and the light jets in the top-left corner.
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Chapter 4

Constraining the charm Yukawa in
H + c production

The remarkable discovery of the Higgs boson at the CERN LHC in 2012 [6, 7] signaled
the start of a new series of precision measurements on the properties of this new particle.
Most importantly are the interactions between the Higgs boson and the other fundamen-
tal particles of the SM, which are characterised by their coupling strength. The CMS and
ATLAS Collaborations have found the couplings of the third generation fermions and
the muon to be consistent with the SM prediction [16, 19–21, 27]. Naturally, the next
objective is to probe the coupling of the Higgs boson to the charm quark, which together
with the strange quark makes up the second generation of quarks. Previous attempts at
constraining this coupling relied on the direct detection of the Higgs boson decay into
a charm quark-antiquark pair, H → cc̄ [26]. This decay channel however suffers from a
relatively low branching rate and a large QCD background, and additionally relies on
the reconstruction of two charm-tagged jets. In this thesis, a new method is proposed
where the coupling of the charm quark to the Higgs boson is measured in the process
gc→ Hc, i.e. in the production of a Higgs boson in association with a charm quark. This
was discussed in more detail in section 1.4. In this chapter, the sensitivity of the process
gc → Hc to the charm quark Yukawa coupling yc will be explored. In the first part, a
simulation of this process and the relevant backgrounds will be obtained up to the de-
tector level. Afterwards, an artificial neural network will be trained using kinematical
event properties as well as charm tagging variables to improve the event selection and
to obtain a variable with increased sensitivity to yc. Novel to this approach is the use
of the charm tagging information, which will provide a significant contribution to the
yc sensitivity. Finally, constraints on the coupling yc will be obtained using a binned
likelihood fit, and will be compared to results using only either the leading jet pT or the
Higgs boson pT in the fit.

41
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4.1 Simulated datasets

4.1.1 Signal sample

As was outlined in the first chapter, the charm quark Yukawa coupling yc will be probed
in the production of a Higgs boson in association with a charm quark, or gc→ Hc. The
Higgs boson will be reconstructed through the H → ZZ∗ → 4µ decay channel. The
sensitivity of this process to changes in yc will be measured by varying κc in simulation.
In practice, this is done by supplying the matrix element generator MadGraph5_aMC@NLO
with a theory model that allows for the modulation of κc. This model is the Higgs

Effective Couplings model from FeynRules [43], which describes the effective cou-
plings of the Higgs boson to gluons and photons. In this model, the top-quark loop in
the third diagram in figure 1.8 is integrated out and replaced by an effective vertex. By
providing the matrix element generator with this theory model, the desired Feynman
diagrams can be generated. The resulting gc → Hc dataset consists of roughly 500,000
events, simulated with a minimum jet transverse momentum pT > 20 GeV, a maximum
jet pseudorapidity |η| < 3.0 and a minimum angular distance ∆R between the outgoing
particles of 0.5. The angular distance ∆R is defined by

∆R =
√

(∆η)2 + (∆φ)2, (4.1)

where ∆φ is the difference in azimuthal angle φ and ∆η the difference in pseudora-
pidity η. Instead of running the simulation multiple times for different values of the
κc parameter, different sets of weights are generated, each corresponding with a dif-
ferent κc [44]. Using the MadGraph5_aMC@NLO matrix element generator and the Higgs

Effective Couplings model, the interaction gc → Hc was simulated at leading order
in QCD, including a simulation of the parton shower (up to the hadronisation stage)
with Pythia8. Afterwards, the interactions of the collection of outgoing final-state par-
ticles with the CMS detector is simulated by Geant4. The result of this simulation is
then passed through the entire CMS reconstruction chain, until finally a sample ready
for analysis is obtained. Figure 4.1 shows the different steps that were required to obtain
the desired gc→ Hc, H → ZZ∗ → 4µ sample, simulated up to the detector level.

Figure 4.1: Diagram illustrating the different file formats that are generated by the re-
spective simulation programs to obtain a simulation up to the detector level, ready for
a physics analysis.
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4.1.2 Background samples

The backgrounds included in this analysis are separated into two categories. The first
category is the expected background from Z boson pairs from the decay of a Higgs
boson that was not produced in association with a charm quark, or H → ZZ. These
background Higgs production mechanisms include: Gluon fusion (GF), vector boson
fusion (VBF), Higgs bosons produced in association with a vector boson (ZH orW±H),
and Higgs bosons produced in association with a top quark pair (ttH). The second
category of background processes included in this analysis is the background from Z
boson pairs that were produced through other mechanisms. These include the gg → ZZ
and qq̄ → ZZ processes. Lastly, the background from the Drell-Yan processes qg → Zq
and qq̄ → Zg are also included. These are referred to asZ+X or Z boson plus jet events,
since both interactions produce a parton in the final state which is observed as a jet. The
list of simulated processes and the corresponding category labels can be found in table
4.1.

Table 4.1: Background processes used in the analysis of the gc→ Hc channel.

Category Channels Decay channel Cross section [pb]

H-bkg

H → ZZ → 4` (VBF) 0.000986
H → ZZ → 4` (GF) 0.0127
ttH

H → ZZ → 4`

0.000393
ZH 0.000668
W+H 0.000218
W−H 0.000138

Non-H bkg
Z +X Z → 2` 6435
qq̄ → ZZ → 4` 0.0133
gg → ZZ → 4µ 0.00158

H+c gc→ Hc H → ZZ → 4µ 0.00000587

4.2 Event selection

4.2.1 Signal topology

The event topology associated with the signal process gc → Hc,H → ZZ∗ → 4µ is
relatively straightforward. At least one charm jet is expected from the charm quark that
is produced along with the Higgs boson. The Higgs boson is reconstructed through
the four-muon final state. Here, a large background is expected from Z boson pairs
that were not produced by a Higgs boson, since they can also produce a four-lepton fi-
nal state. The inclusion of the Z plus jet background is also relevant, even though this
process cannot physically lead to a four-muon final state. It is however possible that
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two additional fake muons are reconstructed along side a pair of muons from the Z bo-
son decay. These fake muons are particles that were reconstructed as muons, but were
misidentified. Even though this misidentification is unlikely, the large cross section of
theZ plus jet process can result in a significant amount of events containing fake muons.

