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Abstract

Gravitational waves were predicted as part of Einstein’s theory of general relativity a bit
more than a century ago. These can be generated during high energetic transient phe-
nomena such as the merger of binary neutron stars or binary black holes. However, the
interest of this work will be in a different type of signal, namely a stochastic background
of gravitational waves. It is a quasi-continuous signal of gravitational waves which per-
meates the Universe and as such, is the equivalent of the Cosmic Microwave Background
for photons. Such a stochastic background can be generated during phase transitions
in the cosmological evolution of the Universe. The generation of gravitational waves
from the so-called Peccei-Quinn phase transition will be the focus of this thesis. The
introduction of the Peccei-Quinn symmetry arises as a possible solution to the Strong
CP problem. This problem stems from a CP violating term which has to be included
to the Standard Model Lagrangian. This term contributes to the neutron electric dipole
moment (eDM) and its coefficient, called the θ-angle, can be constrained to be less than
10−9 from measurements of the neutron eDM. The question why this angle is so small
compared to other sources of CP violation in the SM, which are of O(1), is known as the
Strong CP problem. This problem as well as a possible solution involving the Peccei-
Quinn symmetry will be reviewed in this thesis, after which original work is conducted
on the analysis of the Peccei-Quinn phase transition leading to a stochastic gravitational
wave background.
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1 Introduction

This thesis brings together two topics, namely gravitational waves generated from phase
transitions and the Strong CP problem. Both are briefly introduced below, after which
the connection between the two is explained and the structure of the thesis is outlined.

Most of us are familiar with the concept of phase transitions. If not, think of one
of the most day-to-day examples: boiling water, where it changes from liquid to gas.
Phase transitions in the context of fundamental physics relate to changes of the vacuum
state during the evolution of the universe. The phase transition is the process of going
from some false vacuum to the lower energy true one. Two qualitatively different ways
to go from one vacuum to the other can be distinguished: first or higher order phase
transition [1]. The difference is that a barrier in the potential is present in the case of a
first order phase transition, which forces the process to happen via quantum tunneling or
thermal fluctuation. If the transition is second or higher order, one can just roll from the
false vacuum into the true vacuum, as no barrier is present. First order phase transitions
are of particular interest because they can give rise to gravitational waves. Gravitational
waves (GW) are solutions of the Einstein equation and are fluctuations of space-time
that travel at the speed of light [2, 3]. During first order phase transitions, bubbles will
form, in much the same way as bubbles form when boiling water. Various bubbles of
true vacuum start appearing in a sea of false vacuum. The bubbles themselves cannot
generate a GW signal, because the gravitational wave signal is related to the quadrupole
moment, which is only non-zero if asymmetry is present in the system [4]. Nevertheless,
the collision of such bubbles will break the symmetry and allow for the generation of
gravitational waves.

The other topic addressed in this work is one of the problems in the Standard Model
(SM). The SM is one of the biggest successes in physics and has been proven to describe
a multitude of physical processes to high accuracy. However, some aspects remain un-
explained by it, e.g. dark matter, neutrino masses and the hierarchy problem. Another
aspect that cannot be understood with the SM theory is called the Strong CP problem.
The strong CP problem stems from the fact that a term θ

32π2GµνG̃
µν cannot be excluded

on the basis of symmetries from the QCD Lagrangian of the SM. This term contains the
gluon field strength Gµν and its dual denoted G̃µν . This term is odd under parity, but
even under charge conjugation and thus, violates CP. This extra term contributes to the
neutron electric dipole moment (eDM). However, strong experimental bounds exist on
the value of the neutron eDM, constraining the value of θ to be less than 10−9 [5]. One
recalls that the other sources of CP violation in the SM come from the CKM matrix and
are all of O(1) [6]. The smallness of the θ-parameter compared to the CP violating CKM
terms is dubbed the Strong CP problem. Various solutions to this problem have been
suggested, including one proposed by Peccei and Quinn [7, 8]. This solution consists of
adding an anomalous U(1) symmetry to the SM model, called the Peccei-Quinn symme-
try. This U(1)PQ will be spontaneously broken, giving rise to a Goldstone boson, called
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the axion. Due to the coupling to gluons coming from the anomaly, the axion enters in
the same term as the θ-term. The vacuum expectation value of the axion is such that
it cancels with the θ, resulting in the vanishing of the GG̃ term and thus, solving the
Strong CP problem.

Figure 1: Diagram illustrating the structure of the thesis, where black stands for a review
of the theory, blue for sections including the reproduction of existing results and green
for original contributions.

The two subjects above are united in this work by exploring the prospect of generating a
gravitational wave signal from a first order phase transition associated with the breaking
of the Peccei-Quinn symmetry. To illustrate the structure of the thesis, a diagram is
displayed in Fig. 1. The following color code is used: black stands for a review of the
theory, blue for sections including the reproduction of existing results and green for orig-
inal contributions. The content of the chapters is as follows. Section 2 is dedicated to
gravitational waves. Concepts of phase transitions are reviewed and explained in more
depth, followed by an overview of how these phase transitions can lead to a stochastic
background of gravitational waves. In the following section, Section 3, the Strong CP
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problem is addressed, together with some of the proposed solutions. There, the focus
will be on the axion solution to the Strong CP problem. Some models, such as the KSVZ
and the DFSZ model, as well as the phenomenology of the axion will be discussed. A
preliminary case study concerning the electroweak phase transition is performed in Sec-
tion 4. In this case study, the possibility of having a strong first order phase transition in
the SM is explored by adding a cubic term to the Higgs potential. This section takes care
of establishing all the necessary skills needed for the axion models studied in Section 5.
There, various realizations of the axion are considered, together with the gravitational
wave signals generated from first order phase transitions associated with the breaking
of U(1)PQ. A large part of this section is devoted to the investigation of an original
model1. The Peccei-Quinn phase transition is studied in detail and the gravitational
wave signal resulting from it is derived. More particularly, it is shown that the model
under consideration can be tested at future gravitational wave interferometers, e.g. at
the Einstein Telescope, or even at LIGO-Virgo for some range of parameters. Although
the Peccei-Quinn phase transition happens at very high scales, unreachable by collider
experiments, it can still be probed in gravitational wave signatures, thus opening a new
experimental window to models addressing the Strong CP problem.

This master’s thesis came about (in part) during the period in which higher education was sub-

jected to a lock-down and protective measures to prevent the spread of the COVID-19 virus. The

process of formatting, data collection, the research method and/or other scientific work the the-

sis involved could therefore not always be carried out in the usual manner. The reader should

bear this context in mind when reading this Master’s thesis, and also in the event that some

conclusions are taken on board.

1The gravitational wave spectrum associated with Peccei-Quinn phase transitions has also been stud-
ied in three scientific papers [9–11] appearing during the development of this thesis, though for different
models.
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2 Gravitational wave signal from cosmological phase tran-
sitions

The first part of this work will explore the mechanism behind the generation of gravi-
tational waves during cosmological phase transitions. First, gravitational waves will be
introduced, together with some aspects related to experimental detection. After this,
the theory of phase transitions will be reviewed. This will then be applied to explore the
generation of gravitational wave signals from a first order phase transition in the last
part of this section.

2.1 Gravitational wave signal

In what follows, gravitational waves are introduced, with an emphasis on a specific type,
namely a stochastic background of gravitational waves. Various experiments are dis-
cussed and different constraints on this background are mentioned.

A bit more than a century ago, gravitational waves (GW) were predicted by Einstein as
part of his theory of general relativity [2,3]. These are solutions to the Einstein equation
in the form of waves, traveling at the speed of light. The polarization of the waves can
be realized in two different ways, usually denoted ’+’ and ’×’ [4]. The passing wave will
stretch spacetime in one direction and contract it in the other one. To illustrate this, the
effect of the ’+’ polarized gravitational wave is depicted in Fig. 2. The effect of the ’×’
polarized one would be very similar, only stretching diagonally instead of vertically and
horizontally. The strain h(t) is the quantity used to measure the stretching. It varies
in time according to the wave frequency, which in turn depends on the source of the
gravitational wave.

Figure 2: Illustration of the effect of a ’+’ polarized GW [12].

To make the concept of polarization and strain more concrete, consider a gravitational
wave traveling in the z direction [13]. The x and y axes can be chosen arbitrarily. The
’+’ polarized gravitational wave will stretch and contract space along these two axes.
The gravitational wave can be written as

hij(z, t) = h+

1 0 0
0 −1 0
0 0 0


ij

ei(kz−ωt), (2.1)
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where the amplitude of the wave h+ is the strain that the gravitational wave produces
on spacetime. Because of this, spacetime is stretched, inducing a length oscillation in
the x direction:

L(t) = L0 +
h+L0

2
cosωt, (2.2)

where L0 is the length one started with in the x direction. Similarly for the y direction,
such that one can write the variation in length due to the gravitational wave as

∆Lx =
h+L0

2
cosωt and ∆Ly = −h+L0

2
cosωt. (2.3)

Note that these have opposite signs. Indeed, as one direction is stretched, the other
one is contracted (as can be seen in Fig. 2). The total change in length in terms of the
variation of the two arms is

∆L = ∆Lx −∆Ly = h+L0 cosωt, (2.4)

which at t = 0 yields

h+ =
∆L

L0
. (2.5)

This briefly illustrates how the strain relates to the variation in arm length of gravita-
tional wave detectors. For a complete review on the subject, see [14].

The first indirect detection of gravitational waves was realized through the observa-
tion of a binary pulsar whose orbit was noticed to decay [15]. Matching the energy loss
due to the emisson of gravitational radiation, its orbital decay was soon attributed to
emission of gravitational waves. A direct detection was instead only achieved recently
by the LIGO-Virgo collaboration [16]. This direct discovery of GW in 2016 marked an
extraordinary success of the theory of general relativity, confirming Einstein’s prediction
one century later.

LIGO and Virgo are two of the cutting-edge experiments to detect gravitational waves.
Others, such as the Japanese KAGRA, have just joined or will soon join this worldwide
network of so-called second generation gravitational wave detectors [17]. The detection
method is the same for the above detectors and is called laser interferometry. As a
gravitational wave passes through the L-shaped experiment, a variation in the length
of the arms of the interferometer is induced, as was explained above. This can be very
precisely measured by detecting the relative phase between the lasers in the two detector
arms. This is then converted into the strain h, which quantifies the passage of a GW
across Earth.

Gravitational waves are produced in various astrophysical events. These include bi-
nary neutron star or binary black hole mergers, supernova explosions, or even neutron
stars that display some asymmetry. The LIGO-Virgo collaboration has already proven
to be successful by detecting many of these events. The current list includes more than
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O(10) events, including gravitational waves originating from the merger of binary black
holes and binary neutron stars [18,19]. With the data collected in the current and future
runs, many more gravitational wave signals associated to very energetic astrophysical
events are expected to be observed. A new way of probing astrophysical phenomena
is provided by these observations as this multi-messenger astronomy allows to observe
the same astrophysical process through various complementary detection methods, in-
cluding electromagnetic waves ranging from radio waves to gamma rays and neutrino
observations. Furthermore, gravitational waves could have been emitted at the very
early stages of the Universe, providing a unique new window to the cosmological history
of the Universe.

The efforts to reach higher sensitivities in such experiments do not cease, as the so-called
third generation detectors are on their way. As an example, the Einstein Telescope will
be part of a new generation of gravitational wave detectors, bringing gravitational wave
physics to its full potential. This will be achieved by having a detector with a larger
accessible frequency range and an order of magnitude better sensitivity [20]. ET will be
a ground-based gravitational wave detector, just like its predecessors. However, a few
differences can be noticed compared to the previous detectors. ET will have a triangular
shape, corresponding to three nested interferometers, and will be built underground,
reducing seismic noise. The arm length will be 10 km instead of 4 km for LIGO and
3 km for Virgo, which will reduce displacement noise. Furthermore, the laser power at
the interferometer input will be increased as well. Because of these improvements, ET
will be active in the frequency range of a few Hz to a few kHz and should be able to
record signals other than coalescing binary systems, such as isolated pulsars, supernovae
or even a stochastic background of gravitational waves, which will be explained below.

Another proposed detector is the Laser Interferometer Space Antenna (LISA), which
is a space-based laser interferometer expected to be launched in 2030-2035 [21, 22]. It
will consist of three identical spacecraft, each 2.5 million km apart, following Earth’s
orbit around the Sun. This interferometer will allow to probe gravitational wave signals
in a lower frequency range, namely 10−4 Hz to 10−1 Hz, never explored before.

Stochastic background of gravitational waves
Throughout the rest of this work, the interest will be in a specific type of gravitational
wave signals, namely a stochastic background of gravitational waves (SBGW). This type
of signal significantly differs from the signals associated with the high energetic transient
phenomena that were introduced above. A SBGW is a quasi-continuous signal of GW
in time which permeates the Universe (see [13] for a review on the topic). It is the
equivalent of the Cosmic Microwave Background (CMB) for photons, and as such, it
would at first appear as a noise in the detector. As the SBGW is identical to irreducible
detector noise, one needs to find a way to disentangle the two. This is where cross-
correlation between detectors comes into play and hence, the importance of having more
than one detector becomes clear. The idea is that the random output of one detector
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acts as a template for the other. The key aspect here is that the SBGW signal will be
correlated across detectors, whereas the instrumental noise usually is not. The SBGW
would be measured in terms of the amount of energy density which is carried by the
SBGW with respect to the critical energy density of the Universe, and is conventionally
denoted as

ΩGW(f) =
f

ρc

dρGW
df

(2.6)

where f denotes the frequency and ρc =
3c2H2

0
8πG ≈ 7.6×10−9 erg/cm3 is the critical energy

density of the Universe [13]. Equivalently, the energy density of gravitational waves can
be considered over a frequency band:

ΩGW =

∫
d ln fρGW . (2.7)

It is the same parameterization in which e.g. the content of baryonic matter (Ωbaryons '
5%) or of dark matter (ΩDM ' 27%) in the Universe is measured [23].

The stochastic background of gravitational waves can usually be divided into two cate-
gories depending on its origin. The first one contains the SBGW that could have origi-
nated from events taking place during the cosmological evolution of the Universe. These
events include inflation and phase transitions, as will be explained in detail in the follow-
ing subsection. On the other hand, it could have been generated by the superposition of a
large number of unresolved sources, resulting in a background from astrophysical origin.
These sources can include binary black hole (BBH) mergers, binary neutron star (BNS)
mergers, supernovae, pulsars,... Given the current rate of observed binary mergers (BBH
and BNS), it is expected that the future Advanced LIGO-Virgo network and future de-
tectors will detect a sizable signal of a SBGW from such unresolved astrophysical sources.

Using astrophysical observations and other measurements, various constraints can be
set on the SBGW. These are complementary as the constraints apply to different fre-
quencies, thus covering a large range of frequencies. Fig. 3 shows a summary of the
constraints as well as the possible SBGW for several sources.

A first constraint comes from the first two observation runs of LIGO-Virgo, which
yielded a limit ΩGW(f)h2 < 6.0× 10−8 for frequencies ranging from 20 Hz - 86 Hz [24].

Another constraint comes from pulsars, which are neutron stars that emit regular
radio pulses due to the misalignment of their magnetic field dipole axis and the rota-
tion axis [25]. Since the emission of such pulses is very regular, any deviation could be
measured and used to detect gravitational waves. A gravitational wave would alter the
time between pulses, although many other effects could change the arrival time of the
pulses. Among these, there is the decrease of frequency due to energy loss, as well as the
dispersion through the interstellar medium that need to be taken into account. After
taking this into consideration, a limit on the SBGW can be set, as was already done in
1987: ΩGW(f)h2 < 4× 10−7 for a frequency of 7× 10−7 Hz [26]. More recently, a more
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stringent constraint has been established, namely ΩGW(f)h2 < 1.1× 10−9 at 2 nHz [27].
Future experiments such as the Square Kilometer Array (SKA) will be able to probe
frequencies in the range 10−9 − 10−7 Hz [28].

Figure 3: The limits on the SBGW from LIGO’s and Virgo’s first two observation runs as well as
their designed sensitivity are shown. For completeness, the sensitivity of the future LISA [22] and
ET [35] detectors are displayed. Various backgrounds are included: binary black holes (BBH),
binary neutron stars (BNS), a phase transition in a realization of the Peccei-Quinn model (as
obtained in Section 5), as well as slow-roll inflation. All the other lines depict constraints on the
SBGW. These come from pulsars, Earth’s normal modes, Cosmic Microwave Background (CMB)
measurements and indirect limits from CMB and Big-Bang nucleosynthesis (BBN) [10,13,36,37].

Because of its near isotropy, the Cosmological Microwave Background (CMB) can
also be used to set constraints on the SBGW. Gravitational waves would generate a
quadrupole anisotropy or fluctuations on smaller angular scales. The constraints as dis-
played in Fig. 3 are such that an energy density above these values would have altered
the observations made on the CMB [29–31].

Limits on the energy density of the SBGW can also be inferred from measurements
of the normal modes of the Earth. In this case, the limits were established to be ranging
from 0.035 to 0.15 for frequencies between 0.3 mHz and 5 mHz [32].

Finally, there are indirect limits on the SBGW energy density. These can be de-
duced from the abundance of deuterium, helium and lithium. Their production in the
Big Bang Nucleosynthesis (BBN) would have been influenced by the gravitational waves.
Indeed, an energy density that is too high would have caused the expansion rate of the
universe to go up and thus, lowering the amount of helium produced from deuterium.

10



This would result in different abundances than the ones that are observed today. This
yields a constraint ΩGW(f)h2 < 1.8× 10−5 for frequencies above 10−10 Hz [33,34].

As mentioned above, the detection of gravitational waves started a new era. It will
allow to probe physics phenomena at the very early stages of the Universe. Among
these phenomena are phase transitions in the Universe. This work will explore the pos-
sibility of generating a detectable gravitational wave signal from phase transitions. To
this end, the theory of phase transitions is reviewed in the following subsection, after
which it will be discussed in the context of gravitational waves.

2.2 Stochastic background of gravitational waves from phase transi-
tions

In this subsection, the generation of a stochastic background of gravitational waves from
phase transitions is explored. First, the concept of the effective potential and tempera-
ture corrections will be treated. This will be followed by a review of the phase transition
dynamics. The section will then be concluded by the introduction of a stochastic back-
ground of gravitational waves generated from phase transitions.

2.2.1 Effective potential and temperature corrections

Phase transitions will prove to constitute a possible contribution to the stochastic back-
ground of gravitational waves described in the previous section. Before considering phase
transitions themselves, the concept of effective potential is introduced, following the ap-
proach of [1]. This is a fairly technical subsection where the formulas needed to evaluate
the quantum and thermal corrections to the tree-level potential are introduced, as well
as some aspects of renormalization. The reader not interested in these details can look
at Eq. (2.11), (2.14) and (2.15) and move on to Section 2.2.2, where the dynamics of
phase transitions is explained.

When thinking of the potential for a scalar field, one usually only takes the tree-level
potential into account. A typical example for a scalar field potential is the well known
Mexican hat potential, which is given by

V0(φ) = −µ
2

2
φ2 +

λ

4
φ4. (2.8)

However, this potential gets corrections induced by one-loop and thermal effects. Quan-
tum field theory is perfectly suited to describe particles in a vacuum, but the early
stages of the Universe are different from the idealized scenario of a vacuum. With a non-
negligible matter and radiation density at high temperature, one needs to move away
from regular quantum field theory to thermal field theory. Indeed, in that formalism the
background is described as a thermal bath, rather than a vacuum. This field theory at
finite temperature will cause thermal corrections to the tree-level potential. Taking the
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leading contributions into account, the potential now reads

Veff(φ, T ) = V0(φ) + V CW
1 (φ) + VT (φ, T ) + VDaisy(φ, T ), (2.9)

where V0 is the tree-level potential, V CW
1 is the one-loop Coleman Weinberg correction

(zero-temperature quantum correction), VT are the thermal corrections with the Daisy
correction terms VDaisy.

One-loop correction
The various corrections will not be computed explicitly here, but will be stated for
completeness. For a complete review on the subject, [1] can be used. However, it
is important to note that when the one-loop correction is computed, one would find
this result to be ultraviolet-divergent. Thus, the theory needs to be regularized and
divergent contributions are canceled by the introduction of counter-terms, taking the
following form

V ct
1 = δΩ +

δm

2
φ2 +

δλ

4
φ4. (2.10)

The coefficients of the counter-terms are then chosen such that the divergences of the one-
loop correction cancel with the ones of the counter-terms. The choice of these counter-
terms is determined by the choice of renormalization conditions, which determine the
so-called renormalization scheme. Here, two possibilities for the renormalization scheme
will be discussed.

