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Introduction

Even though we live our daily life at a scale of roughly 10−3 to 103 meter, scientific
research has opened up a much wider range of scales. Cosmology allows us to
get an idea of the universe at scales of O(1026) m while particle colliders, like the
Large Hadron Collider (LHC) at the CERN laboratory in Geneva, search for the
fundamental building blocks of Nature at a scale of O(10−16) m. Needless to say,
there still remain a lot of unanswered questions in both directions. This thesis
aims at answering at least some of the remaining open questions within reach of
the LHC.

The Standard Model (SM) of particle physics describes the known elemen-
tary particles and their interactions and is a very successful theory as it agrees
to a very large extent with the experimental data. However, as we will see, the
SM is not entirely satisfactory. It covers only about 5% of the energy and mat-
ter content in the universe, the remaining 95% is made of dark matter/energy
and cannot be explained within the SM. Additionally, the SM does not include
gravity, it is described by many free, unpredicted parameters and exhibits an
undesirable sensitivity with respect to some of these. We hence expect the SM
to be a low-energy version of a more fundamental theory which is valid up to
much higher energy scales or, equivalently, much smaller distance scales.

Supersymmetry (SUSY), a symmetry relating fermions and bosons, is an
attractive candidate for this more fundamental theory. It offers a candidate for
dark matter and local supersymmetry is a way to incorporate gravity. SUSY
has already been searched for for a long time, but up to now, it has not been
experimentally observed. Most of the studies are however based on minimal
versions of SUSY and it is very well possible that a signal evaded our attention.
To get a comprehensive overview, it is therefore important to also study less
straightforward, unconventional signatures of SUSY at the LHC. This thesis
takes us along this road and investigates to which extent deviations from the
minimal versions of SUSY are still allowed by experiment and how they could
change the limits on supersymmetry.

This is a very broad subject, ranging from the theoretical formulation and
experimental data analysis to the phenomenological research establishing the
connection between theory and experiment. In this work, we adopt the phe-
nomenological approach, we will use the experimental results and interpret them
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2 CONTENTS

in terms of non-minimal supersymmetric theories by means of phenomenological
tools which are developed within the community. These tools are important as
they facilitate the calculations and make them less error prone, the work pre-
sented here also contributed to their development.

This thesis is divided into two parts. Part I introduces the relevant theoreti-
cal, experimental and phenomenological background briefly mentioning my own
contribution to tool development, i.e. ASperGe, published in

• A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de
Traubenberg, Automated mass spectrum generation for new physics, Eur.
Phys. J. C73 (2013) 2325, [arxiv:1301.5932]

while Part II is devoted to the investigation of three specific scenarios of non-
minimal supersymmetry and is based on the following publications

• R. Argurio, K. De Causmaecker, G. Ferretti, A. Mariotti, K. Mawatari
and Y. Takaesu, Collider signatures of goldstini in gauge mediation, JHEP
06 (2012) 096, [arxiv:1112.5058]

• J. D’Hondt, K. De Causmaecker, B. Fuks, A. Mariotti, K. Mawatari, C.
Petersson and D. Redigolo, Multilepton signals of gauge mediated super-
symmetry breaking at the LHC, Phys. Lett. B731 (2014) 7-12,
[arxiv:1310.0018]

• K. De Causmaecker, B. Fuks, B. Herrmann, F. Mahmoudi, B. O’Leary,
W. Porod, S. Sekmen and N. Strobbe, General squark flavour mixing:
constraints phenomenology and benchmarks, JHEP 11 (2015) 125,
[arxiv:1509.05414].

In preparation of the last publication, I also contributed to the proceedings of
the Les Houches workshop

• G. Brooijmans et al., Les Houches 2013: Physics at TeV Colliders: New
Physics Working Group Report, (2014), [arxiv:1405.1617]

but the work presented there will not be discussed in detail in this thesis.



Part I

Setting the stage





In the first half of this work, we introduce all the concepts and ideas needed
to further understand the more specific projects detailed in Part II. In chapter 1
we start by introducing the Standard Model. We explain the basic concepts of
quantum field theory and show how these are used within the SM to describe all
the known fundamental particles and their interactions. We show that the SM
is a very successful theory which agrees very well with experiment, but we also
see that it has its shortcomings. This motivates us to look for physics beyond
the SM.

In chapter 2 we explain how supersymmetry can solve some of the problems of
the SM. We construct the Minimal Supersymmetric Standard Model, the MSSM,
and explain that the experimental signatures within the MSSM are largely deter-
mined by the lightest supersymmetric particles. Consequently, collider searches
for supersymmetry are now mainly based on simplified models, models in which
only a couple of supersymmetric particles have a mass low enough to be acces-
sible at colliders. We then show that the most straightforward collider searches
for supersymmetric particles did not yield any positive results up to now and,
consequently, minimal realisations of SUSY become less and less likely.

