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Abstract

The topic of this thesis is to understand a new approach to solve the DGLAP
evolution equations to obtain not only the collinear Parton Distribution Functions
(PDFs) but also the Transverse Momentum Dependent PDFs (TMDs). The DGLAP
evolution equations are solved with the Parton Branching (PB) method, which in-
cludes a determination of kinematic variables and which keeps the information of
parton transverse momentum at every branching. PB method allows a construction
of the TMDs in a large range in longitudinal momentum fraction x and evolution
scale µ2.
I performed the Parton Branching evolution from scratch to simulate the production
of Z boson at LHC at 13 TeV. I studied the connection between the evolution scale
and kinematic variables, and obtained the transverse momentum of Z boson for
different ordering conditions. I also explored a tool called Cascade which allows
to use TMDs from the PB method to the LHC measurement, particularly the Drell
Yan measurement by ATLAS experiment.
The PB TMD approach is a part of a broader program which aims to more precise
predictions for observables at high energy collisions.

Key words : Parton Distribution Function, Parton Density, Drell Yan, Evo-
lution Equation, DGLAP Equation, Transverse Momentum Dependence, Quantum
Chromodynamics, Monte Carlo.

Résumé

Le but de ce mémoire est de comprendre une nouvelle approche pour résoudre les
équations d’évolution DGLAP afin d’obtenir non seulement les fonctions de distri-
butions de partons (PDFs) mais aussi une généralisation dépendante en l’impulsion
transverse (TMD PDFs). La résolution des équations d’évolution DGLAP est réal-
isée par la méthode de branchement successif de parton (PB), qui inclut la déter-
mination des variables cinématiques et qui garde en mémoire l’information sur
l’impulsion transverse du parton pour chaque branchement. La méthode PB per-
met une construction des TMDs dans un grand intervalle de fraction d’impulsion
longitudinale x et d’échelle d’évolution µ2.
J’ai réalisé une évolution par branchement successif de parton à partir de zéro pour
simuler la production du boson Z au LHC à 13 TeV. J’ai étudié le lien entre l’échelle
d’évolution et les variables cinématiques, et j’ai obtenu l’impulsion transverse du bo-
son Z pour différentes conditions d’ordonnancement. J’ai aussi exploré un outil ap-
pelé Cascade qui permet l’utilisation des TMDs de la méthode PB sur les mesures
du LHC, en particulier les analyses sur le processus Drell Yan de l’expérience AT-
LAS.
L’approche des TMDs par PB est une partie d’un projet plus large qui vise des
prédictions plus précises pour les observables des collisions à haute énergie.

Mots clés : Fonction de Distribution de Parton, Densité de Parton, Drell Yan,
Equation d’Evolution, Equation DGLAP, Dépendance en l’Impulsion Transverse,
Chromodynamique quantique, Monte Carlo.
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Chapter 1

Introduction

1.1 Standard Model

All around us, the Nature is incredibly diversified. The variety of forms, structures,
colours and properties that it offers to our senses seems infinite. But is this variety
fundamental or induced? This question was already asked by Greek philosophers
such as Leucippe, Democritus and Aristotle. Leucippe is reported to be the first
to develop a theory in which our whole universe is made of atoms (from the Greek
ατoµoς: atomos, meaning indivisible). Even though our current usage of the word
atom refers to the smallest unit that defines the chemical elements. We now know
that they are made of electrons orbiting around a nucleus composed of protons and
neutrons themselves built up of even smaller constituents called quarks.
Today we know that the variety is induced: if the Nature is plethoric in forms and
properties, it is extremely thrifty in basic elements and fundamental interactions.
At any scale of the matter, from the microscopic particles produced in our acceler-
ators to the furthest galaxy clusters, and at every degree of complexity, from the
hydrogen atom to the most complicated biological macromolecules, every one owe
their structure to four fundamental interactions. They are presented here by order
of increasing intensity:

(i) Gravitational interactions
They are known from our everyday life. They are responsible for the fall
of apples on Earth and for the structure of the universe. Nevertheless, at a
microscopical scale, their intensity is usually completely negligible.

(ii) Weak interactions
Responsible for the radioactive decay, they are at the origin of the processes
of fusion producing the energy of the stars.

(iii) Electromagnetic interactions
Already known from the macroscopic physics, they are also responsible for the
structure of the atoms and molecules as well as most of the properties of the
condensed matter.

(iv) Strong interactions
They are responsible for the cohesion in the nuclear material. They are attrac-
tive between the constituents of the nuclei, protons and neutrons. It is much
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1.1. Standard Model

stronger than the electrostatic repulsion between the protons.

The theory of elementary particles has been studied since the discovery of the atom,
it is the essence of the Standard Model (SM). The SM is the theory that provides
the best description of the interactions between elementary particles constituting our
universe. It is a quantum field theory based on both special relativity and quantum
mechanics. This model arose in the latter half of the 20th century with the current
formulation being finalised in the mid-1970s upon experimental confirmation of the
existence of quarks. It is successful in describing three of the four known fundamen-
tal forces, namely the electromagnetic force, the weak force (these two forces are
actually unified and described by the electroweak interaction in which they are seen
as two different aspects of the same force) and the strong force.

The remaining force is gravity. In the 1910s, Albert Einstein has generalised
special relativity and Newton’s law of universal gravitation to achieve a proper de-
scription of the gravitation. The SM does not include general relativity and therefore
can not describe gravitation effects. However, such effects are orders of magnitude
smaller than the weakest effects of the weak interactions and ignorance of gravita-
tion in high energy physics is a perfectly valid approximation.

Elementary particles are divided into fermions and bosons. The quarks and
leptons are spin-1

2
fermions, we can differentiate them into three generations as il-

lustrated in Fig (1.1). Each generation is a heavier copy of the first one.

The six quarks are grouped in three pairs, one for each generation, and each
quark comes with three colours states. Quarks are electrically charged and colour
charged. They also have a weak charge and being massive, quarks participate also to
gravitational interactions. From the six leptons, three are charged and are subject
to both weak and electromagnetic forces, whilst the three electrically neutral leptons
are solely interacting through weak force. They are called neutrinos and are very
difficult to observe. Note that each fermion comes with its corresponding antiparti-
cle which has same mass but opposite charges. They are not represented in Fig (1.1).

Since the SM is a gauge theory, the interactions between elementary particles
are described by the exchange of gauge bosons that mediate the forces. The gauge
bosons are, for the electromagnetic interactions the photon, for the weak interac-
tions the W± and the Z, and the gluons (there are eight of them) for the strong
interactions. Last but not least, the Higgs boson, predicted by Brout-Englert-Higgs
50 years ago has been discovered in July 2012 and has given further credence to
the SM. The Higgs particle, unstable boson with no spin, electric charge nor colour
charge is the quantum manifestation of the Higgs field, responsible for elementary
particle masses.

As the SM is based on the Quantum Field Theory (QFT), this allows one to
write the Lagrangian density (often called Lagrangian) to describe the dynamics of
the theory. The SM is a gauge invariant theory which means that its Lagrangian is
invariant under the local SU(3)c×SU(2)L×U(1)Y symmetry. The group symmetry
of colour is SU(3)c, SU(2)L is the approximate isospin symmetry (exact if u and
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Figure 1.1: Particle contents of the Standard Model (adapted from [1]).

d quarks had the same mass) and the symmetry U(1)Y corresponds to the weak
hypercharge conservation.

This thesis is focused on the Quantum Chromodynamics (QCD) part of the SM.
This is the theory of the strong interaction between quarks and gluons, the fun-
damental particles that make up composite hadrons like the proton, the neutron
and pions. QCD exhibits two main properties: colour confinement and asymptotic
freedom. These are consequences of the running of the QCD coupling αS which will
be the subject of the next section.

The SM had unprecedented success in describing to very high level of accuracy a
large variety of experimental observations. Nevertheless, it leaves some phenomena
unexplained and falls short of being a complete theory of fundamental interactions.
It can neither fully explain baryon asymmetry in the Universe, the neutrino oscil-
lations and their non-zero masses, nor incorporate the full theory of gravitation as
described by general relativity. This model does not contain any viable dark mat-
ter particle that possesses all of the required properties deduced from observational
cosmology. For some physicists, SM is used up as a basis for building more ex-
otic models, beyond the SM (BSM), that incorporate hypothetical particles, extra
dimensions, and elaborate symmetries (such as supersymmetry) in an attempt to
explain experimental results. To find hints of this theory, SM must be well un-
derstood, provide precise predictions and be confronted to precision measurements.
Every inconsistency can be a clue of how to construct the BSM theory and which
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1.2. Colour confinement and asymptotic freedom in QCD

of the existing ones can be preserved and which should be abandoned.

1.2 Colour confinement and asymptotic freedom in
QCD

Before the actual introduction of the topic, this section introduces some basic fea-
tures of QCD: the QCD running coupling, the asymptotic freedom and the quark
confinement. This section follows the argumentation of [2].

In order to introduce the concept of the running coupling, let us assume a di-
mensionless physical observable R dependent on a single energy scale Q2. This
scale is much bigger than all other scale in the process. In a renormalizable quan-
tum field theory, one calculates R as a perturbation series of the coupling αS. The
perturbation series requires renormalization to remove the ultraviolet divergence.
Consequently, this procedure introduces a second mass scale µ, at which the sub-
tractions are performed. The physical observable R will therefore depend on the
ratio Q2/µ2 and be dimensionless. Thus the renormalized coupling depends on the
arbitrary choice made for the subtraction point µ. But physical quantities such as R
should not depend on this choice. Mathematically, this condition may be guaranteed
by the following equation

µ2 d

dµ2
R(Q2/µ2, αS) ≡

[
µ2 ∂

∂µ2
+ µ2∂αS

∂µ2

∂

∂αS

]
R = 0 . (1.1)

To rewrite this equation one can define the notations

t = ln

(
Q2

µ2

)
, β(αS) = µ2∂αS

∂µ2
. (1.2)

Substituting these variable in Eq (1.1) one gets[
− ∂

∂t
+ β(αS)

∂

∂αS

]
R(et, αS) = 0 . (1.3)

To solve this first order partial differential equation, a new function is needed, the
running coupling αS(Q2)

t =

∫ αS(Q2)

αS

dx

β(x)
, αS(µ2) ≡ αS . (1.4)

From that one can deduce that R(1, αS(Q2)) is a solution of Eq (1.3). This whole
analysis shows that all the of the scale dependence in R comes from the running of
the coupling αS, which is determined by the renormalization group equation

Q2∂αS(Q2)

∂Q2
= β(αS(Q2)) . (1.5)

The function β has a perturbative expression

β(αS) = −b1α
2
S(1 + b2αS + b3α

2
S +O(α3

S)) . (1.6)

Vanden Bemden Max 9



Chapter 1. Introduction

Figure 1.2: Graphs which contribute to the β function in the one loop approximation.

The coefficients were obtained at 1-loop level in [3, 4], at 2-loop in [5] and at 3-loop
in [6] by calculating the higher-order corrections to the bare QCD vertices. The
1-loop coefficient is given by

b1 =
33− 2nf

12π
, (1.7)

with nf the number of active light flavours. Fig (1.2) shows the diagrams contribut-
ing to the β function of QCD in the 1-loop approximation.

If both αS(Q2) and αS(µ2) are in the perturbative regime, one can truncate the
series of Eq (1.6), neglecting the b2 and higher coefficients, then solve for αS(Q2)
using Eq (1.5)

αS(Q2) =
αS(µ2)

1 + αS(µ2)b1t
, t = ln

(
Q2

µ2

)
. (1.8)

As t becomes very large t→∞, the strong coupling decreases to zero αS(Q2)→ 0
which is true only if nf < 16. This property is called asymptotic freedom. This
means that at higher scales (at small distances), the strong coupling is small and
partons can be treated as free particles. The approach to this regime is rather slow
because αS(Q2) decreases only as an inverse power of lnQ2. On the contrary, at
smaller scales (large distances), the strong coupling is very strong and partons are
said to be confined inside the hadrons. This explains why we cannot see free quarks
or free gluons. This behaviour is opposite to the QED coupling α which increases
with scale.

We can also rewrite Eq (1.3) as a series expansion

R(1, αS(Q2)) = R1αS(µ2)
[
1− αS(µ2)bt+ αS(µ2)2(bt)2 + ...

]
. (1.9)

Thus one can see that order by order in perturbation theory there are ln(Q2/µ2)
which are automatically resummed by using the running coupling. By cutting the
series at terms of pieces proportional to αS, one obtains the leading order approxi-
mation (LO), by cutting at α2

S one obtains the next-to-leading order approximation
(NLO), etc.

We can also adopt the approach which was used historically, and is still very
appropriate for many purposes. One introduces a dimensionful parameter directly
into the definition of αS(Q2). This parameter is called Λ and is defined by the
relation

ln
Q2

Λ2
= −

∫ ∞
αS(Q2)

dx
1

β(x)
. (1.10)

10



1.3. Preface

Λ corresponds to the scale at which the running coupling αS diverges. It indicates
the order of magnitude of the scale at which αS(Q2) becomes strong. Λ can be
defined to leading or next-to-leading order and its value is in the neighbourhood
of 200 MeV. Thus at this scale αS becomes large and perturbation theory breaks
down. This happens for scales comparable to the mass of light hadrons, Q ' 1GeV.
This could be a sign that the confinement of quarks and gluons inside the hadrons
is actually a consequence of the growth of the coupling at low scales, which follows
directly from the decrease at high scales that leads to asymptotic freedom.
At leading order, Λ allows us to write an asymptotic solution for αS

αS(Q2) =
1

b ln (Q2/Λ2)
. (1.11)

Λ depends also on the number of active flavours. One only needs to impose con-
tinuity conditions for αS at the scale µ = m, wherem is the mass of the heavy quark.

Perturbative QCD tells us how the coupling constant varies with the scale, not
its absolute value. Only experiments can provide this one. What we can do is to
choose our fundamental parameter of the theory to be the parameter at a convenient
reference scale. This scale must be large enough to be in the perturbative domain,
such as M2

Z . Measured at another scale Q, it can then be evolved to the mass of the
Z boson using the renormalization group equation truncated at a given order.

A compilation of some measurements of αS performed at electron-proton and
proton-proton colliders are shown in Fig (1.3) [7]. The 2018 world average value [8]
of the strong coupling at the squared mass of the Z is

αS(M2
Z) = 0.1181± 0.0011 . (1.12)

Figure 1.3: An overview of some of the αS measurements [7].

Vanden Bemden Max 11



Chapter 1. Introduction

1.3 Preface
The thesis is organised as follows:

In Chapter 1 we introduce the Standard Model and the basic concepts of QCD:
asymptotic freedom and colour confinement.

Chapter 2 explains the origin of DGLAP evolution equation, the central equa-
tion of this thesis. We begin with the Parton Model to explain the Deep Inelastic
Scattering and we show how, by including the QCD corrections, one can explain the
Bjorken scaling violation. We introduce the concept of Parton Distribution Func-
tions (PDFs) and factorization theorem.

In Chapter 3 the Drell-Yan process is discussed. We give the DY cross section,
first in the parton model and then including perturbative corrections, illustrating
the factorization property. We also discuss the Z boson transverse momentum and
the relative calculations.

In Chapter 4 we start to talk about beyond fixed order calculations and we mo-
tivate the TMDs. We move forward to the Parton Branching method and discuss
the aspects of DGLAP necessary to interpret the equation in terms of a parton
branching process. We show how the association of the kinematic variables with the
evolution scale leads to a certain ordering conditions. We present the idea of the
Sudakov form factor which allows for a probabilistic interpretation of the evolution
equation and enables the solution using Monte Carlo methods.

In Chapter 5 the analysis of the thesis is introduced. The Monte Carlo technique
and the probability theory are discussed. We present the analysis strategy and the
results.

In Chapter 6 we summarize the results presented in this thesis and give conclu-
sions and prospects.

12



Chapter 2

Proton Structure and QCD
Evolution Equations

This chapter gives a short overview on the structure of the proton and of the evo-
lution of its constituents. To do so, we review briefly the Deep Inelastic Scattering
(DIS), the Parton Model, the Parton Distribution Functions and QCD evolution
equations - the basics of this thesis. We discuss how the Parton Model can explain
the Björken scaling and how the QCD corrections justify the Björken scaling viola-
tion and lead to the DGLAP evolution equation. Finally we describe how the PDFs
can be obtained at any scale. This chapter is inspired by many textbooks that treat
these subjects much more extensively (e.g. [2, 9]), here only the most important
results are summarized.