The background from Z boson pairs that were not produced from Higgs boson decay
can be reduced by reconstructing the invariant mass of the Higgs boson in the four-
muon channel. The four-muon invariant mass m4µ distribution should peak around
the Higgs boson mass mH ≈ 125 GeV. Therefore, by keeping only events where the
reconstructed m4µ lies around the measured value of the Higgs boson mass mH , the
background from Z boson pairs should be reduced significantly.

In order to construct high-level variables such as the four-muon invariant mass m4µ,
the necessary physics objects need to be available. Only events that contain at least one
reconstructed jet with pT > 20 GeV and |η| < 2.4 are selected. From this reconstructed
jet, essential charm-tagging information can be obtained from the DeepCSV tagger. The
selection also requires at least four reconstructed muons with |η| < 2.4 and pT > 10
GeV. Each of the reconstructed muons are required to be tight muons. This higher re-
construction quality ensures that the background from the Z boson plus jet channel is
reduced, since less fake muons should be selected.

4.2.2 Z boson reconstruction

The physics objects resulting from the CMS reconstruction chain can be analysed using
the ROOT framework. From the reconstructed muon objects, Z boson candidates can
be constructed. The procedure used in this thesis to select Z boson and Z boson pair
candidates was inspired by the selection that was adopted by the CMS collaboration in
the measurement of the properties of the Higgs boson in the four-lepton final state [45].
The algorithm that handles the construction and reconstruction ofZ andZZ candidates
is the following:

1. A Z candidate is constructed by merging a pair of opposite-sign muons.

2. Each of the non-overlapping Z candidates are merged into ZZ candidates. Each
of the ZZ candidates must contain at least two muons with pT > 20 GeV, and
one Z candidate with an invariant mass m2µ between 70 and 110 GeV. If multiple
ZZ candidates are obtained, then the one that contains the Z candidate with an
invariant mass closes to the Z boson mass is selected.

From the constructed ZZ candidate, a four-muon invariant massm4µ can be calculated.
Only events where the invariant mass of the ZZ candidate lies between 100 and 150
GeV are selected, to reduce the background from Z boson pairs that were not produced
from Higgs boson decay. This selection criterion was purposefully chosen to not be
too tight, such that the ANN can still exploit this variable in order to produce network
outputs which will then be used to reduce the non-H background further. The invariant
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mass m4µ spectrum of both the H background and H+c samples peak near the Higgs
boson mass, while this is not the case for samples from the non-H background category.
This can be seen in figure 4.2, where the m4µ spectrum of three samples (one of each
category) is shown.
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Figure 4.2: Normalised four-muon invariant mass m4µ distribution for the H → ZZ
(VBF) process, which belongs to the H background category, and the qq̄ → ZZ pro-
cess, which belongs to the non-H background category. These are compared with the
distribution from the signal H+c sample. The last bin contains the overflow of events.

4.2.3 First event selection

The simulated samples of the background processes contain a different number of sim-
ulated events. In order to obtain a fair comparison between the signal and background
processes, the total number of simulated events needs to be converted into an expected
amount of events,

Nexp = σL×
N selected

MC
NMC

, (4.2)

whereNexp is the expected number of events, σ is the cross section of the process and L
is the integrated luminosity, which is defined as the integral of the beam luminosity over
the data taking period. The product of the integrated luminosity and the cross section
is then multiplied by the fraction of simulated events that were selected to obtain the
expected number of events. In this analysis, an integrated luminosity L of 300 fb−1 is
used, which corresponds with the expected LHC integrated luminosity at the end of
Run-3 [46].
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Table 4.2: The background and signal data samples that will be used in the analysis of
the signal qg → Hc process. Each of these processes feature inclusive decays, except for
the signal where H → ZZ∗ → 4µ.

Simulated events

Process Sample size Events left after
initial selection

Events expected
(300 fb−1)

H → ZZ (GF) 965,198 22,663 89.45
H → ZZ (VBF) 928,272 25,871 8.24
gg → ZZ 971,500 15,888 8.09
qq̄ → ZZ 16,075,000 6,016 1.49
Z +X 25,757,729 38 2,850
ttH 492,273 8,142 1.95
W−H 200,000 5,143 1.06
W+H 299,710 6,939 1.51
ZH 494,864 6,162 2.50
qg → Hc 465,916 107,625 0.41

4.3 Improving event selection with an ANN

In the previous section, cuts were imposed on the four-muon invariant mass spectrum
m4µ to reduce the background from Z boson pairs that were not produced by Higgs
boson decay. The results of this cut are given in table 4.2. In this section, an artifi-
cial neural network (ANN) will be trained in order to further reduce this non-H back-
ground. At the same time, the ANN will attempt to identify events that are sensitive to
the charm quark Yukawa coupling yc. This corresponds with distinguishing between
events produced from the effective diagram in figure 1.8, and events produced via the
two diagrams on the left, where there is an explicit yc dependence. The ANN will be
implemented in python using the Keras deep learning library [47], which is interfaced
with TensorFlow [48] as a backend.