In the first two chapters, we already touch upon the experimental constraints
on the SM and SUSY, but we do it only briefly. A more thorough treatment of
the experimental side of this work is provided in chapter 3. We introduce the
basics of collider physics, we mention the differences between lepton and hadron
colliders and briefly explain how detectors work. We then move on to simulation
tools for colliders. We explain and illustrate every step in the phenomenological
chain, starting from extracting the Feynman rules from a quantum field the-
ory to simulating high-energy collisions, detector simulation and recasting the
experimental analyses.
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Chapter 1

The Standard Model

Elementary particle physics aims at answering the question ‘What is matter made
of and how does it interact?’ Despite the versatility of matter in the universe, it
turns out that the basic constituents of all matter can be brought back to a rather
small number of elementary particles. The Standard Model (SM) of particle
physics describes all the known elementary particles and their interactions. It is
a very successful theory as it describes very well most experimental observations
up to now.

After describing the fundamental particles and forces of the SM in section 1.1,
we introduce the basics of quantum field theory in section 1.2 while the theoretical
formulation of the Standard Model is provided in section 1.3. In section 1.4 we
then explain why the SM is a successful theory and in section 1.5 we explain
where the SM falls short.

1.1 The SM particles and forces

As far as we know now, all matter is built from a finite number of fundamen-
tal particles largely divided in two groups according to their spin. Fermions
have half-integer spin while bosons carry integer spin. Quarks and leptons are
spin-1/2 fermions while the gauge bosons, which mediate the forces, are spin-1
bosons. The recently discovered Brout-Englert-Higgs boson is the only known
spin-0 boson, also called a scalar particle, and is responsible for the mass of all
aforementioned particles. All the known particles and their properties are dis-
played in figure 1.1. The quarks and leptons each come in three families, flavours
or generations and are known to interact through the three fundamental forces:
the electromagnetic force, mediated by the photon, the weak nuclear force me-
diated by the W and Z bosons and the strong nuclear force mediated by the
gluon.

The elementary particles of the Standard Model interact at small distance
scales and their energy is typically higher or comparable to their masses. The

7



8 CHAPTER 1. THE STANDARD MODEL

Figure 1.1: The particle content of the SM. Figure taken from [1].

physics describing their motion and interactions therefore has to incorporate
quantum mechanics as well as the theory of special relativity, this is achieved
in quantum field theory (QFT). Before further describing the SM, we will first
briefly introduce a couple of aspects of QFT relevant for this work.

1.2 Aspects of quantum field theory

1.2.1 Particles, fields and the Lagrangian density

In quantum field theory, particles are represented by fields. In case of a scalar
field, the value taken by the field, is related to its deviation from its equilibrium
state and is hence naturally small. The field can be excited resulting in waves of
which the momentum can only take discrete values, the momentum is quantized.
These discrete excitations correspond to the particles we observe. The way the
particles propagate and interact, is fully determined by the action S which is
defined as the integral over space-time d4x of the Lagrangian density L, a function
of the fields, as

S =

∫
L d4x. (1.1)

The physical behaviour of the fields can be derived from minimizing the action.
The symmetries of Nature have to be reflected in our action and Lagrangian
density. From the theory of special relativity, we know that all physics should
be invariant under the space-time transformations of the Lorentz group, which
include for example rotations of the space coordinates or Lorentz boosts. Conse-
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quently, S and L have to be invariant under the transformations of the Lorentz
group. For a complex scalar field φ, the Lagrangian density can for example be
given by

L = ∂µφ(∂µφ)∗ −m2φφ∗ (1.2)

where ∂µ indicates the derivative with respect to the space-time coordinates
xµ = (t, x, y, z) and contracting the Lorentz-indices µ insures Lorentz invariance.1
The first term is the kinetic term and is related to the propagation of the field
while the second term describes the mass of the field. The scalar field has to
minimize S which will be the case if φ satisfies the Euler-Lagrange equation

∂µ

(
δL

δ(∂µφ)

)
− δL
δφ

= 0. (1.3)

The Euler-Lagrange equation of our complex scalar field, the Klein-Gordon equa-
tion, is given by

∂µ∂
µφ+m2φ = 0 (1.4)

and is called the equation of motion of the field. We already introduced Lorentz
invariance as an example of the importance of symmetries, in the next sec-
tion 1.2.2 we will see that symmetries are also crucial to describe forces in QFT.