2.1 Deep Inelastic scattering
This section follows the argumentation from [10]. The non-elementary structure of
hadrons, and of the proton in particular, has been revealed in 1967 at the Standford
Linear Accelerator (SLAC). They made collisions of 21 GeV electrons off liquid
hydrogen and later a deuterium fixed target. While dominated by elastic scattering
(e−p → e−p), the total cross section exhibits a large contribution of deep inelastic
scattering (DIS) event (e−p→ γ → e−X)1 where the hadronic final state X is made
of a large number of hadrons. The definition of the four-momentum vectors is given
in Fig (2.1). We consider:

e−(kµ) + p(pµ)→ γ∗(qµ)→ e−(k′µ) +X . (2.1)

SLAC experiment only measured the scattered electron (energy and angles), which
is sufficient to determine completely the kinematics. The invariant mass of the
hadronic final state W can be computed by:

W 2 = (q + p)2 = X2 = q2 + 2p · q +m2
P . (2.2)

1If the beam had more energy, the exchanged boson could also be a Z. In this section, the
electroweak effects are neglected.

13



Chapter 2. Proton Structure and QCD Evolution Equations

Figure 2.1: DIS diagram defining the 4-vectors.

The standard deep inelastic variables are defined by:

Q2 = −q2 ,

x =
Q2

2p · q ,

y =
p · q
p · k .

(2.3)

The variables x and y are the relativist invariants of Björken having values between
0 and 1. Neglecting the electron and the proton masses in front of their momenta,
these invariants are related by:

Q2 = xys , (2.4)

from which one can deduce that Q2 ≤ s, with s the square of the center of mass
available energy: s = (k + p)2.

To write down the DIS cross section we need to introduce the unknown functions
F1(x,Q2) and F2(x,Q2) called structure functions which parametrize the structure
of the target as ’seen’ by the virtual photon. In the asymptotic regime of Björken,
defined by:

Q2 →∞ ,

s, ν →∞ ,

x fixed ,

(2.5)

one can write the inclusive cross-section of the e+ p→ e+X scattering as:

d2σ

dxdQ2
=

4πα2

xQ4

[
xy2F1(x,Q2) + (1− y)F2(x,Q2)

]
=

4πα2

Q4

[[
1 + (1− y)2

]
F1 +

(1− y)

x
(F2 − 2xF1)

]
.

(2.6)

Applying this formalism on the measurements performed at SLAC in the 1960s,
it has been observed that despite the large domain covered in Q2, the structure
function F2 seems to be independent of Q2 as we can see in Fig (2.2).

F2(x,Q2)→ F2(x) . (2.7)

This independence is called Björken scaling. We will come back on it at the end of
the next section.
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2.2. Parton Model

Figure 2.2: Measurement of the structure function F2 of the proton at SLAC. This figure
compiles the measurement of F2 for a large amount of data with different values of Q2.
[11, 12]

2.2 Parton Model
The parton model has been introduced by Robert Feynman in the late 1960s in an
attempt to explain the Björken scaling as a consequence of the point-like nature of
nucleon’s constituents incoherently scattered by the incident electron. He named
the point-like constituents partons, which have a electrical charge and are classified
as spin-1/2 particles. A few years later physicists identified the partons with quarks.
As QCD did not exist yet, the gluons did not enter the picture at first. A nucleon
consists of three valence quarks which build up the nucleon’s quantum numbers and
a sea of quarks and antiquarks. In this naive Parton Model, partons inside one
hadron do not interact with each other.

In the following we will make the ultra-relativistic approximation, such that
the electron and proton masses are negligeable. As it is an ahead collision, the
four-momentum of the proton is pµ = (p, 0, 0, p) and the one of the electron is
kµ = (k, 0, 0,−k). According to the parton model, the inclusive DIS cross section is
given by the sum of the cross section on the individual quarks times their density of
probability. At the Leading Order (LO) the electron-quark scattering cross section
can be calculated within pQCD. As can be seen from Fig (2.3), the electron, carrying
a four-momentum kµ scatters on a quark q with four-momentum l. In the collinear
approximation, the quark carries a fraction ξ of the proton momentum l = ξpµ. The
electron and the quark interacts through the exchange of a virtual photon γ∗ with a
four-momentum qµ. The outgoing particles are the scattered electron carrying the
four-momentum k′µ and the scattered quark of the same flavour as the incoming one
carrying the four-momentum l′.

The LO differential cross section for electron-quark scattering is given by the
formula (see for e.g. [2]):

dσ̂

dt̂
(e−q → e−q) =

2πα2e2
q

ŝ2

(
ŝ2 + û2

t̂2

)
, (2.8)

with α the fine-structure constant, eq the fractional charge of the quark, and ŝ, û, t̂
the Mandelstam variables of the subprocess.
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Figure 2.3: LO Feynman diagram contributing to DIS process.

Substituting for the kinematic variables gives:

dσ̂

dQ2
=

2πα2e2
q

Q4
[1 + (1− y)2] . (2.9)

The mass-shell constraint for the outgoing quark, assumed to be massless

(l′)2 = (l + q)2 = q2 + 2l · q = −2l · q(x− ξ) = 0 , (2.10)

implies x = ξ. Thus Björken x has a clear physical interpretation, it is the longitu-
dinal fraction of the proton’s momentum carried by the parton.

By writing
∫ 1

0
dx δ(x − ξ) = 1, one obtains the double differential cross section

for the quark scattering process:

d2σ̂

dxdQ2
=

4πα2

Q4
[1 + (1− y)2]

1

2
e2
qδ(x− ξ) . (2.11)

The inclusive cross section of DIS ep → eX is given by the cross section of the
electron-quark scattering, multiplied by a probability of density fq(ξ)dξ to find in
the proton a certain flavoured quark q carrying a momentum fraction between ξ and
ξ + dξ. It has to be summed over all possible quark flavours.

d2σ

dxdQ2
=

∫ 1

0

dξ
∑
q

fq(ξ)
d2σ̂

dxdQ2
(ξ)

=

∫ 1

0

dξ
∑
q

fq(ξ)
4πα2

Q4
[1 + (1− y)2]

1

2
e2
q δ(x− ξ) .

(2.12)

The functions fq(ξ) are called parton distribution functions (PDFs) or collinear
PDFs. In the approach of pQCD they cannot be computed because they contain
non-perturbative information on hadron structure and thus they must be extracted
from measurements.

By comparing Eq (2.6) and Eq (2.12) we see that the structure functions in this
simple model are equivalent to:

F2(x,Q2) = 2xF1(x,Q2) =
∑
q,q̄

e2
q xfq(x) , (2.13)
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2.2. Parton Model

where the sum is made over all the quarks and antiquarks.

In this naive free parton model, the only Q2 dependence in this partonic cross
section comes from the photon propagator. The absence of Q2 dependence in the
right-hand-side term in Eq (2.13) justifies the absence of scaling giving structure
functions independent of Q2. F2 represents the sum on all flavours of the density of
probability of quarks carrying a momentum fraction x of the proton.

In particular, for the scattering of a charged electron off a proton target by
virtual photon exchange, e−p → e−X, with enough energy for four quark flavours,
in the approximation of a single γ exchange, the F2 structure function is given by:

F2(x) = x

[
4

9
(u(x) + ū(x) + c(x) + c̄(x))

+
1

9
(d(x) + d̄(x) + s(x) + s̄(x))

]
.

(2.14)

The result 2xF1 = F2 in Eq (2.13) is called Callan-Gross relation, it is a direct
consequence of the spin-1

2
property of the quarks [13]. This relation is only true for

quarks that are massless and without intrinsic transverse momenta. When QCD
corrections are taken into account, this property does not hold anymore.

Figure 2.4: HERA combined e+p reduced cross section and fixed-target data as a function
of Q2 [14].

In Fig (2.4), the reduced cross section σr is shown as a function of Q2 for different
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Chapter 2. Proton Structure and QCD Evolution Equations

values of x. The reduced cross section os obtained by dividing Eq (2.12) by a factor
2πα2

xQ4 (1 + (1− y)2). It is equal to F2 at low Q2 and not very large y [14]. These cross
sections were computed from H1 and Zeus measurements which are two particle
detectors that operated at HERA, the Hadron-Electron Ring Accelerator in Ham-
burg. At HERA, electrons (or positrons) were collided with protons at a center of
mass energy of

√
s = 318 GeV. These measurements correspond to the black points

in the plot. The squares on Fig (2.4) are the fixed-target measurements from the
BCDMS (Bologna-CERN-Dubna-Munich-Saclay) collaboration [15, 16]. The blue
lines correspond to a fit which includes NLO corrections, called HERAPDF1.0. The
combined data set on neutral current (NC) and charged current (CC) DIS inclusive
cross sections is used as the sole input for the HERAPDF1.0 fit.

The figure shows that the Björken scaling expected in the naive parton model is
a very good approximation for 0.13 < x < 0.18, i.e. the quark valence region. For
smaller or very large x one can clearly see the violation of Björken scaling. This
violation comes from higher order QCD contributions to DIS that will be discussed
in the next section.

2.3 DGLAP evolution equation

2.3.1 Scale violation

The limited validity of the naive parton model comes from the fact that it neglects
gluon radiations from quarks as expected by QCD. These radiated gluons may emit
other gluons, be reabsorbed, or even emit a quark-antiquark pair. Inside a proton,
all these quantum fluctuations occur but will be undetectable if no interaction (e.g.
with a photon) takes place during their lifetime. Furthermore in the naive model,
partons have only a momentum strictly parallel to the momentum of the proton.
In case of parton emission there will be an additional transverse component. The
probability to emit a quark or a gluon is of order O(αS), here below we consider
first order QCD corrections.

Note that the αS scale dependence in αS has a 1/(lnQ2) term (see Eq (1.8)). For
increasing Q2 one accesses the domain where αS is small (asymptotic freedom prop-
erty). It allows us to apply perturbation theory for interactions on quarks whose
distributions have non-perturbative origins.

2.3.2 QCD corrections

In order to describe the parton density evolution, we need to study the contribution
of the gluon emission to the DIS cross section, i.e.

γ∗q → qg (2.15)

This section follows the argumentation from [9].
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k

q

p

k′

q

k

k′

p

k − p
k + q

Figure 2.5: DIS diagram with a gluon emission.

The contribution coming from the two diagrams in Fig (2.5) can be expressed
as:

|M|2 = 32π2(e2
qααS)

4

3

[
− t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

]
. (2.16)

where eq is the fractional charge of the quark and where the color factor 4/3 takes into
account the summation over final colours and the averaging over the initial ones.
The hat (û) Mandelstam variables, ŝ, t̂, û indicates that the parton subprocess is
considered. In our notation we get:

ŝ = (k + q)2 = (k′ + p)2 , (2.17)
t̂ = (k − p)2 = (k′ − q)2 , (2.18)
û = (q − p)2 = (k − k′)2 . (2.19)

In the limit of high energies, −t̂� ŝ, one can express the cross section differentiated
with respect to the transverse momentum of the scattered quark (pT = k′ sin θ), as
in [9], where θ is the angle between the gluon and the scattered quark:

dσ̂

dp2
T

=
4π2αe2

q

ŝ

1

p2
T

αS
2π
PR
qq(z)

= e2
qσ̂0

1

p2
T

αS
2π
PR
qq(z) . (2.20)

where σ̂0 = 4π2α/ŝ and the PR
qq(z) function is called the splitting function, where

the (R) stands for real emissions. It may be written as:

PR
qq(z) =

4

3

[
1 + z2

1− z

]
, (2.21)

which is a function of the longitudinal momentum fraction z of the incident quark
“seen” by the incoming photon:

z ≡ Q2

2k · q =
Q2

(k + q)2 − q2
=

Q2

ŝ+Q2
. (2.22)

The function PR
qq(z) represents the probability of a quark emitting a gluon and

becoming a quark with momentum reduced by a fraction z. In our massless approx-
imation, this function is the same for quarks and antiquarks PR

q̄q̄(z) = PR
qq(z).

The z → 1 singularity is associated with the emission of a “soft” massless gluon
which corresponds to an infrared divergence. There is another infrared divergence
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Figure 2.6: Virtual contributions to the LO Pqq splitting function.

when the transverse momentum of the radiated gluon is very small, p2
T → 0. One

needs to find a way to regularize this singularity. Finally, there are also virtual
corrections, shown in Fig (2.6), which must be included. These virtual corrections
can be computed from the diagrams or from unitarity arguments and it can be
shown that they cancel exactly the real emission z → 1 singularity (for more details
see [9]). The full expression for the Pqq splitting function is then given by:

Pqq(z) =
4

3

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
, (2.23)

where the “+ prescription" was used for regularization, it is defined such that for
any test function f : ∫ 1

0

dz
f(z)

(1− z)+

=

∫ 1

0

dz
f(z)− f(1)

(1− z)
, (2.24)

where (1− z)+ = (1− z) for z < 1 but is infinite at z = 1.

2.3.3 Factorisation and Evolution

The contribution of the gluon emission Eq (2.20) has to be considered as a contribu-
tion to the structure function F2 which enters in the DIS cross section. Integrating
the gluon emission cross section over p2

T yields:

σ(γ∗q→ qg) =

∫ ŝ/4

κ2
dp2

T

dσ̂

dp2
T

(2.25)

= e2
qσ̂0

∫ ŝ/4

κ2

dp2
T

p2
T

αS
2π
Pqq(z) (2.26)

= e2
qσ̂0

(
αS
2π
Pqq(z) ln

Q2

κ2

)
, (2.27)

where one had to introduce a small cut-off κ2 to cancel the divergence for p2
T → 0.

Before explaining the treatment of this singularity, let us write the gluon emission
contribution to F2 in the parton model and modify the Eq (2.13) to:

F2(x,Q2) = x
∑
q,q̄

e2
q

∫ 1

x

dx′

x′
q(x′)

(
δ
(

1− x

x′

)
+
αS
2π
Pqq

( x
x′

)
ln
Q2

κ2
+ ...

)
, (2.28)

where x′ is the momentum fraction of the “mother” quark and x of the “daughter”
one. We have introduced the notation that the quark structure function fq(x) ≡
q(x). One can see that the Björken scaling prediction for the structure function is
violated. In other words beyond leading order, F2 is not only a function of x, but
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2.3. DGLAP evolution equation

also of Q2, even if the variation with Q2 is only logarithmic.

So far the singularity when p2
T → 0 remains through the κ2 parameter. To

begin with, this limit corresponds to a “long-range” part of the strong interaction,
so we cannot compute it in pQCD. Eq (2.28) may be understood as the first two
terms of a power series in αS. One can regard the quark distribution q(x) as an
unmeasurable, bare distribution. The collinear singularities can be absorbed into
this bare distribution at a factorization scale µ2, which plays a similar role to the
renormalization scale for αS (see e.g. [2]). In other terms, one defines a renormalized
or dressed distribution at a given scale µ2:

q(x, µ2) = q(x) +
αS
2π

∫ 1

x

dx′

x′
q(x′)Pqq

( x
x′

)
ln
µ2

κ2
+ ... , (2.29)

where the κ2 parameter has been absorbed into the definition of the quark distribu-
tion q(x, µ2). Therefore one has an expression of F2 independent of κ2:

F2(x,Q2) = x
∑
q,q̄

e2
q

∫ 1

x

dx′

x′
q(x′, µ2)

[
δ
(

1− x

x′

)
+
αS
2π
Pqq

( x
x′

)
ln
Q2

µ2
+ ...

]
.

(2.30)

The quark distributions q(x, µ2) cannot be calculated in pQCD but they can be
determined from structure functions data at any particular scale, since F2(x,Q2) =
x
∑

q,q̄ e
2
qq(x,Q

2) and their Q2 evolution are predicted by pQCD.

How can we understand that the proton structure exhibits an evolution between
different scales? Fig (2.7) represents the proton and its evolution with the scale.
The left part of the illustration presents a proton with partons as seen by a virtual
photon of virtuality Q0 which corresponds to a resolution scale ∼ 1/Q0. On the
right, the same proton is probed by a photon with higher virtuality Q > Q0. The
latter is able to resolve shorter transverse distances ∼ 1/Q, which is why DIS is
often compared to a microscope.

Figure 2.7: Illustration of the evolution equations. The blobs indicate partons [17].

If there were only valence quarks, no further structure would be resolved as Q
increases, and the parton model would be fully satisfactory. However, QCD pre-
dicts that for larger resolution (Q0 � Q), one should “see” that each quark is itself
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surrounded by a cloud of partons. The number of resolved partons which share the
proton’s momentum increases with Q as shows the right term of Eq (2.30) where
the probability of gluon radiation is enhanced by a factor lnQ2. These gluons can
then emit quark-antiquark pairs so the probability to find quarks (or antiquarks) at
small x increases.

The evolution of the quark density with the scale µ2 can be rewritten as an
integro-differential equation for q(x, µ2):

dq(x, µ2)

d lnµ2
=
αS
2π

∫ 1

x

dx′

x′
q(x′, µ2)Pqq

( x
x′

)
. (2.31)

This equation is still incomplete because quarks can also come from the splitting of
a gluon into a quark-antiquark pair. This is discussed in the next subsection.

2.3.4 LO splitting functions and DGLAP evolution equations

Up to know, only the splitting of a quark into another quark has been considered.
Indeed, the only contributions to DIS incorporated are γ∗q → q and γ∗q → qg.
To order αS, we should also include the contributions where a gluon in the initial
proton produces a quark-antiquark pair to which the virtual photon then couples
(γ∗g → qq̄). This is the process illustrated in Fig (2.8).