The first option for renormalization is called MS renormalization. Although the compu-
tation will not be performed here, a brief outline of it will be stated for completeness.
Starting from the one-loop correction obtained by dimensional regularization, one would
find that it is divergent due to a pole 1/(n − 4), where n is the dimension of space-
time. The MS scheme consists of subtracting the term containing this pole by a specific
choice of counter-terms. Adding one-loop and counter-terms together, one finds that the
divergences cancel and one arrives at a finite effective potential of the form

V (φ) = V0(φ) +
1

64π2

∑
i

nim
4
i (φ)

(
log

m2
i (φ)

µ2
− Ci

)
. (2.11)

In this expression, ni are the degrees of freedom with a negative sign for fermions (e.g.
-12 for a SM fermion with color charge such as the top quark, etc.) and Ci are constants
given by Ci = 5/6 for gauge bosons and Ci = 3/2 for other fields. Another possibility
for the renormalization uses a cut-off regularization (the cut-off arises when perform-
ing loop momentum integrals). Using this regularization scheme, one finds a one-loop
contribution

V1(φ) =
1

32π2

∑
i

ni

(
m2
i (φ)Λ2 +

m4
i (φ)

2

(
log

m2
i (φ)

Λ2
− 1

2

))
, (2.12)

where ni are the degrees of freedom and mi the mass of the i-th particle.
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Furthermore, a convenient choice for the renormalization conditions is that the mini-
mum at the vacuum expectation value (vev) v and the scalar mass do not change with
respect to their tree-level value, namely by requiring

d(V1 + V ct
1 )

dφ

∣∣∣∣
φ=v

= 0 and
d2(V1 + V ct

1 )

dφ2

∣∣∣∣
φ=v

= 0. (2.13)

Note that in the context of the usual SM content, this is a perfectly well-motivated choice
for the renormalization. As the vev of the Higgs field is measured to be around v ≈ 246
GeV [6], it only makes sense to not want higher order effects to influence this value and
thus, require that Eq. (2.13) holds. Starting from Eq. (2.12), adding counter-terms and
requiring Eq. (2.13), it can be shown that if the squared masses of the different fields
are of the form m2(φ) = m2

0 + λφ2, the potential takes the form:

V (φ) = V0(φ) +
∑
i

ni
64π2

(
m4
i (φ)

(
log

m2
i (φ)

m2
i (v)

− 3

2

)
+ 2m2

i (φ)m2
i (v)

)
, (2.14)

where the sum runs over the various fields and v denotes the vev. Similarly, from
the expression of the one-loop correction in the MS scheme given by Eq. (2.11), it is
also possible to recover the above equation for the one-loop contribution by requiring
Eq. (2.13), as shown in Appendix A. Note that in both cases the dependence on µ and
Λ has disappeared.

Thermal corrections
On top of the tree-level and one-loop contribution, thermal corrections come into play
when considering field theories at finite temperatures [1]. The thermal contribution reads

VT (φ, T ) =
∑
i

ni
giT

4

2π2

∫
dx x2 log

(
1− (−1)Fi exp

(
−
√
x2 + β2m2

i (φ)

))
, (2.15)

where β = 1
T . Let JF (m2/T 2) be the integral above for fermions, i.e. where Fi = 1,

and JB(m2/T 2) for bosons, where Fi = 0. Both functions can be approximated by their
high-temperature expansion, admitting the following form

JF (m2/T 2) =
7π4

360
− π2

24

m2

T 2
− 1

32

m4

T 4
log

m2

afT 2
+ . . . (2.16)

and

JB(m2/T 2) = −π
4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2
+ . . . , (2.17)

where log af = 2.6351 and log ab = 5.4076 [1]. For T � m, both obey the following
relation

JB(m2/T 2) = JF (m2/T 2) =
( m

2πT

)3/2
e−m/T

(
1 +

15T

8m
+O

(
T 2

m2

))
, (2.18)
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showing Boltzmann suppression in the case the particles are a lot heavier than the tem-
perature [38].

The last contribution VDaisy is needed because of the fact that the perturbative expan-
sion in finite temperature field theory breaks down. These so-called Daisy corrections
arise due to IR divergences. It turns out that these contributions can be parametrized
by a shift in the bosonic mass terms as mb(φ)2 → mb(φ)2 + Πb(T ) in Eq. (2.15), where
Πb(T ) is the self-energy of the bosonic field in the IR limit [39]. Explicit formulas for
these shifts will be given when needed in later sections.

2.2.2 Phase transition dynamics

The previous formulas illustrate how the tree level potential gets corrections from the
one-loop level, as well as thermal contributions. Now that the concept of effective poten-
tial is clear, one can move on to phase transitions. To make this concept more concrete,
as well as to illustrate the difference between first and second order phase transitions,
two toy models for the potential are considered following [1].

Second order phase transitions
Starting with a second order phase transition, the following potential is considered:

V (φ, T ) = D(T 2 − T 2
0 )φ2 +

λ

4
φ4, (2.19)

where D, T0 and λ are constants. This is the typical form one would obtain including the
high-temperature expansion in Eq. (2.16) (only for fermions, as the bosonic contribution
would include a φ3 term). In a general theory, the above constants would be determined
by the underlying parameters and field content of that theory, through the expressions
entering the effective potential that was previously introduced. At T = 0, the origin is
unstable since the mass-squared term is negative, whereas the other minimum is favored

and corresponds to φ = ±
√

2D
λ T0. This energetically favored state spontaneously breaks

the original symmetry φ↔ −φ of the theory. The φ = 0 is said to be in the symmetric
phase, whereas the φ 6= 0 is in the broken phase. The T -dependent curvature is given
by

m2(φ, T ) = 3λφ2 + 2D(T 2 − T 2
0 ) (2.20)

and the stationary points of the system read

φ(T ) = 0, φ(T ) =

√
2D(T 2

0 − T 2)

λ(T )
. (2.21)

Let us now consider the evolution of the potential as a function of the temperature. For
temperatures above T0, only the first solution in Eq. (2.21) exists and m2(φ, T ) > 0,
such that the origin forms a stable minimum. At T = T0, the potential takes the form

V (φ, T0) =
λ

4
φ4 (2.22)
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and both stationary points coincide. For temperatures below T0, we now have that
m2(φ, T ) < 0, making the origin a local maximum, and have two new stationary points
(φ 6= 0) appearing. As can be noticed, the second order phase transition does not
exhibit a barrier between the symmetric and the broken phase. This phase transition is
illustrated in Fig. 4.

Figure 4: Illustration of a second order phase transition for D = 1, T0 = 10 and λ = 16
in Eq. (2.19). Units have not been specified as only the dimensionless ratio of the
parameters matters.

First order phase transitions
The case of a first order phase transition is different, because it contains a barrier between
the symmetric and broken phase. This type of phase transition is achieved by adding a
cubic term to the previous potential in Eq. (2.19), which now reads:

V (φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ

4
φ4, (2.23)

where D, T0, λ and E are constants, which would be determined by the underlying
parameters of the full theory and its field content. Again starting from high temperature,
the only minimum is situated at the origin. As the temperature drops, an inflection point
forms, i.e. a point where the graph changes from being concave to convex. This happens
at T = T1, where

T 2
1 =

8λDT 2
0

8λD − 9E2
, (2.24)
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and field value φ(T1):

〈φ(T1)〉 =
3ET1

2λ
. (2.25)

Lowering the temperature even more, causes a barrier to appear between this point and
the minimum at the origin. While this happens, the inflection point separates into a
maximum and a minimum. The latter and the origin eventually become degenerate
when T = Tc, where the critical temperature Tc is given by

T 2
c =

λDT 2
0

λD − E2
. (2.26)

From then on, the origin becomes metastable and the other minimum is now the global
one. At some temperature T0, the barrier completely disappears and the origin becomes
a local maximum. The first order phase transition described above is illustrated in Fig. 5.

Figure 5: Illustration of a first order phase transition for D = 2, T0 = 3, E = 4 and
λ = 16 in Eq. (2.23). Units have not been specified as only the dimensionless ratio of
the parameters matters.

Bubble dynamics
In the remainder of this section, first order phase transitions are discussed in more detail,
as these will be the one of interest in order to generate a gravitational wave signal. The
approach of [14] will be used. As seen above, the potential displays two minima for a
certain temperature range. After reaching the critical temperature Tc, thermal tunneling
from the false vacuum at φ = 0 to the true vacuum at φ 6= 0 can happen via the creation
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of bubbles. Indeed, bubbles of the true vacuum (broken phase) will expand in a sea
of false vacuum (symmetric phase), converting false vacuum into true vacuum. This is
depicted in Fig. 6.

Figure 6: Illustration of the creation of bubbles. The true vacuum lies inside the bubble,
whereas the false vacuum is outside.

To describe such a process, the tunneling probability per unit volume is introduced:

Γ

V
= A(T )e−S(T ), (2.27)

where A(T ) is a proportionality constant and S(T ) is the Euclidean action [40–42]. Here,
a few comments need to be made about this action. At zero temperature, one starts with
the Minkowskian action in four dimensions, which, after a Wick rotation, i.e. τ = it,
yields the Euclidean action:

SE =

∫
d4x

(
1

2
(∂µφ)2 + V (φ)

)
, (2.28)

where (∂µφ)2 = (∂φ/∂τ)2 + (∂iφ)2. It makes sense to look for a solution which possesses
the O(4) symmetry of Euclidean space [14]. Thus, a radial coordinate ρ =

√
τ2 + x2 is

defined and a solution φ = φ(ρ) is searched for. With this in mind, the action now takes
the form

SE(φ) = 2π2

∫
dρ ρ3

(
1

2

(
dφ

dρ

)2

+ V (φ)

)
, (2.29)

such that the equation of motion reads

d2φ

dρ2
+

3

ρ

dφ

dρ
− ∂V

∂φ
(φ) = 0. (2.30)

However, when tunneling at finite temperature, a few modifications need to be made.
The potential will now be replaced by the effective potential at finite temperature. With-
out too many details, it is mentioned that the integration over Euclidean time τ in
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Eq. (2.28) happens over a range from 0 to β, where β = 1
T , after which the limit T → 0

or equivalently, β → ∞, is taken. However, in the case of finite temperature field the-
ory, this limit is not considered, as one works at finite temperature T . Therefore, the
tunneling rate will be obtained from the action

S4(φ, T ) =

∫ 1/T

0
dτ

∫
d3x

(
1

2
(∂µφ)2 + V (φ, T )

)
, (2.31)

where the potential was replaced by the effective potential at finite temperature. If
T → 0, one goes back to the previous zero-temperature case. On the other hand, when
considering finite temperature tunneling, T is large. In this case, the dependence of φ on
Euclidean time is negligible. This because of the smallness of the range of the Euclidean
time. The Euclidean action can thus be approximated by

S4(φ) ' S3(φ)

T
, (2.32)

where

S3(φ, T ) =

∫
d3x

(
1

2
(∂iφ)2 + V (φ, T )

)
. (2.33)

Instead of looking for solutions that possess an O(4) symmetry, it is now reasonable to
look for a solution that has an O(3) symmetry. For such a solution φ(r), the action takes
the form

S3(φ, T ) = 4π

∫ ∞
0

dr r2

(
1

2

(
dφ

dr

)2

+ V (φ, T )

)
. (2.34)

The equation of motion is then given by

d2φ

dr2
+

2

r

dφ

dr
− ∂V

∂φ
(φ, T ) = 0, (2.35)

with the following boundary conditions

lim
r→∞

φ(r) = 0 and
dφ

dr
(0) = 0. (2.36)

Furthermore, A(T ) in Eq. (2.27), takes the form cT 4 in the case of the O(3)-symmetric
solution, where c is a constant of O(1) [14]. It is important to note that both O(3)- and
O(4)-symmetric solution can exist at the same time, although the smallest action will
dominate. This because the action enters the decay rate as e−S . Therefore, the decay
rate will be given by

Γ(T ) ' max

{
T 4 exp

(
−S3

T

)
, A(T ) exp (−S4)

}
. (2.37)

The O(4)-symmetric solution will dominate up until a certain temperature after which
the O(3)-symmetric one takes over. This will be illustrated below and in more detail
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when considering a case study in Section 4.

The remaining task in computing the tunneling probability Γ/V is to determine the
solution of Eq. (2.35). This can be done numerically by using what is called the shoot-
ing method [43]. An intuitive way to understand how this bounce solution is computed
can be found by reversing the potential, which is illustrated in Fig. 7. One can then
consider a ball being dropped from a certain point on the mountain. In that case, the
problem reduces to finding the initial value of the field φ such that the ball reaches
the other top and stops there, ensuring that the boundary conditions in Eq. (2.36) are
satisfied within numerical accuracy. Needless to say that this is a task that requires a
lot of fine-tuning. Indeed, values a bit lower than the optimal one will cause the ball to
never reach the top and oscillate around the minimum. Overshooting will cause the ball
to go over the top and never return.

Figure 7: Illustration of the reversed potential together with the optimal field value of
φ such that the ball reaches the top at the origin [14].

After using the above method to compute the bounce trajectory (depicted in Fig. 8),
this solution can be plugged back into the expression for S3 given by Eq. (2.34) or
in Eq. (2.29) to compute S4. Both are illustrated in Fig. 9. This also shows how S4

will be smaller for low temperatures and how S3/T quickly becomes smaller for larger
temperatures, thus dominating in the decay rate given by Eq. (2.37). This numerical
computation of the bounce action, as well as the computations in the following sec-
tions, were performed using Mathematica. In the first instance, the computation of the
bounce action was done by using original code. However, it was soon realized that the
code of [44] was more efficient for calculating the bounce action, although yielding the
same result. Thus, the code of [44] was used for that part of the computations when
performing large numerical scans.
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Figure 8: Bounce profile. As can be seen, both boundary conditions in Eq. (2.36)
are satisfied. Furthermore, the bounce profile starts at the initial point (think of the
mountain) and evolves to be zero at larger ρ, thus going from true to false vacuum.

Figure 9: Example of bounce action S4 and S3/T . S4 is smaller for low temperatures,
but S3/T quickly decreases at larger temperatures, making it smaller than S4. The black
line illustrates the nucleation condition in Eq. (2.44). The intersection, given by the red
dot, marks the temperature at which this condition is first satisfied as the Universe
expands and cools, yielding the nucleation temperature.
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The above formulas allow one to compute various quantities related to the creation
of bubbles during phase transitions. One can now wonder how these bubbles expand
compared to the expansion rate of the Universe. The main question that arises is if the
bubbles expand fast enough to convert the whole Universe from false to true vacuum.
A key parameter in this analysis is the Hubble parameter H(t) and is given by

H(t) =
ȧ

a
, (2.38)

where a(t) is the the scale factor, parameterizing the relative expansion of the Universe
[4]. The Hubble parameter obeys the so-called Friedmann equation, which in the case
of radiation and vacuum domination reads:

H2(T ) =
1

3M2
p

(
T 4

ξ2
+ ∆V

)
, (2.39)

where Mp = 2.435 × 1018 GeV is the Planck mass and ξ2 = 30
π2g?(T )

[45]. g?(T ) is the

effective number of relativistic degrees of freedom, given by

g?(T ) =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

, (2.40)

where gi is the number of spin or helicity states of the i-th species, Ti its temperature
and T is the photon temperature Tγ . Furthermore, ∆V is the difference of the zero-
temperature potential evaluated at the false vacuum and the true vacuum. The above
definitions allow one to define the bubble nucleation rate inside a Hubble volume H(t)−3

as (Γ/V )H(t)−3. Requiring the number of bubbles that nucleated from time t = 0 to
t = t? to be of O(1) yields the time t? at which the phase transition happened:∫ t?

0
dt

Γ

V H3(t)
= O(1). (2.41)

As the temperature T ∝ 1/a, where a is the scale factor as previously introduced, one
finds that dT

T = −Hdt. This can be intuitively understood as follows: the bigger the
scale of the Universe, the colder it will be. Using this, one can convert the integral over
time to one over temperature, yielding the nucleation temperature T?:∫ Tc

T?

dT

T

Γ

V H4
= O(1). (2.42)

However, this integral will be dominated by its value at T?. Thus, to a good approxi-
mation, the nucleation temperature is the temperature at which

S3(T )

T
≈ 4 log

(
T

H

)
(2.43)

holds, where Eq. (2.27) was used [46]. As an example, this can be computed for transi-
tions occurring at the electroweak scale, in which case g? ' 106. The electroweak scale,
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roughly 100 GeV, is chosen as the scale entering the Hubble parameter. Indeed, the
presence of Mp in H(T ) requires the specification of a scale. This yields

S3(T?)

T?
' 4 ln

(
Mp

T?

)
− 11.4, (2.44)

which, when assuming T? = 100 GeV, reads S3(T?)/T? ' 145. This is illustrated in
Fig. 9 by the black line. The temperature at which the bounce action and the black
line intersect is the nucleation temperature T?. To be precise, there are two intersection
points. However, the highest temperature is the relevant one, as this is the first tempera-
ture for which the nucleation condition is satisfied when coming from high temperatures.

Apart from the nucleation temperature T? defined above, there are two other parame-
ters characterizing the phase transition that will be of importance when considering the
generation of gravitational waves. Let η(T ) be the expectation value at the true vacuum
of the effective potential at temperature T . Then, the vacuum energy density of the
transition is

ρ? =

(
−V (η(T ), T ) + T

d

dT
V (η(T ), T )

) ∣∣∣∣
T=T?

. (2.45)

Assuming the transition takes place in the radiation dominated epoch, this quantity is
normalized to the radiation energy density, yielding

α =
30ρ?

π2g?(T?)T 4
?

, (2.46)

which stands for the strength of the phase transition [14]. A second parameter that will
be important is the ratio β/H? and is defined as

β

H?
= T?

d

dT

(
S3(T )

T

) ∣∣∣∣
T=T?

, (2.47)

where H? = H(T?), the Hubble parameter evaluated at the nucleation temperature.
This quantity characterizes the inverse of the duration of the phase transition (in Hub-
ble units). Depending on the model, β/H? ranges from O(10) to O(103). Furthermore,
these parameters usually display a correlation: as α increases, β/H? and T? decrease.

For small values of β/H?, one needs to be more careful with the analysis. Requir-
ing that the number of bubbles per Hubble volume is O(1), might not be enough to
guarantee that the whole Universe will be converted from false to true vacuum. This is
where the concept of percolation comes in. It will guarantee that the evolution of the
Universe and the bubbles is such, that these bubbles merge and fill the whole Universe,
completing the phase transition. Using the decay rate Γ/V , one defines the probability
for a point to still be in the false vacuum as

P (T ) = e−I(T ), (2.48)
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where

I(T ) =
4π

3

∫ Tc

T

dT ′

T ′
Γ(T ′)

T ′4H(T ′)

(∫ T ′

T

vwdT̃

H(T̃ )

)3

(2.49)

and vw is the velocity of the bubble wall [47, 48]. The percolation temperature is then
defined as the temperature at which this probability is P (Tp) = 1/e or equivalently
I(Tp) = 1. In other words, the probability of being in the true vacuum at the percolation
temperature is roughly 74%. This is not enough to guarantee the completion of the phase
transition, especially for cases where vacuum energy dominates. Indeed, one needs to
verify that the probability P (t) decreases faster than the increase of the expanding
volume under consideration. This can be expressed by the following condition:

1

Vfalse

dVfalse

dt

∣∣∣∣
t=tp

= H(T )

(
3 + T

dI(T )

dT

) ∣∣∣∣
T=Tp

< 0, (2.50)

where Vfalse is the physical volume of the false vacuum. Expressed in words, this means
that the bubble needs to expand at least as fast as the expansion rate of the volume in
which it resides [49]. For large values of β/H?, the value of the percolation temperature
Tp and the nucleation temperature T? will be roughly equal. On the other hand, when
β/H? is small, the two temperature will generally differ and the percolation temperature
Tp should be computed to make sure the phase transition completes.

The above concepts constitute the necessary ingredients to compute the gravitational
wave signal associated with a first order phase transition. This will be discussed in the
following subsection.

2.2.3 Gravitational waves from first order phase transitions

The three essential parameters describing the phase transition were just introduced,
namely α, β/H? and the nucleation temperature T?. Before going into the details of the
generation of gravitational waves from phase transitions, it is important to stress that
these parameters constitute the only necessary ingredients to be able to write down the
gravitational wave spectrum. Once these parameters are computed, they can be plugged
into the relevant formulas that will be given below and the gravitational wave spectrum
follows. Although the parameters above are the only values needed to compute the
gravitational wave signal associated with the phase transition, the spectrum might look
different depending on the underlying mechanism responsible for the generation of the
gravitational waves. These various cases will be the topic of the remainder of this section.

When considering the expansion of bubbles in space, two scenarios come to mind: one
where the bubbles expand in vacuum and thus, do not interact with the cosmic fluid,
and one where these interactions can not be neglected [14]. In the former case, the bub-
ble will keep expanding until the velocity of its wall reaches the speed of light. As the
bubble expands, more and more volume is converted from the false to the true vacuum.
The energy gain associated with this transition is converted into kinetic energy of the
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bubble wall. Thus, these walls will become more energetic, but at the same time they
become thinner due to Lorentz contraction, resulting in an enormous increase in energy
density of the bubble walls. As soon as two bubbles collide, the spherical symmetry
is broken, allowing gravitational waves to be generated. Asymmetry is needed because
the gravitational wave signal is proportional to the second derivative of the quadrupole
moment, which measures the shape of the system [4]. A non-zero quadrupole moment
is only ensured if the system does not display spherical symmetry. Thus, gravitational
waves can only be generated when the system displays some asymmetry.
The more realistic case where bubbles interact with the cosmic fluid is more complex,
as the interaction will cause the bubble dynamics to change. Furthermore, the bubble
itself will cause turbulence and acoustic waves in the fluid. Concretely, three processes
contribute to the generation of gravitational waves:

h2ΩGW ' h2Ωφ + h2Ωsw + h2Ωturb, (2.51)

where the first term represents contributions from bubble collisions, the second term
from sound waves developing in the plasma and the last term from magnetic turbulence.
The gravitational signal caused by each of these will be covered in the remainder of this
section based on [50].