4.3.1 Training an ANN

An ANN will be trained on the simulated signal and background datasets. The outputs
of the ANN will be transformed into a ZZnoH and a Hc discriminator. The former dis-
criminator aims at obtaining an optimal separation between events that contain a pair of
Z bosons that were not produced from Higgs boson decay and the pairs that were pro-
duced by this decay. The information provided by the ZZnoH discriminator will then be
included in the event selection as an additional selection requirement to further reduce
the background from non-H events. The Hc discriminator is responsible for differentiat-
ing between events that are directly sensitive to yc and the events that are not. In other
words, this discriminator will attempt to identify H+c events that are directly sensi-
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Table 4.3: The default network properties of the ANN’s trained in section 4.3.1.

Network properties Default setting

Number of epochs 100
Batch size 256
Loss function Categorical cross-entropy
Learning rate 0.0005
Dropout 0.1
Hidden layer activation function ReLu
Output layer activation function Softmax

tive to yc over a background from H and non-H events, and also a background of H+c
events produced by the effective diagram in figure 1.8. By construction, the Hc discrim-
inator should be more sensitive to changes in κc than any of the variables included in
the training of the ANN. As a matter of fact, the discriminator will be defined from the
ANN outputs, which are themselves calculated using the information provided by the
input variables. The Hc discriminator can hence be seen as an ideal combination of the
input variables, resulting in a variable that is more sensitive to κc.

Output categories

The ANN will be trained to classify events into four output categories. The first two
are dedicated to the events that originate from the gc → Hc process. One of these cat-
egories exclusively contains events that are directly sensitive to yc, labelled H+c sens.,
while the other category contains events from the insensitive effective diagram in fig-
ure 1.8, labelled H+c insens.. These categories can be distinguished from each other
in the leading-order samples using the κc weights that are provided with each event.
After all, owing to the re-weighting [44] procedure that is used in the generation of the
H+c sample, the sensitive diagrams have a weight proportional to (κc)

2. The other two
output categories correspond with the two groups of background processes. The first
of these two contains background events from Z boson pairs are produced from Higgs
boson decay, labelled H bkg, while the other category contains background events from
Z boson pairs that are produced through another process, labelled non-H bkg. Each
of the ANN outputs can be interpreted as a probability P(H+c sens.), P(H+c insens.),
P(H bkg) or P(non-H bkg) for an event to belong to a certain category.

Input variables

The ANN is composed of one hidden layer with 20 neurons and four output neurons
corresponding with the four categories outlined above. Initially, the architecture of the
ANN will remain unchanged such that the effect of adding different input variables on
the model’s performance can be studied. After having found a set of input variables
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that results in an optimal performance of the ANN, different architectures will be con-
sidered to further improve this performance. The model uses a Rectifier Linear Unit
or ReLu as an activation function for the hidden layer, and a softmax function in the
output layer. In order to prevent overtraining, the model adopts a dropout procedure
where each epoch 10% of the neurons have their weights set to zero. Table 4.3 contains
the network properties that will be used for each of the models that are described in the
following paragraphs.

The number of neurons in the input layer corresponds with the number of input vari-
ables that the ANN has access to. The total collection of variables that can be made
available to the ANN in training are the following:

Jet variables: For each event, information on three reconstructed jets is stored
in two different rankings: the pT ranking and the CvsL discriminator ranking. For
each of these rankings, information on the pT , η and CvsL value of the three leading
jets of each ranking are available, for a total of eighteen variables. If an event con-
tains three or fewer reconstructed jets that meet the selection requirements described
in section 4.2.1, then these will be sorted both by their pT (to obtain a pT ranking)
and by their CvsL discriminator value (to obtain a CvsL ranking). The jet with the
highest value of pT (CvsL discriminator) is referred to as the leading-pT (CvsL) jet.
The CvsL ranking is physically more relevant, since reconstructed jets with a higher
value of the CvsL discriminator are more likely to be charm jets. The variables asso-
ciated with this jet, for example the CvsL discriminator value itself, will contribute
significantly towards the identification of the H+c process from the H and non-H
background events.
Z and ZZ candidate variables: The invariant mass of the selected ZZ candidate,
and of the individual Z candidates it is composed of, as well as the ∆R between
the muons that make up the Z candidates.
Muon variables: The pT and η of the reconstructed muons that form the ZZ can-
didate, as well as the ∆R between each of the muon objects.
Other variables: The ∆R between the leading jet (of each ranking) and each of the
muons.

Not all of these variables will be included in the training of the ANN. Instead, different
groups of variables will be added, and the change in the performance of the ANN will
be followed closely. Through this procedure, the set of input variables that amounts to
an optimal performance of the ANN will be found.

4.3.2 Selection of the sensitive input variables

In distinguishing between non-H bkg and H bkg events, the variable that is expected to
make a large positive contribution to the ANN’s performance is the four-muon invariant
mass m4µ. Indeed, when the ANN was trained using only this variable as input, it was
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Figure 4.3: The ROC curves of an artificial neural network trained using either the four-
muon invariant mass m4µ (red), the leading jet transverse momentum pT (green) or
both (blue). The AUC value shown in these figures belongs to the model that uses both
variables.