Figure 2.8: DIS diagram with a gluon in the initial state.

Its contribution to the structure function F2 is then given by:

F2(x,Q2)
∣∣
γ∗g→qq̄ = x

∑
q,q̄

e2
q

∫ 1

x

dx′

x′
g(x′, µ2)

αS
2π
Pqg

( x
x′

)
ln
Q2

µ2
, (2.32)

where g(x) is the gluon density in the proton and where

PR
qg(z) =

1

2

[
z2 + (1− z)2

]
(2.33)

is the LO part of the splitting function of a gluon into a real quark-antiquark pair.
It represents the probability that a gluon materialises into a quark-antiquark pair,
such that the quark has a fraction z = x/x′ of its momentum. This expression is
not divergent and there are no virtual contributions at LO so PR

qg(z) = Pqg(z). Note
also that in our massless approximation the splitting function is the same for all
quark flavours so Pqfg = Pq̄fg ≡ Pqg.
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Including the quark-antiquark pair production to the evolution of the quark
density, Eq (2.31) becomes:

dq(x, µ2)

dµ2
=
αS
2π

∫ 1

x

dx′

x′

(
q(x′, µ2)Pqq

( x
x′

)
+ g(x′, µ2)Pqg

( x
x′

))
, (2.34)

for each flavour q. This equation mathematically expresses that a quark with mo-
mentum fraction x (q(x, µ2)) at the left-hand-side could have come from a “parent”
quark or gluon with larger momentum fraction x′ at the right-hand-side. The parent
parton (q(x′, µ2) or g(x′, µ2)) has lost momentum radiating a gluon or giving a qq̄
pair respectively. The probability that it happens is proportional to αSPqq or αSPqg
and the integral is taken over all possible momentum fractions x′(> x) of the parent
parton.

One requires also an evolution equation for the gluon density in the proton.
Following the same path, it can be found (see e.g. [2, 9]) that the gluon distribution
function can be written as:

dg(x, µ2)

d lnµ2
=
αS
2π

∫ 1

x

dx′

x′

(∑
q,q̄

q(x′, µ2)Pgq

( x
x′

)
+ g(x′, µ2)Pgg

( x
x′

))
, (2.35)

where the LO splitting functions Pgq and Pgg are given by (see [18]):

Pgq(z) =
4

3

[
1 + (1− z)2

z

]
, (2.36)

Pgg(z) = 6

[
z

(1− z)+

+
1− z
z

+ z(1− z)

]
+

33− 2nf
6

δ(1− z) . (2.37)

The divergence in Pgg when z → 1 corresponds again to the emission of a soft gluon.
The Pgg splitting function above is already corrected for the virtual emissions and
this divergence is canceled, as in the Pqq case. In addition, there is a divergence
when z → 0 in both Pgq and Pgg. It corresponds to the situation when the gluon
is entering the hard scattering with an energy → 0. To be able to use pQCD in
the calculation, one needs some minimum scale of the hard process ŝ. Study such
a process with a gluon at very low x requires considerable energy of the incoming
beams. The formalism used in this section is not a good description in the limit
s → ∞ needed to reached x → 0. We will introduce a small cut-off on the value
of z to protect against these situations. However there are other formalisms better
suited to the region of small x, such as BFKL equation (see e.g. [19]).

Eq (2.34) and Eq (2.35) can be put together in a more compact form

d

d lnµ2

(
qi(x, µ

2)
g(x, µ2)

)
=
αS
2π

∑
qj

∫ 1

x

dx′

x′

×
(
Pqq(z) δij Pqg(z)
Pgq(z) Pgg(z)

)(
qj(x

′, µ2)
g(x′, µ2)

)
.

(2.38)

These are the well knownDokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tions which are ones of the most important equations of QCD. They describe the
evolution of the parton distribution functions with the scale µ2.
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For a given PDF (e.g. extracted from DIS cross section measurements), the
DGLAP equations allow us to compute its evolution. This evolution is illustrated
in Fig (2.9) by the MRST PDF library (valence u and d, sea ū and gluon). When
the value of Q2 increases, the space phase to radiate a gluon grows. The emitted
gluon will carry a fraction of the proton’s momentum, leaving a lower momentum
fraction to the quark. The quark density of the sea should thus increase at small
values of x when Q2 increases. It means that the variation of Q2 affects the partons
densities: i.e. the violation of Björken scaling. While the valence peak stays for any
Q2 scale: i.e. the Björken scaling.

Figure 2.9: Valence u and d quarks, upbar quark and gluons distributions in the proton
estimated by MSRT Group at two different Q2 values. Left: Q2 = 1GeV 2. Right: Q2 =
10000GeV2. Distributions generated with the online tool [20].
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Chapter 3

The Drell-Yan process

The study of DIS has brought a detailed understanding of how the proton momen-
tum is shared in the longitudinal direction between its different constituents, the
partons. Their evolution as a function of the longitudinal momentum fraction x
with the scale of the interaction is given by the DGLAP equation. The DIS cross
section can be written as the convolution of the evolved PDF and the hard cross
section where only longitudinal momentum dependence is considered. These PDFs
are universal quantities, i.e. they can be used in other type of interactions like in
hadron-hadron collisions. Possible transverse momentum, not accessible in DIS, are
not considered up to here. The Drell-Yan process in hadron-hadron collisions can
bring, as we will see, additional information on the transverse momentum depen-
dence of the PDF.

The Drell-Yan process (DY) corresponds to a quark-antiquark annihilation into
a pair of oppositely-charged leptons, l+l−, with invariant mass M2 = (pl+ + pl−)2 �
1GeV2. It has been first presented in 1970 by Sydney Drell and Tung-Mow Yan
[21]. The DY takes place in hadron-hadron collision, the quark and antiquark being
constituents of the two incoming hadrons. They can create an off-shell virtual boson
(γ∗ or Z) and this boson then decays into a pair of charged leptons which have a
clear signature into the detectors. From now on, we will take the hadrons to be
protons, as illustrated in Fig (3.1).

At high energies, in presence of a hard scale, the partons are assumed to be
quasi-free due to the property of asymptotic freedom. The interactions between
the partons inside a proton can then be neglected. In a high energy proton-proton
collision, the hard scattering process (hard indicates a large momentum transfer Q2)
is initiated by two partons of the two protons. The square center-of-mass energy of
the proton-proton collision is defined as:

s = (P1 + P2)2 , (3.1)

with Pi the four-momentum of the proton i. In the collinear approximation, the
transverse momentum of the partons is neglected, the four-momenta of the two
partons can thus be written as:

p1 =

√
s

2
(x1, 0, 0, x1) ,

p2 =

√
s

2
(x2, 0, 0,−x2) ,

(3.2)
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Figure 3.1: LO Drell-Yan process in the parton model [22].

with the momentum fraction xi of the parton i. The square center-of-mass energy
of the parton-parton scattering yields

ŝ = (p1 + p2)2 = x1x2s = Q2 = M2 . (3.3)

3.1 Factorisation

In order to calculate the cross section of a hard process, the collinear factoriza-
tion theorem can be used. The factorization theorem separates the short-distance
terms like the partonic cross section including QCD radiation, which can be com-
puted perturbatively, and long-distance contributions, such as hadronisation, PDFs
and collinear singularities. In section (2.2), we used the theorem to write the DIS
cross section as a convolution of the partonic hard cross section and the PDFs of
the incoming partons. This formalism can be generalised to the DY process. The
formalism for the partons is nearly the same in the DY process than in the DIS
scattering, although there are of course two partons evolutions involved in the DY
process. In the perturbative expansion of the partonic cross section at NLO (or
higher-orders), the real and virtual gluon emissions have to be included. Due to
the collinear and soft emissions in the perturbative expansion of the cross section,
the perturbative series breaks down. In order to cancel the divergent behaviour at
small scales the factorization scale µF is introduced, as in the DIS case, see section
(2.3.3). The collinear singularities are then absorbed in the PDFs by introducing
renormalized scale-dependent PDFs fi(x, µ2

F ).

In practice, the factorisation theorem claims that the cross section σ(P1, P2) for
a hard scattering process between two protons with four-momentum P1 and P2 can
be obtained by weighting the partonic cross section σ̂qq̄ with the PDF fq(xi, µ

2
F )

defined as the probability density of finding a quark q with a certain longitudinal
momentum fraction xi at the factorization scale µ2

F inside the incoming proton. This
expression is then integrated over all possible momentum fractions carried by the
partons and summed over all possible quark flavours q to give the differential DY
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cross section:

dσpp→l+l−

dM2
=
∑
qq̄

∫ 1

0

dx1

∫ 1

0

dx2 {fq(x1, µ
2
F )fq̄(x2, µ

2
F ) σ̂qq̄→l+l− + (q ↔ q̄)} δ(ŝ−M2)

(3.4)
where M is the lepton pair invariant mass and where the sum runs over all quark
antiquark combinations. The hard subprocess can be expanded as:

σ̂qq̄→l+l− = {σ̂LO(µ2
F ) + αS(µ2

R)σ̂NLO(µ2
F , µ

2
R) + ... }qq̄→l+l− (3.5)

Typically, the renormalization and factorisation scales are taken to be the same or-
der of magnitude as well as the momentum scale of the hard process Q2 = M2.

3.2 Cross sections
In the following we discuss the DY cross section, first in the parton model and then
including perturbative corrections, illustrating the factorization property described
above. The DY process has been calculated up to NNLO but this accuracy won’t
be discussed here.

3.2.1 Parton Model and Leading Order

The cross section in the parton model follows Eq (3.4). At lowest order in pQCD,
the subprocess cross section σ̂qq̄→l+l− via an intermediate off-mass-shell photon can
be obtained from the e+e− → qq̄ cross section (see e.g. [2]). One needs to correct
this cross section by a colour factor of 1/Nc = 1/3 due to the average of the colours
of the initial state quarks.

σ̂(q(p1)q̄(p2)→ l+l−) =
4πα2

3ŝ

1

Nc

Q2
q , (3.6)

with ŝ given by Eq (3.3) and Qq the quark electric charge. The incoming quark and
antiquark reveal different collision energies

√
ŝ, hence different invariant masses of

the lepton pair can be produced. The differential cross section in the lepton pair
mass, M , is given by:

dσ̂

dM2
=

4πα2

3M2

1

Nc

Q2
qδ(ŝ−M2) . (3.7)

The proton-proton cross section for this process yields

dσ

dM2
=

∫ 1

0

dx1dx2

Nf∑
q

{fq(x1)fq̄(x2) + fq̄(x1)fq(x2)} × dσ̂

dM2

=
4πα2

3M2

∫ 1

0

dx1dx2δ(x1x2s−M2)

 Nf∑
q

Q2
q{fq(x1)fq̄(x2) + fq̄(x1)fq(x2)}


(3.8)

where we have used Eq (3.3) to replace ŝ.
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Chapter 3. The Drell-Yan process

In the naive parton model, the DY cross section should observe an analogous
Björken scaling as in DIS structure function Fi(x,Q

2) of section (2.2). Indeed in
this approximation, the PDFs fi(x) are independent of the scale of the process
Q2 = M2 and multiplying Eq (3.8) by M4 one finds a scaling in the dimensionless
variable τ = M2/s:

M4 dσ

dM2
=

4πα2

3Nc

τ

∫ 1

0

dx1dx2δ(x1x2 − τ)

 Nf∑
q

Q2
q{fq(x1)fq̄(x2) + fq̄(x1)fq(x2)}


=

4πα2

3Nc

τF(τ) .

(3.9)
In general, the differential cross section should be a function of the center-of-mass
energy s and of the mass of the system M . This equation shows clearly a depen-
dence on the scaling τ = M2/s. The measured DY cross section do exhibit a scaling
behaviour to a good approximation, which confirms the parton model picture, see
for example the review in [23].

3.2.2 Z boson production

By increasing the center of mass energies, the qq̄ → γ∗ → l+l− contribution must be
supplemented by the additional contribution of the Z boson in the s-channel. Eq
(3.6) is thus completed by the Z contribution σZ and the γ/Z interference contri-
bution σint:

σ̂
(
q(p1)q̄(p2)→ l+l−

)
LO

= σ̂γ∗ + σ̂int + σ̂Z

=
4πα2

3ŝ

1

Nc

[
Q2
q + 2Qq Vl Vq χ1(ŝ)

+ (A2
l + V 2

l )(A2
q + V 2

q ) χ2(ŝ)
] (3.10)

with

χ1 = κ
ŝ(ŝ−M2

Z)

(ŝ−M2
Z)2 +M2

ZΓ2
Z

, χ2 = κ2 ŝ2

(ŝ−M2
Z)2 +M2

ZΓ2
Z

, κ =
1

sin2 2θW

where MZ and ΓZ are the mass and total decay width of the Z boson respectively.
The vector and axial couplings of the fermions to the Z are:

Vf = T 3
F − 2Qf sin2 θW , Af = T 3

F (3.11)

with T 3
f = +1

2
for f = ν, u, ... and T 3

f = −1
2
for f = e, d, ... . Note that the fermion

masses have been neglected in the computation of this cross section.

The χ2 term comes from the square amplitude of the Z-exchange and the χ1

term from the γ/Z interference. The behaviour of the cross section depends of the
center of mass scattering energies. On the one hand, far below the Z peak, the ratio
ŝ/M2

Z is small so 1 � χ1 � χ2, i.e. the weak effects which appear in the terms
involving the vector and axial couplings, are small and can be neglected. On the
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3.2. Cross sections

other hand, close to the Z pole,
√
ŝ ∼MZ , the χ2 term dominates.

These results represents the first term of Eq (3.5): σ̂LO. Again, as different
invariant masses of the lepton pair can be produced, it is more appropriate to use
the differential cross section as a function of the lepton pair invariant mass M2, as
in Eq (3.7). It gives:

dσ̂LO
dM2

=
4πα2

3M2Nc

δ(ŝ−M2)×
[
Q2
q + 2Qq Vl Vq χ1(M2)

+ (A2
l + V 2

l )(A2
q + V 2

q ) χ2(M2)
]
.

(3.12)

We can finally insert the partonic cross section result into the expression based on
QCD factorization theorem (Eq (3.8)), to obtain the proton-proton cross section for
the DY process at leading order:

dσLO
dM2

=

∫ 1

0

dx1dx2

Nf∑
q=1

{fq(x1)fq̄(x2) + fq̄(x1)fq(x2)} × dσ̂LO
dM2

(3.13)

3.2.3 Perturbative QCD corrections

In this section we calculate the NLO partonic cross section of Eq (3.5). Only the
photon exchange channel is considered for simplicity but the NLO corrections are
similar for the Z boson and the interference. The calculation is analogous to that of
the corresponding correction to the DIS structure function F2, described in section
2.3.2. The O(αS) QCD corrections to the partonic cross section correspond to
loop and real corrections, where the latter is correlated with an additional parton
emission. We begin by considering the LO parton model cross section of Eq (3.9)
and its scaling behaviour:

M4 dσ̂

dM2
=

4πα2

3Nc

τ F̂(τ) , (3.14)

with
F̂(τ) = Q2

qδ(1− τ) . (3.15)

In pQCD, the function F̂ can be expanded in powers of αS:

F̂(τ) = F̂0(τ) + F̂1(τ) + ... . (3.16)

The only Feynman diagram present at LO for the DY process was the radiation-less
quark-antiquark annihilation which does not contain any QCD vertex. The dia-
grams which contribute at O(αS) are depicted in Fig (3.2). There are three types of
diagrams, one where the incoming quark or antiquark emits a real gluon, the second
where a virtual gluon is radiated and reabsorbed. The proton containing also glu-
ons, a new type of diagram has to be considered, with gluon in the initial state. In
short, the three types of contribution at O(αS) are: real gluon corrections (F̂ qq̄,R1 ),
virtual gluon correction to the LO contribution (F̂ qq̄,V1 ) and quark(antiquark)-gluon
scattering (F̂ qg1 ).

The corrections in the cross section computation introduce divergences. The
three classes of divergences that can be encountered are:
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Chapter 3. The Drell-Yan process

Figure 3.2: LO and NLO Feynman diagrams dor the Drell Yan process.

1. Ultraviolet (UV) divergences from the loop diagrams, if the energy of the
radiated parton tends to infinity (kµ →∞).

2. Infra-red (IR) divergences due to soft (kµ → 0) gluon emission from both real
and virtual contributions.

3. Collinear divergences when the transverse momentum of the emitted parton
goes to zero pT → 0.

The UV divergences are treated with renormalization, where different types of reg-
ularisation schemes can be used. The results showed below follow the approach
of dimensional regularisation, which is discussed in [24]. This scheme allows us to
simultaneously regularise both infrared and ultraviolet divergences. In the dimen-
sional regularisation, the integration variables in space-time dimension are set to
4− 2ε instead of 4, with a regulator ε < 0, and a scale µ2 is introduced to preserve
the dimensions of physical quantities. The contributions yield:

F̂ qq̄1 = F̂ qq̄,R1 + F̂ qq̄,V1

= Q2
q

αS(µ2)

2π

[
2
(
− 1

ε
− ln (4π) + γE + ln

M2

µ2

)
P (0)
qq (τ) +Dq(τ)

]
F̂ qg1 = Q2

q

αS(µ2)

2π

[(
− 1

ε
− ln (4π) + γE + ln

M2

µ2

)
P (0)
qg (τ) +Dg(τ)

] (3.17)

where we ignored terms O(ε) or higher and with γE = 0.5772... is the Euler constant.
Dq and Dg are defined as [25, 26]:

Dq(z) =
4

3

[
4(1 + z2)

(
ln(1− z)

1− z

)
+

− 2
1 + z2

1− z ln z + δ(1− z)

(
2π2

3
− 8

)]
,

Dg(z) =
1

2

[
(z2 + (1− z)2) ln

(1− z)2

z
+

1

2
+ 3z − 7

2
z2

]
.