First, consider the collision of bubbles as a source of gravitational waves. The results
are well approximated by the so-called envelope approximation. In this approximation,
it is assumed that the energy of the bubbles is stored in the walls, which are thin. The
energy then quickly disperses after the collision of two bubbles in such a way that the
energy is mostly stored in the uncollided part of the bubbles. Using this approximation,
the evolution and collision of bubbles can be numerically simulated, together with the
associated gravitational wave spectrum. This yields the following gravitational wave
signal

h2Ωenv(f) = 1.67× 10−5

(
H?

β

)2( κα

1 + α

)2(100

g?

)1/3( 0.11v3
w

0.42 + v2
w

)
Senv(f), (2.52)

where the spectral shape of the GW radiation is parametrized by Senv(f). In this
expression, vw is the velocity of the bubble walls, κ the latent heat converted into
kinetic energy of the bubble walls and α and β/H? are the parameters describing the
phase transition as seen in the previous subsection. A fit of the simulated data of bubble
collisions and the associated gravitational wave signal gives

Senv(f) =
3.8(f/fenv)2.8

1 + 2.8(f/fenv)3.8
. (2.53)

The peak frequency of the GW spectrum at time t = t? is computed as follows:

f?
β

=

(
0.62

1.8− 0.1vw + v2
w

)
, (2.54)

24



which, when red-shifted, corresponds to a peak frequency today of

fenv = 16.5× 10−3mHz

(
f?
β

)(
β

H?

)(
T?

100GeV

)( g?
100

)1/6
. (2.55)

Secondly, the collision of bubbles can produce bulk motion in the fluid, i.e. acoustic
waves. Numerical results are fitted by

h2Ωsw(f) = 2.65× 10−6

(
H?

β

)(
κvα

1 + α

)2(100

g?

)1/3

vwSsw(f), (2.56)

where the spectral shape is determined by

Ssw(f) = (f/fsw)3

(
7

4 + 3(f/fsw)2

)7/2

(2.57)

and the peak frequency, red-shifted to today’s value is given by

fsw = 1.9× 10−2mHz
1

vw

(
β

H?

)(
T?

100GeV

)( g?
100

)1/6
. (2.58)

Now κv stands for the fraction of latent heat converted into sound waves and admits the
following form

κv =

{
α(0.73 + 0.083

√
α+ α)−1 vw ∼ 1

v
5/6
w 6.9α(1.36− 0.037

√
α+ α)−1 vw . 0.1.

(2.59)

Lastly, one needs to take into account the magnetic turbulence developing in the plasma
due to the collision of bubbles. Indeed, magnetic fields are created during the phase tran-
sition and magnetohydrodynamic turbulence develops, since the plasma is fully ionized.
Numerically, one finds

h2Ωturb(f) = 3.35× 10−4

(
H?

β

)(
κturbα

1 + α

)3/2(100

g?

)1/3

vwSturb(f), (2.60)

where κturb stands for the fraction of latent heat converted into magnetic turbulence.
The spectral shape of the GW contribution from sound waves is best fitted by

Sturb(f) =
(f/fturb)3

(1 + (f/fturb))11/3(1 + 8πf/h?)
, (2.61)

where h? is the value of the inverse Hubble time at production of GW red-shifted to
today:

h? = 16.5× 10−3mHz

(
T?

100GeV

)( g?
100

)1/6
. (2.62)

25



The peak frequency is well-fitted by

fturb = 2.7× 10−2mHz
1

vw

(
β

H?

)(
T?

100GeV

)( g?
100

)1/6
. (2.63)

The previous equations introduced the various contributions to the gravitational wave
signal associated with first order phase transitions. In these equations, one notices
the introduction of vw, the bubble wall velocity. This is in general a difficult quantity
to determine. Particles in the plasma are transmitted or reflected from the bubble
wall, inducing different amounts of friction. The reflected particles will also heat the
surrounding plasma with their interactions, further affecting the phase space distribution
around the bubble wall and hence the frictional force. This has been studied using
various approximations for a number of models [51–55]. In the rest of this thesis, it
will be assumed that vw = 1, which has been shown to occur in many phase transitions
strong enough to also lead to large GW signals. A detailed examination of the frictional
forces which allow a determination of vw in the context of the models studied below is
left for future work. Nevertheless, a criterion of interest that will be checked, is that of
Bodeker and Moore [56]:

V (φT , T = T?)− V (φF , T = T?)

+
T 2

24

( ∑
bosons

(
m2
b(φT )−m2

b(φF )
)

+
1

2

∑
fermions

(
m2
f (φT )−m2

f (φF )
))

< 0.
(2.64)

The first part represents the pressure driving the expansion of the bubble, whereas the
second term is the retarding pressure on the wall in the limit of an ultra-relativistic wall.
If the above expression is negative, this entails that the first term dominates, causing
the expansion to accelerate to an even larger Lorentz factor γw, provided the initial
friction is small enough to allow relativistic velocities to be reached in the first place. In
other words the possibility of having vw ' 1 is certainly open in such a phase transition,
although not certain. The bubble wall with every increasing γw is said to be in the
so-called runaway regime. Note that the growth of γw may eventually be stopped by
higher-order effects before the walls collide [57].

As an illustration of what typical gravitational wave signals generated in phase tran-
sitions could look like, a spectrum is plotted together with some experiments for α = 0.1
and β/H? = 100 for various temperature scales. This is shown in Fig. 10. From the
equations above, it is clear that the peak frequency is partly determined by the tem-
perature T? and thus, by the scale of this temperature. This shows that lower scales
are favored, as these will give rise to signals that are within sensitivity reach of the
experiments.

Remark on errors
To conclude, a comment on the various errors related to the analysis of gravitational
waves is made. It is important to note that the above formulas for gravitational wave

26



Figure 10: Example of a gravitational wave signals generated by a phase tran-
sition for which α = 0.1, β/H? = 100 and various values of T?, i.e. T? =
104 GeV (blue), 106 GeV (black) and 108 GeV (red), together with the experiments
in that range [22,24,35,58].

signals are the result of numerical simulations and still form ongoing research. Therefore,
these expressions and thus, the resulting signal, might still be subject to change. As an
example, [59, 60] recently suggested that an extra suppression term should be included
for the sound wave contribution, due to earlier onset of turbulence, which would further
weaken the signal for β/H? � 1. Nonetheless, the prediction for the gravitational wave
signal used by the LISA working group will be used in this work, i.e. the formulas that
were given above [50].

Furthermore, the following remark should be taken into account. The amplitude of
the typically dominant sound wave source scales as α4 for α � 1 before saturating at
α ∼ 1, following also partly from the hydrodynamical arguments of [61], for the scaling
of κv. Numerical simulations for the sound wave source had been performed only up
to α = 0.1 [62], at the time of [50]. The formulas therefore rely on an extrapolation
which constitutes another possible source of error. Indeed, subsequent simulations up
to α = 0.67, showed a suppression from the naive expectation for some transitions with
subsonic wall velocities [63].

As most gravitational wave experiments used in this work have not been built yet,
the exact errors involved with the sensitivity curves is not known. However, for compar-
ison, the sensitivity curve of LIGO-Virgo is briefly discussed. The sensitivity curve for
LIGO-Virgo in Fig. 10 represents the designed sensitivity of the detector. It is such that
a stochastic background whose spectrum lies tangent to this curve is detectable with 2σ
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significance. Furthermore, these sensitivity curves are determined by assuming that the
underlying gravitational wave signal obeys a simple power law. However, the spectra
that will be considered in Section 5 are not simple power laws, as opposed to a back-
ground from binary black hole or neutron star mergers. Nevertheless, comparing them
to the sensitivity curves derived for power law spectra allows to obtain an estimate on
whether a detection could be possible or not. As an example, the power-law sensitivity
curve for LISA is derived in Appendix D.

This section established the necessary ingredients to describe first order phase transitions
and the possible gravitational wave spectrum generated from them. Before considering
some specific models and exploring the possibility of such a spectrum, the Strong CP
Problem and the axion are discussed in the following section.

3 The Strong CP problem and axions

Besides gravitational waves generated from first order phase transitions, the Strong CP
problem and its possible solutions, with an emphasis on the axion, are also considered
in this work. This is the topic of this section. Starting from the U(1)A problem, instan-
tons are reviewed and will play an essential role here. The presence of instantons will
eventually lead to the Strong CP problem. The axion solution to this problem and its
phenomenology conclude this section.

3.1 The U(1)A problem

The first part of this section will be dedicated to the U(1)A problem, as it will introduce
some essential concepts such as anomalies and instantons. To this end, consider the
QCD Lagrangian for Nf flavors

LQCD = −1

4
GaµνG

aµν +
∑
f

q̄f (i��D −mf )qf , (3.1)

where Gµν is the gluon field strength, qf the quarks and mf their mass [64]. Note that
for vanishing quark masses, the QCD Lagrangian is symmetric under U(Nf )V ×U(Nf )A.
These transformations denote the vector and axial transformations respectively. To make
this more concrete, consider the case Nf = 1. These transformations then act on the
quarks q as follows:

U(1)V : q → eiαq, q̄ → e−iαq̄

U(1)A : q → eiαγ
5
q, q̄ → q̄eiαγ

5
.

(3.2)

Since mu, md � ΛQCD, one would expect U(2)V ×U(2)A to be an approximate symmetry
of the strong interactions. Experimentally, it is found to be true for the vector symme-
try, which corresponds to isospin times baryon number (U(2)V = SU(2)V × U(1)V ).
However, the story is different for the axial symmetry. In this case quark condensates
form, i.e. 〈uū〉=

〈
dd̄
〉
6=0, spontaneously breaking the axial symmetry. Because of this
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spontaneous symmetry breaking, one expects four pseudo-Goldstone bosons with small
masses (since the symmetry is only approximate for mu,md ≈ 0). Three of these pseudo-
Goldstone bosons are found to be the pions with mπ ≈ 0, but the fourth one seems to
be missing as m2

η � m2
π. The absence of another light state in the hadronic spectrum is

called the U(1)A problem and suggests that it is not a symmetry of the strong interac-
tions after all [65].

The solution to the U(1)A problem can be found by looking at the anomaly associ-
ated with the axial transformation. Such a transformation acts on the quarks as in
Eq. (3.2) and the Noether current associated to this transformation takes the form

jµ5 =
∑
q

q̄γµγ5q. (3.3)

Classically, one would argue that the Noether current is conserved for mq → 0, since

∂µj
µ
5 = −2i

∑
q

mq q̄γ
5q → 0. (3.4)

However, Adler, Bell and Jackiw showed that the axial symmetry is anomalous, meaning
that there is an extra contribution to Eq. (3.4) induced by higher order loops [66, 67].
Indeed, the triangle graph given in Fig. 11 will contribute to the divergence of the current,
even in the massless quark limit:

∂µj
µ
5 =

g2Nf

32π2
GaµνG̃

aµν , (3.5)

where Nf represents the number of quark flavors and G̃µν the dual of the field strength
defined as

G̃µν =
1

2
εµνρσGρσ. (3.6)

Figure 11: Adler-Bell-Jackiw anomaly.

Since the divergence of the axial current does not vanish, it was just shown that the
axial transformation is actually not a symmetry of the Lagrangian, even in the massless
case. This means that not finding four light pseudo-Goldstone bosons is not a problem,
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because the approximate axial symmetry was never a real symmetry to begin with.
However, one soon realizes that the new contribution to the divergence of the current
can be written as a total divergence [68]:

GaµνG̃
aµν = ∂µK

µ, (3.7)

where
Kµ = εµναβAaν

(
Gaαβ −

g

3
fabcAbαAcβ

)
. (3.8)

Thus, the contribution from the anomaly to the action reads

δS ∝
∫

d4x∂µj
µ
5 =

∫
d4x GaµνG̃

aµν =

∫
d4x ∂µK

µ =

∫
dSµK

µ, (3.9)

where Gauss’s theorem was used in the last step to convert the integral over the volume
into one over the surface. From this it is clear that if the boundary conditions for the
gauge fields at infinity are taken to be zero, then the above term does not contribute.
This would mean that the anomaly is zero after all and thus, the axial transformation
should be a symmetry of nature. Nevertheless, the naive gauge choice that was just
mentioned is not the only possibility. To achieve finiteness of the action, it is enough to
require that the gauge fields are pure gauge at infinity, i.e. a gauge transform of zero [69].
These non-vanishing gauge configurations are called instantons and will contribute to
δS. This means that the presence of instantons contribute to the anomaly. This results
in a non-conserved Noether current and thus, no axial symmetry of the Lagrangian.

Instantons
The gauge instanton configurations and their contribution to the action are now consid-
ered in more detail. As was just mentioned, it is enough to require the gauge fields to
be pure gauge if one wants to realize a finite Euclidean action. This means that

Aµ =
i

g
M(Ω)∂µM

−1(Ω) +O(r−2), (3.10)

where M is a function of the angular variables from four-space to the elements of the
gauge group. This assignment is not gauge invariant, since under a gauge transformation
h(x), Aµ will transform according to [70]:

Aµ →
i

g
h(x)∂µh

−1(x) + h(x)Aµh
−1(x). (3.11)

Thus, for the case of finite action, one gets

M → hM +O(r−2). (3.12)

If it were possible to have h equal M−1, then M could be eliminated from Eq. (3.10) by a
gauge transformation and one would only have trivial gauge field configurations, i.e. only
gauge configurations of the form O(r−2). However, this can generally not be achieved,
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because h must be continuous throughout R4 and not just on the hypersphere at infinity.
To ensure continuity, h must be independent of the angular variables at the origin, i.e.
a constant function. Thus, h at infinity is obtained by a continuous deformation from
a constant function. Concretely, this means that M(x) can be transformed into any
mapping homotopic to M(x), but it cannot be transformed into a function in another
homotopy class. Indeed, a function f is said to be homotopic to g, from a space X to a
space Y , if and only if there is a map

F : X × [0, 1]→ Y such that

F (x, 0) = f(x) and F (x, 1) = g(x),

where F is called a homotopy between f and g. In other words, it is a continuous
deformation of one function to another [71]. A homotopy class is defined as consisting of
all functions that are connected by a homotopy. It turns out that these functions M can
be classified in homotopy classes with one integer label, the winding number ν, given
by:

ν =
1

24π2

∫
dθ1dθ2dθ3Tr(εijkM∂iM

−1M∂jM
−1M∂kM

−1), (3.13)

where the three θ angles parametrize S3 and the derivatives are taken with respect to
the θ’s. A proof will not be given, but can be found in [70]. Furthermore, by applying
Eq. (3.10) to Eq. (3.9) and comparing it to Eq (3.13), one can see that∫

d4x(εµνρσGaµνG
a
ρσ) =

32π2ν

g2
. (3.14)

Thus, an integer, called the winding number ν, can be assigned to every finite Euclidean
action gauge field. If ν = 0, this corresponds to trivial gauge fields that can be gauged
as O(r−2) as r → ∞, whereas ν 6= 0 corresponds to a non-trivial potential that cannot
be gauged to zero.

θ-vacua
The above instanton configurations were discussed in a bit more detail, because they
provide another way to understand the presence of a θ-term in the Lagrangian. The
vacuum structure of a non-abelian gauge theory is richer than one might expect. It
turns out that the vacuum states of a non-abelian gauge theory can be divided into dif-
ferent homotopy classes, labeled by a winding number analogous to Eq. (3.13), yielding
a multiplicity of vacuum states |n〉, called winding number vacua [70]. Furthermore, it
can be shown that an instanton with winding number ν connects two winding number
vacua, m (at tE = ∞) and n (at tE = −∞), which differ exactly by ν = m − n. For
more details one can look at [70,72].

The true vacuum of the theory, called the θ-vacuum, is constructed as a linear com-
bination of the winding number vacua:

|θ〉 =
∑
n

einθ |n〉 . (3.15)
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The reason that the winding number vacua cannot be used as true vacuum states, is
because in general 〈m|n〉 6= 0, exactly because of the instanton contributions that connect
the different winding number vacua. Thus, the winding number vacua overlap, which
is something one does not want for the vacuum states. For two different θ-vacua, one
obtains [73]: 〈

θ′|θ
〉

=
∑
m,n

e−imθ
′
einθ 〈m|n〉 =

∑
m,n

eim(θ−θ′)e−i(m−n)θ 〈m|n〉 , (3.16)

where the sum over m will yield a delta function δ(θ − θ′) (up to a factor 2π), showing
that θ-vacua do not overlap. Furthermore, the vacuum to vacuum transition amplitude
can be computed as follows [74]:

〈θ|θ〉 =
∑
m,n

eiθ(n−m) 〈m|n〉 =
∑
−ν,n

e−iθν 〈n+ ν|n〉 =
∑
ν

∫
D[Aµ]νe

i(S−θν)

=
∑
ν

∫
D[Aµ]ν exp

[
i

(
S +

θg2

32π2

∫
d4x(εµνρσGaµνG

a
ρσ)

)]
(3.17)

In this computation, the explicit expression for |θ〉, given by Eq. (3.15), was substituted
and the path integral formalism was used to express 〈n+ ν|n〉. The index ν means that
the path integral is taken over the fields with instanton number ν. Note that these
instanton configurations are exactly the ones connecting the two winding number vacua
|n〉 at tE = −∞ and |n+ ν〉 at tE =∞, as mentioned previously.
From the computation above, it can be seen that choosing the correct θ-vacuum, corre-
sponds to introducing an effective Lagrangian:

Leff = L+
θg2

32π2
(εµνρσGaµνG

a
ρσ). (3.18)

Thus, whether one looks at it from the point of view of the anomaly or the one of
choosing the correct θ-vacuum, the conclusion is the same: a θ-term needs to be included
in the QCD Lagrangian. The properties of this new term as well as its consequences are
discussed in the next subsection.

3.2 The Strong CP problem

From the previous subsection, it is clear that an extra term needs to be added to the
Lagrangian and this, whether one looks at it from the perspective of the anomaly and
instantons or choosing the correct θ-vacuum. This is the term that will eventually lead
to the Strong CP problem and is the topic of this section. The new term is added to the
Lagrangian as follows:

L ⊇ θ0

32π2
GµνG̃

µν . (3.19)

Furthermore, this new term is consistent with the symmetries of the Lagrangian and has
dimension≤4, ensuring renormalizability. Under parity, this new term transforms as

εµνρσGµνGρσ
P−→ εµνρσ(−1)µ(−1)ν(−1)ρ(−1)σGµνGρσ = −εµνρσGµνGρσ. (3.20)
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where a shorthand notation was used: (−1)µ = 1 for µ = 0 and -1 for the other in-
dices [64]. Since the field strength and its dual are both even under charge conjugation,
the newly added θ-term violates CP. This will be crucial to formulate the Strong CP
problem later in this subsection.

One could now wonder if the anomaly described in the previous subsection can not
be used to get rid of this new term. Indeed, one could redefine the quarks by using an
axial transformation, resulting in an extra term due to the anomaly. This could be done
in such a way that it cancels with the θ-term. However, using the axial anomaly of the
quarks will result in an extra contribution coming from their mass matrix. This results
in an effective θ-angle that can not be rotated away using the anomaly

θ = θ0 − arg detM, (3.21)

where M is the mass matrix of the quarks. Indeed, under anomalous field redefinition
q → eiαγ5q, the mass term transforms as:

q̄LMqR + h.c.→ q̄LMe2iαqR + h.c., (3.22)

such that arg detM → arg detM+2α, explaining the extra contribution in Eq. (3.21) [7].
Nevertheless, if one of the quarks would be massless, the second term in the expression
above for the effective θ-angle vanishes. Via field redefinition of the quarks q → eiγ5αq,
one would generate an extra θ-like term due to the anomaly. α can then be chosen such
that it cancels the θ0-term in the Lagrangian, thus rotating the θ-term away.

Low energy QCD: the theory of the pions
Before formulating the Strong CP problem and attempting to solve it, a detour is made
by considering low energy QCD. This part will show similarities with the beginning of
the section, but will explain some aspects in more detail. This will provide essential
insights, which can then be applied to the theory of the Strong CP problem and axions.
The same approach as the one used in the review on the problem in [75] will be used.
Consider the following Lagrangian, representing QCD with two light flavors:

L ⊃ θg2

32π2
GG̃+ qMq̄, (3.23)

where q and q̄ are Weyl fermions standing for q = (u d) and q̄ = (ū d̄) and the gluon
fields Aaµ are contained in the field strength G and its dual G̃. As Dirac fermions were
used up until now, a brief explanation about Weyl fermions is given. This is easiest
when considering a concrete example, namely the QCD Lagrangian in terms of Dirac
fermions in Eq. (3.1) will be written in terms of Weyl fermions [76]. Starting from the
Lagrangian expressed in terms of Dirac fermions:

L =
∑

n=u,d,s,...