1.2.2 Symmetries and interactions

Our example in section 1.2.1 only included one non-interacting scalar field. To
incorporate forces in our model, we will need to introduce a space-time depen-
dent, local, symmetry. Let us consider a massless complex scalar field φ with
Lagrangian density

Lglobalφ = ∂µφ(∂µφ)∗ ≡ |∂µφ|2. (1.5)

This Lagrangian does not change under the U(1) transformation φ→ eiαφ, U(1)
is a symmetry of our model. U(1) is the symmetry group of rotations in the
complex plane and is only a symmetry of our model if the angle of the rotation α is
independent of space-time. We say that U(1) is a global symmetry of the theory.
If we want our Lagrangian to be invariant under a local U(1) transformation
φ → eiα(x)φ, where the parameter of the symmetry transformation, α(x), now
depends on the space-time coordinates, we have to modify the Lagrangian density
to

Llocalφ = |Dµφ|2 ≡ |∂µφ+ igAµφ|2

= |∂µφ|2 + igAµ (φ∂µφ∗ − φ∗∂µφ) + g2AµA
µ|φ|2 (1.6)

where we introduced a vector field Aµ and the covariant derivative Dµ = ∂µ +
igAµ. The coupling constant g indicates how strongly Aµ couples to φ. For Llocalφ

1More details on Lorentz invariance and the conventions adopted in this thesis can be found
in appendix A and in particular section A.1.
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to be invariant under the local U(1) transformation, Aµ is required to transform
as Aµ → Aµ − 1

g
∂µα(x). Promoting a global to a local symmetry is referred to

as gauging the symmetry and the vector field Aµ is accordingly called the gauge
boson. Local U(1) invariance further allows us to write the kinetic term for the
gauge boson as

LA = −1

4
FµνF

µν (1.7)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor. A mass term 1
2
m2
AAµA

µ

for the gauge boson is however not allowed.
Starting from a non-interacting complex scalar field, we saw that gauging a

symmetry naturally leads to the introduction of a massless gauge boson, intro-
ducing interaction terms between the complex field and the gauge boson (the last
two terms in (1.6)) and, as such, the particles from the scalar field also interact
with themselves by exchanging gauge bosons.

The way of gauging the symmetry we explained up to now is sufficient to
model the electromagnetic force with the photon as its massless mediator, but to
explain massive gauge bosons, such as the W and Z bosons of the weak nuclear
force, we will need another mechanism: spontaneous symmetry breaking.

1.2.3 Spontaneous symmetry breaking

The U(1) symmetry allows us to extend the Lagrangian density (1.6) to

L = |Dµφ|2 −
1

4
FµνF

µν − V (φ) (1.8)

with the scalar potential V (φ) = −µ2|φ|2 + λ|φ|4. The state with lowest en-
ergy, the equilibrium or vacuum state, corresponds to the minimum of the scalar
potential where the field φ takes on its vacuum expectation value (vev) 〈φ〉. Re-
quiring the vacuum to be bounded from below implies that λ always has to be
positive. The vev then solely depends on the sign of µ2:

• If µ2 < 0, 〈φ〉 = 0

• If µ2 > 0, | 〈φ〉 | = µ√
2λ
≡ v√

2
corresponding to an infinite number of

degenerate vacua 〈φ〉 = v√
2
eiθ where θ is an arbitrary phase.

This is illustrated in figure 1.2. When µ2 > 0, φ effectively fluctuates around
the vev and since the fields are defined as fluctuations around their equilibrium
value, we have to redefine the field and expand φ around its vev instead of zero.
Since all vacua are equivalent, we can e.g. choose 〈φ〉 = v/

√
2 and expand φ as

φ(x) =
1√
2

(v + η(x)) eiξ(x)/v (1.9)

' 1√
2

(v + η(x) + iξ(x)) . (1.10)
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The Lagrangian density of the scalar field then becomes

|Dµφ|2 − V (φ) =
1

2
∂µη∂

µη − µ2η2 +
1

2
∂µξ∂

µξ + gvAµ∂
µξ +

1

2
(gv)2AµA

µ

+ (terms cubic and quartic in the fields). (1.11)

Even though the original U(1) symmetry is still there, it is no longer apparent
in the Lagrangian density: the vacuum has broken the symmetry. If a theory is
invariant under a symmetry but the vacuum state is not, the symmetry is said
to be spontaneously broken.

In the Lagrangian density (1.11) we observe a massless boson, ξ. This is in
accordance with Goldstone’s theorem [2] which tells us there will be a massless
Goldstone boson for every spontaneously broken generator of a symmetry. As
we can see in the third term in equation (1.11), the Goldstone boson ξ couples
to the gauge boson, However, if we use gauge freedom and go to unitary gauge
by applying a gauge transformation with α = −ξ/v, equation (1.11) modifies the
Lagrangian to

|Dµφ|2 − V (φ) =
1

2
∂µη∂

µη − µ2η2 +
1

2
(gv)2AµA

µ

+ (terms cubic and quartic in the fields) (1.12)

and we see that the Goldstone boson has been removed from the theory. Since it
can be removed by using the gauge freedom, the Goldstone boson is not a physical
particle. η, on the contrary, is a physical massive scalar and, most importantly,
we see that spontaneous breaking of the symmetry generated a mass term for the
gauge boson. This mechanism to generate masses for the gauge bosons is called
the Brout-Englert-Higgs mechanism and was proposed by Brout and Englert [3]
and independently by Higgs [4, 5] and Guralnik, Hagen and Kibble [6] in 1964.