(3.18)
One can see that only the collinear divergences fail to cancel when we take into
account all the diagrams. The coefficient of 1/ε singularity are the LO splitting
functions defined in Eqs (2.23, 2.33). Thus convoluting the bare parton distri-
butions with the F̂ qq̄1 and F̂ qg1 functions, and replacing them by scale dependent
“renormalized" distributions as in Eq (2.29), the singularities exactly cancel. This
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3.3. Transverse momentum distributions

annulment is achieved by the replacement q0(x)→ q(x, µ2):

q(x, µ2) = q0(x) +
αS(µ2)

2π

(
−1

ε
− ln(4π) + γ(E)

)
×
∫ 1

x

dξ

ξ

[
Pqq(x/ξ) q0(ξ) + Pqg(x/ξ) g0(ξ)

]
+O(α2

S) .

(3.19)

This calculation follows the factorisation theorem stating that for the DY process,
all collinear singularities at every order in perturbation theory can be absorbed into
universal parton distributions. The scale dependence of these PDF is determined
by the DGLAP evolution equations. The remaining finite perturbative corrections
modify the LO parton-model cross section.

The full cross section to O(αS), with µ2 = M2, is then

M4 dσ

dM2
=

4πα2

3Nc

τ

∫ 1

0

dx1 dx2 dz δ(x1x2z − τ)

×
[∑

q

Q2
q {fq(x1,M

2)fq̄(x2,M
2) + (q ↔ q̄)} ×

(
δ(1− z) +

αS(M2)

2π
Dq(z)

)

+
∑
q

Q2
q{fg(x1,M

2)[fq(x2,M
2) + fq̄(x2,M

2)] + (q, q̄ ↔ g)} × αS(M2)

2π
Dg(z)

]
.

(3.20)

3.3 Transverse momentum distributions
The Drell-Yan transverse momentum is a crucial observable to test perturbative as
well as non-perturbative QCD. The particles produced by the DY at LO are two
opposite charged leptons, here taken to be muons. These particles are referred as the
dimuon system. Note that the following discussion would also be applicable if the
leptons were electrons. The vectorial transverse momentum of the dimuon system
~p µµ
T is simply defined as the sum of the momenta of the two muons:

~p µµ
T = |~p µ+

T + ~p µ−

T | . (3.21)

This transverse momentum can be interpreted as the pT of the γ/Z. At LO in the
parton model using PDF, it should be zero because of momentum conservation in
the transverse plane. At NLO the radiation of a hard gluon carrying some pT will
be balanced by the dimuon pµµT . The expected contributions of LO and NLO events
to the transverse momentum are sketched in Fig (3.3).

Nevertheless, at very small p µµ
T , the intrinsic transverse motion of the partons

inside the colliding protons cannot be neglected. There is a non-perturbative con-
tribution due to the Fermi motion of the partons. It comes from the Heisenberg’s
uncertainty principle which asserts a fundamental limit to the precision with which
the position x and the momentum p of a particle can be known: ∆x · ∆p ≥ ~/2 .
Taking the charge radius of the proton, ∆x = 0.87 fm, it yields:

∆p ≥ ~
2∆x

= 113.41MeV . (3.22)
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Chapter 3. The Drell-Yan process

Figure 3.3: Drell-Yan production decaying in two muons (left) and with an additional
gluon (right), shown in the transverse plane of the CMS detector. For a LO event (left),
the dimuon system has "zero“ transverse momentum, the muons are thus emitted back-to-
back. For some NLO event (right), one additional gluon (shown in blue) may be radiated,
providing non-zero pT to the dimuon system. The purple dashed arrow indicates the trans-
verse momentum of the dimuon system, which can be computed from the measurement of
the two individual muons [22].

Such a contribution is to be expected in both x and y distribution, and for each
parton interacting in the DY. Combining both transverse momentum directions:
kx, ky; and taking into account the two partons, the Fermi motion contribution
pFermiT yields:

pFermiT =
√
k2
x1

+ k2
y1

+ k2
x2

+ k2
y2

≥
√

4 · (113.41)2 = 226.82MeV .
(3.23)

It has been shown that the Fermi motion takes a Gaussian form. It follows that
the differential pµµT cross section also obeys the Gaussian distribution in very small
pµµT regions [2, 27]. The differential cross section as a function of pT measured by
the CFS collaboration [28] (from fixed-target pN collisions with plab = 400GeV,√
s = 27.4 GeV) is shown in Fig (3.4) for a mass between 6 and 7 GeV. The parton

can only have a limited transverse momentum kT relative to the direction of the
parent hadron. The curve fitting the low-pT data corresponds to a Gaussian kT
distribution:

h(~kT ) =
b

π
exp(−bk2

T ) . (3.24)

The result obtained is 〈kT 〉 = 760 MeV which is a value clearly larger that we ex-
pected from Fermi motion.

To investigate further, one can look at higher center-of-mass energy data and in
particular the Z boson production. The differential cross section in pT is shown in
Fig (3.5), from the ATLAS collaboration [29] for Z → ee, 66 < Mll < 116 GeV,
|yll| < 2.4. Note that the leptons in these analysis are electrons and not muons, but
this has no influence to our discussion so we will continue to talk in terms of muons.
Assuming both transverse momentum component px and py obeys a Gaussian dis-
tribution, one can combine them and fit the result to the data at low-pT . We find
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3.3. Transverse momentum distributions

Figure 3.4: The lepton pair transverse momentum from the CFS collaboration. The curve
corresponds to a Gaussian intrinsic kT distribution for tha annihilating partons [28].

a mean of 〈pT 〉 = 3.6 GeV, again not compatible with Fermi motion. It shows that
the low-pT peak position evolves with the scale and cannot just describe the Fermi
motion, there must be another contribution in it.

The data of Fig (3.4) and Fig (3.5) also exhibits a large transverse momentum
region. That leads us to consider new perturbative mechanisms, involving at least
one QCD vertex. The relevant processes are the NLO 2 → 2 scattering: qq̄ → Zg
and qg → Zq. The diagrams are those of the second line of Fig (3.2).

The distribution at large pµµT (≥Mµµ) follows perturbative QCD corrections that
can be computed only to a certain fixed-order. The contributions have been calcu-
lated until next-to-next-to-leading order (NNLO), involving real emission processes
like qq̄ → Zgg as well as virtual (loop) corrections to the NLO, see e.g. [30]. We
will follow the argumentation of [2].

The prediction of the NLO cross section is in good agreement with the data at
large-pµµT but diverges as pµµT → 0. The leading behaviour at small pµµT comes from
the emission of soft (four-momentum k → 0) gluons. As we discussed in section
3.2.3, the total cross section is finite. Virtual corrections to the LO process qq̄ → Z
only contribute at pT = 0, i.e. dσV /dp2

T ∝ δ(p2
T ), which essentially regularises the

singular parts of the gluon emission cross section. Additionally, the perturbative
and non-perturbative contributions from low-pµµT must be combined with this per-
turbative large pT tail given by the NLO cross section.

However a new problem arises in the region ΛQCD � pµµT � Mµµ: the higher-
order terms in the perturbative series cannot be neglected. In particular, the soft
gluon emissions become multiple and the leading contributions at each order in the
perturbative series cannot be neglected. At each order, the differential cross section
for these multiple soft gluon emissions obeys the following perturbative expansion
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Figure 3.5: The Z boson transverse momentum from ATLAS collaboration for Z → ee,
66 < Mll < 116 GeV, |yll| < 2.4. The curve corresponds to our fit at low-pT [29].

in αS:

1

σ

dσ

p2
T

' 1

p2
T

[
A1αS ln

M2

p2
T

+ A2α
2
S ln3 M

2

p2
T

+ ...+ Anα
n
S ln2n−1 M

2

p2
T

+ ...

]
, (3.25)

with calculable coefficients Ai. The perturbative expansion in αS is only reliable
assuming that the scales are of the same order of magnitude. If pT � M , the
higher-order terms become non-negligible and we cannot keep the leading logarithms
contributions anymore:

αS ln2 M
2

p2
T

& 1 . (3.26)

It follows that the fixed-order perturbative expansion is not appropriate to describe
the behaviour of this pT region. This corresponds to pT values less than 10-15 GeV
after taking into account the magnitude of the Ai coefficients. A solution to char-
acterise the soft gluon emissions at low-pT is given by the resummation approach.
This method will be discussed in the next chapter among others techniques beyond
pQCD at fixed order.
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Chapter 4

TMDs from the Parton Branching
solution of DGLAP

4.1 Beyond the Fixed Order Calculations

4.1.1 Parton Shower

In the 1970s Monte Carlo event generators were developed to simulate the fully ex-
clusive final state of an interaction. They include different hadronization models to
generate the hadrons of the final state.

Higher order corrections, beyond the order of the hard scattering process, are
important and must be described properly. This was accomplished by introduc-
ing the concept of parton showers, which is an explicit simulation of higher order
radiation according to the evolution equations. Parton shower formally works in
the strongly-ordered limit. They start from a given leading order prediction and
effectively multiply it by splitting probabilities for each additional emission. This
allows in principle any observable to be predicted at leading logarithmic (LL) (and
including some next-to leading logarithmic (NLL) effects).

In this formalism, standard Monte Carlo event generators for high-energy col-
lisions, such as Pythia [31], have adjustable parameters to control the behaviour
of its event modelling. The Pythia program comprises a coherent set of physics
models for the evolution from a few-body hard process to a complex multi hadronic
final state. It contains among other things a library of hard processes and models
for initial- and final-state parton showers. A specific set of these parameters (called
tunes) is adjusted to better fit some aspects of the data. It is worth mentioning that
for precision calculations the accuracy of the parton shower has to be estimated.
The control of soft gluon emission is the weakest aspect of the predictions.

Parton shower has long formed the basis for QCD applications at colliders. One
of the limitations of the method described above is the requirement that the hard
scattering and the parton evolution are collinear with the colliding hadrons, while
parton radiations in the initial state (via parton showers) introduce transverse di-
mensions. Such a one dimensional (collinear) treatment is typically valid for single-
scale observables, but encounters issues when a second scale appears, such as the
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transverse momentum of the Z boson in a DY process.

4.1.2 Resummation

The resummation approach offers a solution to characterise the soft gluon emissions
at low-pT . For instance let us consider the Drell Yan process as in the previous
chapter. The contributions of the leading logarithms in Eq (3.25) can be resummed
to all orders in perturbation theory. It yields:

1

σ

dσ

dp2
T

∼ d

dp2
T

exp

(
−αS

2π
CF ln2 M

2

p2
T

)
=
αS
2π
CF

ln M2

p2T

p2
T

exp

(
−αS

2π
CF ln2 M

2

p2
T

)
,

(4.1)

vanishing at pT = 0. CF = 4/3 is the colour factor.

For a more complete analysis of this pT region, one needs to properly treat the
momentum conservation in multiple gluon emissions. The above approach assumes
that only soft gluons are radiated when the pµµT is close to zero. But actually only
their vector transverse momentum sum should be small. Thus a more complete
computation of multiple gluon emissions with small vector pT sum is needed to
describe the rise of the cross section at small pT . This requires the introduction of
the two-dimensional impact parameter vector ~b [32].

CSS formalism

In order to proceed properly to the resummation, the bi-dimensional impact parame-
ter ~b, the Fourier conjugate of ~pT , is used. The phase space of the impact parameter
~b has to be split into a perturbative part, that can be computed using perturba-
tive QCD approach, and a non-perturbative part that has to be parametrised and
extracted from the data. For the emission of n soft gluons, one writes

δ(2)

(
n∑
i=1

~kTi − ~pT
)

=
1

(2π)2

∫
d2b e−i

~b·~pT
n∏
i=1

e−i
~b·~kTi , (4.2)

with ~kTi the transverse momentum of the gluon i.

In this context, the full calculation of the pT resummation has been developed by
Collins, Soper and Sterman (CSS) [33]. In the CSS formalism, contributions from
all orders in αS are resummed providing a finite result at small pT . The cross section
for the DY production in the collision of two hadrons (A and B) AB → Z/γ∗ X
where X represents any particle, is given by [27]:

dσAB
dM2dp2

Tdy
≈
∫

d2b

2π2
ei ~pT ·

~b W̃AB(~b,M, x1, x2)︸ ︷︷ ︸
Resummed W̃ -term

+ Y (~b,M, x1, x2) , (4.3)

with
Y =

(
dσAB

dM2dp2
Tdy

)
fixed−order

−
(

dσAB
dM2dp2

Tdy

)
asymptotic

, (4.4)
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Figure 4.1: Drell Yan pµµT spectrum in the CSS resummation formalism approach [27].

where M is the invariant mass, y the rapidity and ~b the two-dimensional impact pa-
rameter. The W̃AB-term is the resummed cross section in the small pµµT region, and
the Y term is obtained by subtracting the singular terms from the exact fixed-order
result.

Fig (4.1) illustrates the full pµµT distribution with the approach of the CSS re-
summation formalism. The total differential cross section is defined by Eq (4.3).
The resummed cross section includes both the perturbative correction part and the
non-perturbative one. The most singular part of the fixed-order cross section in the
limit pµµT → 0, is called the asymptotic cross section. The latter removes overlap
between the resummed cross section and the fixed-order cross section. At small
pµµT ∼ 0, the fixed-order and the asymptotic cross section cancel and the Y term of
Eq (4.4) goes to zero. The total differential cross section is then only determined
by the resummed cross section in this region. The peak of the distribution comes
from non-collinear parton collisions because, as we discussed, the colliding partons
have gained transverse momenta through many soft gluon emissions. The number
of such radiations increases for higher scale (higher dimuon masses) due to phase
space expansion which explains the observed dependence of the peak position with
the DY mass (see Fig (3.4) and (3.5) of previous chapter).

Such calculations are successful to describe the full pT spectrum, for example at
the LHC (see e.g. [34]), but only characterises the inclusive cross section.

4.1.3 Parton shower + Resummation

Only in very rare cases, a measurement can be compared directly with (semi-) an-
alytic calculations. In a parton shower, at each parton branching, the transverse
momentum of the emitted parton has to be balanced, resulting in a net transverse
momentum entering the hard scattering. In Z-production, only the net effect of
the multiple gluon radiation is important, and an analytic resummation can be
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performed. In other measurements not only the net effect of multiple soft-gluon
emission is important, but also the distribution of the partons in phase space plays
a role, for example when jets in the final state are involved. In such cases, an explicit
(exclusive) treatment of the partons is needed, and presently the parton shower is
the only way to simulate those.

Clearly, to obtain the best possible predictions, it is desirable to combine the dif-
ferent theoretical descriptions in such a way that one benefits from the advantages
of each. Fixed order predictions are necessary for a precise description of additional
hard emissions. For observables sensitive to many soft and collinear emissions gen-
erating large logarithms, fixed order predictions are not suitable and resummation
and parton showers are necessary. To obtain a prediction of the final state that is
fully exclusive in all emissions, parton showers are required. In particular, parton
shower predictions allow one to further attach a hadronization model to generate
fully exclusive hadron-level events. These are an essential requirement for experi-
ments to be able to simulate the data and study detector effects, and allow for the
most direct comparison with experimental data.

Fig (4.2) shows the data of the pµµT = pT (Z) spectrum compared with their
theoretical predictions [34]. The NNLO calculation (in green) describes quite well
the high-pT region, however it cannot describe the low-pT . On the other hand, the
resummation at NNLL (in blue) and parton shower based MC (in red) can describe
the low-pT .

Figure 4.2: Comparison of the normalized dimuon differential transverse momentum dis-
tributions from data with different theoretical predictions. The range of the dimuon mass
is 60 < Mµµ < 120 GeV [34].
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4.1.4 Transverse Momentum Dependent PDFs

Above the Monte Carlo and the analytic resummation were discussed. In both
cases, the transverse momentum from soft gluon resummation is added after the
partonic cross section is calculated in collinear factorisation. The extension where
the hard scattering is no longer collinear with the initial hadrons can be described
by Transverse Momentum (kT -) Dependent (TMD) Parton Distribution Functions
(PDFs). Such a generalisation of the concept of PDF is the Transverse Momentum
Dependent (TMD) PDF. TMD PDFs thus depend not only on x and µ2 but also on
kT . Note that the PDFs and TMD PDFs describe the hadron structure in terms of
momentum sharing, not of spatial structure.