able to improve upon the event selection that was implemented earlier. For comparison,
another model was trained using only the transverse momentum pT of the leading jet in
the pT ranking. The performance of both these models is shown respectively by the red
and green curves in figure 4.3. Additionally, a model that uses both the invariant mass
m4µ and the leading jet pT was trained to compare to the previous two models. The
performance of this last model is given by the blue curve in figure 4.3. In each of the fol-
lowing paragraphs, the layout for the displayed ROC curves is the following: The figure
in the top-left corner shows the performance of the models for discriminating between
H+c sens. events and H bkg events. In the figure in the top-right corner the discrimina-
tion between H+c sens. and H+c insens. events is shown. The figure in the bottom-left
corner corresponds with the discrimination between H+c sens. and non-H bkg events.
Lastly, in the figure in the bottom-right, the performance of the models is shown for
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the identification of non-H bkg events over a background of H bkg events. From the
ROC curves in the bottom row of figure 4.3, it becomes clear that the four-muon invari-
ant mass m4µ is a powerful variable for discriminating H+c from non-H events, and for
discriminating non-H bkg from H bkg events. In other words, the invariant mass m4µ

contributes heavily towards the model’s ability to distinguish H events, i.e. events con-
taining a Higgs boson, from non-H events. The same model however fails to distinguish
between those H+c events that are sensitive to yc, and those that are not, as seen in the
top-right corner of figure 4.3. For this discrimination, the leading jet pT variable seems
to provide more useful information to the ANN compared to the invariant mass m4µ.
The model seems to recognise a different kinematic behaviour associated to the pro-
duced charm quark in the sensitive diagrams compared to the insensitive diagram, and
exploits this to achieve better performance. The leading jet pT however does not seem
to contribute much towards the model’s performance in distinguishing H+c sens. from
non-H bkg events, as seen in the bottom-left of figure 4.3. The blue curve in figure 4.3
shows the performance of an ANN that was trained using both of these input variables.
As a result, this model uses the information of both variables optimally, and achieves an
overall better performance than any of the models separately.

Further comparison after including more jet-related variables with different jet rank-
ings

Following these results, another model was trained using the invariant mass m4µ and
the leading jet pT , η and CvsL discriminator value as input variables. For this model,
as well as for the previous ones, the leading jet was selected from the pT ranking. In
other words, the leading jet pT is defined here as the transverse momentum pT of the
reconstructed jet that has the highest pT out of all selected reconstructed jets in an event.
An ANN was trained that used the pT , η and CvsL variables associated with the leading-
pT jet, along with the four-muon invariant mass m4µ. The additional charm-tagging
information should aid the model in distinguishing between the Hc signal events and
the H background events. Another model was trained using the same input variables,
but with additional information from the leading-CvsL jet, i.e. the jet with the highest
value of the CvsL discriminator. The performance of these models is shown respectively
by the red and green curves in figure 4.4. As expected, both models clearly benefit
from the additional charm-tagging information. The model that also uses the variables
associated with the leading-CvsL jet outperforms the model that only uses the leading-
pT jet variables. This effect is most pronounced in the top-left of figure 4.4, which shows
the performance of the model for discriminating between H+c sens. and H bkg events.
It therefore seems that the information from the additional reconstructed jet with a high
CvsL discriminator value contributes significantly towards the model’s performance.
This is no surprise, since the variables associated with the leading-CvsL jet are more
likely to belong to a charm-tagged jet, and are therefore more physically relevant for
discriminating between Hc signal and H background events.
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Figure 4.4: The ROC curve of the neural network trained using the variables associated
with leading jet according to the transverse momentum ranking (red) compared to an-
other model that also used the CvsL discriminator ranking (green). The AUC value
shown in these figures belongs to latter model.

Adding sub-leading jet information

Adding the variables associated with the sub-leading jets of both rankings resulted in
a slightly better performance of the ANN. It was however found that the information
provided by the sub-sub-leading jet did not have any significant effect on the perfor-
mance. Likely, this is a result of the fact that more and more duplicate information
is being added to the ANN. It is possible that in some events the leading-pT jet and
leading-CvsL jet are one and the same. When adding the information associated with
the sub-leading and sub-sub-leading jets, the probability of having duplicate informa-
tion increases. In exception of the sub-sub-leading jet variables, all of the possible input
variables discussed in the previous section were added as input to the ANN, and re-
sulted in a noticeable increase in performance. In figure 4.5, a comparison is shown
between the first two models, which used only the four-muon invariant mass m4µ and
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Figure 4.5: The performances of the models using either the four-muon invariant mass
m4µ or the leading jet transverse momentum pT are compared with the best performing
model so far, which uses the variables described in section 4.3.2. The AUC value shown
in the upper-left corner of each of these figures corresponds with the best performing
model.

the leading-pT jet pT , and the ANN that obtained the best performance so far.

ANN architecture

Finally, after having acquired an optimal set of input variables, the architecture of the
ANN could be tweaked to further improve its performance. During the previous train-
ing stages, the ANN was comprised of a single hidden layer containing 20 neurons. The
change in performance in response to varying the number of neurons in the first hid-
den layer was studied, along with the effects of adding a second hidden layer. For most
architectures, the performance of the ANN was unchanged with respect to the initial
architecture. A significant improvement was observed when training the ANN with
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Figure 4.6: Comparison between the performances of a neural network using the same
optimal set of input variables described in section 4.3.2, but using a different number of
layers L and a different number of neurons N per layer. The AUC value shown in the
upper-left corner of each of the figures corresponds with the L = 2,N = (30, 20) model.

two hidden layers (L = 2), the first containing 30 neurons and the second 20 neurons
(N = (30, 20)). The performance gain of the ANN mostly revealed itself in the dis-
crimination between non-H bkg and H bkg events and in the discrimination between
non-H bkg and H+c sens. events, as can be seen in figure 4.6.

Best model

To summarize, the ANN that achieved the best performance contains two hidden layers,
with respectively 30 and 20 neurons. The outputs of the ANN can be interpreted as the
probabilities P (H+c sens.), P (H+c insens.), P (H bkg), P (non-H bkg) for an event to
belong to a certain category. The input layer contains 33 neurons, corresponding with
the following variables:
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Figure 4.7: The loss and accuracy curves as a function of the training epoch of the arti-
ficial neural network described in section 4.3.2.