Ψ̄n(i��D −mn)Ψn, (3.24)
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where Dµ is the SU(3)c covariant derivative, one can write the Dirac fermions Ψn in
terms of Weyl spinors. The Dirac fermions contain both left-handed (LH) and right-
handed (RH) components. Nevertheless, it could be written in terms of two-component
Weyl spinors, i.e. in terms of LH quark fields ψn and anti-LH quark fields φn. The Dirac
fermion can then be written as

Ψn =

(
−σ2φ

†
n

ψn

)
, (3.25)

where ψn transforms as a 3 under SU(3)c and φn as 3̄. The Lagrangian now takes the
form:

L =
∑

n=u,d,s,...

iψ†nDµσ
µψn + iφ†nDµσ

µφn +m (ψnσ2φn + h.c.) , (3.26)

where the notation σµ = {1,−~σ} is used, with ~σ the Pauli matrices. This brief example
illustrates how one can work with Weyl fermions instead of Dirac fermions, as will be
done in the remainder of this section.

Since the theory at low energies is strongly coupled, one loses grip on what is going
on. However, one can still write down an effective theory of the pions. The above La-
grangian possesses the following symmetry: SU(2)L × SU(2)R × U(1)B × U(1)A. As
QCD confines, more particularly 〈qq̄〉 6= 0, this will break SU(2)L × SU(2)R to its diag-
onal SU(2)D and will also break the U(1)A. This spontaneous symmetry breaking will
generate Goldstone-bosons. These can be parametrized as

U = exp

(
iΠaσa√

2fπ

)
, (3.27)

where the σi with i ∈ {1, 2, 3} are the Pauli matrices and σ0 = 1. The pion fields are
represented by Πi for i ∈ {1, 2, 3}, while Π0 is the η′ boson associated with the breaking
of the U(1)A. It is important to note something about the axial symmetry U(1)A, which
is that it is actually not a good symmetry of nature. This was already mentioned at
the beginning of this section. Indeed, recall that an axial transformation q → eiαq and
q̄ → eiαq̄ will add a term to the Lagrangian as follows:

L ⊃ αg2

16π2
GG̃. (3.28)

However, one notices that by shifting θ by −2α in Eq (3.23), one is able to remove the
term due to the anomaly. This is what is called a spurion. The idea is that one pretends
that a parameter, in this case θ, is actually a field that transforms in such a way that the
symmetry is maintained. This can then be used to construct invariant operators, e.g. as
will be done when constructing the chiral Lagrangian of the theory. At the end of the
computation, the spurion field is set to its constant value. Using this new concept, the
anomalous symmetry reads

u→ eiαu d→ eiαd θ → θ − 2α. (3.29)
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Note that as these are now Weyl spinors, the γ5 matrix is not included in the axial
transformation rule given by Eq. (3.2). Taking into account that q → eiαq and that
U ∝ qq̄, the anomalous symmetry can be formulated as

U → eiαU θ → θ − 2α M → e−iαM. (3.30)

From the transformation of U , one can read off the anomalous symmetry for the η′ boson:
η′ → η′ +

√
2fη′ . With this in mind, the Lagrangian can be written down including the

leading-order operators that respect the symmetries, yielding

L = f2
π Tr ∂µU∂

µU † + af3
πTrMU + bf4

π detU + h.c.. (3.31)

Note that this Lagrangian is invariant under SU(2)L×SU(2)R×U(1)B, but not U(1)A.
This is fine, because U(1)A was never a true symmetry of nature to start with. The
coefficient b can be written as b = |b|eiθ. Indeed, from the properties of determinants
and the anomalous symmetry transformation of U , it follows that detU → e2iα detU .
However, this e2iα can be compensated by the anomalous symmetry of θ in b. From the
transformation rule of θ, one finds b→ beiθe−2iα which gets rid of the exponent from the
transformation of detU . This illustrates how the invariance under the spurious symmetry
in Eq. (3.29) is used to dictate the form of the effective Lagrangian in Eq. (3.31) and in
particular of the last term in that Lagrangian. It is possible to retrieve the mass term
of the η′ boson from Eq. (3.31) by expanding it and reads

L ⊃ 1

2
m2
η′

(
η′ −

θfη′√
2

)2

. (3.32)

This expectation value can be plugged in the expression for U , yielding

U = eiθ/2 exp

(
iπaσa√

2fπ

)
, (3.33)

where the πa now only stand for the pion fields. The neutral pion π0 is assumed to get
a vacuum expectation value

〈
π0
〉

=
√

2φfπ, whereas the charged pions will not have a
vacuum expectation value. Plugging this back into the previous equation, one finds

U =

(
eiφ+iθ/2 0

0 e−iφ+iθ/2

)
. (3.34)

From Eq. (3.31), one can read off the part that will give rise to the potential for the
pions:

V = −af3
πTr

((
mue

iθu 0
0 mde

iθd

)
U

)
+ h.c.

= −2af3
π

(
mu cos

(
φ+

θ̄

2

)
+md cos

(
φ− θ̄

2

))
,

(3.35)
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where θ̄ = θ+θu+θd. This result was obtained by shifting the φ angle as φ→ φ− θu
2 + θd

2 .
The above potential can be minimized with respect to φ, resulting in

∂V

∂φ
= 2af3

π

(
mu sin

(
φ+

θ̄

2

)
+md sin

(
φ− θ̄

2

))
= 0, (3.36)

from which one obtains that

tanφ =
md −mu

md +mu
tan

θ̄

2
. (3.37)

The sum and difference formulas for cosines can be applied to Eq. (3.35), yielding

V = −2af3
π

(
mu

(
cosφ cos

θ̄

2
− sinφ sin

θ̄

2

)
+md

(
cosφ cos

θ̄

2
+ sinφ sin

θ̄

2

))
. (3.38)

Using the expression for tanφ, given by Eq. (3.37), together with the fact that

sin
(
tan−1(x)

)
=

x√
1 + x2

and cos
(
tan−1(x)

)
=

1√
1 + x2

, (3.39)

one eventually gets

V = −2af3
π(mu +md)

√
1− 4mumd

(mu +md)2
sin2 θ̄

2
. (3.40)

Even though it was derived as the potential for the pions, it will come in handy when
considering the axion later on, as it will also act as the potential for the axion.

The Strong CP problem
The introduction of the theory of pions above was two-fold. On one hand, it provides
essential insights that will be re-used when considering the axion. On the other hand,
this theory allows one to write down the Lagrangian for nucleons, i.e. protons and
neutrons, since these consist of three quarks. Indeed, one can write a nucleus field as:

N = qqq =

(
p
n

)
, (3.41)

where N transforms as a doublet under SU(2)L. Writing down the Lagrangian contain-
ing leading-order terms, yields

L = −mNNU
†N c − c1NMN c − c2NU

†M †U †N c

− i
2

(gA − 1)
(
N †σµU∂µU

†N +N c†σµU †∂µUN c
)
,

(3.42)

where arbitrary coefficients were used and N c = qcqcqc, transforming as a doublet under
SU(2)R. Expanding U in the pion fields and integrating by parts, the leading CP
preserving and CP violating terms are found to be

L = −θ̄ c+µ

fπ
πaNτaN c − igAmN

fπ
πaNτaN c, (3.43)
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where τa = 1
2σa, µ = mumd

mu+md
and c+ = c1+c2. From experiments, c+ is determined to be

approximately 1.7 and gA ≈ 1.27 [75]. From this Lagrangian, one can then compute the
Feynman diagram leading to the neutron electric dipole moment (eDM) [77]. Indeed, the
θ̄-term will contribute to the neutron eDM. Although this diagram will not be computed
explicitly here, the diagram is depicted in Fig. 12 for completeness. The neutron eDM
dn will be related to θ̄. However, a strong bound exists on the neutron electric dipole
moment. The neutron’s eDM obeys: |dn| < 3 × 10−26 e cm [5], requiring the θ̄-angle
to be less than 10−9. Recall that the parameters entering the only other source of CP
violation in the SM can be found in the CKM matrix and are all O(1) [6]. The reason
as to why the newly introduced θ̄-angle is so small, especially compared to the ones in
the CKM matrix, is known as the strong CP problem.

Figure 12: Feynman diagram contributing to the neutron eDM at leading order [75].

Various solutions have been proposed as an attempt to solve the Strong CP problem.
One of these solutions is the axion and will be the focus in this work. Nevertheless, two
other solutions are mentioned briefly for completeness. The first type of solution assumes
that the theory is CP invariant in the UV limit, such that the CKM angles and the θ-
angle vanish. This means that somehow CP needs to be broken, since CP is observed to
be broken in nature. The challenge here is to find a mechanism such that CP breaking
generates the angles present in the CKM matrix, but without reintroducing a physical
θ-term. Such a solution is typically referred to as the Nelson Barr model [78,79].
Another solution to the Strong CP problem would be a massless up quark, as was
already hinted at after the introduction of the effective θ-angle in Eq. (3.21). In that
case, arg detM = 0 in Eq. (3.21), which means that the the anomaly can be used to
rotate away the CP violating θ-angle, making it unphysical. However, this solution has
been ruled out by lattice simulations [80,81].
The last type of solution consists of adding an extra anomalous U(1) symmetry to the
SM, called the Peccei-Quinn symmetry [7,8]. The spontaneous breaking of this symmetry
will introduce a new field, the axion. Using this axion solution, it can be shown that its
potential is minimized for θ̄ = 0, thus solving the Strong CP problem. This solution is
the topic of the following subsection.
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3.3 Axion solution to the Strong CP problem

As mentioned at the end of the previous subsection, another type of solution consists
of introducing a new global anomalous U(1) symmetry, called the Peccei-Quinn sym-
metry U(1)PQ. This symmetry will eventually be spontaneously broken, resulting in a
Goldstone boson: the axion. This new field enters the Lagrangian in the following way:

L ⊇ 1

2
∂µa∂

µa+
1

32π2

(
a

fa
+ θ̄

)
GµνG̃

µν , (3.44)

where a is the axion field [7]. The first term is simply the kinetic term of the axion,
whereas the other two terms come from the anomaly. Indeed, recall that the newly
added U(1) symmetry is anomalous, thus coupling to the gluon field strength. This can
be seen to arise from the anomalous field redefinition q → eia/faq. Indeed, the anomaly
will take care of making the axion appear in front of GG̃. The last term is the usual
θ-term. Furthermore, one notices the introduction of fa, the decay constant of the axion,
or in other words, the vacuum expectation value of the field breaking the U(1)PQ. The
introduction of the axion means that the static θ̄-angle is promoted to a dynamical
variable θ(x), which now includes the axion field:

θ(x) =
a(x)

fa
+ θ̄. (3.45)

The potential for the axion can be found by using the following trick: as the θ-angle
was promoted to a dynamical variable including the axion, one just substitutes this new
dynamical θ-angle in the pion potential in Eq. (3.40), yielding

V = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa
+
θ̄

2

)
. (3.46)

The above potential is minimized when 〈a〉 = −faθ̄. This implies that 〈θ(x)〉 = 0, solving
the Strong CP Problem. Indeed, if θ(x) is not zero to begin with, the above arguments
show that it will quickly relax to zero.

Furthermore, this potential can be expanded around its minimum, after which the mass
term of the axion will appear and its mass can be read off:

m2
a ≈

mumd

(mu +md)2

m2
πf

2
π

f2
a

. (3.47)

The values of the various masses in the previous equation can be filled in [82], after
which one finds

ma ≈ 5.691

(
109GeV

fa

)
meV. (3.48)

It was just shown that the above mechanism provides a way for the neutron electric dipole
moment to agree with current experimental constraints, thus solving the Strong CP
problem. Different realizations of the U(1)PQ symmetry are discussed in the remainder
of this subsection.
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Axion models: the DFSZ and KSVZ model
Various axion models implementing this new U(1)PQ symmetry exist, two of which are
the DFSZ model and the KSVZ model. Concerning the former, although no computa-
tions will be performed with this particular realization of the axion and the Peccei-Quinn
symmetry breaking, this model is briefly mentioned for completeness [83,84]. The DFSZ
model assumes two Higgs doublets, together with a new complex scalar. The two Higgs
doublets give mass to the up-type and down-type quarks respectively. Furthermore, it
is assumed that the quarks, as well as both Higgs doublets and the new scalar field
are charged under U(1)PQ, while the rest of the SM is uncharged under this group.
Concretely, the charges are assigned as follows:

Φ→ eiαΦ,

Hd → eiXdαHd,

Hu → e−iXuαHu,

di → e−iXdαdi,

ui → e−iXuαui,

(3.49)

where Φ is the complex scalar, Hd and Hu are the Higgs doublets giving mass to the
down-type and up-type quarks respectively. The Yukawa interactions

LY = Yij q̄iHddj + Γij q̄iH̃uuj + h.c., (3.50)

where H̃ = εH∗, as well as the potential

V (Φ) = −µ2|Φ|2 + λ|Φ|4 + λ3H
†
dHuΦ2 (3.51)

are invariant under U(1)PQ, provided that Xu + Xd = 2. After electroweak symmetry
breaking, both Higgs doublets will acquire a vacuum expectation value vd and vu, giving

the usual v =
√
v2
d + v2

u ≈ 246 GeV [6]. After PQ symmetry breaking, happening at a

scale fa � v, the field Φ acquires a vacuum expectation value fa. After both symmetry
breakings, the fields can be parametrized as

H0
d(x) =

vd + hd(x)√
2

exp

(
i

(
ζ(x)

v
+Xd

a(x)

fa

))
H0
u(x) =

vu + hu(x)√
2

exp

(
i

(
ζ(x)

v
−Xu

a(x)

fa

))
Φ(x) =

fa + ρ(x)√
2

exp

(
i
a(x)

fa

)
,

(3.52)

where the radial modes hd and hu are the two physical Higgs fields and ρ the physical
scalar singlet. The exponents contain the Goldstone bosons, where one notices the ap-
pearance of a(x), the axion field. The fields described above constitute the necessary
building blocks for the DFSZ models. However, the focus in this work will be on a
different type of model, namely the KSVZ axion model and extensions thereof.
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The KSVZ model is one of the simplest axion models, named after Kim, Shifman, Vain-
shtein and Zakharov [85, 86]. In this model, the SM is extended by introducing a new
complex scalar field Φ and a triplet of fermions Q under SU(3)c. Under U(1)PQ, these
transform as follows

Q→ e−iα/2Q, Q̄→ e−iα/2Q̄, Φ→ eiαΦ. (3.53)

In the case of the DFSZ model, parts of the SM were charged under U(1)PQ, whereas
in the KSVZ model, the SM content remains uncharged. The new contributions to the
SM are captured in the following Lagrangian,

L = |∂Φ|2 + Q̄i��DQ+ yΦQ̄Q+ h.c.− V
(
|Φ|2

)
, (3.54)

where the potential V has the usual Mexican hat shape that will spontaneously break
the U(1)PQ associated to Φ. After spontaneous symmetry breaking, the scalar field can
be parameterized by

Φ =
fa + ρ(x)√

2
eia(x)/fa , (3.55)

where fa is the vacuum expectation value and a the pseudo-Goldstone boson associated
with the spontaneous symmetry breaking of the U(1), namely the axion.

Although the Peccei-Quinn mechanism, together with the axion, provides a solution
to the Strong CP problem, it still comes with some problems of its own, one of which
is the axion quality problem. To briefly illustrate this problem, one can consider the
KSVZ model described above. The potential of the scalar field is given by

V = −m2ΦΦ† + λ(ΦΦ†)2 + yΦQQ̄+ h.c., (3.56)

which as mentioned previously, is the usual Mexican hat potential. The first issue arises
when considering the axion in the context of effective field theory (EFT) [75]. In EFTs,
one writes down every coupling allowed by symmetries for a specific particle content.
However, as the axion does not possess any symmetry properties, only an anomalous
symmetry, one will not be able to prevent couplings as εQQ̄ or εΦ2, which break the
U(1)PQ symmetry. The second problem comes from the fact that quantum gravity
is believed to break all symmetries that are not gauged. As this is the case for the
anomalous U(1)PQ symmetry, one can expect higher-dimensional operators of the form
V ∼ Φn

Mn−4
p

, where Mp is the Planck mass. Both issues will give extra contributions to the

axion potential, shifting its minimum away from θ̄. As an illustration, taking fa = 1012

GeV, one would need to prevent the higher-dimensional operators up to n > 14 to
guarantee that the minimum does not shift by more than 10−10. This illustrates the
severity of the problem and shows that if the U(1)PQ is to remain a valid solution to the
Strong CP problem, the quality problem needs to be addressed. Various solutions have
been put forward, including theories where the new U(1) comes from 5D gauge theories
or where the extra U(1) is an accidental symmetry. However, these solutions are only
mentioned for completeness, but will not be discussed here.
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3.4 Phenomenology of the axion

The previous part introduced the theory of the axion as an attempt to solve the Strong
CP Problem. However, the axion has not been discovered experimentally yet. Neverthe-
less, various experiments are able to constrain the different parameters of axion models.
Some of these experiments will be described briefly together with the constraints on the
axion phase space. For a complete overview, the review [6] can be used.

One of the axion couplings that plays an important role in axion searches is the ax-
ion to two photon coupling. The term in the Lagrangian representing this interaction
reads

Laγγ = −gaγγ
4
FµνF̃

µνa = gaγγE ·Ba, (3.57)

where a is the axion, Fµν the electromagnetic field strength and its dual given by F̃µν =
1
2ε
µνρσFρσ [87]. The coupling constant is given by

gaγγ =
α

2πfa

(
E

N
− 1.92

)
, (3.58)

where E
N = 0 for KSVZ models [85, 86] and E

N = 8
3 for DFSZ models [83, 84]. Thus,

even though the axion in the KSVZ model does not couple to photons directly, a photon
coupling is achieved due to the mixing between the pions and the axion. The decay
width of this process reads

Γa→γγ =
g2
aγγm

3
a

64π
. (3.59)

Furthermore, the axion will also couple to nucleons due to its gluon coupling. This reads

∂µa

2fa
cN N̄γ

µγ5N, (3.60)

where N represents a nucleon field and cp = −0.47 and cn = −0.02 for the KSVZ model.
To illustrate how these couplings can be used to put constraints on the values of fa and
ma, a non-exhaustive list of various experiments is given below.

A first experiment consists of shining light through a wall. A laser is shot through
a region with a large magnetic field, followed by a wall and again another large magnetic
field. The incident photon can be converted into an axion in the magnetic field. The
axion travels through the wall, whereas the photon is stopped by it. In the region be-
hind the wall, the magnetic field allows the axion to change back into a photon, which is
then measured. As the probability of this happening is given by Γ2

a→γγ , which scales as
∼ g4

aγγ , one is able to obtain constraints on the coupling. The current constraint coming
from this experiment was achieved by the OSQAR experiment (Optical Search for QED
Vacuum Birefringence, Axions, and Photon Regeneration) and yields |gaγγ | . 3.5×10−8

GeV−1 for ma . 0.3 meV [88].
A second type of experiment that exploits the axion to two photons conversion are helio-
scopes such as CAST (CERN Axion Solar Telescope). For mixing states, the oscillation
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into each one of them is possible (think for example of neutrino oscillations). These
helioscopes look for axions produced in the Sun, which then change into photons inside
the magnetic field of the experiment. This experiment was able to put the following
constraint on the coupling: |gaγγ | < 6.6× 10−11 GeV−1 for ma < 0.02 eV [89].
The production of low-mass and weakly interacting particles can take place in hot astro-
physical plasmas and because of this, can transport energy out of stars. One can then
use the observed lifetime of stars and energy-loss rates to constrain the coupling gaγγ ,
such that it does not conflict with observation. Applying this to stars on the horizontal
branch (HB) gives |gaγγ | < 6.6 × 10−11 GeV−1 for ma < 0.2eV [90]. In much the same
way, supernovae can be used to constrain axions. The bounds come from requiring that
in the process N + N → N + N + A the axions do not carry away energy equal to the
total energy in neutrinos emitted by the supernova. This yields fa & 4 × 108 GeV for
ma . 0.16 meV, as illustrated in Fig. 13. However, due to the limited knowledge about
supernovae, it is important to look at these constraints as indications rather than sharp
bounds [91].

Figure 13: Cosmological and astrophysical constraints on the axion mass ma and the
vacuum expectation value fa [92].

The coupling to photons and nucleons was discussed in a bit more detail as an exam-
ple. Nevertheless, various other couplings can be constrained in a similar way, e.g. the
coupling to the electron gae. However, these couplings are model dependent. The focus
will be on the couplings of the KSVZ model since only this model, together with exten-
sions of it, will be considered in Section 5. Thus, the only constraints from Fig. 13 one
needs to take into account are the ones coming from the supernovae and burst dura-
tion. Displayed on this figure is the corresponding a limit on the axion decay constant:
fa & 4× 108 GeV [92]. However, a more recent and thorough analysis in [93] obtains a
slightly weaker constraint, namely fa & 2×108 GeV. The latter will be used throughout
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the rest of this work. Once again, one needs to remember that these constraints should
be regarded as indications rather than sharp bounds. Furthermore, it is important to
keep in mind that the final goal is to generate a gravitational wave spectrum from a
first order phase transition associated with the potential of the axion. One recalls from
the previous section, e.g. Fig. 10, that the lowest scales are favored to generate a signal
observable in the frequency range of upcoming detectors. At higher scales, the signal
may escape detection.