The precision of predictions, and in particular the uncertainty coming from
higher order radiation simulated by parton showers can be significantly improved
when parton-distributions, which include information on the transverse momenta
(TMD) [35], are used. Throughout this thesis we will refer to TMD PDFs as TMDs
for reasons of brevity. TMDs encode non perturbative information on hadron struc-
ture, which is essential in the context of QCD factorisation theorems for multi-scale,
non-inclusive collider observables, like the transverse momentum of the Z boson
from Drell-Yan process.

TMD factorisation theorem is proven for small transverse momenta kT in deep-
inelastic and Drell Yan-type pp processes (see e.g; [36]). It is also demonstrated for
small momentum fractions x high-energy factorisation [37, 38] following the BFKL
(see e.g. [39] and CCFM [40] evolution equations.

The presence of a large variety of TMD factorisation and evolution frameworks
complicates efforts to compare different TMDs. An example is the difference be-
tween the Collins-Soper-Sterman (CSS) style of TMD factorisation (see e.g. [36])
compared with the high-energy TMD factorisation style (see e.g. [41]). Moreover,
within each category there are also competing subcategories of approaches.

TMDlib and TMDplotter are two useful tools available on internet [42, 43] to
help study TMDs quantitatively [44]: the former is a C++ library that centralizes
many TMD parametrisations in a common framework, similarly to the LHAPDF
library [45] for collinear PDFs. The latter is an online tool making use of TMDlib
to plot and compare TMDs among them, or to integrate and compare them with
collinear PDFs.

The examples of TMDs motivations in the following come from [46] and from an
overview of the subject [47].

For the DY pT (Z) spectrum discussed in the previous subsection TMDs combined
with the resummation approach can describe low-pT by resumming the logarithmi-
cally enhanced contributions in M/qT up to all orders in αS [36]. It is only after
a generalized factorisation analysis, which goes beyond the collinear factorisation,
that the physical behaviour of the Z boson spectrum can be predicted [47]. Also,
it turned out that the non perturbative part of the impact parameter introduced in
subsection 4.1.2 can be interpreted in terms of parton TMDs [36].
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A second example concerns the extensive measurements of the Higgs boson at
LHC. With the Higgs, new QCD processes become available in which the boson acts
as a colour-singlet, a point-like source which couples to gluons. This allows precision
QCD measurements in gluon fusion at high mass scales.

Theoretical predictions for the Higgs boson differential cross section as a function
of qT requires also generalized QCD factorisation that should be based on initial-
state gluon distributions including polarization as well as transverse momentum.
The main channel of Higgs boson production is gluon fusion which depends on gluon
polarization and transverse momentum [41]. In the region of low-qT (qT � mH),
the contributions to the Higgs distributions have been studied both perturbatively
(see e.g. [48]) and with non perturbative corrections (see e.g. [49]). The study of
Higgs boson production at higher transverse momenta (but still qT < mH) can also
be carried out with TMDs [50].

Besides the above examples, a famous problem of the collinear approach which
can be solved by TMD factorisation is the rise of proton’s structure functions at
small longitudinal momentum fraction x. In proton-proton collisions, the product
of the initial-state momentum fractions x1 · x2 scales like 1/s at fixed momentum
transfer, with s the squared centre-of-mass energy. Therefore, as the energy is in-
creased s→∞, there are more events at small x which contribute to the probing of
short-distance physics. This region is crucial for many hard-scattering cross sections
measured at the LHC. At very low parton longitudinal momentum x→ 0, the frac-
tion of momentum carried by the transverse components is expected to become a
lot higher. The parton distributions have big uncertainties in this low-x regime and
the higher order corrections can change a lot the distribution. The large corrections
in this region come from multiple radiation of gluons not ordered in the gluon trans-
verse momenta pT . With the CSS TMD factorisation theorem [36], it is possible to
resum logarithmically enhanced contributions coming from these unordered gluons,
proportional to

√
s/Q, with Q the evolution mass scale [51].

Another exciting field where the TMDs have made huge progress is Double Par-
ton Scattering (DPS). DPS occurs when two partons inside one hadrons collide with
two partons in another hadron. These scatterings can generate particles with high
invariant mass or high transverse momenta. These processes become important
only at high-energy, like at the LHC energies. Usually, DPS are described in the
framework of collinear factorisation with the Double Parton Distribution Functions
(DPDFs), but there are ongoing attempts to describe DPS also in terms of TMDs
[52].

To conclude, these fields (among others) where TMDs can be important should
show how large the interest in TMDs is and how numerous the applications of TMDs
are.
The method we follow in this thesis is an alternative method based on a Monte Carlo
procedure, i.e. keeping the kinematic information at every gluon radiation steps and
therefore a possible way to describe non inclusive cross sections in a fully differential
way. This approach will be the subject of the next chapter.
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4.2 DGLAP with Parton Branching method
The DGLAP evolution equations can be solved with a Parton Branching (PB)
method [53, 54]. The PB method allows to generate the splitting variables z and
scales µ2, at which the branchings happen. All the evolution “chain” can be gen-
erated, with the information about all partons and their momenta. Moreover this
method is attractive because it manages to treat exclusive processes while other
semi analytical solutions of the evolution equations cannot. Indeed, with the PB
method, the kinematics of every single splitting process can be treated exactly. The
PB allows also to construct MC parton shower programs.

4.2.1 Why Parton Branching?

The collinear approach may give a high precision description of sufficiently inclusive
processes where only one hard scale is involved, but when a second scale enters the
picture, the collinear approach encounters some issues. This second scale can be for
example the transverse momentum of the final state. Most of the predictions for the
hard scattering cross sections in high energies collisions are calculated with pQCD,
at NLO or NNLO. Monte Carlo (MC) event generators carry out parton showers to
include the higher order radiations in the calculations (see subsection 4.1.1). The
general procedure of a MC event generator in hadronic collisions within the collinear
approximation is as follows: at first, the hard scattering process is generated with
the initial momenta distributed according to collinear PDFs. Afterwards, a parton
shower is applied on the interacting partons by going backwards (for efficiency rea-
sons [2]). Backwards evolution means one starts from the hard scattering process
parton and goes back to the beam particles.

As discussed previously in section 4.1, the spectrum of the Z boson transverse
momentum qT is an observable where the fixed order theory breaks out (see Fig
(4.2)). There are at least four different ranges in this spectrum: the high-qT , which
is well described by perturbation theory; the low-qT , dominated by multiple soft
gluon emissions; the very low-qT , controlled by non perturbative physics; and the
intermediate-qT . Difficulties are encountered in the treatment of this last region, the
intermediate-qT has to be treated carefully to match all these different prescriptions
and avoid double counting. Finally, a good description is achievable but relies on
many different tunes. Furthermore, this kind of problems must be treated process
by process, there is no universal description.

The effects of parton shower on inclusive quantities have been studied (see e.g.
[55]). It was showed that the transverse momentum was not the only observable im-
pacted by the parton shower, in fact the longitudinal momentum x is also affected
when it is defined in the light-cone coordinates. This is a consequence of the energy-
momentum conservation: if transverse momentum is generated, the longitudinal
momentum must decrease. In general, the MC event generators apply a rotation
and a boost on the hard process to conserve energy-momentum. All the simulations
of QCD processes are affected by these effects. As an example, the Fig (4.3) shows
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the x distribution for inclusive jet events at
√
s = 7 TeV. One can see that including

Figure 4.3: The shift in parton longitudinal momentum fraction x distributions for inclu-
sive jet production (

√
s = 7 TeV) at different rapidities. The effects shown are the inclusion

of intrinsic kT , initial (IPS) and initial+final state (IFPS) parton shower [55].

the different prescriptions, one changes significantly the x distribution (POWHEG
[56]) before showering.

An alternative idea arose [57]: to generate x, kT of the matrix element at the
given µ2 according to a TMD, so no readjusting of the momenta is required. The
TMD fixes the values of x, kT , µ2 and it is possible to construct a parton shower
evolving exactly according to the kinematics contained in the TMD. This would
bring a reconciliation between the parton shower and the matrix elements, as both
would follow the same TMD. Of course, this is a ongoing project which requires
several steps to be fulfilled. These steps can be divided in three sectors of research:
first of all, procure the TMD PDF sets; then, the writing of a program generating
the matrix elements. At the end, one needs to generate the parton shower which
follows the kinematics according to TMDs. Of course, all these steps have to be
properly combined to succeed.

A solution to obtain the TMD PDF sets for all flavours, which should be valid
over the wide range of x and Q2, is to use the DGLAP evolution equation. The idea
was developed in [53, 54] and applied in [46]. It is important to mentioned that the
PB TMD are fitted to the HERA data with xFitter [58].

In the method I am studying in my thesis a different approach is used. One
applies and solves the DGLAP evolution equations with a particular method, the
Parton Branching (PB) method [54, 59, 60], which allows to calculate the standard
parton densities, f(x, µ2), and at the same time parton densities A(x, kt2, µ2) in-
cluding a transverse momentum. The transverse momenta which develops during
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the parton cascade evolution is a consequence of energy momentum conservation
(which is treated exactly in the simulation of the parton showers and in the PB
method). The cross section in terms of TMDs is written as:

σ(A+B−>X) = AAi (x1, k
2
T1
, µ2)× σ̂(i+j−>X) × ABj (x2, k

2
T2
, µ2) , (4.5)

with the partons i, j and the hadrons A,B. The hard cross section is still calculated
with collinear initial partons, while the transverse momenta of the initial partons
are included in the kinematical calculations (in contrast to using kt dependent hard
processes in BFKL and CCFM). The parton distribution functions have to be cal-
culated including the full parton evolution.

With this Parton Branching (PB) approach one can, for the first time, calculate
the complete evolution of the parton density which at the same time gives full infor-
mation on the kinematics of the evolution process. Within this method, the parton
shower is strictly tied to the parton density which includes soft-gluon resummation
to all orders in αS. The PB method has the further advantage, that parton showers
can be included following exactly the evolution of the TMD parton density.

This thesis aimed to apply a simplified solution, based on [46], to the Drell Yan
process. The rest of this chapter discusses the Parton Branching method to solve
the DGLAP evolution equations.

4.2.2 Iterative solution with the Sudakov form factor

In this section we discuss a way to solve the evolution equation and to treat the
soft limit. We follow the development of [61] (for a detailed discussion of the parton
evolution see e.g. [2]). In the Parton Branching method one introduces a function,
called the Sudakov form factor, which will allow us to rewrite DGLAP and to find an
iterative solution. To begin with, recall the DGLAP evolution equations Eq (2.38)
with the “+ prescription” (see Eq (2.24)) for a parton a:

µ2 dfa(x, µ
2)

dµ2
=
αS
2π

∑
b

∫
dz

z
PR
ab,+(z) fb(x/z, µ

2) . (4.6)

where the splitting functions in this equation are regularised by the + prescription.
Inserting explicitly the expression for PR

ab,+ it yields:

µ2 dfa(x, µ
2)

dµ2
=
αS
2π

∑
b

(∫ 1

0

dz

z
PR
ab(z) fb(x/z, µ

2)− fb(x, µ2)

∫ 1

0

dz PR
ab(z)

)
,

(4.7)
where we have used the definition of the + prescription:∫ 1

0

dz
f(z)

z
P+(z) =

∫ 1

0

dz

(
f(x

z
)

z
− f(x)

)
P (z)

=

∫ 1

0

dz
f(x

z
)

z
P (z)− f(x)

∫ 1

0

dz P (z) .
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For a parton species a (a quark of a given flavour or a gluon), one introduces the
function

∆a(µ
2, µ2

0) ≡ ∆a(µ
2) = exp

(
−
∑
b

∫ µ2

µ20

dµ′2

µ′2

∫ zM

x

dz
αS
2π
PR
ba(z)

)

= exp

(
−
∑
b

∫ lnµ2

lnµ20

d lnµ′2
∫ zM

x

dz
αS
2π

PR
ba(z)

) (4.8)

which is called the Sudakov form factor from an initial scale µ2
0 to some evolved scale

µ2. We shall see shortly that this function has a simple physical interpretation. Note
that the functions PR

ba are the unregularised a → b LO splitting functions, with R
standing for the real emissions (see section 2.3). We may use the unregularised
splitting functions since we have introduced an explicit cut-off zM .

In general, the divergence coming from soft real emission is cancelled by virtual
contributions, it is thus possible to define a resolvable branching. It corresponds to
a splitting of one into two partons, where at least in principle one can resolve the
splitting. The non-resolvable branching consists of a contribution without branching
and the virtual contributions. The upper integration limit zM we introduced defines
the boundary between resolvable and unresolvable branchings, it is an explicit infra-
red cut-off zM = 1 − ε with ε a positive number very close to zero. Branchings
with z above this range are classified as unresolvable, they involve the emission of
undetectable soft parton.

Using
∂e−α(x)

∂x
= −e−α(x)∂α(x)

∂x
,

one can differentiate Eq (4.8) in respect to lnµ2 to get

d∆a(µ
2)

d lnµ2
= −∆a(µ

2)
αS
2π

∑
b

∫ zM

x

dz PR
ba(z) , (4.9)

and inject this expression into Eq (4.7):

µ2 dfa(x, µ
2)

dµ2
=
∑
b

∫
dz

z

αS
2π
PR
ab(z) fb(x/z, µ

2) +
1

∆a(µ2)

d∆a(µ
2)

d lnµ2
fa(x, µ

2) . (4.10)

Furthermore Eq (4.10) can be rewritten in a more compact way by multiplying with
1/∆ and using ∂

∂µ2
f
∆

= 1
∆

∂f
∂µ2
− f

∆2
∂∆
∂µ2

. Let us also proceed at a change of the name
of the variables: µ→ µ1 and z → z1, which gives:

d

d lnµ2
1

(
fa(x, µ

2
1)

∆a(µ2
1)

)
=

1

∆a(µ2
1)

∑
b

∫ zM

x

dz1

z1

αS
2π

PR
ab(z1) fb(x/z1, µ

2
1) . (4.11)

Notice that this is similar to the DGLAP evolution equation except that f has been
replaced by f/∆ and that the regularised function PR

+ (z) has been replaced by the
unregularised one PR(z). This equation can be integrated over lnµ2 to give an

44



4.2. DGLAP with Parton Branching method

integral equation for fa(x, µ2):

fa(x, µ
2) = fa(x, µ

2
0) ∆a(µ

2)

+
∑
b

∫ lnµ2

lnµ20

d lnµ2
1

∆a(µ
2)

∆a(µ2
1)

∫ zM

x

dz1

z1

αS
2π

PR
ab(z1) fb(x/z1, µ

2
1) ,

(4.12)

where we have used ∆a(µ
2
0) = 1. The same kind of solution can be written for

fb(x/z1, µ
2
1):

fb(x/z1, µ
2
1) = ∆b(µ

2
1)fb(x/z1, µ

2
0)

+
∑
c

∫ lnµ21

lnµ20

d lnµ2
2

∆b(µ
2
1)

∆b(µ2
2)

∫ zM

x
z1

dz2

z2

αS
2π

PR
bc(z2) fc(x/z1z2, µ

2
2) ,

(4.13)

which can be inserted into Eq (4.12). Clearly, the solution for fc(x/z1z2, µ
2
2) may be

written in the same way and inserted into Eq (4.13).

4.2.3 Interpretation in terms of Parton Branching

Looking at Eq (4.12), we can now give a simple and intuitive interpretation to the
Sudakov form factor [46]. Assuming the parton a is a gluon at the scale µ2 carrying

Figure 4.4: Evolution by iteration [46].

the proton’s momentum fraction x, one wants to know where it comes from.

The first option is the simplest: there was no splitting between the initial scale
µ2

0 and µ2. This is shown in the left-hand side of Fig (4.4) and is described by the
first term of Eq (4.12). The Sudakov form factor ∆a(µ

2) is thus the probability for
the parton a to evolve from µ2

0 to µ2 without resolvable branching. There was no
branching so x = x0. The fact that ∆a(µ

2
0) = 1 is consistent with the above inter-

pretation of ∆a(µ
2). Each parton species a has its own form factor ∆a(µ

2), which
describes its probability of evolving between two scales without resolvable branching.

A second possibility is that the parton a was actually born during the splitting
of another parton b at some scale µ2

1. Parton b could be a quark splitting into a
quark-gluon pair as illustrated by the middle diagram of Fig (4.4) or a gluon split-
ting into a gluon-gluon pair. This possibility is described by the second term of
Eq (4.12). If the final parton a carries the fraction x of the proton’s longitudinal
momentum, then the parton b carried a fraction x1 = x/z1. Furthermore, assuming
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parton b was the initial parton, then x0 = x1 = x/z1, and this corresponds to the
first term of Eq (4.13). The factor ∆a(µ

2)/∆a(µ
2
1) represents the probability for the

parton a of evolving from µ2
1 to µ2 without resolvable branching, whereas ∆b(µ

2
1) is

the probability for the parton b to evolve from µ2
0 to µ2

1 without resolvable branching.