• The four-muon invariant mass m4µ.
• The leading and sub-leading jet pT , η and CvsL discriminator value, for both the
pT ranking as the CvsL ranking.

• The ∆R between each of the selected muons and the leading jet of both rankings.
• The ∆R between the pairs of muons that form the Z candidates.
• The pT and η of each of the selected muons.
• The invariant mass of each of the Z candidates.

The ANN was trained for 100 epochs. The loss and accuracy of the model on the train-
ing and validation set is given in figure 4.7. Both the loss and accuracy curves reach a
plateau at around 100 epochs, and remain stable for both the training and validation set.
Therefore, it is safe to assume that the ANN is not overtrained.

4.3.3 Discriminator definitions

As was mentioned earlier, the goal of the ANN that was trained in the previous sections
was to obtain a Hc discriminator and a ZZnoH discriminator. The former aids in the
identification of H + c events that are sensitive to yc, while the latter will be used to
distinguish between the events that contain a Z boson pair from Higgs boson decay and
the events that contain a Z boson pair formed via another interaction. Using the ANN
outputs, these discriminators can be defined as

ZZnoH discriminator = 1− P(non-H bkg), (4.3)

Hc discriminator =
P(H+c sens.)

P(H+c sens.) + P(H+c insens.) + P(H bkg)
. (4.4)
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Figure 4.8: The normalised distributions of the ZZnoH and Hc discriminators defined
in section 4.3.3. The former discriminates between events containing a Higgs boson,
labelledH events, and events that do not contain a Higgs boson, labelled non-H events.
The latter distinguishes events sensitive to yc from the insensitive events.
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Figure 4.9: The ROC curves of the ZZnoH (left) and Hc (right) discriminators, defined
in section 4.3.3.

The distributions and ROC curves of these discriminators are respectively given in fig-
ure 4.8 and 4.9. The distribution of the ZZnoH discriminator for the H events and non-
H events are clearly separated. This separation can be exploited to further reduce the
background from non-H events, and hence obtain an improved event selection. After
including the ANN in the event selection, and providing it with the required input vari-
ables, the output of the ANN can be transformed into the ZZnoH discriminator value,
which can then be used as an additional selection criterium. From the ZZnoH distribu-
tion in figure 4.8, most of the non-H events can be cut by requiring ZZnoH > 0.8. Since
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this requirement is met by most of the H events, there is no risk of throwing away a
significant amount of signal events.

Improved selection results

In table 4.4, the results of the improved selection are shown. As a result of applying the
cut on the ZZnoH discriminator, the background from the processes that involved the
production of a Z boson pair through the interactions gg → ZZ and qq̄ → ZZ has been
drastically reduced. The number of expected events from the signal process qg → Hc on
the other hand remains roughly the same. The background from Z +X events appears
to be dominant, judging by the number of expected events in table 4.4. However, one
needs to take into account the large uncertainty that is associated with this expected
event yield. From the roughly 25 million events contained in the sample, only 14 events
were selected. It is therefore safe to argue that the estimate made in table 4.4 is not the
one to use in a final analysis, and theZ+X background needs to be estimated from data
instead. In a similar analysis [45], this background is measured from control regions in
data, and is found to contribute only half as much as the ZZnoH background category.
Therefore, the contribution from Z + X events to the overall background is expected
to be insignificant, and will accordingly not be included in the fit presented in the next
section.

Table 4.4: The number of expected events from the background and signal samples af-
ter applying the improved event selection, using an additional selection requirement
involving the ZZnoH discriminator.

Simulated events

Process Sample size Events left after
initial selection

Events left after
improved selection

Events expected
(300 fb−1)

H → ZZ (GF) 965,198 22,663 19,716 77.83
H → ZZ (VBF) 928,272 25,871 23,956 7.63
gg → ZZ 971,500 15,888 2,137 1.09
qq̄ → ZZ 16,075,000 6,016 580 0.14
Z +X 25,757,729 38 14 1,050
ttH 492,273 8,142 7,786 1.86
W−H 200,000 5,143 4,627 0.96
W+H 299,710 6,939 6,233 1.36
ZH 494,864 6,162 4,551 1.84
qg → Hc 465,916 107,625 100,920 0.39
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4.4 Binned likelihood fit

4.4.1 Uncertainties

In the following paragraphs, constraints on κc will be obtained by means of a binned
maximum likelihood fit to the Hc discriminator, leading jet pT and Higgs boson pT dis-
tributions. Here, the Higgs boson transverse momentum is defined as the transverse
momentum of the four-vector sum of the four muons associated to the ZZ candidate.
For this sensitivity study, only statistical uncertainties will be used. This however does
not imply that no significant systematic uncertainties are expected. On the contrary,
there are multiple sources of systematic uncertainty that could be important. Some of
these include:

• Uncertainty on the muon identification and reconstruction efficiency. In an analy-
sis of the H → ZZ∗ → 4` process [45], this uncertainty is estimated to be 2.5% on
the overall event yield for the 4µ final state.

• Uncertainty on the jet energy scale and resolution.

• Uncertainty related to the c-tagging efficiency of heavy- and light-flavour jets. Re-
cently, new calibration methods were developed to control this uncertainty [49],
which can be applied to future analyses.

• Theoretical uncertainties on the cross sections of the H and non-H signal and back-
ground processes. The background cross sections can also be fit by defining con-
trol regions using the ANN outputs. The ZZnoH discriminator can for example be
used to define a region of events to which the non-H background can be fitted.
This approach could significantly reduce the uncertainties related to the cross sec-
tions of the backgrounds.