The question arises if somehow it is not possible to evade the constraints on the ax-
ion decay constant fa and be able to reach lower scales, thus increasing the probability
of being within reach of the various experiments. One recalls that the constraints dis-
cussed above assume the relation between mass and fa typical of the QCD axion as in
Eq. (3.47). However, this can be modified in more extended theories leading to different
phenomenological constraints. In particular, the bound on the decay constant fa can
be significantly weaker. This strategy will not be used in this thesis. Nevertheless, a
possible model building strategy to achieve this goal is reported in Appendix B.

With the theory of the axion explained, one might be tempted to jump straight to
building models and exploring the generation of gravitational wave spectra. However,
a preliminary case study is considered first: the SM with a slightly modified Higgs po-
tential. By doing so, various skills pertaining to the analysis of phase transitions and
gravitational wave spectra can be developed. These skills can then readily be applied to
axion models.

4 Preliminary case study: the EW phase transition in the
SM and beyond

Before considering realizations of models with a Peccei-Quinn symmetry, another model
is considered. This sidetrack is taken to develop the necessary skill set that applies to
the analysis of first order phase transitions. Concretely, this includes determining the
bounce trajectory, followed by calculating the bounce action, as well as the parameters
α and β/H?, which will be used to determine the gravitational wave spectrum resulting
from this phase transition. To this end, phase transitions are reviewed in the context of
the Standard Model, after which a modified Higgs potential is considered.

4.1 Phase transitions in the Standard Model

Before exploring a slight modification of the Higgs potential to achieve a first order phase
transition, phase transitions are described in the Standard Model itself. To this end,
consider the tree-level Higgs potential, which takes the form

V0(φ) =
λ

4
(φ2 − v2)2, (4.1)
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where the Higgs boson mass is given by m2
h = 2λv2, with v the vacuum expectation

value, measured to be v ≈ 246 GeV [6]. As explained in Section 2, the one-loop and
thermal contribution need to be taken into account, yielding the effective potential.
Using the high-temperature expansion given by Eq. (2.16) and Eq. (2.17), one finds that
the effective potential for the Standard Model Higgs can be written as [94]

V (φ, T ) = D(T 2 − T 2
2 )φ2 − ETφ3 +

1

4
λTφ

4, (4.2)

where

D =
1

24

(
6
(mW

v

)2
+ 3

(mZ

v

)2
+ 6

(mt

v

)2
)
,

E =
1

12π

(
6
(mW

v

)3
+ 3

(mZ

v

)3
)
,

λT = λ−
∑
B

gB
m4
B

16π2v4
log

(
m2
B(v)

cBT 2

)
+
∑
F

gF
m4
F

16π2v4
log

(
m2
F (v)

cFT 2

)
,

(4.3)

with mW,Z,T the W-boson, Z-boson and top quark masses. The Higgs mass now takes
the form m2

h = (2λ+ 12B)v2, where B is given by

B =
1

64π2v4

(
6m4

W + 3m4
Z − 12m4

t

)
. (4.4)

The temperature T2 appearing in the effective potential in Eq. (4.2) reads

T 2
2 =

m2
h − 8Bv2

4D
. (4.5)

Thinking about the two types of phase transitions described in Section 2, one sees that
the effective potential given by Eq. (4.2) has the correct form to allow for first order
phase transitions. As can be seen, the φ3 term is present, as in the toy model considered
in the above-mentioned section. From this analysis, a weak first order phase transition is
found, which would not lead to a strong gravitational wave signal. Moreover, the above
result is obtained using a perturbative analysis and a high temperature expansion, which
might lead to inaccuracies. For small gauge couplings lattice studies fail to reproduce the
small barrier predicted with the perturbative analysis, showing that for mh > 80 GeV
no first order phase transition occurs in the Standard Model [95–97]. For stronger phase
transitions, the perturbative results agree more closely with the lattice simulations. This
is because the perturbative expansion requires small λ/g2 for the analysis of the phase
transition to be accurate, on top of small coupling λ and small gauge coupling g [1].
Since λ/g2 ∼ m2

h/m
2
W , the requirement for the perturbative analysis to be accurate

reads m2
h � m2

W . As the mass of the Higgs boson is measured to be mh ≈ 125 GeV [6],
the Standard Model Higgs potential is unable to display first order phase transitions.

Nevertheless, it is possible to achieve strong first order phase transitions by modifying
the Higgs potential slightly. This will be done in the following subsection by adding a
cubic term to the tree-level potential.
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4.2 Modified Higgs potential

Since a first order phase transition does not occur in the Standard Model as it is, a
cubic term is added to the tree-level potential of the Higgs boson. The toy model of a
non-linearly realized electroweak gauge symmetry under consideration is based on [98]
and computations therein will be reproduced.

The idea is to consider a different realization of the SU(2)L×U(1)Y and an alternative
representation for the Higgs boson. Here, the electroweak gauge invariance is realized
non-linearly by a triplet of the would-be Goldstone bosons, denoted πi. These param-
eterize SU(2)L×U(1)Y /U(1)QED [99]. The Higgs field can reside in the SU(2)L×U(1)Y
singlet field ρ, since it does not have to form the electroweak doublet irreducible repre-
sentation. This allows for new interactions, e.g. a cubic self-interaction for the Higgs
leading to a cubic term in the tree-level potential, which may cause the electroweak
phase transition to be strongly first order. In this case, the standard Higgs doublet can
be formed as

H(x) =
ρ(x)√

2
e

i
2
πi(x)T i

(
0
1

)
, i ∈ {1, 2, 3}, (4.6)

where the three would-be Goldstone bosons are denoted by the πi fields, T i = σi − δi31
are the three broken generators and σi the Pauli matrices. The physical Higgs field
corresponds to the fluctuation of ρ around the electroweak vacuum expectation value
v = 246 GeV, i.e. ρ = v + h. The tree-level potential, including the extra cubic term,
now reads

V (0)(ρ) = −µ
2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4. (4.7)

This potential depends on three different parameters, namely µ, κ and λ. Nevertheless,
this dependence can be boiled down to only one parameter by using

dV

dρ

∣∣∣∣
ρ=v

= 0 and
d2V

dρ2

∣∣∣∣
ρ=v

= m2
h ≈ (125GeV)2, (4.8)

yielding

µ2 =
1

2
(m2

h + vκ) and λ =
1

2v2
(m2

h − vκ). (4.9)

In other words, the only free parameter of the model is chosen to be κ. One can then ex-
plore various values of κ, as was done in the original paper. However, as the main purpose
of this section is to get acquainted with the various methods that pertain to the analysis,
rather than the model itself, only one value of κ is chosen. The case κ = −1.82m2

h/v is
used to illustrate the various steps of the analysis of the phase transition.
The tree-level potential is displayed in Fig. 14. Note that a barrier is already present
at tree-level. This is because of the presence of the added cubic term. Indeed, for small
field values, the ρ2 term dominates. For increasing values, the negative ρ3 term becomes
larger, causing the potential to go down. For even larger values the potential rises again
because of the positive ρ4 contribution. This barrier is exactly what is needed for a first
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order phase transition.

Figure 14: Tree-level potential for κ = −1.82m2
h/v. Due to the added cubic term, the

potential already displays a barrier at tree-level.

On top of the tree-level potential, the one-loop and thermal contributions are added. The
renormalization scheme where the vacuum expectation value and the tree-level mass are
not altered by the one-loop contribution will be used. To this end, Eq. (2.14) is used, as
the masses of the particles entering the sum are at most quadratic in the field ρ. This
sum ranges over the following particles: W- and Z-boson, top quark and Higgs boson
itself. The thermal contribution is added as well, where the Daisy corrections are also
taken into account. These are displayed in the appendix of [98]. After adding these
corrections to the tree-level potential, the bounce action can be computed. For every
temperature in a certain range, the bounce trajectory associated to the effective potential
under consideration is calculated. This is done by using the under/overshooting method
outlined in Section 2. Once the bounce trajectory is computed, the bounce action can
be determined. The result is displayed in Fig. 15. Both S4 and S3/T are plotted, to
illustrate what was mentioned in Section 2. As can be seen, both actions can coexist,
but S3/T will quickly be lower than S4. Because of this, the former will dominate in the
decay rate.
The following step is to determine the nucleation temperature. This can be done by
using the approximation discussed towards the end of Section 2 and finding the tem-
perature where S3(T )/T ' 145. Doing this yields a value T? = 81.8 GeV. The last
thing that remains to be done consists of computing the gravitational wave spectrum
associated with this phase transition. To this end, α and β/H? need to be calculated.
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Figure 15: Temperature dependence of the bounce action for κ = −1.82m2
h/v. Both S4

(red) and S3/T (blue) are plotted. The red dot denotes the nucleation temperature T?.

Figure 16: Dashed : Gravitational wave spectrum associated with the phase transition
for κ = −1.82m2

h/v and parameter values α = 0.046, β/H? = 146 and T? = 81.8 GeV.
Solid : sensitivity curves of different experiments, including LISA [22], BBO [58], the
Einstein Telescope (ET) [100] and Cosmic Explorer (CE) [101].
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Evaluating Eq. (2.46) and (2.47) yields α = 0.046 and β/H? = 146. These values can
then be plugged into Eq. (2.52), (2.56) and (2.60), giving the total gravitational wave
spectrum. However, this spectrum is dominated by the sound wave contribution, such
that only this contribution is plotted in Fig. 16. As can be seen, this signal falls in the
range of the future LISA detector. From Section 2 it was to be expected that the spec-
trum would be in the lower frequency range. Indeed, there it was seen that lower scales
result in spectra shifted towards lower frequencies. This is the case for the current nu-
cleation temperature T?, which is of the order of the electroweak scale, i.e. O(100 GeV).z

By having computed the effective potential, the bounce action, α, β/H? and T?, this toy
model constitutes the perfect practice for the models under consideration in the next
section. Indeed, although the potential might look different depending on the model,
the steps that need to be taken to get the gravitational wave spectrum remain identical.
In what follows, different realizations of axion models are explored, together with their
gravitational wave spectra.

5 ������U(1)PQ: KSVZ model and its extensions

With the concepts of phase transitions and gravitational waves associated to them in
the back of our mind, it is time to come back to where Section 3 was ended: the axion
solution to the Strong CP problem. In what follows, original work on axion models will
be discussed. A detailed study of the various models will provide a better understanding
of whether a first order phase transition associated with the breaking of the Peccei-
Quinn symmetry can occur. Furthermore, it will be examined whether a detectable
gravitational wave spectrum can be generated from this transition. To be observable,
the amplitude should be high enough and the frequency low enough for the terrestrial
detectors at a minimum. However, the supernova constraint, which was discussed in
Section 3, limits fa from below and therefore favors higher T? and gravitational wave
frequencies. We will see whether parameter points can be found returning suitable peak
frequencies, while remaining consistent with the supernova constraint. The analysis of
the various models in this section constitutes original work. Similar types of models
together with the investigation of a gravitational wave signal have only been covered
in [9–11].Reference [11] studies the Peccei-Quinn phase transition for cases where super-
cooling occurs. Supercooling implies that the bubble collision takes place in the vacuum
and increases the phase transition duration, causing the gravitational wave signal to be
enhanced. In [10], the focus lies on the DFSZ axion model. It is shown that for a range
of parameter values the associated gravitational wave signal can be detected by LIGO
and the Einstein Telescope. Finally, in [9], axion-like particles, i.e. not addressing the
Strong CP problem, are studied together with the possible generation of a stochastic
background from first order phase transitions.
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5.1 Minimal KSVZ model

The minimal KSVZ model was introduced in Section 3 as the Standard Model together
with an extra fermion Q and a scalar Φ of which the axion is the phase. The Lagrangian
for this model reads

L = |∂Φ|2 + Q̄i��DQ+ yΦQ̄Q+ h.c.− V
(
|Φ|2

)
, (5.1)

where the potential V for the complex Peccei-Quinn scalar Φ, takes the form

V (Φ) = −m2|Φ|2 + λ|Φ|4. (5.2)

One recalls that after symmetry-breaking, the Peccei-Quinn scalar Φ can be parameter-
ized as

Φ =
ρ√
2
eia/fa , (5.3)

where ρ is the radial mode, a is the Goldstone boson associated with the breaking of the
U(1)PQ. Using this parameterization, the tree-level potential takes the form:

V0(ρ) = −m
2

2
ρ2 +

λ

4
ρ4, (5.4)

where m2 = λf2
a .

Being one of the simplest realizations of the axion, we begin with it in the exploration
of gravitational waves in the context of the Peccei-Quinn phase transition. However, it
is important to note the following about the thermal contributions in this model. By
looking at the high temperature expansion of the thermal contribution in Eq. (2.15), one
sees that, in Eq. (2.17), JB ∼ ρ3, because the mass of the scalar scales as m2 ∼ ρ2. The

mass squared of the fermion, m2
Q = y2

2 ρ
2, displays the same ρ2 dependence, but no ρ3

is contained in the high-temperature expansion of the fermionic contribution. Recalling
the toy model describing first order phase transitions in Eq. (2.23), one realizes that
these ρ3 contributions are precisely the ones giving rise to a barrier, and thus, a first
order phase transition. After exploring the parameter space for this model, no barrier
was found and thus, no gravitational wave signal. This is not surprising because of the
lack of a ρ3 term from the fermionic corrections. The effect of JB ∼ ρ3 from the single
scalar degree of freedom and its self coupling is negligible compared to the fermionic
corrections. The scalar self-coupling is anyway known to not lead to a strong first order
phase transition in the parameter regime in which the perturbative expansion is under
control [1].

5.2 Extension of the minimal KSVZ model

As the regular KSVZ model with only one fermion did not yield first order phase tran-
sitions, a logical extension is to add another fermion, with the objective that this would
allow for a first order phase transition and a gravitational wave signal. Adding a fermion
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would allow for a more complicated mass dependence on ρ (one would now be dealing
with a 2×2 mass matrix). Furthermore, it is possible that along the field ρ, one could
go from a region where the high-temperature expansion holds to one where it does not,
yielding more complicated expressions than Eq. (2.16). This might allow for a barrier
to form because of the thermal contributions. Indeed, non-linear mass dependencies on
ρ have previously been shown to be able to generate a thermal barrier [102–104]. In

that case, the high-temperature expansion JF ∼ m2

T 2 can have a cubic dependence on ρ,
leading to a barrier.

In this model, the Lagrangian retains the form of Eq. (3.54), but the coupling to the
fermions now changes to:

L ⊃ yQΦQQ̄+m′(Q̄′Q′ +QQ̄′) + yQ′ΦQ
′Q̄, (5.5)

where Φ is the Peccei-Quinn scalar and Q and Q′ are the fermions2. Equivalently, this
can be written as

L ⊃
(
Q̄ Q̄′

)
M

(
Q
Q′

)
, (5.6)

where the mass matrix M now reads:

M =

(
yQΦ yQ′Φ
m′ m′

)
. (5.7)

The Yukawa couplings are parameterized in the following way:

yQ = y cos θ and yQ′ = y sin θ (5.8)

Diagonalizing M †M then yields the square of the mass eigenstates of the fermions [64].

The different charges of the particles in this extension of the minimal KSVZ model
are summarized in Table 1. As a pair of vector-like fermions is added to the minimal
KSVZ model, i.e. Q′ and Q̄′, these do not contribute to the anomaly of U(1)PQ under
QCD. Thus, the anomaly is only given by the QQ̄ and is 1 as in the minimal KSVZ
model.

Q Q̄ Q′ Q̄′ Φ

U(1)PQ -1
2 -1

2 -1
2

1
2 1

SU(3) 3 3̄ 3 3̄ 1

Table 1: U(1)PQ and SU(3) charges associated with the various fields.

As in the KSVZ model, the tree-level potential of the Peccei-Quinn scalar Φ is given by

2Note that the two masses m′ are chosen to be equal for simplicity, but could be chosen differently.

50



Eq. (5.2). As previously seen, after symmetry-breaking, this scalar can be parametrized
as

Φ =
ρ√
2
eia/fa , (5.9)

where ρ is the radial mode and a is the Goldstone boson associated with the breaking
of the U(1)PQ, namely the axion. Thus, the tree-level potential retains the form:

V0(ρ) = −m
2

2
ρ2 +

λ

4
ρ4, (5.10)

where m2 = λf2
a . Furthermore, the mass eigenvalues can now be computed. As an ex-

ample, these are given as a function of ρ for a specific parameter choice, namely y = 1.1,
m′ = 30 and θ = 7π

8 , in Fig. 17. For the moment, only the ratio of the dimensionful
parameters is relevant, which is why units are not specified.

Figure 17: Mass eigenvalues for y = 1.1, m′ = 30 and θ = 7π
8 , where the units have not

been specified as only dimensionless ratios of the various parameters matter for now.

On top of the tree-level potential, the effective potential will contain the one-loop and
thermal contributions, where the thermal contribution is given by Eq. (2.15) and runs
over the two fermions and the scalar. The one-loop correction will be discussed in the
remainder of this subsection.

In Section 2, a renormalization scheme was introduced where the quantum contribu-
tions did not affect the vacuum expectation value and the mass. This led to Eq. (2.14).
However, the validity of this expression is limited to cases where the various masses are
of the form m2(ρ) = m2

0 + λρ2. One notices that the mass eigenvalues of Eq. (5.7) will
not be of this form. In general, one should start from the MS renormalization scheme
given by Eq. (2.11) and impose the conditions such that the quantum contributions do
not alter the tree-level vacuum expectation value and the tree-level mass. By doing so,
one would find a general formula that differs from Eq. (2.14). In simple cases, where
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the mass dependence is quadratic in the field, one recovers Eq. (2.14) [105]. This com-
putation is outlined in Appendix A. However, in the present case, the formula is more
complicated. After the correct implementation of the one-loop contribution, thermal ef-
fects are investigated. Although the eigenvalues of the mass matrix present a non-trivial
dependence on the scalar field, the phase transition still turns out to be second order.
The absence of a barrier can be attributed to the fact that the mass eigenvalues only
increase. Indeed, from Fig. 17, it can be seen that the first eigenvalue m1 increases for
small field values, after which m2 takes over for larger field values. From the point of
view of the thermal correction, it seems like there is only a single mass increasing and
thus, there is no barrier. A mass eigenvalue that increases for small field values and
then returns to zero at larger field values would be able to thermally generate a barrier.
This can be seen from the leading order term in the high-temperature expansion of the
thermal contribution, which scales as m2/T 2.
The above arguments lead us to conclude that this simple extension of the minimal
KSVZ model does not succeed in generating first order phase transitions, and thus, no
gravitational wave signal associated with this phase transition.

This simple extension of the KSVZ model fails in displaying first order phase transi-
tions. Nevertheless, it is not excluded that making the mass matrix more complicated,
and thus, the eigenvalues, would generate a barrier. As an example, three fermions could
have been considered as an extension of the minimal KSVZ model. In that case, a 3×3
mass matrix would have been obtained. However, this model was not considered here
due to the large amount of free parameters.

5.3 KSVZ model with dimension 6 operator

As a first order phase transition could not be achieved in the previous two models, a
new strategy is adopted. The minimal KSVZ model, i.e. with one scalar and only one
fermion added to the Standard Model, will be considered again. However, the tree-level
potential of the scalar will now include a dimension 6 operator. Such higher-dimensional
operators can be achieved in the context of effective field theory (EFT). For example,

this operator
(
HH†

)3
for the Higgs boson in the SM can be realized by adding an extra

scalar doublet, whose mass is much larger than the Higgs vev, i.e. m2 � v2 [106]. For
a more detailed explanation, see Appendix C.
The modification to the electroweak phase transition induced by the presence of a di-
mension 6 operator has been extensively studied in [39, 107]. There it was found that
the addition of such a term allows for first order phase transitions, which would gener-
ate a gravitational wave signal detectable by LISA or BBO, another second-generation
space-based laser interferometer [108]. Here, the same idea is applied for the first time
to the study of the PQ phase transition with a dimension 6 operator.

Armed with the fact that such dimension 6 operators can arise in the potential, one
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writes the tree-level potential of the complex Peccei-Quinn scalar Φ as

V (Φ) = m2|Φ|2 + λ|Φ|4 +
1

Λ2
|Φ|6, (5.11)

where Λ is the high-energy cut-off scale of the EFT. This is the scale at which the new
physics responsible for the dimension 6 operator starts to become relevant. The EFT
is valid as long as the vacuum expectation value of the scalar and its mass are smaller
than this scale Λ. After the breaking of the Peccei-Quinn symmetry, the field Φ is
parameterized as

Φ =
ρ√
2
eia/fa , (5.12)

where the axion field is represented by a and ρ is the radial mode. The tree-level potential
now reads

V (ρ) =
m2

2
ρ2 +

λ

4
ρ4 +

1

8Λ2
ρ6. (5.13)

The mass of the scalar and the fermion are respectively given by

m2
ρ(ρ) = m2 + 3λρ2 +

15

4Λ2
ρ4 and m2

f (ρ) =
y2

2
ρ2, (5.14)

where y is the Yukawa coupling of the fermion. The free parameters of the model are
m, λ, Λ, y and µ which enters in the MS renormalization scheme, which will be used for
the one-loop contribution (see Eq. (2.11)). Furthermore, a comment needs to be made
about the thermal contributions. From Section 2, one recalls that the potential also
receives other contributions on top of the thermal potential, namely the so-called Daisy
corrections. These were introduced to deal with the IR divergences. Since only bosons
need such corrections, this will only have to be taken into account for the scalar. These
corrections could be parametrized by a shift in the mass term in the thermal potential,
which in this case is given by

m2
ρ → m2

ρ +
T 2

2f2
a

m2
f −

3T 2

4

f2
a

Λ2
, (5.15)

where fa is the vacuum expectation value of the field ρ [39]. However, as these contri-
butions constitute only very small corrections, these were not included in the various
scans that will be displayed later in this section. Nevertheless, to show the tiny effect of
including these contributions, they will be included when considering some benchmark
points for comparison.