However, parton b is not necessarily the initial parton, it could itself come from
splitting of another parton c. Mathematically, this is described by the second term
of Eq (4.13). Parton c then carried a momentum fraction x2 = x/(z1z2 and splitted
into parton b at scale µ2

2. Of course, parton c could be a quark or a gluon, the gluon
case being illustrated in the right-hand side of Fig (4.4). If this time it was the
initial parton then x0 = x2.

Of course, this process can be iterated to include more splittings. A single evo-
lution chain from µ0 to µ is called an event. For every event following one of the
scenario discussed above x0 can be different, first because the number of splitting is
different but moreover, because z1, z2 etc. can be different in every event. Obtain-
ing the solution of the DGLAP evolution equations requires taking into account all
possible options, i.e. integrate over all possible x satisfying the energy-momentum
conservation. Note that integrating over the momentum fraction x with a conserva-
tion rule (e.g. δ(z1x1 − x)) is the same as integrating over the splitting variable z,
as we did in Eq (4.12).

The singularity at z → 1 has been treated with the introduction of the zM = 1−ε
cut-off. The branchings with z > zM are classified as unresolved. The Sudakov form
factor sums virtual and real contributions to all orders. Virtual corrections affect the
no-branching probability and are included via unitarity: the resolvable branching
probability tells us via unitarity the sum of virtual and unresolvable real contribu-
tions.

The formulation of parton branching in terms of the Sudakov form factor can be
solved by iteration (see Eq (4.12)) and thus is well suited to computer implementa-
tion. It is the basis of the Parton Branching Monte Carlo techniques for simulating
QCD jets.

4.2.4 Interpretation of the evolution scale

A priori, the DGLAP evolution scale µ has no physical meaning. In order to give the
evolution scale a physical interpretation, one can associate the evolution scale to a
given kinematic variable. This section follows the development of [46] and discusses
possible associations and ordering conditions which arise as the consequence of these
choices.

Virtuality and pT -ordering

The four vector of the evolving partons in the splitting process have coordinates
k = (k0, kx, ky, kz) = (Ek, ~k) = (Ek, kT , kz), with kT = (kx, ky). The kinematics of
the process is shown in Fig (4.5), with µ′ the scale of the branching. Using the light
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Figure 4.5: The kinematics of the splitting process [46].

cone variables k = (k+, k−, kT ), where k± = 1√
2
(k0±kz), the following relation holds:

k2 = 2k+k− − k2
T

⇔ k− =
k2 + k2

T

2k+

.
(4.14)

One can write a momentum conservation condition from the kinematics of Fig (4.5):

kb = ka + qc , (4.15)

which can be rewritten in terms of the minus component conservation:

k2
b + k2

T, b

2k2
+, b

=
k2
a + k2

T, a

2k2
+, a

+
q2
c + q2

T, c

2q2
+, c

. (4.16)

One can assume that k+, a = zk+, b and that q+, c = (1 − z)k+, b. Furthermore,
putting particles b and c on mass shell k2

b = 0, q2
c = 0, it yields:

k2
T,b =

k2
a + k2

T, a

z
+

q2
T, c

1− z . (4.17)

Working in the collinear approximation the strong ordering condition in the trans-
verse momenta holds k2

T, b � k2
T, a and one can neglect kT, b = 0 which gives us

kT, a = −qT, c by momentum conservation in the transverse plane. Eq (4.17) thus
becomes

k2
a(1− z) = −q2

T, c . (4.18)

The key of this development is now to associate the virtuality of the parton a with
the DGLAP scale of the branching µ′2. Making this association µ′2 = −k2

a we thus
obtain:

µ′2(1− z) = q2
T, c . (4.19)

With this association the partons in the cascade are ordered in virtuality. Eq (4.19)
is known as the virtuality ordering condition.
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One can go a step further and work in the limit z → 0, important for the high
energy regime, then Eq (4.18) becomes

k2
a = −q2

T, c . (4.20)

This time one can associate the DGLAP evolution scale with the transverse momen-
tum to get:

µ′2 = q2
T,c . (4.21)

This condition imposes the partons in the cascade to be ordered in pT and Eq (4.21)
condition is called the pT -ordering condition.

Angular ordering

This section introduces the concept of colour coherence of QCD and the ordering
condition which arises from it (for a more complete description see e.g. [2]). Co-
herence effects are common to all gauge theories. In electrodynamics for example
it accounts for the suppression of soft bremsstrahlung from e+e− pairs, called the
Chudakov effect. The Chudakov effect is shown in Fig (4.6). For simplicity, one

Figure 4.6: Emission of a soft photon from the e+e− pair [46].

shall assume the angles are small Θee,Θ� 1 with the angle between the e+e− pair
Θee and the angle between the electron and the photon Θ. According to the un-
certainty principle the time available for the photon emission is the inverse of the
energy imbalance in the vertex e− → γe−, ∆t = 1/∆E.

∆E = p−
√
z2p2 + k2

T −
√

(1− z)2p2 + k2
T ≈

k2
T

2z(1− z)p
, (4.22)

taking the limit z → 0, we get

∆E ∼ k2
T

2zp
(4.23)

In the small angle approximation, the transverse momentum of the emitted photon
is kT ≈ zpΘ. From that we obtain

∆t ≈ 2

zpΘ2
∼ 1

zpΘ2
. (4.24)

In this time interval, the transverse separation of the pair will become ∆b ∼ Θee∆t.
Only photon able to resolve the e+e− pair can be emitted. Otherwise, they cannot
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resolve the individual charges of the electron (positron) and see only the net charge
of the system, which is zero, implying no emission. In order to be able to resolve
the transverse separation of the e+e− pair, the photon wavelength has to satisfy
∆b > λ/Θ, which yields Θee > Θ.

A similar effect occurs in chromodynamics where this coherence effect reveals it-
self as an angular ordering of the soft gluons emissions [62]. The difference between
the theories is that now one has to treat the colour charge of the gluon, which is
a bit more complicated than the electric charge of the photon. The closest case to
electrodynamics is two external lines, forming a colour singlet, like in e+e− → qq̄,
where the gluon radiation from the qq̄ pair outside the cone between qq̄ is suppressed.

This coherent branching phenomena appears in the cascades of soft gluons emis-
sions as illustrated in Fig(4.7). The transverse momentum of the i-th particle is

Figure 4.7: Coherent branching in the cascade of soft gluons emissions [46].

thus:
|qT,i| = |~qi| sin Θi = (1− zi)|~ki−1| sin Θi , (4.25)

and similarly, for the next emission:

|qT,i+1| = |~qi+1| sin Θi+1 = zi(1− zi+1)|~ki−1| sin Θi+1 . (4.26)

For the calculus of qT,i, one assumes that kT,i−1 = 0 and the angle Θi is with respect
to the beam axis. In the same way, to compute qT,i+1, kT,i is neglected so the angle
Θi+1 is again with respect to the beam axis.

Defining the rescaled transverse momentum [40]

|qT,i|
1− zi

≡ q̄T,i , (4.27)

and dividing Eq (4.26) by Eq (4.25) one gets:

q̄T,i+1

q̄T,i
= zi

Θi+1

Θi

. (4.28)

Making use of the angular ordering condition Θi+1 > Θi one obtains ordering con-
dition for rescaled transverse momenta

q̄T,i+1 > ziq̄T,i . (4.29)
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For large z, this condition reduces to ordering in rescaled transverse momenta. For
small z, in the limit z → 0, the transverse momenta q̄T,i+1 > 0 and can then perform
a so-called random walk [63].

The rescaled transverse momenta can be associated with the DGLAP scale at
which the branching happens, q̄T,i = µ′, and rewrite Eq (4.27):

q2
T,i = (1− zi)2µ′2 , (4.30)

which is known as the angular ordering condition.

4.2.5 The transverse momentum during the evolution

DGLAP equations are obtained in the collinear limit. However in the PB method
one generates the splitting variable z, the branching scale µ′ and transverse momen-
tum is introduced for every branching. The kinematics of a branching is illustrated
in Fig (4.8).

Figure 4.8: The kinematics of the splitting process [46].

The transverse momenta of the emitted and propagating partons can be obtained
from pT -, virtuality or angular ordering conditions discussed in the previous sub-
sections, where the connection between the transverse momenta and the branching
scale was introduced. Once the relation of qT and µ′ is chosen, one can calculate kT
of the propagating parton using the following formula:

~kT,a = ~kT,b − ~qT,c . (4.31)

This formula indicates that the kT is accumulated during the evolution process. The
transverse momentum in the parton branching method thus contains the whole his-
tory of the evolution [46].

Having kT computed at each branching, one can construct the TMD parton den-
sity for every parton species Aa(x, kT , µ2). The following relation must be satisfied:∫

dk2
TAa((x, kT , µ

2)) = fa(x, µ
2) . (4.32)
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It means that the collinear PDF is the TMD PDF integrated over k2
T . Using Eq

(4.12) one can write an evolution equation for a TMD [54]:

Aa(x, kT , µ
2) = Aa(x, kT , µ

2
0) ∆a(µ

2)

+
∑
b

∫ lnµ2

lnµ20

d lnµ2
1

π

∆a(µ
2)

∆a(µ2
1)

Θ(µ2 − µ2
1)Θ(µ2

1 − µ2
0)

×
∫ zM

x

dz1

z1

αS
2π

PR
ab(z1) Ab

(
x/z1, kT + (1− z)dµ1, µ

2
1

)
,

(4.33)

with d a power taking a different value which depends on the choice of ordering. The
angular ordering condition corresponds to d = 1, the virtuality ordering to d = 1/2
and the pT -ordering to d = 0. The transverse momentum thus accumulates at each
branching depending on the scale, the splitting variable and the choice of ordering.

Note that the way of calculating kT does not affect the collinear evolution. The
variable µ2 is generated according to the Sudakov form factor and the splitting
variable z according to the collinear splitting functions. In both cases, there is no
dependence on kT or qT . The details on the parton branching method we performed
in this thesis will be discussed in next chapter.
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Chapter 5

Analysis

This chapter contains my analysis on the solution of DGLAP evolution equation
with the PB method using MC techniques. In the first section, a small summary
of the probability theory we need in this thesis is presented. Then in the second
section, details on the evolution are given. This leads us to the third section where
the results are shown and discussed. Finally in the fourth section some results of a
more advanced code (Cascade) are presented.

5.1 Probability theory and Monte Carlo techniques
This section summarizes the elements of probability theory which are needed for
this thesis. We follow the development of [61], further details can be found in text
books (see e.g. [64]).

Monte Carlo method refers to any procedure which makes use of random number
and uses probability statistics to solve a problem. It was invented in the 1930s
by Fermi while studying the neutron diffusion. Nowadays, it is widely used in
computations of complex processes for the simulation of natural phenomena, but also
for designing detectors, understanding their behaviour and comparing experimental
data to theory. Monte Carlo methods are a class of computational algorithms relying
on repeated random samplings to compute the probabilities, to generate variables
according to a given distribution, to solve numerically the integrals.

5.1.1 Random numbers and probability distributions

Monte Carlo methods require random numbers (RN). But how can we tell if a num-
ber is random? One needs a sequence of numbers, where each number is completely
uncorrelated of the other numbers in the series. The RN considered in this thesis
are always in the interval [0, 1] and will be generated by the program RANLUX [65].
The RN generated on a computer are determined according to some algorithm, so
they are never really random and are called pseudo-random numbers. A common
RN generator is the linear congruential random number generator [64], which uses
the recurrence

Xn+1 = (aXn + b) mod m (5.1)

where X is the sequence of pseudo-random values. There are 4 integers that specify
the generator: the modulus m, the multiplier a, the increment c and the seed or
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5.1. Probability theory and Monte Carlo techniques

initial value X0.

Now consider an experiment where the outcome depends on a single variable x,
one can ask what is the probability of observing values of x in the interval [x, x+dx].
This is given by f(x)dx with f(x) corresponding to the probability density function
(p.d.f.), not to be confused with the PDF used for parton density function discussed
before. The probability to find x in the interval [a, b] is given by

P (a ≤ x ≤ b) =

∫ b

a

dx f(x) . (5.2)

The p.d.f. is normalized in the following way∫ +∞

−∞
dx f(x) = 1 . (5.3)

It means the probability of finding any value of x from the range of all the possible
outcomes is equal to 1. In addition, it has to satisfy

f(∞) = f(−∞) = 0 . (5.4)

With the knowledge of a p.d.f., one can obtain the probability to obtain x smaller
or equal than t ∈ [a, b]

P (x ≤ t) = F (t) =

∫ t

a

dx f(x) , (5.5)

where F (t) is called a cumulative distribution and it can be used to define the p.d.f.:

f(x) =
dF (x)

dx
. (5.6)

One of the most important quantities in probability theory is the expectation value,
for an arbitrary function h(x). It is defined as:

E[h(x)] =

∫ b

a

dx f(x) h(x) =

∫
dF (x) h(x) =

1

b− a

∫
dx h(x) , (5.7)

where we used the special case dF (x) = dx/(b− a) for a uniform distribution in the
range [a, b]. The expected value of a certain variable x is called the mean value and
is defined

E(x) =

∫ b

a

dx f(x) x = 〈x〉 . (5.8)

The spread of a distribution is measured by the variance σ2

var(x) = σ2 = E((x− 〈x〉)2) , (5.9)

which corresponds to the mean quadratic deviation from the mean value. The
square-root of σ2 is called the standard deviation.

Let us now discuss the distributions needed in this thesis. To begin with, a
frequently encountered problem is, given a sequence of RN (x1, x2, ...) distributed
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according to a p.d.f. f(x), to determine a sequence of RN (u1, u2, ...) distributed
according to another p.d.f. g(u). The task is to find a suitable transformation
u(x) connecting distributions f(x) and g(u). One uses the equality between the
probability to find x′ ≤ x and the probability to find u′ ≤ u(x) (with u′ = u(x′)):∫ x

−∞
dx′ f(x′) =

∫ u(x)

−∞
du′ g(u′) , (5.10)

then using Eq (5.5) it reads:
F (x) = G(u(x)) , (5.11)

which can be inverted to obtain u distributed according to g(u)

u(x) = G−1(F (x)) , (5.12)

with G−1 the inverse of G. It seems simple but to solve the problem analytically,
the inverse function G−1 has to exist and be analytically calculable. Also, the p.d.f.
f and g must be integrable analytically. These conditions are rarely fulfilled all at
once, so this problem will need another method. It can still be solved using another
Monte Carlo technique: the importance sampling method. The random variables
needed in the thesis are generated according to this importance sampling method
which will be discussed in subsection 5.1.3.

Now let us discuss the properties of two basic distributions:

• Uniform distribution It is the simplest distribution, which will be used
as a base for generating random variables following another distribution. The
p.d.f. for a continuous uniform RN x ∈ [xmin, xmax] is given by:

f(x) =

{
1

xmax−xmin , x ∈ [xmin, xmax] ,

0 otherwise.
(5.13)

which means finding any value of x between xmin and xmax is equally probable.
The mean value of x and the variance are:

E(x) =
xmin + xmax

2
, (5.14)

σ2 =
(xmax − xmin)2

12
. (5.15)

An important feature of uniform distribution is that from a uniformly dis-
tributed RN x in the range [0, 1], one can easily obtain a RN u following
another p.d.f. g(u). Following Eq (5.10) we get:

u(x) = G−1(x) , (5.16)

if G−1 can be found.

• f ′(x) = 1/x distribution The normalised integral is:∫ xmax

xmin

1

x′
dx′ = log

xmax
xmin

(5.17)
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Since this f ′(x) function is not normalized to unity, one has to include the
normalization factor, the distribution is then defined as follows:

f(x) =
f ′(x)

log xmax
xmin

=
1

log xmax
xmin

1

x
, (5.18)

with x ∈ [xmin, xmax].

Taking a random number R generated according to a uniform distribution in
the range R ∈ [0, 1], it is possible to obtain random variables which follow a
1/x law. To do so, one uses Eq (5.10), the primitive function F (x) and Eq
(5.18) to get:

F (x) =

∫ x

xmin

f(x′)dx′

=
1

log xmax
xmin

∫ x

xmin

1

x′
dx′ =

1

log xmax
xmin

log
x

xmin

R =
log x

xmin

log xmax
xmin

.

(5.19)

Solving this equation for x and iterating we get:

xi = xmin

(
xmax
xmin

)Ri
. (5.20)

The values xi can be generated from a uniform distribution of RN Ri.

5.1.2 Law of large numbers and Central limit theorem

The Monte Carlo (MC) methods are based on two essential laws: the law of large
numbers and the central limit theorem.

By the law of large numbers, the average of the results obtained from numerous
trials should be close to the expected value, and will tend to become closer as
more trials are performed. Mathematically, let us generate N randomly distributed
numbers xi following uniform distribution in an interval from a to b. Let us then
calculate the value of a function u(xi) for each of the generated xi. The average of
u(xi) converge to the expectation value of u when N →∞.