It is important that these systematic uncertainties are taken into account in future studies
of the H+c process, especially if the aim is to obtain state-of-the-art limits on κc. Instead,
in this thesis, the viability of the use of the H+c channel and the Hc discriminator to
obtain better limits on κc is explored as a proof-of-concept. To this extent, the use of
only statistical uncertainties is warranted.

4.4.2 Asimov dataset

By combining the relevant background samples with the SM H+c expectation, an Asi-
mov dataset [50] is obtained. Bin-per-bin, this dataset represents the expected number
of events from the simulated distributions assuming that κc = 1 (i.e. the SM scenario).
Likewise, a dataset can be constructed out of the same background samples, but with the
addition of an H+c sample where κc 6= 1. By means of a binned maximum likelihood fit,
the sensitivity to a possible excess of signal events can be quantified by quoting the re-
sulting 95% CL interval on κc, which will be described further in the next section. Figure
4.10 shows the Hc discriminator, Higgs boson transverse momentum pT and leading jet
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Figure 4.10: The Asimov dataset (black) constructed out of the background samples
and the SM H+c sample, compared to the datasets constructed similarly but with a
modified κc value (blue and red). The distributions of these datasets are shown for the
Hc discriminator, the leading jet pT (in the pT ranking) and the Higgs boson pT . The
shown uncertainties on the Asimov dataset are statistical uncertainties only.

pT (in the pT ranking) distributions for the Asimov dataset and the dataset correspond-
ing with a modified κc with respect to the SM value. In the Hcdiscriminator distribution,
the last few bins seem to be most sensitive to changes in κc. In the last bin, this leads to
an increase in the expected number of events of roughly 50% in the κc = 10 case. How-
ever, few events are expected in these bins for an integrated luminosity of 300 fb−1. It
is therefore expected that the availability of more data will lead to an increased event
yield in these bins, which will result in a higher sensitivity to κc. The Higgs boson pT
distribution on the other hand seems to be less sensitive to the modulation of κc. Here,
the first few bins seem to be most sensitive, but the excess is less significant compared
to the Hc discriminator distribution. The same is true for the leading jet pT distribution.
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4.4.3 Maximum likelihood method

In the previous section, an Asimov dataset was constructed, along with similar datasets
where the coupling κc is modified with respect to the SM prediction, κc = 1. The total
expected number of events νi is given bin-per-bin by this Asimov dataset. The other
datasets, where κc is modified, will generally contain a different value of expected events
in each bin. These datasets act analogous to the result of an observation, in the sense that
they will be used for comparison with the distributions of the Asimov dataset similarly
to how real data is compared with an expected distribution. The observed number of
events ni in bin i is expected to follow a Poisson distribution, i.e. ni ∼ Pois(νi), where νi
is the expectation value of the Poisson distribution. In other words, the probability for
bin i to contain ni events, given the expectation νi, is given by

P (ni, νi) =
νni
i e−νi
ni!

. (4.5)

This expectation value is dependent on κc, since different values of κc predict different
bin-per-bin event yields for the variable distributions in figure 4.10. From these distribu-
tions, a likelihood function L can be constructed. By writing n and v respectively as the
vectors containing the bin-per-bin observed number of events and bin-per-bin expected
number of events, the likelihood function can be expressed as

L(n|v) =

N∏
i=1

νni
i e−νi
ni!

, (4.6)

where N is the number of bins. The above quantity quickly reaches extremely small
values, therefore one generally works with the logarithm of the likelihood function, or
the log likelihood for short. This has the effect of transforming the product in equation
(4.6) into a sum. The (negative) log likelihood is then given by

− ln (L(n|v)) =
N∑
i=1

(−ni ln vi + ln(ni!) + νi) . (4.7)

4.4.4 Results

The log likelihood in equation (4.7) can be calculated for each of the distributions given
in figure 4.10 by taking n from the Asimov dataset and v from each of the datasets
containing modified κc values. As a result, a curve can be fitted through the points
(κc,− ln (L(n|v))) to obtain the log likelihood curve, which will reach a minimum in
the trivial case where κc = 1 or yc = ySM

c . In this fit, the background yields remain fixed
at their simulated predictions. In figure 4.11, the negative log likelihood curves are given
for the Hc discriminator, leading jet pT (in the pT ranking) and Higgs boson pT distribu-
tions for different integrated luminosities of 35.9, 300 and 3000 fb−1. The integrated lu-
minosity of 35.9 fb−1 corresponds with the 2016 dataset of CMS. In figure 4.11, the min-
imum of the log likelihood curve is shifted to zero, i.e. −∆ ln(L) = − [ln(L)− ln(Lmin)]
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Figure 4.11: Results of the binned maximum likelihood for the Hc discriminator, leading
jet pT (in the pT ranking) and Higgs boson pT distributions, for an integrated luminosity
of 35.9 fb−1, 300 fb−1 and 3000 fb−1.

is shown on the y-axis instead. The intersection of the log likelihood curve with the hor-
izontal line −∆ ln(L) = 2 define the 95% confidence level (CL) intervals for κc. In each
of these figures, the log likelihood curve is narrower for the fit to the Hc discriminator
distribution compared to the curves associated with the other variables and as a conse-
quence, a smaller 95% CL interval is obtained. The resulting CL intervals are given in
table 4.5. As was mentioned previously, the Hc discriminator showed a higher sensitiv-
ity to κc especially in the last few bins, where less events are expected. The leading jet
pT and Higgs boson pT are most sensitive to yc in the bins which typically have a larger
amount of events compared to the Hc discriminator distribution. Therefore, the 95% CL
intervals Hc discriminator benefit the most from the additional data that becomes avail-
able for integrated luminosities of 300 and 3000 fb−1, as can be seen in figure 4.11. For
the latter scenario, a relative improvement in the limits on κc of about 18% and 15% is



4.4. BINNED LIKELIHOOD FIT 61

Table 4.5: The 95% confidence level (CL) intervals from the binned likelihood fit to the
Hc discriminator, leading jet pT (in the pT ranking) and Higgs boson pT distributions.