Remark on units
Before exploring the parameter space, a note is made on the choice of units. It is found
that the shape of the potential does not depend on the choice of units, but rather on the
dimensionless ratio of the mass scales of the problem. This is the reason why dimen-
sionful parameters will be parameterized with pure numbers in the following, having in
mind that the appropriate mass unit will be reinstated afterwards. The first instance
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a scale needs to be specified, is during the computation of the nucleation temperature
T?. Indeed, one recalls from Section 2 that the Planck mass appears in the nucleation
condition given by Eq. (2.43), requiring the specification of a scale.
One remembers from Section 3 that several constraints exist on the axion parameter
space. The most important one for the KSVZ-type models comes from supernovae and
reads: fa & 2 × 108 GeV [93]. Thus, when specifying the units, one needs to make
sure that the vacuum expectation value satisfies this condition. At the same time, one
wants to have the scale of the temperature as low as possible to be within reach of the
sensitivity of the gravitational wave detectors. Indeed, the position of the peak of the
gravitational spectrum is partly determined by the nucleation temperature T?, favoring
lower scales (see Fig. 10).
Various scales will be considered when studying different benchmark points. The units
of the dimensionful parameters will be chosen such that fa = 108 GeV, fa ∼ 2×108 GeV
and fa = 109 GeV. This corresponds to a case where one is outside the allowed region
coming from axion constraints, one right at the border and one well inside the allowed
region. The various computations will be described in detail only for one of the scales
above, whereas the others will simply be summarized. For instance, to give an example,
the scale under consideration for the detailed studies will be fa ∼ 2× 108 GeV. To this
end, the units are set to 4.08 × 106 GeV. For example, if a dimensionless temperature
T1 is quoted, the physical temperature would then correspond to T1 × 4.08× 106 GeV.
Similarly, this applies to all other dimensionful parameters.

5.3.1 Analysis of the phase transition

In the previous subsection, a new model was introduced consisting of the minimal KSVZ
model supplemented with a dimension 6 operator. The aim of this subsection is to ex-
plore the parameter space of this model and analyze the phase transition, together with
the generation of a gravitational wave signal.

It is important to already note that this model exhibits a barrier, whereas the pre-
vious models that were considered failed in exactly this aspect. As an example, m =
2, λ = −0.25 and Λ = 100 were chosen to illustrate the presence of such a barrier, even
at tree-level. For the dimensionful parameters m and Λ, only the ratio is important for
the moment as mentioned above, which is why units are not specified. The tree-level
potential is displayed in Fig. 18. This tree-level barrier will then be enhanced due to
the thermal contributions. Therefore, the KSVZ fermion can still play a crucial role in
obtaining a strong first order phase transition. This is because the thermal fermionic
contribution to the potential, scaling as ∼ y2ρ2T 2, together with the tree-level −λρ4 can
combine to form a large barrier far in excess of the tree-level one.

One can now start exploring the parameter space and computing the values of the param-
eters needed for the gravitational wave signal. Various scans will be performed, which
will display the values of α, β/H? and the nucleation temperature T?. The specifics of
how these quantities are computed will be addressed by considering various benchmark
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points later in this section. However, this will be very similar to the computation done
in Section 4.

Figure 18: Tree-level potential for m = 2, λ = −0.25 and Λ = 100, where units have not
been specified as only the dimensionless ratio is important for now. As can be seen, a
tree-level barrier is present for this choice of parameters.

Scan over the parameter space
A scan over different values of m and λ is considered first. This entails that the other
parameters are kept fixed during the computation: y = 1.05 and Λ = µ = 100.3 The
results are shown in Fig. 19. At first glance, one notices that α and β/H? are correlated,
as previously mentioned. Indeed, as α increases, β/H? and the nucleation temperature
T? decrease.
Furthermore, one also notices that the value of α increases (or that β/H? decreases)
as one gets closer to the region where no nucleation occurs. The highest values for α,
which are the interesting ones from a gravitational wave point of view, can be found for
the lower parameter values in this scan, close to the no-nucleation region. This can be
understood by considering the expression for β/H?, given by Eq. (2.47), and realizing
that the nucleation condition, Eq. (2.43), can be approximated by simply asking that
the bounce action equals a constant, depending on the scale (this was shown for the SM
and the electroweak scale in Section 2). Analogously, one can write this down for typical
scales involved in the Peccei-Quinn phase transition. Starting from

S3(T?)

T?
≈ 4 log

T?
H(T?)

, (5.16)

3The renormalization scale µ is chosen always equal to the EFT scale Λ for concreteness. It was
checked that the results do not change qualitatively by varying it.
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Figure 19: α, β/H? and T? for different values of λ and m, with y = 1.05 and Λ =
µ = 100. The appropriate units for the dimensionful parameters can be restored by
multiplying by 4.08× 106 GeV.

one can use T? = O(108) GeV and g? = 106.75 + 127
8 + 2, coming from the SM content,

the fermionic contribution and the complex scalar. Filling in the value of the Planck mass
Mp = 2.435×1018 GeV, one finds that H(T?) = O(10−2) GeV, such that S3(T?)/T? ≈ 90.
This is illustrated in Fig. 20 by the black line. Concretely, this means that nucleation
happens when the bounce action intersects the black line. As β/H? is partly determined
by the derivative of the bounce action, it will be large for the blue line, because the
bounce action is fairly steep around the intersection with the black line. On the other
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hand, on the border of the no-nucleation zone, e.g. the red line, the bounce action will
barely touch the black line. Its derivative will be small, as the bounce action is almost
flat there, yielding a small β/H?. This illustrates why β/H? is smaller closer to the
no-nucleation zone in the above scans.

Figure 20: Various bounce actions as an illustration of why α is larger and β/H? smaller
close to the no-nucleation region. Three different cases are shown: no nucleation (green),
large α and small β/H? (red), and finally, small α and large β/H? (blue). The appropri-
ate units for the dimensionful parameters can be restored by multiplying by 4.08× 106

GeV.

The next scan of the parameter space consists of varying the quartic coupling λ and the
Yukawa coupling y, while keeping the other parameters fixed: m = 2, Λ = µ = 100. This
scan is displayed in Fig. 21. As with the previous scan, one notices that the values of α
and β/H? are correlated. The lowest values of α are found in the bottom right corner of
the scan, i.e. for larger λ and low values of the Yukawa coupling. Once again, it is clear
that the value of α increases, or β/H? decreases, as one gets closer to the no nucleation
zone. This happens because of the same reason that was given for the previous scan.
The red dot in Fig. 21 indicates the point in this scan with highest α and lowest β/H?.
It will be treated in more detail later on in this section.

Benchmark point analysis
The above scans give an overview of the general behavior as the various parameters of the
model are varied. A few benchmark points will now be chosen from the scans in Fig. 19
and Fig. 21, to illustrate the various steps that lead to the spectrum of the gravitational
wave associated with the phase transition. The benchmarks are listed in Table 2 and are
given by the red dots in the above-mentioned scans. These are chosen to demonstrate
how the value of α and β/H? influences the gravitational wave spectrum obtained from
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Figure 21: α and β/H? for different values of λ and y, with m = 2 and Λ = µ = 100.
The appropriate units for the dimensionful parameters can be restored by multiplying
by 4.08× 106 GeV.

a first order phase transition. For these benchmark points, the Bodeker-Moore criterion
given, by Eq. (2.64), was checked and was found to be satisfied. Because of this, the
bubble wall velocity was set to vw = 1 in the computation of the gravitational wave
spectra for the various benchmarks.
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λ m y Λ µ

Benchmark point 1 -0.4 2 1.05 100 100

Benchmark point 2 -0.256 2.25 1.05 100 100

Benchmark point 3 -0.229 1.3 1.05 100 100

Benchmark point 4 -0.45 2 1.432 100 100

Table 2: Various benchmark points from the scans used for a more detailed analysis of
the phase transition and the gravitational wave spectrum. The appropriate units will be
restored when necessary.

Benchmark point 1
Consider the first benchmark point with parameter values λ = −0.4, m = 2, y =
1.05, and Λ = µ = 100. The first step consists of determining the critical temperature
Tc. This temperature is computed to be 35.58. The following step is to compute the
bounce action for different temperatures below Tc. Indeed, as the true minimum only
appears for temperatures below Tc, tunneling will only start below this temperature.
The resulting bounce action is depicted in Fig. 22.

Figure 22: Bounce action for parameter values λ = −0.4, m = 2, y = 1.05, and Λ =
µ = 100. The red dot denotes the nucleation temperature T?. The appropriate units for
the dimensionful parameters can be restored by multiplying by 4.08× 106 GeV.

With the bounce action computed, the remaining task is to determine α, β/H? and
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T?. To find the nucleation temperature T?, Eq. (2.43) needs to be solved. Note that
this is the first time that an energy scale needs to be specified in the model, whereas
before the physics only depended on the dimensionless ratio of the mass scales of the
problem. As mentioned previously, various scales are considered, namely fa = 108 GeV,
fa ∼ 2× 108 GeV and fa = 109 GeV. However, only the scale where fa ∼ 2× 108 GeV
will be described in detail here. The results for the other scales will be summarized at
the end of the computations for each benchmark point. For this choice of parameters, a
vacuum expectation value of 2.86×108 GeV is found, which is right at the border of the
allowed region for fa, as mentioned previously. This corresponds to choosing the units
to be 4.08× 106 GeV. Solving Eq. (2.43) yields T? = 1.21× 108 GeV. This temperature
can then be used to compute α and β/H? by using Eq. (2.46) and Eq. (2.47), yielding
α = 0.038 and β/H? = 498. For completeness, the percolation temperature Tp will be
computed as well. However, it is expected that it will be comparable to the nucleation
temperature T?, as β/H? is fairly large. Recall from Section 2 that percolation ensures
that the phase transition completes, by checking that the bubbles expand at least as
fast as the expansion rate of the volume they reside in. Eq. (2.49) is computed such
that I(Tp) = 1 holds and the temperature for which Eq. (2.50) is satisfied is determined
as well. The percolation temperature Tp is then the minimum of the two, i.e. the
temperature for which both conditions hold. These two conditions are illustrated in
Fig. 23. The percolation temperature is determined to be Tp = 1.16 × 108 GeV for the
chosen units. As was expected, this is close to the nucleation temperature T?.

Figure 23: Conditions to obtain the percolation temperature Tp. Left: requiring that
about 74% of the volume is in the true vacuum. Right: requiring that the expansion rate
of the bubble is at least as fast as the one of the volume it resides in. The appropriate
units for the dimensionful parameters can be restored by multiplying by 4.08×106 GeV.

With the parameters that were computed above, all the necessary ingredients are now
available to consider the gravitational wave spectrum. In principle, this signal is made up
of three contribution listed at the end of Section 2. However, the sound wave contribution
will dominate, as was mentioned in Section 4. Thus, the spectrum is well approximated
by taking only that contribution into account. The resulting gravitational wave signal
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can be found in Fig. 24. As mentioned at the beginning of this analysis, various scales
were considered. The figure also includes the signals for the other two scales. Finally,
the parameters for the three different scales are summarized in Table 3.

Figure 24: Gravitational wave signal from first order phase transition associated with
the potential with parameters λ = −0.4, m = 2, y = 1.05, and Λ = µ = 100. The
parameters describing the phase transition are listed in Table 3 for the various scales.
The appropriate units for the dimensionful parameters can be restored by multiplying
by the last line in that table.

Benchmark Point 1

fa (108GeV) 1 2.86 10

α 0.037 0.038 0.039

β/H? 561 498 448

T? (107GeV) 4.26 12.1 41.8

Tp (107GeV) 4.1 11.6 39.9

Units (106 GeV) 1.43 4.08 14.3

Table 3: Quantities pertaining to the analysis of the gravitational spectrum for various
scales for the benchmark λ = −0.4, m = 2, y = 1.05, and Λ = µ = 100. The appro-
priate units for the dimensionful parameters can be restored by multiplying by the last
line in this table.
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As was mentioned earlier, the exact analysis of these points should include the so-called
Daisy corrections in Eq. (5.15). However, it was argued that the effect of adding such
corrections is negligible. To illustrate this, the above computations are repeated with
the Daisy correction terms included. The results are summarized in Table 4. One can
see that the addition of such corrections barely affects the value of the parameters.
Therefore, choosing to not include these contributions in the scans is reasonable.

Benchmark Point 1

Daisy No Yes

α 0.038 0.038

β/H? 498 496

T? (107GeV) 12.1 12.1

Table 4: Comparison with Daisy correction terms of the quantities pertaining to the
analysis of the gravitational spectrum for the benchmark λ = −0.4, m = 2, y =
1.05, and Λ = µ = 100. The appropriate units for the dimensionful parameters can
be restored by multiplying by 4.08× 106 GeV.

Benchmark point 2
The previous benchmark point illustrates how a low values of α and large β/H? result
in a weaker gravitational wave spectrum, escaping detection. However, the model under
consideration also has larger values for α as can be seen from the scan in Fig. 19. The
second benchmark point is chosen such that the values of the parameters are situated be-
tween the maximum and minimum value of each parameter. This benchmark point can
be seen as an average point in the scan, neither extremely high values, nor extremely low.
Concretely, the parameter point with values λ = −0.256, m = 2.25, y = 1.05, and Λ =
µ = 100 is chosen. Following the same steps as with the previous benchmark, the critical
temperature Tc is determined to be Tc = 19.7. The computation of the bounce action
(see Fig. 25) is followed by the choice of the same units as were chosen for the previous
benchmark, namely 4.08× 106 GeV.

The nucleation temperature is obtained by solving Eq. (2.43), yielding T? = 4.47× 107

GeV in the chosen units. With the nucleation temperature at hand, α and β/H? are
determined to be 0.187 and 72.4 respectively. Subsequently, the percolation tempera-
ture Tp is determined. Both conditions for percolation are illustrated in Fig. 26. The
percolation temperature is computed to be Tp = 3.84× 107 GeV.

For the gravitational wave signal, only the sound wave contribution is taken into ac-
count again, as this one will dominate. The spectrum is displayed in Fig. 27, together
with the spectra for the other scales. The values describing the phase transition for the
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various scales are given in Table 5.

Figure 25: Bounce action for parameter values λ = −0.256, m = 2.25, y =
1.05, and Λ = µ = 100. The red dot denotes the nucleation temperature T?. The
appropriate units for the dimensionful parameters can be restored by multiplying by
4.08× 106 GeV.

Figure 26: Conditions to obtain the percolation temperature Tp. Left: requiring that
about 74% of the volume is in the true vacuum. Right: requiring that the expansion rate
of the bubble is at least as fast as the one of the volume it resides in. The appropriate
units for the dimensionful parameters can be restored by multiplying by 4.08×106 GeV.
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Figure 27: Gravitational wave signals from first order phase transition associated with
the potential with parameters λ = −0.256, m = 2.25, y = 1.05, and Λ = µ = 100. The
parameters describing the phase transition are listed in Table 5 for the various scales.
The appropriate units for the dimensionful parameters can be restored by multiplying
by the last line in that table.

Benchmark Point 2

fa (108GeV) 1 2.06 10

α 0.17 0.19 0.27

β/H? 88.3 72.4 37.3

T? (107GeV) 2.25 4.47 19.3

Tp (107GeV) 1.96 3.84 16.6

Units (106 GeV) 1.98 4.08 19.8

Table 5: Quantities pertaining to the analysis of the gravitational spectrum for various
scales for the benchmark λ = −0.256, m = 2.25, y = 1.05, and Λ = µ = 100. The
appropriate units for the dimensionful parameters can be restored by multiplying by the
last line in this table.

Benchmark point 3
In contrast with the previous benchmarks, one with large α and small β/H? is now cho-
sen. Hence, the parameter point λ = −0.229, m = 1.35, y = 1.05, and Λ = µ = 100 is
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considered. The various steps leading to the gravitational wave spectrum are completely
analogous to the steps that were followed for the previous benchmarks. The critical
temperature is determined to be Tc = 16.86, after which the bounce action is computed.
This is depicted in Fig. 28. One notices that the bounce action is a bit larger than in the
previous case, which already suggests a lower β/H? and thus, a larger α (see argument
around Fig. 20).

Figure 28: Bounce action for parameter values λ = −0.229, m = 1.35, y =
1.05, and Λ = µ = 100. The red dot denotes the nucleation temperature T?. The
appropriate units for the dimensionful parameters can be restored by multiplying by
4.08× 106 GeV.

Figure 29: Conditions to obtain the percolation temperature Tp. Left: requiring that
about 74% of the volume is in the true vacuum. Right: requiring that the expansion rate
of the bubble is at least as fast as the one of the volume it resides in. The appropriate
units for the dimensionful parameters can be restored by multiplying by 4.08×106 GeV.
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One then proceeds to compute the nucleation temperature T?. The same units are used
as for the previous benchmarks, i.e. 4.08× 106 GeV, now yielding fa = 1.88× 108 GeV
for this benchmark point. After solving Eq. (2.43), one finds T? = 2.73 × 107 GeV.
Subsequently, α and β/H? are computed, yielding α = 0.61 and β/H? = 10.4. As for
the previous benchmarks, the percolation temperature Tp is computed. Both conditions
for percolation are illustrated in Fig. 29. Taking the minimum of the two temperatures
satisfying the percolation conditions results in Tp = 2.08 × 107 GeV expressed in the
chosen units.

With the value of α, β/H? and T? at hand, the gravitational wave spectrum can be
computed. Only the sound wave contribution will be taken into account, as was done
with the previous benchmark points. The gravitational wave signal from the first or-
der phase transition is displayed in Fig. 30, together with the signals obtained at other
scales. The parameters are given in Table 6 for the other scales. It is important to note
that in this case, no nucleation occurs at the scale where fa = 109 GeV.

Figure 30: Gravitational wave signal from first order phase transition associated with
the potential with parameters λ = −0.229, m = 1.3, y = 1.05 and Λ = µ = 100. The
parameters describing the phase transition are listed in Table 6 for the various scales.
The appropriate units for the dimensionful parameters can be restored by multiplying
by the last line in that table.

From Fig. 30, it is clear that higher values α and lower β/H? result in a stronger signal,
allowing it to be detected by LIGO-Virgo once their designed sensitivity is reached. Fur-
thermore, these signals will also be well within reach of the future Einstein Telescope.
This in contrast to the first benchmark point, where low α and large β/H? resulted in es-
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caping detection. It should also be noted that from Section 2, more particularly Fig. 10,
one expects that a lower scale results in a spectrum shifted towards lower frequencies.
However, this is not the case here. Indeed, the position of the peak of the spectrum
depends on the product of β/H? and T?, as given by Eq. (2.58), such that one finds that
the frequency where the spectrum peaks is larger for the lower scale.

Benchmark Point 3

fa (108GeV) 1 1.88 10

α 0.40 0.61 -

β/H? 29.1 10.4 -

T? (107GeV) 1.64 2.73 -

Tp (107GeV) 1.3 2.08 -

Units (106GeV) 2.17 4.08 21.7

Table 6: Quantities pertaining to the analysis of the gravitational spectrum for various
scales for the benchmark λ = −0.229, m = 1.3, y = 1.05, and Λ = µ = 100. The
appropriate units for the dimensionful parameters can be restored by multiplying by the
last line in this table.

Benchmark point 4
As a last detailed study, the parameter point with highest α and lowest β/H? from
Fig. 21 will be considered, i.e. the red dot in that figure. This point is given by
λ = −0.45, m = 2, y = 1.432, and Λ = µ = 100. As with the previous points, the
same scales will be considered. As the computations are similar to the treatment of the
previous benchmarks, only the results will be stated in Table 7 and the gravitational
wave spectrum will be given in Fig. 31 for the various scales. Similarly to benchmark
point 3, nucleation does not occur for fa ∼ 109 GeV for this point. Since the values of α
and β/H? are similar to the third benchmark point (see Table 6), the signals look fairly
similar to each other. However, the nucleation temperature is slightly higher for the
current point, resulting in a shift of the spectrum towards higher frequencies compared
to the previous benchmark. Because of this, the point under consideration escapes de-
tection by LIGO-Virgo. Nevertheless, it remains within reach of the sensitivity of the
Einstein Telescope.

The previous benchmark points illustrate how α, β/H? and T? influence the position
and amplitude of the peak of the gravitational wave spectrum. High α and low β/H?

are favored to achieve a higher amplitude. Lower T? will result in the spectrum being
centered around lower frequencies, increasing the chance of being within reach of the
gravitational wave detectors.
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Figure 31: Gravitational wave signal from first order phase transition associated with
the potential with parameters λ = −0.45, m = 2, y = 1.432, and Λ = µ = 100. The
parameters describing the phase transition are listed in Table 7 for the various scales.
The appropriate units for the dimensionful parameters can be restored by multiplying
by the last line in that table.