1

N

N∑
i=1

u(xi)→
1

b− a

∫ b

a

u(x)dx . (5.21)

The quantity of the left-hand-side is a Monte Carlo estimate of the integral on the
right-hand-side. The law of large numbers says that the MC estimate is consistent
as the size of the random sample becomes large. At this stage, nothing is said about
how large it has to be.

The law of large numbers tells that for infinitely large numbers the MC estimate
of the integral converges to its true estimate. The second important law, the Central
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Limit Theorem, states that when independent random variables are added, their
properly normalized sum tends towards a normal distribution, even if the original
variables themselves are not normally distributed. Central Limit Theorem tells us
how the estimate of the integral from Eq (5.21) is distributed for large but finite N .

5.1.3 Monte Carlo integration

The MC methods can be used to solve integrals. Let us assume one wants to obtain
a reliable estimate of the true value of an integral:

I =

∫ xmax

xmin

f(x)dx , (5.22)

To solve this integral, one may uses the law of large numbers. Generating N RN
xi ∈ [xmin, xmax] from a uniform distribution g(x), calculating f(xi) for every xi and
then averaging them, we obtain the expected value of f(x):

E[f(x)] =

∫ xmax

xmin

f(x)g(x)dx ≈ 1

N

N∑
i=1

f(xi) = f̄ , (5.23)

with g = 1
xmax−xmin we get:

E[f(x)] =
1

xmax − xmin

∫ xmax

xmin

f(x)dx . (5.24)

The Monte Carlo estimate of the integral is then:

I ≈ IMC =
xmax − xmin

N

N∑
i=1

f(xi) . (5.25)

Applying the definition of the variance Eq (5.9), we get:

V [I] =
1

N
(b− a)2

(
1

N

∑
f 2
i −

(∑
fi

N

)2
)

(5.26)

This formula allows us to estimate the uncertainty of a MC integration. However, it
gives a probabilistic uncertainty band, which means we can only give a probability
that the MC estimate lies within a certain range of the true values [66].

Importance sampling

An option to further improve the accuracy and efficiency of the MC integration is
to use the importance sampling method and a normalized function g(x), integrable
in [xmin, xmax], and which approximates f(x):

I =

∫ xmax

xmin

f(x)dx =

∫ xmax

xmin

f(x)

g(x)
g(x)dx

=

∫ xmax

xmin

h(x)g(x)dx

= E [h(x)] ,

(5.27)
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with h = f/g. The integration thus reduces to calculating the expectation value
E[h(x)]. Using the law of large numbers, one can generate N times xi according to
the p.d.f. g(x), for every xi calculate h(xi), and then average them to obtain the
approximation of E[h(x)]:

I ≈ IMC =
1

N

∑ f(xi)

g(xi)
. (5.28)

For example, using g(x) = (1/x)1/ log
(
xmax
xmin

)
(see Eq (5.18)), it yields:

I =
log
(
xmax
xmin

)
N

∑ f(xi)
1
xi

. (5.29)

The variance in this method is given by:

V [h(x)] = E
[
(h(x)− E[h(x)])2

]
(5.30)

A disadvantage of importance sampling is that when g(x) becomes zero, or ap-
proaches zero quickly, somewhere where f(x) is not zero, V [h(x)] may becomes
infinite [66].

5.2 Parton Branching Method from scratch

This section provides a description of the Parton Branching method with Monte
Carlo techniques. The goal is to solve the integral evolution equation Eq (4.12):

fa(x, µ
2) = fa(x, µ

2
0) ∆a(µ

2)

+
∑
b

∫ lnµ2

lnµ20

d lnµ2
1

∆a(µ
2)

∆a(µ2
1)

∫ zM

x

dz1

z1

αS
2π

PR
ab(z1) fb(x/z1, µ

2
1) ,

(5.31)

In the following, we will describe a forward evolution from a known initial parton

Figure 5.1: Examples of 0-, 1-, 2-branchings [46].

at a given scale µ2
0 until a maximum scale µ2. The number of branchings that will

take place as well as the final parton at scale µ2 are unknown and will be randomly
generated. The scales µ2

0 and µ2 are kept fixed for all the discussed events.
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This section is divided into 5 subsections. The next three subsections correspond
to the left, middle and right-hand side of Fig (5.1) where 0-branching, 1-branching
and 2-branchings events are shown respectively. These cases are only consider at LO.
The notations in the subsections agree with the corresponding piece of Fig (5.1). In
the fourth subsection, the choice made on the splitting functions will be discussed.
The last subsection describes the application of this simplified PB method to the
DY process.

5.2.1 0-branching event

We begin by considering an event with no branching, corresponding to the left-
hand side of Fig (5.1). First, a word on the starting conditions of the evolution. It
starts with a parton a at scale µ2

0 = 1 GeV. The choice for this value corresponds
approximately to the mass of the proton. The parton a carries a fraction x of
the momentum of the proton. x has to be randomly generated according to some
starting parton density:

y(x, µ2
0) = 3

(1− x)5

x
. (5.32)

This parton density describes well the x dependence of the PDF shapes at small x,
for gluons as for the sea quarks. To simplify the analysis, it will be used for every
parton. We proceed with an importance sampling method with the approximate
function y′ = 1

x
1

log xmax
xmin

. It gives us a generated x and a weight wx because we used
this alternative method and not the true parton density. A complete example of
the importance sampling method and how to compute the weight will be provided
further for the generation of the splitting variable z.

In addition to this longitudinal fraction of momentum, we consider kx, ky, in-
trinsic transverse components for the parton. The intrinsic kT is assumed to be a
Gaussian exp−k2

T/σ
2 with σ2 = k2

0/2 where k0 has a fixed value. By generating
uniformly an angle θ ∈ [0, 2π], the generated kT is can be separated into the kx
and ky directions by projecting the transverse momentum to the two orthogonal
directions.

The evolution starts thus with a parton a with (x,wx, kx, ky) at scale µ2
0. One

has to generate the scale µ2
1 at which the branching should happen. Let us recall

the Sudakov form factor:

∆a(µ
2
1, µ

2
0) = exp

(
−
∑
b

∫ lnµ21

lnµ20

d lnµ′2
∫ zM

0

dz
αS
2π

PR
ba(z)

)

⇔ ln ∆a(µ
2
1, µ

2
0) = −

∫ lnµ21

lnµ20

d lnµ′2
αS
2π

Iz ,

(5.33)

with Iz the result of the integral over z. The scale is now generated by using
the probabilistic interpretation of the Sudakov form factor ∆a(µ

2
1, µ

2
0) = R with
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R ∈ [0, 1] a uniformly distributed RN. We have the following equation for µ2
1:

− αS
2π

Iz

∫ lnµ21

lnµ20

d lnµ′2 = lnR

⇔ ln

(
µ2

1

µ2
0

)
= − 2π

αS Iz
lnR

⇔ µ2
1 = µ2

0 R
− 2π
αS Iz .

(5.34)

If the generated scale is above µ2, it means there was no branching between µ2
0 and

µ2. The information about a parton a at a scale µ2 and x can be put in a histogram
for fa(x, µ2) vs x. Events of this type correspond to this piece of the evolution
equation Eq (4.12):

f (0)
a (x, µ2) = fa(x, µ

2
0)∆a(µ

2, µ2
0) (5.35)

Note that in this case, no transverse momentum was generated since there was
no splitting.

5.2.2 1-branching event

The evolution starts this time with a parton b corresponding to the middle illustra-
tion of Fig (5.1). The initial momentum fraction x1 and the weight wx, as well as
the intrinsic transverse momentum components kx1 , ky1 are generated as discussed
previously. In the following, all the RN Ri are uniformly generated in the range [0, 1].

Next the scale µ2
1 at which the first branching happens is generated according to

the equation

lnR1 = −αS
2π

Iz

∫ lnµ21

lnµ20

d lnµ′2 (5.36)

Let us assume that this time the generated scale is lower than our final scale µ2
1 < µ2.

Since a branching is happening, one has to generate the splitting variable z1.
The splitting functions are complicated, we cannot perform the generation exactly
according to the splitting function. Instead, we implement an importance sampling
method and generate z1 according to some easier function. A special weight wz must
then be applied to correct the generated distributions.

At LO, a quark can split and continue the evolution only as a gluon or as a
quark of the same flavour and a gluon can split only to a gluon or a quark. In other
words, one has to answer the question if b splits into a parton b (PR

bb) or a different
parton a (PR

ab). This question can be answered using the probabilistic interpretation
of the splitting functions [46], but to simplify the analysis, we only take into account
splitting into the same parton species a = b. Note that it does not correspond to
the example in the middle of Fig (5.1), where a 6= b. This choice is discussed in
subsection (5.2.4).
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The splitting variable z1 will thus be generated according to the properly nor-
malized splitting function Pbb(z) with b = q or g:

R2 =

∫ z1
ε

dz PR
bb(z)∫ 1−ε

ε
dz PR

bb(z)
=

∫ z1
ε

dz PR
bb(z)

NP

, (5.37)

with Nf the normalization factor. Since the splitting function in Eq (5.37) is com-
plicated and it is not possible to find analytically the inverse of this function, the
importance sampling method has to be used.

For example, if we consider quarks:

PR
bb(z) = PR

qq(z) =
4

3

[
1 + z2

1− z

]
, (5.38)

we choose an approximate function, g(z) = 1
1−z

1
Ng

normalized to unity with the

factor Ng =
∫ 1−ε
ε

dz 1
1−z . Now we solve the following equation for z1:

R2 =

∫ z1
ε

1
1−z′dz

′∫ 1−ε
ε

1
1−z′dz

′

⇔ − ln

(
1− z1

1− ε

)
= −R2 ln

(
1− (1− ε)

1− ε

)
⇔ 1− z1

1− ε =

(
ε

1− ε

)R2

⇔ z1 = 1− (1− ε)
(

ε

1− ε

)R2

(5.39)

This z comes with a certain weight wz to compensate for generating it according to
g(z) and not from Eq (5.37):

wz1 =
f(z1)

g(z1)
=
Pqq(z1)

NP

· 1

g(z1)
=

4

3

1

NP

1 + z2
1

1− z1

· 1
1

1−z1
1
Ng

=
4

3
(1 + z2

1)
Ng

NP

(5.40)

Now that we have generate z1, x can be calculated simply by applying the momentum
conservation expressed by the delta function δ(z1x1 − x):

x = z1x1 . (5.41)

For the evolution of the transverse components, the procedure depends on the
choice of ordering (see subsection 4.2.4). It is accumulated as follows:

kx = kx1 +
√
µ2

1 cos (φ1)(1− z1)d ,

ky = ky1 +
√
µ2

1 sin (φ1)(1− z1)d ,
(5.42)

where φ1 = 2πR3 is a random angle. The power d takes a different value depending
on the choice of ordering. The angular ordering condition corresponds to d = 1, the
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virtuality ordering to d = 1/2 and the pT -ordering to d = 0.

Now that each of the variables has evolved, one can generate a scale for the next
branching. Assuming this scale is bigger than the maximum evolution scale µ2, the
evolution is stopped.

The procedure is repeated many times (∼ 107 or more) and one has many 1-
branching events generated. A histogram is filled with x and weight wx · wz1 for
the scale µ2 and parton a (fa(x, µ2)). Another histogram takes kT =

√
k2
x + k2

y and
weight wx ·wz1 for the scale µ2 and parton a (Aa(kT , µ2)). As we don’t allow chang-
ing from species, we start either from a gluon which splits into two gluons and one of
them continues the evolution, or from a quark which radiates a gluon and another
quark of the same flavour continues the evolution. One can built the histograms
for each of the species. Of course, x1, wx1 , kx1 , µ

2
1, z1, ... can have different values in

every event.

The contribution to the histogram fa(x, µ
2) vs x from the 1-branching events

corresponds to the following piece of the evolution equation Eq (4.12):

f (1)
a (x, µ2) =

∫ lnµ2

lnµ20

d lnµ2
1

∆a(µ
2)

∆a(µ2
1)

∫ zM

x

dz1

z1

αS
2π

∑
b

PR
ab(z1) fb(x/z1, µ

2
0) ∆a(µ

2
1, µ

2
0) .

(5.43)

5.2.3 2- and more branchings event

Now let us discuss an event with two branchings, corresponding to the right-hand
side of Fig (5.1)). In the following, the RN Ri are uniformly distributed in the
range [0, 1]. A parton c with initial momentum fraction x2, weight wx, transverse
components kx2 and ky2 is generated.

The scale µ2
2 at which the branching happens is generated according to the

Sudakov form factor:

lnR1 = −αS
2π

Iz

∫ lnµ22

lnµ20

d lnµ′2 . (5.44)

Let us assume that the generated scale is lower than our final scale µ2
2 < µ2.

We consider only the case where the parton c splits into a parton of the same
species (b = c). Note that it does not correspond to the example in the right-
hand side of Fig (5.1), where b 6= c. The splitting variable z2 should be generated
according to:

R2 =

∫ z2
ε

dz PR
cc(z)∫ 1−ε

ε
dz PR

cc(z)
. (5.45)

We proceed by using the importance sampling method described in the previous sub-
section. The weight wz2 coming from the splitting variable z2 must also be computed.
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The evolution of the transverse momentum is generated as follows:

kx1 = kx2 +
√
µ2

2 cos (φ2)(1− z2)d ,

ky1 = ky2 +
√
µ2

2 sin (φ2)(1− z2)d ,
(5.46)

where φ2 = 2πR3 is a random angle. The scale µ1 of the next branching is generated:

lnR4 = −αS
2π

Iz

∫ lnµ21

lnµ22

d lnµ′2 . (5.47)

Assuming that µ2
1 < µ2 and considering only the case where the parton b splits into

a parton of the same species (a = b). z1 can be generated according to the splitting
function:

R5 =

∫ z1
ε

dz PR
bb(z)∫ 1−ε

ε
dz PR

bb(z)
, (5.48)

with the method described above. The weight wz1 coming from this generation has
to be calculated.

The transverse momentum evolution is generated:

kx = kx1 +
√
µ2

1 cos (φ1)(1− z1)d ,

ky = ky1 +
√
µ2

1 sin (φ1)(1− z1)d ,
(5.49)

where φ1 = 2πR6 is a random angle.

Now assume one generates a scale which is finally higher than our maximum scale
and the evolution is thus stopped after two branchings. The information about the
parton a at scale µ2, x = z1z2x2 and weight wz1 ·wz2 ·wx fill the histogram fa(x, µ

2)
vs x.

Another histogram takes kT =
√
k2
x + k2

y and weight wz1 ·wz2 ·wx for the scale µ2

and parton a (Aa(kT , µ2)). This procedure is repeated many times (∼ 107 or more)
and one has many 2-branchings events generated. Remember that the partons are
not allowed to change from species.

The 2-branchings contribution to the histogram fa(x, µ
2) vs x comes from this

piece of the evolution equation:

f (2)
a (x, µ2) =

∑
b

∫ lnµ2

lnµ20

d lnµ2
1

∆a(µ
2)

∆a(µ2
1)

∫ zM

x

dz1

z1

αS
2π

PR
ab(z1)

×
(∑

c

∫ lnµ21

lnµ20

d lnµ2
2

∆b(µ
2
1)

∆b(µ2
2)

∫ zM

x
z1

dz2

z2

αS
2π

PR
bc(z2) fb(

x

z1z2

, µ2
2)

)
,

(5.50)

where, in our case, a = b = c.

At last all the pieces from Eqs (5.35, 5.43, 5.50) can be combined to answer the
question of what is the probability of finding a parton a at a scale µ2 at a given x. Of
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course the process could have more splittings if a 3rd, 4th, 5th,... scale was generated
below the maximum scale bu we stopped our examples at 2 branchings to avoid
redundancy. The steps described above are then iterated to find the contribution
of each order of branching. They all sum up to give the solution of the evolution
equation:

fa(x, µ
2) = f (0)

a (x, µ2) + f (1)
a (x, µ2) + f (2)

a (x, µ2) + ... . (5.51)

5.2.4 Splitting functions as probability densities

We would like to generate the splitting variable z according to a probability density
which consists of two parts (PR

bb and PR
ab). To choose from which part z is going to

be generated, we can compute the integrals of the splitting functions and normalize
the probabilities in the following way:

P1 =

∫ 1−ε
ε

dz PR
bb(z)∑

c=a,b

∫ 1−ε
ε

dz PR
cb(z)

,

P1 =

∫ 1−ε
ε

dz PR
ab(z)∑

c=a,b

∫ 1−ε
ε

dz PR
cb(z)

,

P = P1 + P2 = 1 ,

(5.52)

A uniformly distributed RN R′ ∈ [0, 1] is generated and compared with P1. If
R′ < P1, z1 is generated according to properly normalized PR

bb(z). Otherwise, if
R′ > P1, z1 is generated according to properly normalized PR

ab.