95% CL intervals for κc (simulation)

Variable 35.9 fb−1 300 fb−1 3000 fb−1

Hc discriminator [-24.4, 24.5] [-13.0, 13.1] [-6.8, 6.9]
Leading jet pT [-26.5, 26.6] [-15.2, 15.2] [-8.3, 8.4]
Higgs pT [-25.7, 25.8] [-14.6, 14.6] [-8.0, 8.0]

obtained with respect to the limits resulting from the fit to respectively the leading jet
and Higgs boson pT distributions. For an integrated luminosity of 35.9 and 300 fb−1, a
relative increase in the sensitivity of κc of respectively up to 8% and 14% is expected.
Variations of κc have a larger shape effect on the distribution of the Hc discriminator
compared to the leading jet pT and Higgs boson pT distributions, where the variations
for the largest part result in a yield shift in the bulk of the distributions. For this reason,
the sensitivity gain becomes more apparent with higher integrated luminosity.
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Conclusion and outlook

In the 1960s, Robert Brout, Francois Englert [4] and Peter Higgs [5] independently pre-
dicted the existence of the scalar Brout-Englert-Higgs (BEH) boson. The BEH boson, or
Higgs boson in short, is an essential component of the Standard Model (SM) of particle
physics. Through its interactions with fermions and massive vector bosons, mass terms
are generated for these particles. Nearly 50 years later, the elusive Higgs boson was fi-
nally discovered by the CMS [7] and ATLAS [6] Collaborations at the Large Hadron
Collider at CERN. A linear relationship is predicted by the SM between the mass of a
fermion and its coupling to the Higgs boson. In other words, the SM predicts that heav-
ier particles couple more strongly to the Higgs boson. Recent findings of the ATLAS
and CMS Collaborations indicate that the couplings of the third-generation fermions
with the Higgs boson are consistent with the relationship predicted by the SM [19–22].
Recently, the CMS Collaboration has also found the muon coupling to be compatible
with the SM prediction [16]. The next particle to have their coupling measured is the
charm quark, the heavier of the second-generation quarks.

Previous attempts at constraining the charm quark Yukawa coupling yc relied on the
direct detection of the Higgs boson decay channel H → cc̄ to a charm quark-antiquark
pair [26]. Due to the large QCD multijet background and relatively low branching rate,
this process is challenging to observe. On top of this, the Higgs boson needs to be re-
constructed from two charm jets, which need to be identified by heavy-flavour taggers
over a large background of bottom jets from the Higgs decay H → bb̄. Instead, a new
method is proposed where the charm quark will be probed in the process gc→ Hc. In
this process, the sensitivity to yc enters in the production of a Higgs boson instead of in
the Higgs decay. As a consequence, the Higgs boson can be reconstructed from one of
its clean decay signatures. Additionally, this process relies on the identification of only
one charm jet instead of two. In this thesis, the H+c production channel will be studied
by reconstructing the Higgs from the four-muon final state, H → ZZ∗ → 4µ.

The H+c process was simulated at leading order using the MadGraph5_aMC@NLO ma-
trix element generator supplied with the Higgs Effective Couplings model, which
allows to include variations of κc = yc/y

SM
c directly in the simulation by using event

weights. The interactions of the simulated physics objects with the CMS detector were
simulated by Geant4. Finally, the result of this simulation is passed through the entire
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CMS reconstruction chain to obtain a H+c sample ready for analysis. The kinematical
properties of the event were augmented with information on the jet flavour using state-
of-the-art charm tagging algorithms, and were subsequently used to train an artificial
neural network (ANN). The outputs of this ANN were them transformed into a Hc and
a ZZnoH discriminator. The former was constructed to distinguish events from the H+c
process that are sensitive to yc from the H+c and H background events that do not di-
rectly depend on yc. This way, a variable was obtained with improved sensitivity to yc.
The ZZnoH discriminator on the other hand, attempts to identify events that contain a
pair of Z bosons from a Higgs boson decay from events that contain a pair of Z bosons
that were formed through other mechanisms. The ZZnoH discriminator was then used
to further reduce the background from non-H events.

The simulated H+c sample with κc = 1 was combined with the background samples
to obtain an Asimov dataset. By means of a binned maximum likelihood fit, a possible
excess of signal events resulting from a deviating charm quark Yukawa coupling with
respect to the SM prediction is transformed into a 95% confidence level (CL) interval.
Compared to the fit using only the leading jet or Higgs boson transverse momentum
pT distributions, more strict limits are obtained from the fit to the Hc discriminator dis-
tribution. For an integrated luminosity of 300 fb−1, the 95% CL constraints on κc ob-
tained from the fit to the leading jet and Higgs boson pT distributions are respectively
κc ∈ [−15.2, 15.2] and κc ∈ [−14.6, 14.6], while the fit to the Hc discriminator spectrum
yielded a 95% CL of κc ∈ [−13.0, 13.1], which is an improvement of respectively 14%
and 11%. This improvement with respect to the other variables, which were used in
previous analyses [23, 28] to constrain yc, only grows when more data becomes avail-
able. The shape difference in the Hc discriminator distribution becomes more dominant
at higher integrated luminosity than simply the increase in cross section of the gc→ Hc
process. As a result, the Hc discriminator has an improved sensitivity compared to the
leading jet and Higgs boson pT , and a binned likelihood fit to its distribution seems to
lead to stricter 95% CL intervals on κc.