Benchmark Point 4

fa (108GeV) 1 2.61 10

α 0.40 0.61 -

β/H? 41.3 13.6 -

T? (107GeV) 1.83 4.20 -

Tp (107GeV) 1.49 3.16 -

Units (106GeV) 1.56 4.08 15.6

Table 7: Quantities pertaining to the analysis of the gravitational spectrum for various
scales for the benchmark λ = −0.45, m = 2, y = 1.432, and Λ = µ = 100. The
appropriate units for the dimensionful parameters can be restored by multiplying by the
last line in this table.

5.3.2 Approximating the model

The previous subsection was dedicated to the numerical analysis of the Peccei-Quinn
phase transition in the minimal KSVZ model including a dimension 6 operator. This
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included the computation of the important quantities related to phase transition and
the gravitational wave spectrum. However, it would be preferable to have analytic ex-
pressions for these quantities to get a better understanding of their scaling with the
parameters of the model. In the next subsections, various approximations are consid-
ered in this Peccei-Quinn model including a dimension 6 operator. This allows one to
obtain analytic results for the bounce action as well as the parameters α and β/H?, de-
termining the gravitational wave spectrum, as functions of the coupling and mass scales
of the scalar potential. The results in this subsection also comprise of original work for
the thesis.

The objective is to write the potential in such a way that it only depends on one parame-
ter, say δ, instead of the various coefficients that were originally present in the potential.
This will be achieved via a field redefinition. The new parameter δ itself will be a func-
tion of the original coefficients. This idea is based on [109], where this was achieved for
a quartic potential. The generalization to a potential including a dimension 6 operator
is original work. The trick is that the bounce action can be computed for various values
of δ, after which these data points can be fitted. This yields a function that can be
used to determine the bounce action for any value of δ, without having to compute the
bounce action each time. To achieve this, some terms in the potential will be neglected.
Nonetheless, it will be shown that the absence of such terms can be corrected by a small
variation of other parameters in the model.

The potential under consideration contains not only the tree-level contribution, but
also the one-loop and thermal corrections, both coming from the scalar field and the
fermion. This is where the first approximation comes in: the scalar contribution will
be neglected. Nevertheless, an example demonstrates that this approximation can be
compensated by shifting one of the parameters. Indeed, lowering the Yukawa coupling
in the case of the approximation will yield similar results as the ones obtained with the
full potential. This can be seen in Fig. 32, where the bounce action is used to illustrate
this. It is important to stress that this approximation, although not exact, can still be
very useful. Getting an intuition of how the bounce action behaves when varying various
parameters can be achieved by considering this approximation with a re-scaled Yukawa.

Before continuing, it might be interesting to give more thought to why this approxima-
tion can be compensated by the lowering of the Yukawa coupling. For this, consider
the one-loop corrections given in Fig. 33. As the scalar loop has two vertices, coming
from the quartic interaction with coupling λ, this diagram will contribute as ∼ λ2. On
the other hand, the fermion loop has four insertions of the Yukawa coupling, resulting
in a ∼ y4 contribution. However, as the latter is a fermion loop, it will carry a minus
sign, differing from the positive scalar one-loop contribution. When considering the full
theory, an effective one-loop correction ∼ λ2 − y4 is present. However, when neglecting
the scalar loop contribution, this correction will only contain a term ∼ −y4. It is clear
that the quartic coupling λ makes the effective one-loop correction less negative, which
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Figure 32: Bounce action computed with the full potential (blue), the approximation
with only fermions with the same Yukawa coupling (green) and with a lower coupling
(red). As can be seen, the approximation with a lower Yukawa coupling matches the
bounce action of the full potential. The units of the dimensionful parameters did not
need to be specified as only the dimensionless ratio mattered for this computation.

can also be achieved by simply lowering the Yukawa coupling in the case where the scalar
is not considered. This is only an estimate in which the pre-factors are not computed
exactly, but it already shows conceptually why lowering the Yukawa coupling helps to
get closer to the result obtained by using the full theory.

Figure 33: Two diagrams contributing to the quartic scalar interaction at one-loop.

One recalls that the goal is to be able to write the potential as a function of one parameter
only. To this end, another approximation is made. Instead of using the exact expression
in the computation of the thermal contribution of the fermion given by Eq. (2.15), the
high-temperature expansion will be used, i.e. Eq. (2.16). Again, this effect can be com-
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pensated by lowering the Yukawa coupling of the fermion. This is depicted in Fig. 34,
where the full potential is compared to the approximated one with the same and lower
Yukawa coupling for a specific point in parameter space.

Figure 34: Comparison between the full potential with y = 1.05 (blue) and the approx-
imation with only fermions for y = 1.05 (green) and y = 1.023 (red) for λ = −0.24,
m = 1, µ = Λ = 100 and temperature T = 13, where the units of the dimensionful
parameters did not need to be specified as only the dimensionless ratio mattered for this
computation.

Ignoring the scalar contribution to the one-loop correction yields

V1(φ) = −3y4φ4

64π2

(
log

y2φ2

2µ2
− 3

2

)
, (5.17)

where the expression for the mass of the fermion given by Eq. (5.14) was filled in. Using
the high-temperature expansion in Eq. (2.16), the fermionic thermal contribution to the
potential reads

VT (φ, T ) = −6T 4

π2

(
7π4

360
− π2

48T 2
y2φ2 − 1

128

y4φ4

T 4
log

y2φ2

2afT 2

)
, (5.18)

where the expression for the mass was used again and log af = 2.6351, as previously
introduced [1]. Putting the above results together, one finds that the potential, including
only fermionic corrections, takes the form

V (ρ) =
1

8Λ2
ρ6+

(
λ

4
+

9

128π2
y4 +

3

64π2
y4 log

(
µ2

afT 2

))
ρ4+

(
1

2
m2 +

T 2y2

8

)
ρ2, (5.19)
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such that the potential depends on the field ρ and essentially three parameters, i.e. the
temperature-dependent coefficients in front of ρ2, ρ4 and ρ6.

To summarize, the full potential was approximated by neglecting the scalar one-loop
and thermal corrections and by approximating the fermionic thermal contribution by
its high-temperature expansion. It was then illustrated that the result of the full the-
ory could be recovered by changing the Yukawa coupling a few percent. As is made
clear by the two graphs in Fig. 32 and Fig. 34, the final approximation with a lowered
Yukawa coupling yields similar results to the full potential. Although these results are
not identical, this can still be useful. For example, this approximation can be used to
study behaviors as parameters are varied. Furthermore, it could be that this difference
of a few percent in Yukawa coupling is irrelevant. Indeed, suppose that one wants to use
a gravitational wave signal to obtain an indirect measurement of the parameters of the
model. Using the approximated model to get the value of the Yukawa coupling from the
gravitational wave signal, one knows there will be an error of a few percent because the
approximation was used. However, this could be completely irrelevant in the sense that
an error of a few percent would have been obtained from the exact model due to an error
in the gravitational wave signal that was measured, e.g. due to detector noise. Thus,
both approximated and exact model would yield an error, but using the approximated
model to do the analysis will be simpler.

5.3.3 Semi-analytic understanding of the bounce action

The aim of this section is to obtain a semi-analytic result for the bounce action, as
this would make the computation of the parameters describing the phase transition
numerically more efficient. To this end, the potential needs to be rewritten in terms
of a single parameter δ. It was just shown that by making some approximations, the
potential can be written in the form

V = aρ6 − bρ4 + cρ2, (5.20)

where these coefficients relate to the ones of Eq. (5.19) and are all positive. Indeed, the
coefficient in front of the quartic in Eq. (5.19) is negative as we are working in the high
temperature regime, such that there is a barrier present. As mentioned previously, the
goal is to write this potential as a function of one single parameter, say δ. Hence, the
following coordinate transformation is used

ρ =

√
b

6a
φ, r =

√
6a

b
ξ. (5.21)

This allows one to write the equation of motion

d2ρ

dr2
+

2

r

dρ

dr
− ∂V

∂ρ
(ρ(r)) = 0 (5.22)

as
d2φ

dξ2
+

2

ξ

dφ

dξ
− ∂Ṽ

∂φ
(φ(ξ)) = 0, (5.23)
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where the potential now reads

Ṽ =
1

6
φ6 − φ4 +

δ

2
φ2. (5.24)

Thus, it is possible to write the potential as a function of a single coefficient δ, which
relates to the original coefficients as

δ =
12ac

b2
. (5.25)

Computation of the bounce action
As will be clear later on, it is interesting to write the potential differently, by separating
the part of the potential where the two minima are degenerate and a part that causes
the asymmetry between the two minima. The potential now looks like

Ṽ (φ) =
1

6
φ2(φ2 − 3)2 − φ2

2
(3− δ) = V0 + Vε, (5.26)

where V0 represents the case when the two vacua are degenerate and Vε causes the
asymmetry between vacua. For δ = 0, there is no barrier, whereas for values between
0 and 3 a barrier is present. The value δ = 3 corresponds to the case where the two
minima are degenerate and above this value, the minimum at the origin is the global
minimum.
Recall that the objective is to compute the bounce action for various values of the
parameter δ. Starting from the action S3 given by

S3 = 4π

∫ ∞
0

dr r2

(
1

2

(
dρ

dr

)2

+ V (ρ(r))

)
, (5.27)

one can apply the coordinate transformations (5.21), yielding

S3 =
4π√
6a

∫ ∞
0

dξ ξ2

(
1

2

(
dφ

dξ

)2

+ Ṽ (φ(ξ))

)
=

4π√
6a
B3(δ), (5.28)

where BN was just introduced as

BN =

∫ ∞
0

dξ ξN−1

(
1

2

(
dφ

dξ

)2

+ Ṽ (φ(ξ))

)
, (5.29)

where N = 3 or 4, depending on which action needs to be computed, i.e. S3 or S4 (see
Section 2). The next step to obtain a semi-analytic expression for the bounce action is
to numerically compute this function and fit it. However, to obtain a smoother function,
one considers the ratio of the above quantity to the same quantity in the thin-wall limit
of the bubble [40, 70, 110]. In this limit, it is assumed that the bubble radius R is big
compared to its thickness. Concretely, this means that the region of the bubble profile
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Figure 35: Illustration of the bounce profile in the thin-wall limit. As can be seen, the
region where the field changes from true to false vacuum around ξ ∼ R is small compared
to R.

φ(ξ) where the field φ changes from one vacuum to another at ξ ∼ R is small compared
to R. This is illustrated in Fig. 35. In this thin-wall regime, one can split the above
integral over three regions: ξ < R, ξ ∼ R and ξ > R. The last case corresponds to
the region where the field φ sits in the false vacuum, where the potential is zero and
dφ
dξ = 0. Thus, this region does not contribute to the integral in Eq. (5.29). For the case

ξ < R, the field sits in the true vacuum, where V (φT ) = −ε and dφ
dξ = 0. Therefore, this

contribution reads ∫ R

0
dξ ξN−1Ṽ (φT ) = −εR

N

N
. (5.30)

The last contribution comes from the region where φ transitions from true to false
vacuum over ∆ξ at ξ ∼ R. Here, it is assumed that R is large enough such that dφ/dξ
can be neglected, yielding∫

∆ξ
dξ ξN−1

(
1

2

(
dφ

dξ

)2

+ Ṽ (φ(ξ))

)
= RN−1S1, (5.31)

where the dimensionless one-dimensional action S1 was defined. In this case, it reads

S1 =

∫
dξ 2V0(φ) =

∫ φT

φF

dφ
√

2V0, (5.32)

extending from false to true vacuum and with the assumption that Ṽ ≈ V0. As this
computation is performed in the case of almost degenerate vacua, this assumption is
valid. The above result is obtained by using dξ = dξ

dφdφ, together with the expression for
dξ
dφ obtained from the equation of motion. The above computations allow one to write
BN , given by Eq. (5.29), in the thin-wall limit as

BTW,N = RN−1S1 −
εRN

N
. (5.33)
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However, the bubble radius R is still unspecified. Extremizing BTW,N with respect to R
yields

R = (N − 1)S1/ε, (5.34)

after which one obtains

BTW,N =
(N − 1)N−1

N

SN1
εN−1

. (5.35)

Applying the above results to the potential that is considered here, one is able to read
off from Eq. (5.26) that ε = 3

2(3− δ). Using the same equation, the computation of S1

gives

S1 =

∫ φT

φF

dφ
√

2V0 =
1√
3

∫ √3

0
φ(3− φ2)dφ =

9

4
√

3
. (5.36)

Putting this together in Eq. (5.35), one finds BTW,N :

BTW,N =
(N − 1)N−1

N

3N/2+1

(3− δ)N−12N+1
, (5.37)

which for N = 3, since the quantity of interest will be S3, takes the form:

BTW,3 =
33/2

4(3− δ)2
. (5.38)

Going back to the original objective of fitting the action S3, one defines the ratio R3(δ)
as the ratio of B3(δ) to the thin-wall limit BTW,3, given by Eq. (5.38), yielding

R3(δ) =
B3(δ)

BTW,3
=

4

33/2
(3− δ)2B3(δ). (5.39)

The following step consists of the numerical computation of R3(δ), and thus also B3(δ),
after which this function only needs to be fitted once. This function is reasonably fitted
by

R3(δ) =
√
δ
(
γ0 + γ1δ + γ2δ

2 + γ3δ
3
)
, (5.40)

where γ0 = 2.4239, γ1 = −0.4640, γ2 = −0.1343 and γ3 = 0.0284. Using this expression
together with Eq. (5.28) and (5.39), one is able to find a semi-analytic expression for S3:

S3 =
33/2π√

6a(3− δ)2

√
δ
(
γ0 + γ1δ + γ2δ

2 + γ3δ
3
)
. (5.41)

It is important to stress the advantage of such an expression and how time-saving this
is. Indeed, now for any combination of the original parameters of the model and for
any temperature, the corresponding δ can be computed using Eq. (5.25), after which
the result can be used to calculate the action S3. Subsequently one divides S3 by the
temperature, yielding the value of the bounce action at that temperature. As an example,
the exactly computed bounce action with the above approximations is displayed together
with the semi-analytic approximation in Fig. 36.
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Figure 36: Bounce action for the approximation with only fermionic contributions com-
puted using the semi-analytic approximation (blue) and using numerics only (red) for
λ = −0.24, m = 1, y = 1.02 and Λ = µ = 100, where the units of the dimensionful
parameters did not need to be specified as only the dimensionless ratio mattered for this
computation.

Parameters describing the phase transition
With this approximation, it is also possible to write an expression for the parameters
describing the phase transition associated with the potential in Eq. (5.20), namely α
and β/H? for a given temperature. From a computation point of view, this saves a lot
of time as the numerical work now just boils down to filling in some values in a formula.
However, the nucleation temperature T? still needs to be computed numerically and will
serve as input for the other two parameters.
First, the computation of α is outlined. To compute α, one needs to determine the vac-
uum energy density given in Eq. (2.45). Recall that to this end, the vacuum expectation
value of the potential needs to be determined as a function of the temperature. The
vacuum of the potential in Eq. (5.20) is found by minimizing the potential and yields

η(T ) =

√
4b+

√
16b2 − 48ac

12a
, (5.42)

where, as in Eq. (2.45), η(T ) stands for the vacuum expectation value at temperature
T . It is important to keep in mind that the parameters of the potential b and c are
functions of the temperature. Indeed, a, b and c correspond to the coefficients of the
approximated potential in Eq. (5.19). As the potential needs to be evaluated at the
vacuum to determine the vacuum energy density, the above result is filled in the potential,
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which now reads

V (η(T ), T ) = −b+
√
b2 − 3ac

27a2

(
−6ac+ b

(
b+

√
b2 − 3ac

))
. (5.43)

The following ingredient that is necessary in the computation of the vacuum energy
density is the derivative of the potential with respect to the temperature. This can be
determined to be:

dV

dT
(η(T ), T ) =

8π2aT 2y2
(√

b2 − 3ac+ b
)
− 2by4

(√
b2 − 3ac+ b

)
+ 3acy4

96π2a2T
, (5.44)

where the explicit expression of the coefficients a, b and c and was used by comparing
Eq. (5.20) to Eq. (5.19) to obtain the expression for the coefficients. Finally, α then
takes the form

α(T ) =
30

π2g?T 4

(
−V (η(T ), T ) + T

dV

dT
(η(T ), T )

)
, (5.45)

where Eq. (5.43) and Eq. (5.44) can be plugged in and g? is the number of relativistic
degrees of freedom, as introduced in Section 2.

With an expression for α, one can now proceed to compute β/H. The expression for
β/H follows directly from its definition. Indeed, now that a semi-analytic expression is
available for the bounce action, namely Eq. (5.41), one can simply compute its derivative
and multiply by T , yielding β/H at a specific temperature T :

β

H
(T ) =

π33/2

√
6a(3− δ)2
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γ0δ

1/2 + γ1δ
3/2 + γ2δ
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2
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2
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2
γ3δ
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,

(5.46)

where

δ′ =
12a

b4

(
y2b

4
T − 3

bcy4

16π2T

)
(5.47)

and the coefficients γi are given above Eq. (5.41). This last quantity δ′ is the derivative
of δ with respect to the temperature. It can be computed by filling in the explicit expres-
sion of the coefficients a, b and c and compute their derivative, i.e. compare Eq. (5.20)
to Eq. (5.19) to obtain the expression for the coefficients.

After the numerical computation of the nucleation temperature T?, both α(T ) and
β/H(T ) can be evaluated at that temperature to yield the parameters describing the
phase transition. It is important to stress that these expressions are not approximate.
These are the exact formulas for α and β/H, using the approximate potential given by
Eq. (5.20).
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Scan over the parameter space
With this semi-analytic computation, the scans in Fig. 19 can now be redone, i.e. com-
puted with the approximate potential, and compare it with the full potential to see how
accurate this approximation is. The result is shown in Fig. 37.

Figure 37: α, β/H? and T? for various values of λ and m, with y = 1.05 and µ =
Λ = 100 using the semi-analytic approximation with only fermionic contributions. The
appropriate units for the dimensionful parameters can be restored by multiplying by
4.08× 106 GeV.

A difference that stands out is that the region of no nucleation is substantially larger
when the approximation is used. This was to be expected as it was seen that one of
the consequences of approximating the model with only fermionic contributions was a
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larger bounce action. Recall that the bounce action needs to go low enough to allow
for the nucleation condition given by Eq. (2.43) to be satisfied. Thus, it makes sense
that this approximation results in a larger region where nucleation does not take place.
Nonetheless, one clearly recognizes the same trend for the various parameters in these
scans. Indeed, α and β/H? still display the same correlation: as α increases, β/H? de-
creases, together with the nucleation temperature T?. Furthermore, the highest values
of α and thus, also the lowest values of β/H?, can be found closest to the region where
nucleation does not take place.

It was previously mentioned that when lowering the original Yukawa coupling a few
percent, the approximation would match the exact result better. To illustrate this, the
scan is repeated using the semi-analytic approximation, but with a lower Yukawa cou-
pling. This results in the scans depicted in Fig. 38. One notices that the region where
nucleation does not happen now matches in both scans, showing that a lower Yukawa
coupling indeed reduces the bounce action.

As an example, the analysis of one of the benchmark points will be performed using
the above approximation for comparison. To this end, consider benchmark point 1 in
Table 2, i.e. λ = −0.4, m = 2, y = 1.05, and Λ = µ = 100. Only the case where the
units are chosen such that fa = 2.86×108 GeV will be considered here, namely 4.08×106

GeV. The relevant quantities will be computed using the semi-analytic approximation
for two different Yukawa couplings : y = 1.05 and y = 0.97 as in the scans above. The
bounce action is depicted in Fig. 39 for comparison. The parameters describing the
phase transition in the various cases are summarized in Table 8.

Full potential Approximation

Yukawa y 1.05 1.05 0.97

fa (108GeV) 2.86 2.76 2.82

α 0.038 0.043 0.030

β/H? 498 330 404

T? (107GeV) 12.1 11 12.7

Table 8: Quantities pertaining to the analysis of the gravitational spectrum for various
scales for the benchmark λ = −0.4, m = 2, y = 1.05, and Λ = µ = 100 for the full
potential and the approximation. The appropriate units for the dimensionful parameters
can be restored by multiplying by 4.08× 106 GeV.

From Table 8, it is clear that the values of the parameters α, β/H? and the nucleation
temperature T? obtained using the semi-analytic expression with only fermionic contri-
butions do not entirely match the exact result using the full potential. This was to be
expected, as the scalar contributions are after all completely neglected. Nonetheless, the
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Figure 38: α, β/H? and T? for various values of λ and m, with y = 0.97 and µ =
Λ = 100 using the semi-analytic approximation with only fermionic contributions. The
appropriate units for the dimensionful parameters can be restored by multiplying by
4.08× 106 GeV.

semi-analytic approximation is still useful. It allows to get an estimate of the behavior
of the quantities describing the phase transition in a computationally efficient way. In-
deed, one sees that the behavior of the parameters in the scans with the semi-analytic
approximation, i.e. location of highest values, correlation, etc., agree with the scans
where the quantities are computed exactly using the full potential. Therefore, such an
approximation can be used to probe large regions of parameter space very efficiently.
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Figure 39: Bounce action computed exactly for the full potential (blue), together with
the semi-analytic computation with only fermionic contributions for y = 1.05 (green)
and y = 0.97 (red) for λ = 0.4, m = 2 and Λ = µ = 100. The appropriate units for the
dimensionful parameters can be restored by multiplying by 4.08× 106 GeV.