This method was applied with numerical values, ε = 0.00001 and the following
splitting functions:

PR
qq =

4

3

[
1 + z2

1− z

]
, (5.53)

PR,L
gg = 6

[
1

z
+

1

1− z

]
, (5.54)

PR
qg =

1

2
[z2 + (1− z)2] , (5.55)

PR
gq =

4

3

[
1 + (1− z)2

z

]
, (5.56)

where the L in Pgg stands for the leading contributions.

We found out that for a gluon, the probability to become a quark is approx-
imately 1.7% meaning that in first approximation, when we have a gluon in the
evolution, it splits and evolves only as a gluon. The choice to take into account only
the Pgg splitting function for the gluon evolution is thus well motivated.

If instead the starting parton is a quark, the probability to stay a quark after
a splitting is 50% because the splitting functions Pqq and Pgq are symmetric under
z ↔ (1 − z). The choice to keep only Pqq must then be corrected by a factor 1

2
at

each splitting which corresponds to the possibility for the quark to become a gluon,
and then to stay a gluon for the rest of the evolution as explained previously.
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5.2.5 Application to the DY

In this subsection we discuss the application of this method to find the DY cross
section differentiated with respect to the dilepton transverse impulsion pllT . To sim-
plify this analysis, we only consider the uū channel for the colliding partons.

Near the Z boson peak, the DY cross section corresponds to the term propor-
tional to χ2 in Eq (3.10), i.e. the term:

σ̂Z(ŝ) =
4πα2

3ŝ

1

Nc

1

sin4 2θW
(A2

l + V 2
l )(A2

qu + V 2
qu)

ŝ2

(ŝ−M2
Z)2 +M2

ZΓ2
Z

, (5.57)

with the fine-structure constant α = 1/137, the number of active colours Nc = 3 ,
the Z boson mass MZ = 91.1876 GeV, and its decay width ΓZ = 2.4952. The weak
mixing angle θW is taken to be sin2 θW = 0.23129. A quick calculation gives the
value of the parameter sin4(2θW ). The parameters Vl = −0.03783 and Vqu = 0.268
are the effective vector couplings of the Z to charged leptons and quark up respec-
tively while Al = −0.50123 and Aqu = 0.519 are the effective axial-vector couplings.
These numerical values were taken from the very complete review in [8].

In subsections 5.2.1-5.2.3, each event was composed of one “chain” of splittings.
Now we want to make a hard interaction, we need thus to evolve two chains from
the initial scale µ2

0 = 1 GeV2 to collide them at the maximum scale µ2 = M2
Z . We

proceed at the evolution as previously, first we generate two quarks up: a(i) (i = 1, 2)
with momentum fraction x(i), weight w(i)

x , and transverse components k(i)
x0 and k(i)

y0 .
Then we produce a branching scale µ2,(i)

k , a splitting variable z(i)
k with weight w(i)

zk .
Next we evolve the transverse components and we generate the next scale µ2,(i)

k−1 . The
process is then iterated until the scale generated is higher than µ2 = M2

Z . It means
that there is no other constraint on the number of branchings which are counted by
the index k(i).

Let us recall that the number of branchings k is not known before the end of the
evolution, so k is counted in reverse, as follows: k for the first branching, k − 1 for
the second, k − 2 for the third, ... decreasing until the last branching. When the
evolution is stopped we know the number of splittings: the value of k. This value
can of course change at each event and for both chain. This special counting is used
in order to respect the formalism of subsections 5.2.1-5.2.3.

Now the different pieces that enter in the hadronic cross section are discussed.
First, the partonic cross section defined in Eq (5.57) and depends on ŝ. The square
center-of-mass energy of the parton-parton interaction yields (see Eq(3.3)):

ŝ = x1x2s . (5.58)

with
√
s = 13 TeV because we want to simulate the LHC data.

We also need to take all the weights into account since we used importance
sampling method:

w =
∏
i=1,2

w(i)
x

k(i)∏
j=1

wzj . (5.59)
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Also, as we discussed in subsection 5.2.4, one needs to apply a third weight to
the cross section because of our choice to consider only the Pqq splitting function.
This gluon weight is given by:

wg =

(
1

2

)k
, (5.60)

with k = k(1) + k(2).

The longitudinal momentum components k(1)
z =

√
s

2
x1 and k(2)

z = −
√
s

2
x2 can be

combined to the evolved transverse components to form the four momentum of the
partons. The transverse momentum and the mass of the dilepton system can then
be extracted from the sum of these four momentum pµ = kµ,(1) + kµ,(2).

The differential hadronic cross section is then given by:

dσZ = dσ̂Z(ŝ) · w · wg . (5.61)

This cross section fills a histogram σZ vs MZ , the invariant mass of the Z boson
generated. Finally, for the events which have their invariant mass near the Z mass
peak 76 GeV ≤MZ ≤ 106 GeV, we fill a histogram σZ vs pT (Z).

5.3 Results

This sections provides the results of the analysis. The simplified Parton Branching
method, introduced in the previous section, is used to perform a forward evolution
from a starting scale µ2

0 = 1 GeV2 until µ2 = M2
Z . The strong coupling variable is

kept fixed αS(MZ) = 0.118. The PDF initial parametrisations are given by:

fa(x, µ
2
0) = 3

(1− x)5

x
, (5.62)

for a quark or a gluon a.

The intrinsic kT distribution is assumed to be a Gaussian exp(−k2
T/σ

2) with
σ2 = k2

T0
/2 and kT0 a fixed value. The same form is again used for all partons.

In section 4.2.4, we introduced pT -, virtuality and angular ordering conditions
as different ways of associating the evolution scale with the given kinematics. We
showed that from the association of the branching scale µ′2 with a given kinematic
variable, the evolution of the kT follows. It was shown that depending on the ordering
condition the transverse momentum of the propagating parton can be written as:

kx,i+1 = kx,i +
√
µ2
i cos (φi)(1− zi)d , (5.63)

ky,i+1 = ky,i +
√
µ2
i sin (φi)(1− zi)d , (5.64)

where i runs over the number of radiations and with the power d taking a differ-
ent value which depends on the choice of ordering. The angular ordering condition
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corresponds to d = 1, the virtuality ordering to d = 1/2 and the pT -ordering to d = 0.

The first subsection is devoted to a comparison between the evolution for gluons
and for quarks. Collinear and TMD PDFs from the simplified PB method are
presented at the initial and final scales. In the second subsection, the transverse
momentum of the DY Z boson obtained from our approach is considered. We discuss
different values for the intrinsic transverse momenta of the partons, the choice of the
parameter zM = 1− ε defining resolvable branching as well as the choice of ordering
conditions.

5.3.1 Evolution with Pqq vs Pgg
The knowledge of how the real parts of the splitting functions behave is crucial for
the solution of the DGLAP evolution equations by the Parton Branching method.
The splitting functions considered are:

PR
qq =

4

3

1 + z2

1− z , (5.65)

PR,L
gg = 6

(
1

z
+

1

1− z

)
, (5.66)

where the L stands for leading contributions. The splitting functions depend only
on z. Since Pqg and Pgq are not investigated, the partons are not allowed to change
of species, which means that during a branching, a quark will evolve as a quark of
the same flavour while a gluon can only evolve into another gluon.

In this section, the results are shown using kT0 = 0.7 GeV, ε = 10−5, and the
angular ordering (d = 1) in Eq (5.64).

The Fig (5.2)-(5.3) are composed of 6 and 5 histograms:

1. The initial collinear PDF vs x0 at fixed µ2
0 = 1 GeV2 and integrated over kT ,

2. The evolved collinear PDF vs x at fixed µ2 = M2
Z and integrated over kT ,

3. The initial TMD PDF vs kT0 at fixed µ2
0 = 1 GeV2 and integrated over x,

4. The evolved TMD PDF vs kT at fixed µ2 = M2
Z and integrated over x,

5. The number of radiation during the evolution,

6. The kT distribution accumulated after the first radiation (shown only in Pqq
case).

The initial collinear and TMD PDFs are generated in the same way for both the
gluon and quark, it follows that Figs (5.2)(1) and (3) are identical to Figs (5.3)(1)
and (3).

Let us discuss the number of radiation in case of quarks (Fig (5.2)(5)) and gluons
(Fig (5.3)(5)). As one can see we have much more radiations in gluon evolution than
in quark one. It can be understood as follows. The integral of the PR,L

gg is always
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Figure 5.2: Evolution of the collinear (1) and (2), and of the TMD PDFs (3) and (4) for
a quark with the splitting function PRqq. The graph (5) is the number of radiations during
the evolution. The graph (6) illustrates kT after the first radiation.

bigger than PR
qq integral regardless of the value of zM . As the Sudakow form factor

decreases with an increasing splitting function integral, it follows that the Sudakov
is smaller for the gluon than for the quark. Recalling the definition of the Sudakov
as being the probability to evolve without any resolvable branching, it should lead
to more radiations for the gluon than for the quark.
As a consequence we see that evolved kT is harder in case of gluons (Fig (5.3)(4))
than in case of quarks (Fig (5.2)(4)) since kT will accumulated to higher values
with large number of radiations. Also, since there are more radiations in the gluon
evolution, the gluon loses more energy than the quark. Therefore the collinear PDF
for the gluon should migrate more to the small x region than the quark collinear
PDF. The behaviours of the collinear (2) and TMD (4) PDFs confirm our prediction.

In Fig (5.2) (6) the kT distribution accumulated after the first radiation is shown.
This can give an idea about the step which Sudakov form factor can make, i.e at
which scale the first branching will occur.
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Figure 5.3: Evolution of the collinear (1) and (2), and of the TMD PDFs (3) and (4) for
a gluon with the splitting function PR,Lgg . The graph (5) is the number of radiations during
the evolution.

5.3.2 Transverse momentum of the Z boson

In this subsection, we test the idea of applying TMD instead of collinear PDFs
to obtain prediction for the Z boson pT spectrum. We perform the simplified PB
method, then the DY cross section at the mass peak of the Z is used. The centre-
of-mass energy is

√
s = 13 TeV and we analyze the transverse momentum of the

events in the range 76 < MZ < 106 GeV. We assume that we generate only quarks
and anti-quarks up, thus the only splitting function used is Pqq = Puu.

We shall see how changing parameters affects the distribution. First we will
discuss different values for the intrinsic transverse momenta of the starting quarks,
then the choice of the parameter zM and finally the ordering condition.

In Fig (5.4) the results for the pT (Z) spectrum with angular ordering and zM =
1 − 10−5 are presented for three different values of the parameter kT0 = 0.2 GeV,
kT0 = 0.7 GeV, kT0 = 1.2 GeV.
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Figure 5.4: pT (Z) with different kT0.

Changing this initial partons transverse momentum width should not affect the
high-pT region, where a lot of radiations leading to the generation of transverse mo-
mentum should have smoothed the initial disparity away. Indeed, the results show
that the influence of changing this initial partons transverse momentum width is
only visible for the low-pT region. Looking at the shape of the distribution we see
that for the default value of kT0 = 0.7 the simulated spectrum peaks at about 2 GeV.
In inclusive DY measurement the peak of the pT (Z) distribution is approximately
at 5 GeV. Discussion on that matter can be found in the end of this subsection.

Let me comment on the normalisation for the figures I show in this section. As
elaborated in subsection (5.2.5) the event weights are propagated into the code with
an additional care. Although several simplifications of the method as discussed later
do not allow to bring the final normalisation to the reasonable value. It is worth
mentioning that for the current analysis the normalisation is not important and the
discussion on the shape is present.

Now, the results shown in Fig (5.5) correspond to an evolution with angular
ordering and kT0 = 0.7 GeV but for different values of the parameter zM = 1−10−3,
zM = 1− 10−4, zM = 1− 10−5.

One can see that all these values of zM lead to the same shape for the spectrum
of pT (Z) but lead to different yields, so there are less Z bosons when increasing
zM . It can be understood as following. When zmax is increased, the Sudakov form
factor decreases hence the number of radiation grows. As discussed in the end of
subsection 5.2.4 each splitting is corrected by a factor 1/2 due to the possibility
for the quark to become a gluon. In other words, the gluon weight introduced in
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Figure 5.5: pT (Z) with different zM .

subsection 5.2.5 is enhanced:

wg =

(
1

2

)k
, (5.67)

with k being the number of radiations. Thus having more radiations will increase
the probability of getting gluon during the evolution and thus will reduce the Z
boson production what is observed in Fig (5.5).

In Fig (5.6), the results for the pT (Z) distribution with kT0 = 0.7 GeV and
zM = 1 − 10−5 are presented for the three ordering conditions: angular, virtuality
and pT -ordering.

We can see that the three predictions differ a lot from each other, especially the
one obtained with the pT -ordering. From the plot one cannot conclude which is the
best since no comparison with data is shown. As mentioned earlier the approach
elaborated in the thesis uses several approximations which lead to the simulation
being not compatible with the data: fixed αs scale, non-dynamic zM , only Pqq in
the evolution. The last approximation is especially important. In case of Z produc-
tion at 13 TeV energy, the gluon PDF is much higher than quark PDF and thus
gluons cannot be completely neglected, because there are much more gluons and
that compensates lower splitting probability for g → qq̄. As we saw in the previous
subsections gluons change a lot the kinematics during the evolution compared to
the quarks.

In [46] it was shown that angular ordering provides the best description on the
measured pT (Z) spectra by LHC and it was shown that pT -ordering does not give
the stable results for the TMDs, whereas virtuality and angular ordering do.
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Figure 5.6: pT (Z) with different ordering.

5.4 Cascade

I explored a tool which allows to use TMDs from the PB method (or other TMDs)
to the LHC measurements, particularly the DY analyse from ATLAS experiments.
The tool is called Cascade [57, 67].

It works as follows: one takes the LO or NLO matrix element for the Z boson
production generated by another Monte Carlo. The matrix element does not gen-
erate any pT at LO and generate large pT at NLO. Small transverse momenta of
the incoming quark-antiquark pair can be generated according to the TMDs, which
is an input of Cascade. Thus the small pT dependence (or pT < 20 GeV) comes
directly from the PB method. There is no tuning of free parameters. With a help
of the Rivet interface [68] 1 I made a comparison of the latest PB TMD set, PB-
NLO-HERAI+II-2018-set2 [60], with the DY measurements from ATLAS at 8 TeV
[29]. In Fig (5.7) the measured transverse momentum of the Z boson is shown in
three invariant mass ranges: 46 < M < 66 GeV, 66 < M < 116 GeV, 116 < M <
150 GeV. The normalised distributions are in a good agreement with the TMDs.

1Rivet is a generator-independent program, where truth events can be processed to show the
truth-level distributions resulting from measurements and compared to the reference data. In this
way, new generator predictions may be run through an Rivet analysis plugin and the result may
be compared to the experimental data directly (assuming that the data are corrected for detector
effects).
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Figure 5.7: The measured normalised distributions of the transverse momentum of the Z
boson are shown in three invariant mass ranges: 46 < M < 66 GeV, 66 < M < 116 GeV,
116 < M < 150 GeV. The date are compared to the TMD prediction [29].
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Conclusions and Prospects

In this thesis a new approach to solve the DGLAP evolution equation is discussed.
From the solution with the Parton Branching (PB) method one can obtain, in ad-
dition to the standard collinear Parton Distribution Functions (PDFs), also the
Transverse Momentum Dependent PDFs (TMDs). The PB method allows a deter-
mination of kinematic variables at every branching and a construction of the TMDs
in a large range in longitudinal momentum fraction x and evolution scale.

During this thesis I learned the Monte Carlo techniques used in the LHC event
simulation tools and wrote a code based on the simplified parton branching method
and obtained the Z boson pT -spectrum for LHC collisions at 13 TeV.

I studied independently different elements of ordering condition: the connection
between the evolution scale and a kinematic variable and the soft gluons resolution
scale parameter, zM . I also investigated the effect of the intrinsic transverse mo-
mentum distribution on the Z boson transverse momentum. The code uses several
simplification to obtain the results within the master thesis: scale of αS is fixed,
only quark to quark splitting is considered during the evolution. If these steps were
completed I expect that simulated pT (Z) distribution would be closer to the LHC
measurements. I also explored a tool which allows to use TMDs from the PB method
to the LHC measurements, particularly the DY analyses from ATLAS experiments.
The tool is called Cascade. I made a comparison of the latest PB TMD set with
the DY measurements from ATLAS at 8 TeV. The results show good agreement
with the measurements.

The PB TMD approach is a part of a broader program which aims in precision
predictions for observables at high energy collisions. Although in my master thesis
only the DY process is discussed, the method can be, nonetheless, applied to any
QCD process, like jet production, Higgs production etc.. One could especially study
the low energy DY data which might be sensitive to the intrinsic momenta. This
also opens new perspectives for a better precision for the calculations of higher order
corrections to the physical observables, not only for LHC measurements, but also in
the context of the new colliders.

TMDs are today a reliable alternative to the present approach based on the
collinear factorisation and parton showers. Work is still needed to improve its deep
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understanding, to control well related uncertainties and to develop tools to make it
more easily available for the full LHC community. The ultimate goal being to make
TMDs adopted by the community as the default approach for hadron distributions,
being better fundamentally founded and providing higher precision.
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