This study however has some limitations. For one, no systematic uncertainties were
included in this analysis. Especially the uncertainties related to c-tagging might be sig-
nificant, though these can be controlled using calibration methods as outlined in [49].
Additionally, the simulation of the H+c was only at leading order. The advantage of
this was that the H+c events insensitive to yc coming from the effective diagram in fig-
ure 1.8 could be separated from the sensitive H+c events in a straightforward way. For
next-to-leading order (NLO) simulations, this distinction will be less clear. In the anal-
ysis presented in this thesis, the backgrounds remain fixed during the likelihood fit.
Instead, one could consider a two-dimensional fit of both the Hc and ZZnoH discrim-
inator distributions of the backgrounds together with the signal, shown in figure 4.12.
A downside of this approach is however the increased number of bins in the 2D phase-
space compared to the 1D case, which leads to a decreased event yield in each bin. This
problem can however be taken care of by including additional clean decay channels of
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Figure 4.12: Two-dimensional distributions of the ZZnoH and Hc discriminators for the
H background (top left), H+c (top right), non-H background (bottom left) and Z + X
(bottom right) samples.

the Higgs boson, for example the 2e2µ final state of the H → ZZ∗ decay or the H → 2γ
decay channel. Including these contributions on top of the four-muon final state that
was used in this analysis will lead to an increased event yield, and thus an increased
sensitivity of the Hc discriminator to κc.

In closing, a new method was developed in this thesis to constrain the charm quark
Yukawa coupling using a Hc discriminator constructed from the outputs of an artificial
neural network, which combined the kinematical properties of events with the charm-
tagging information of the jets. A fit to the distribution of this discriminator resulted
in more sensitive 95% CL intervals on κc, owing to the improved sensitivity of the Hc

discriminator compared to the leading jet or Higgs boson pT . The method in which yc is
probed in the production of a Higgs boson gc → Hc has for the first time been studied
in an experimental context, and is complementary to theH → cc̄ analysis. Accordingly,
the method is an added value in the LHC programme for the measurement of yc.
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Contributions by the author

This section serves to list the original contributions that I made during the development
of this project. These achievements are listed below.

• I have created a dedicated simulation of the gc → Hc process, from the matrix
element generation with MadGraph5 up to the reconstruction of physics objects at
the CMS detector.

• I have developed and implemented an event selection to selectH + c events in the
H → ZZ∗ → 4µ decay channel.

• I have trained an artificial neural network which combines charm tagging infor-
mation on the jets with variables related to the kinematics of an event to define
two discriminators. I have also increased the performance of this neural network
by optimising the architecture and the input variables.

• I have extracted 95% confidence level intervals on κc using a binned maximum
likelihood fit on the distributions of the Hc discriminator and the Higgs and lead-
ing jet transverse momentum.
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Appendix A

Backpropagation in more detail

Calculating the gradient in equation (2.10) is certainly a challenge. One approach which
is widely used in training is backpropagation. The general idea behind backpropagation
is to introduce a small change in the weights of the network layer-by-layer, observe the
effect on the result of the loss function, and then update the weights accordingly. The
activation z`j of a neuron in a hidden layer l can generally be expressed as

z`j = f

(
M∑
i=1

wjiz
`−1
i + wj0

)
= f(s`j), (A.1)

where z`−1
i is the activation of the i-th hidden neuron in the previous layer `− 1. Here,

s`j is defined as the argument of the activation function. The dependence of the loss
function L on wjk, which is one of the weights used in the calculation of z`j , can be
expressed using the chain rule,

∂L

∂wjk
=

M∑
i=1

∂L

∂z`i

∂z`i
∂wjk

=
∂L

∂z`j

∂z`j
∂wjk

(A.2)

where the sum goes over the activations in layer `. Since tweaking the weight wjk will
only have an effect on the activation z`j , the derivative ∂z`i/∂wjk is only non-zero for
i = j. The chain rule can be applied again to z`j such that

∂L

∂wjk
=
∂L

∂z`j

∂z`j

∂s`j

∂s`j
∂wjk

=
∂L

∂z`j
f ′(s`j)z

`−1
k , (A.3)

where f ′(s`j) denotes the derivative of the activation function evaluated at s`j . The last
step made use of the fact that z`j = f(s`j). Finally, an expression for the partial derivative
of the loss function L with respect to the activation z`j is needed. Remark that the loss
functionL is also dependent on the neurons of the next hidden layer `+1. Furthermore,
the activation z`j is used in the calculation of the activations of each of the neurons in
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this next layer. As a result, the chain rule can be applied again to this term such that

∂L

∂z`j
=

M∑
i=1

∂L

∂z`+1
i

∂z`+1
i

∂z`j
=

M∑
i=1

∂L

∂z`+1
i

∂z`+1
i

∂s`+1
i

∂s`+1
i

∂z`j

=

M∑
i=1

∂L

∂z`+1
i

f ′(s`+1
i )w`+1

ij

(A.4)

As a result, the partial derivative ∂L/∂z`j is known if the dependence of the loss function
on the subsequent layer’s neurons is known. At the final hidden layer, the neurons in
the next layer are simply the output neurons, on which the loss function’s dependence
is known. Therefore, starting from the output layer, the above equations can be used to
calculate the layer-by-layer gradient of the loss function. By running through the ANN
in reverse, the weights can be updated layer-by-layer according to equation (2.10).
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ANN bare output distributions
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Figure B.1: The normalised distributions of the four outputs P(Hc sens.), P(Hc insens.),
P(H bkg) and P(non-H bkg) of the ANN that was trained in chapter 4.
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