After this, one can then focus on a specific region of interest and use the exact numerics
with the full potential to obtain the correct value of the parameters.

5.3.4 Summary of the results

This last realization of the axion assumed a KSVZ-type model where the tree-level po-
tential was augmented by a dimension 6 operator, motivated by effective field theory.
It is found that this model exhibits first order phase transitions for a wide range of pa-
rameter values. Scans were performed to explore the parameter space, after which some
benchmark points were studied in more detail. A more in depth analysis revealed that
the stochastic background of gravitational waves generated during this phase transition
is within reach of the Einstein Telescope and even the LIGO-Virgo experiments once
their designed sensitivity is reached, as can be seen from Fig. 30 and Fig. 31. Further-
more, a semi-analytic understanding of the potential was developed as a way to have
more intuition on how the various parameters of the phase transition vary as function
of the underlying parameters of the model.
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6 Conclusion and Outlook

This work started with the review of gravitational waves and more specifically, a stochas-
tic background of gravitational waves. This background can be generated by a number
of unresolved sources such as the merger of binary black holes or binary neutron stars,
but can also be generated during the cosmological evolution of the Universe, e.g. during
phase transitions [13]. The latter constituted the focus of this thesis. After the intro-
duction of the effective potential, which includes both one-loop and thermal corrections
to the tree-level potential, first order phase transitions were discussed in detail. It was
explained how bubbles of true vacuum start appearing in a sea of false vacuum, con-
verting the Universe from false to the true vacuum as the bubbles expand. The bubbles
themselves do not generate a stochastic background of gravitational waves, but the col-
lision of such bubbles does. This is because asymmetry is needed for the generation
of gravitational waves, as the signal is related to the quadrupole moment. This gravi-
tational wave signal was found to get contributions from the collision of bubble walls,
from sound waves developing in the plasma and from magnetic turbulence. However,
it was seen that the largest contribution came from sound waves. The position of the
peak of the stochastic background of gravitational waves is determined by the scale of
the temperature at which the phase transition completes, favoring lower scales, typically
T? ∼ 102−107 GeV, to be within reach of the current and future experiments. The above
concepts were then applied to the analysis of a stochastic gravitational wave background
from first order phase transitions in the remainder of the thesis.

Next, the Strong CP problem was reviewed in more detail. This problem follows from
the fact that a CP violating term θ

32π2GµνG̃
µν cannot be excluded from the Lagrangian.

From experimental bounds on the neutron electric dipole moment, it follows that the
θ-angle must be less than 10−9 [5]. As the other sources of CP violation in the SM are
O(1), namely in the CKM matrix, this poses the question as to why this new angle is so
small compared to the other sources of CP violation in the SM [6]. This question is also
known as the Strong CP problem. Various solutions to this problem have been proposed,
but the one of interest in this work is the axion solution. This solution assumes an extra
U(1) symmetry, usually referred to as the Peccei-Quinn symmetry [7,8]. The Goldstone
boson associated with the spontaneous symmetry breaking of this U(1)PQ is the axion.
The θ angle is then promoted to a dynamical variable including the axion field a(x):
θ(x) = a(x) + θ. The axion field is such that its potential is minimized for θ(x) = 0,
thus solving the Strong CP problem.

A warm-up exercise was then preformed in order to get acquainted with the various
methods involved in the analysis of the phase transition and the gravitational wave sig-
nal. First order phase transitions were explored in the context of the SM with a cubic
term in the Higgs potential. The same approach as in [98] was followed and yielded
similar results.
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The last section constituted original work on the analysis of the KSVZ model and its ex-
tensions. The possibility of the generation of visible gravitational wave signatures from
first order phase transitions associated with the breaking of the Peccei-Quinn symmetry
was explored. Armed with the necessary tools from the previous section, the minimal
KSVZ model, i.e. the SM together with a scalar and a fermion both charged under
U(1)PQ, was explored. An extension of this model with two fermions instead of one was
also considered. In both cases a barrier was not present and thus, no first order phase
transition was found. Nevertheless, it is not excluded that adding more fermions would
not generate a barrier.
Subsequently, another approach was adopted, in which the minimal KSVZ model was
considered again, but with a dimension 6 operator added to the tree-level potential. This
model was found to exhibit first order phase transitions leading to a gravitational wave
signal. As the computation of the various quantities describing the phase transition is
quite cumbersome, a semi-analytic approach was developed as a way to simplify the nu-
merical computations and therefore, obtain results in a computationally more efficient
way. This method is based on various approximations of the potential and does not yield
exact quantitative results. Nevertheless, it clearly displayed the same qualitative behav-
ior for the parameters describing the phase transition. Furthermore, this semi-analytic
approximation can be used to explore the parameter space and acquire more information
on how different quantities change as the parameters of the model are varied.

Figure 40: Gravitational wave experiments with signal for various stochastic back-
grounds, including binary black holes (blue) [37], binary neutron stars (cyan) [111] and
Peccei-Quinn phase transition obtained in this work (black).
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The exploration of the parameter space allowed to find parameter values for which the
resulting gravitational wave spectrum would be detectable by the future Einstein Tele-
scope and even LIGO-Virgo once their designed sensitivity is reached. This is displayed
in Fig. 40, which illustrates that the stochastic background of gravitational waves gener-
ated during phase transitions can be larger than the predicted astrophysical background
(e.g. binary black holes and binary neutron stars). Moreover, the shape of the spectrum
from a phase transition is different, obeying a broken power-law. These elements make
the detection of such spectra generated by phase transitions promising, both with cur-
rent and future gravitational wave detectors. These results provide a working example of
how gravitational waves can be used to probe high energy physics beyond the Standard
Model which would not be otherwise accessible at colliders due to the high energy scales
involved.

A first aspect that should be the subject of research following this work is the gen-
eration of a barrier in models including more fermions. In this work, only the KSVZ
model with up to two fermions was considered. Other models with more fermions were
not explored due to the large amount of free parameters in such a model. Adding more
fermions would yield more complicated mass eigenvalues as a function of the scalar field,
potentially allowing for the thermal generation of a barrier [46].
Finally, it would be interesting to consider non-standard realization of the axion still
solving the strong CP problem. In more extended theories, the typical relation between
the axion decay constant and its mass can be different than the one for the QCD axion.
This leads to different phenomenological constraints on the axion, e.g. it allows to lower
the scale of the decay constant. From the point of view of the generation of a detectable
stochastic background of gravitational wave this is very interesting, as it was seen that
lower scales are favored to ensure that the peak of the gravitational wave is in the fa-
vorable frequency range to allow for detection. A specific mechanism to lower the scale
of the decay constant is given in [112] and is reviewed in Appendix B.
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Appendices

A Renormalization Conditions

It will now be shown that one can go from the MS renormalization scheme, given by
Eq. (2.11), to the one where the tree-level vacuum expectation value and mass are not
altered by the one-loop correction, namely Eq. (2.14). This will be done for the case the
squared masses are at most quadratic in the fields. This entails that the potential of the
scalar will be taken of the form

V = −m
2

2
φ2 +

λ

4
φ4. (A.1)

This potential has a vacuum expectation value v, such that v2 = m2

λ . For simplification,
only one fermion will be considered together with the scalar. The method remains the
same when generalizing to more fermions. The mass of the scalar and the fermion are
respectively given by

m2
φ(φ) = 3λφ2 − λv2 and m2

f (φ) =
y2

2
φ2. (A.2)

One starts from the one-loop correction and counter-terms

V1 + V ct
1 =

1

64π2

∑
i

nim
4
i (φ)

(
log

m2
i (φ)

µ2
− Ci

)
+

1

2
aφ2 +

1

4
bφ4, (A.3)

where the sum ranges over the scalar and the fermion and a and b are determined by
requiring that

d(V1 + V ct
1 )

dφ

∣∣∣∣
φ=v

= 0 and
d2(V1 + V ct

1 )

dφ2

∣∣∣∣
φ=v

= 0. (A.4)

Evaluating the first derivative of Eq. (A.3) yields

d(V1 + V ct
1 )

dφ
=

1

32π2

(
m2
φ

dm2
φ

dφ
log

m2
φ

µ2
−m2

φ

dm2
φ

dφ

− 12

(
m2
f

dm2
f

dφ
log

m2
f

µ2
−m2

f

dm2
f

dφ

))
+ aφ+ bφ3,

(A.5)

where the φ-dependence of the masses is not written explicitly, i.e. m2
φ = m2

φ(φ) and

m2
f = m2

f (φ). The second derivative reads:

d2(V1 + V ct
1 )

dφ2
=

1

32π2

(dm2
φ

dφ

)2

log
m2
φ

µ2
+m2

φ

d2m2
φ

dφ2
log

m2
φ

µ2
−m2

φ

d2m2
φ

dφ2

− 12

(dm2
f

dφ

)2

log
m2
f

µ2
+m2

f

d2m2
f

dφ2
log

m2
f

µ2
−m2

f

d2m2
f

dφ2

+ a+ 3bφ2.

(A.6)
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A short-hand notation is now introduced:

ω = m2
φ(v) = 2λv2, ω′ =

dm2
φ(φ)

dφ

∣∣∣∣
φ=v

= 6λv, ω′′ =
d2m2

φ(φ)

dφ2

∣∣∣∣
φ=v

= 6λ

γ = m2
f (v) =

y2v2

2
, γ′ =

dm2
f (φ)

dφ

∣∣∣∣
φ=v

= y2v, γ′′ =
d2m2

f (φ)

dφ2

∣∣∣∣
φ=v

= y2

(A.7)

After this, both Eq. (A.5) and Eq. (A.6) can be evaluated at φ = v and solved for a and
b, yielding:

a =− 1

64π2

((
3
ωω′

v
− ω′2 − ωω′′

)
log

ω

µ2
+ ωω′′ − 3

ωω′

v

+ 12

((
γ′2 + γγ′′ − 3

γγ′

v

)
log

γ

µ2
− γγ′′ + 3

γγ′

v

)) (A.8)

b =
1

64π2v2

((
ωω′

v
− ω′2 − ωω′′

)
log

ω

µ2
+ ωω′′ − ωω′

v

+ 12

((
γ′2 + γγ′′ − γγ′

v

)
log

γ

µ2
− γγ′′ + 3

γγ′

v

)) (A.9)

Filling in the explicit expression for ω and γ, one finds

a = − 1

16π

(
−3λ2v2 log

ω

µ2
− 6λ2v2 + 3y4v2

)
(A.10)

and

b =
1

16π2

(
−9λ2 log

ω

µ2
+ 3y4 log

γ

µ2

)
. (A.11)

These can be plugged back into Eq. (A.3). To obtain the final result, one uses the fact
that the squared masses are of the form m2

i = σ2 + τφ2. This is essential to be able to
write the final expression. If the masses were not of that form, some extra terms would
be present in the following equation. It can then be shown that the above expression for
the one-loop potential and its counterterms reduces to

V1 + V ct
1 =

1

64π2

(
m4
φ(φ)

(
log

m2
φ(φ)

m2
φ(v)

− 3

2

)
+ 2m2

φ(φ)m2
φ(v)

− 12m4
f (φ)

(
log

m2
f (φ)

m2
f (v)

− 3

2

)
− 24m2

f (φ)m2
f (v)

) (A.12)

This is exactly the one-loop correction from the other renormalization scheme given by
Eq. (2.14). Thus, the above computation shows that one can go from one renormalization
scheme to the other by requiring that the tree-level vacuum expectation value and mass
are not altered by the one-loop contribution and its counterterms, provided that the
square of the masses is at most quadratic in the field.
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B Lowering the scale fa

One recalls from Section 3 that the value of fa can be constrained by experiments. The
most stringent constraint came from supernovae, reading fa & 2 × 108 GeV. However,
it was argued that one might want to consider lower scales to be within reach of gravi-
tational wave experiments. A possible way to lower the scale is given in [112]. There, a
mirror sector is introduced as an attempt to lower the scale for fa. A Z2 symmetry is
considered to exchange between the fields of the mirror sector and the ones of Standard
Model. The mirror sector is assumed to have the same gauge structure as the Standard
Model to ensure that the Standard Model does not carry any charges of the mirror sector
and vice versa. Furthermore, the dimensionless couplings are the same in both sectors,
including the θ angle. A Z2-invariant coupling between QCD and axion is given by

αs
8π

(
a

fa
+ θ

)(
GG̃+G′G̃′

)
. (B.1)

The non-perturbative QCD’ contribution to the axion potential near its minimum will
be [112]:

V ′ = 0.3× (α−0.4
s × Λ′QCD)4

(
a

fa
+ θ

)2

+O

((
a

fa
+ θ

)4
)
. (B.2)

This shows that the potential, although having a contribution from the mirror sector,
is still minimized for 〈a〉 = −faθ. Thus, one axion is enough to solve the strong CP
problem in both sectors. Furthermore, the above addition to the axion potential will
contribute to the mass of the axion, changing it to

m2
a ≈

(
mumd

(mu +md)2
m2
πf

2
π + 0.6(α−0.4

s × Λ′QCD)4

)
1

f2
a

(B.3)

instead of the one given by Eq. (3.47), which only included the first term. One of
the effects of this mirror sector is to increase the mass of the axion, or put in other
words, lower the scale of the vacuum expectation value fa. Therefore, the mirror sector
provides a way to lower the scale of fa such that it escapes the current constraints. This
would allow to generate a gravitational wave signal, associated with a first order phase
transition, that falls within reach of gravitational wave experiments. For the discussion
about how the scale influences the peak of the gravitational wave signal, we refer to
Section 2. The values of fa as a function of the axion mass ma are displayed in Fig. 41
for various cases. From this it is clear how the mirror sector allows for values of fa at a
lower scale, which are not excluded by experiments.
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Figure 41: Relation between ma and fa for the QCD KSVZ axion (dotted black) and
for the case of a mirror sector with various values of Λ′QCD. This allows for lower scales,
while escaping current constraints on the axion [112–116].

C Effective Field Theory

The modification of the minimal KSVZ model in Section 5 included a dimension 6 op-
erator in the potential of the scalar. It was mentioned that such an operator could be
achieved in the context of effective field theories (EFTs), as done for the Standard Model
in [106]. A brief review of EFTs and how exactly this can be achieved is outlined below.

The effective Lagrangian is made up of a renormalizable Lagrangian and higher-dimensional
interactions:

Leff = L+
∑
i

1

Λdi−4
ciOi, (C.1)

where di represents the dimension of the operator Oi, Λ is the cut-off scale of the EFT
and ci is called a Wilson coefficient. These coefficients run as functions ci(µ) of the
renormalization group scale µ. It is important to note that the higher-dimensional op-
erators respect the symmetries of the Lagrangian L. To make sure that the UV model
matches the EFT at the energy scale µ = Λ, the coefficients ci(Λ) are determined order
by order in a loop expansion such that the S-matrix elements in the EFT are the same
as the ones of the UV model at that scale. How this matching concretely works, will
not be described here. Nevertheless, one can now think of a possible scenario in which
EFTs might be used. Assume someone has a UV model with massive states and wants
to know how these new states will affect the theory. Of course, one could use the UV
model itself to compute these effects. However, computations using the full UV model
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are usually quite cumbersome, favoring the use of an EFT.

As just mentioned, new massive states can influence the underlying theory. To introduce
a dimension 6 operator in the potential of the Peccei-Quinn scalar Φ given by

L ⊃ m2Φ†Φ + λ
(

Φ†Φ
)2
, (C.2)

another massive complex scalar S charged under U(1)PQ with mass m2
S � f2

a is added,
where fa is the decay constant of the axion. Writing down the allowed couplings for the
new scalar yields the following Lagrangian

L ⊃ |∂µS|2 −m2
S |S|2 +

λS
4
|S|4 +

(
ηΦ|Φ|2 + ηS |S|2

) (
Φ†S + S†Φ

)
−λ1|S|2|Φ|2 − λ2|Φ†S|2 − λ3

(
(Φ†S)2 + (S†Φ)2

)
,

(C.3)

where Φ is the original Peccei-Quinn complex scalar. From the linearized equation of
motion for the field S, one obtains

S ≈ − 1

∂2 −m2
S

ηΦ|Φ|2Φ ≈ ηΦ

m2
S

|Φ|2Φ. (C.4)

When the new massive field is integrated out, i.e. replaced in Eq. (C.3) by the above
value, the term ηΦ|Φ|2

(
Φ†S + S†Φ

)
, which is linear in the new field S, will contribute

to the effective Lagrangian at tree-level. Indeed, in [106] it is shown that to ensure a
tree-level contribution to the effective Lagrangian, a term linear in S is needed. Plugging
in the value of the field S obtained from the equation of motion, one sees this term will
contribute to the Lagrangian as follows:

∆L =
η2

Φ

m2
S

|Φ|6. (C.5)

This illustrates how a dimension 6 operator can be generated in the context of effective
field theory and motivates the addition of such operator to the tree-level potential of the
KSVZ model, which was considered in Section 5.

D Sensitivity curves for gravitational wave experiments

In this work, the sensitivity curve of various experiments was considered for comparison
with the gravitational wave signal obtained in the different models. The computation of
these sensitivity curves is outlined below for the specific example of the LISA interfer-
ometer [117].

The output of a detector can be decomposed into noise and signal: s(t) = n(t) + h(t),
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where n represents the noise and h the signal. A quantity that is used in the compu-
tation of sensitivity curves is called the power spectral density (PSD). It can be shown
that the noise PSD Sn(f) is related to the noise n(t) as

|n(t)|2 =

∫ ∞
0

df Sn(f). (D.1)

In other words, the time average of the square of the noise in the detector is equal to
the integral of the PSD over all positive frequencies [118]. The simulated noise PSD for
LISA is plotted in Fig. 42.

Figure 42: Square root of the LISA noise PSD Sn(f) from the LISA simulator (repro-
duced from [117]).

Apart from the noise PSD, another quantity is of particular interest when considering
sensitivity curves, namely the energy density sensitivity. As a function of the noise PSD,
it reads

Ωs(f) =
4π2

3H2
0

f3Sn(f), (D.2)

where H0 ≈ 67 km s−1 Mpc−1 is the Hubble constant and Sn the noise PSD [119]. Note
that the energy density was already introduced in Eq. (2.6) as the energy density per
log-frequency interval. Similarly the energy density of the gravitational wave itself ΩGW

can be considered, after which the signal to noise ratio SNR can be defined:

SNR =

√
T

∫ fmax

fmin

df

(
ΩGW (f)

Ωs(f)

)2

, (D.3)

where fmin and fmax denote the minimal and maximal frequencies accessible at the de-
tector and T is the observation time.

91



With the above ingredients, one can now compute the power law sensitivity curve (PLS).
The PLS is such that a power law stochastic gravitational wave signal which lies above
this curve has a SNR larger than a given threshold SNRthr. To compute the PLS, one
assumes the energy density of the gravitational wave takes the form of a power law, i.e.
ΩGW (f) = cβf

β, where cβ is a proportionality coefficient. For a wide range of values of
β, ranging from negative values to positive values, the coefficient cβ is determined such
that it provides a SNR equal to some threshold SNRthr:

SNRthr =

√√√√T

∫ fmax

fmin

df

(
C2
βf

2β

Ω2
s(f)

)
. (D.4)

Attributing to each frequency the largest value of cβf
β yields the PLS, guaranteeing that

a power law signal above this curve has an SNR value larger than SNRthr. This PLS is
given in Fig. 43 for a SNRthr=10 and T = 3 years. This corresponds to a data-taking
efficiency of about 75% of the 4 year LISA mission.

Figure 43: Blue: h2Ωs(f) computed using the noise spectral density Sn(f). Red : Power
law sensitivity curve for LISA with SNRthr=10 and T = 3 years, corresponding to a
data-taking efficiency of about 75% of the 4 year LISA mission.
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of Cosmology and Astroparticle Physics, 2010(06):028–028, Jun 2010.
[62] Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir.

Phys. Rev., D92(12):123009, 2015.
[63] Daniel Cutting, Mark Hindmarsh, and David J. Weir. 2019, 1906.00480.
[64] Michael E. Peskin and Daniel V. Schroeder. Addison-Wesley, Reading, USA, 1995.
[65] Steven Weinberg. Phys. Rev. D, 11:3583–3593, Jun 1975.
[66] Stephen L. Adler. Phys. Rev., 177:2426–2438, Jan 1969.
[67] John S Bell and Roman Jackiw. Il Nuovo Cimento A (1965-1970), 60(1):47–61,

1969.
[68] William A Bardeen. Nuclear Physics B, 75(2):246–258, 1974.
[69] Alexander A Belavin, Alexander M Polyakov, Albert S Schwartz, and Yu S Tyup-

kin. Physics Letters B, 59(1):85–87, 1975.
[70] Sidney Coleman. Cambridge University Press, 1988.
[71] M Aubry. Birkhäuser Verlag, 1995.
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