In our example, we introduced an interaction by gauging a global U(1) sym-
metry and we gave mass to the mediator by breaking the symmetry sponta-
neously. The electromagnetic and weak and strong nuclear forces of the SM are
described in an analogous way, but since the SM gauge groups are somewhat
more complicated, we will first introduce some basics of group theory that will
be of help later.

1.2.4 Basics of group theory

Generally speaking, a group is defined as a set of elements for which we can
define a group product × such that, if A and B are elements of the group, their
product A × B is again an element of the group. If A,B and C are elements
of the group, we have (A × B) × C = A × (B × C) = A × B × C, the identity
operation 1 is an element of the group and for every element A there exists an
inverse A−1 which is also part of the group so that A× A−1 = A−1 × A = 1.
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Figure 1.2: The scalar potential V (φ). The left shows a symmetry-conserving
potential with one global minimum corresponding to the case where µ2 < 0. The
potential on the right breaks the symmetry spontaneously resulting in a circle of
degenerate minima, corresponding to µ2 > 0.

A linear representation D of a group maps every group element to a linear
transformation in a vector space: an n-dimensional linear representation corre-
sponds to a set of n× n matrices acting on an n-dimensional vector space. The
vector space is called the representation space or, also, simply the representation.
The n×n matrices together with matrix multiplication fulfil all the requirements
to be called a group, i.e. the mapping of the group to the linear representation
preserves the group structure and is a homomorphism. If the mapping also
has a homomorphic inverse, it is called an isomorphism and the corresponding
representation is referred to as a faithful representation. An n-dimensional rep-
resentation and its complex conjugate are respectively denoted by n and n̄ and
the smallest faithful representation is called the fundamental representation.

The groups most commonly encountered in high-energy particle physics are
Lie groups. Lie groups have an infinite number of group elements g(α) which
depend smoothly on a finite set of continuous parameters α ∈ Rm. Since they
form a group, there has to be a composition law φ which combines every two
elements α and β of the Lie group as

γ = φ(α; β) (1.13)

where γ is again a group element. Similarly, we can find a function ψ relating α
to its inverse group element ᾱ as

ᾱ = ψ(α). (1.14)

For the group to be a Lie group, the composition law φ as well as the inverse ψ
have to be differentiable to all orders.
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Due to the aforementioned differentiability, for small δα, we can Taylor ex-
pand D(δα) around the identity as2

D(δα) = D(0) + iδαa
∂D(α)

∂αa

∣∣∣∣
α=0

+ . . . (1.15)

We can always parametrize the Lie group such that g(0) is the identity element
of the group so that in any linear representation D(0) = 1. If we further define
the generators of the Lie group as T a ≡ ∂D(α)

∂αa

∣∣∣
α=0

, we can rewrite the above as

D(δα) = 1 + iδαaT a + . . . (1.16)

which then, for finite α, allows us to obtain the representation in terms of the
generators as

D(α) = lim
k→∞

(
1 + i

αaT a

k

)k
= eiα

aTa . (1.17)

If we require that the elements D(α) form a group, we find that the generators
have to satisfy the commutation relations

[T a, T b] = fabcT c (1.18)

where fabc is the structure constant. This shows that generators of a Lie group
define an algebra structure, the Lie algebra. From equation (1.18) we also find
the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0. (1.19)

It is now straightforward to show that (T a)bc = fabc fulfils the commutation
relation as well as the Jacobi identity. The structure constants therefore also
form a Lie algebra and the corresponding representation of the Lie group is
called the adjoint representation.

The gauge groups of the Standard Model are based on two kinds of Lie groups:
the group of the unitary n × n matrices U(n) and the special unitary group
of unitary n × n matrices with determinant 1, SU(n). U(n) and SU(n) have
respective group-dimensions n2 and n2 − 1. The fundamental representation is
n-dimensional in both cases and the dimension of the adjoint representation is
equal to the dimension of the group.

According to their interactions, the fields of the SM particles are then ordered
within the representations of the gauge groups, more specifically, they span the
vector space of the representation. If a particle is not charged under one of
the gauge groups, it will transform according to the singlet representation 1. For
example, the leptons are singlets under the gauge group of the strong interaction.
We can now apply the ideas we explained before and write down the Lagrangian
density of the Standard Model.

2We adopt the Einstein summation convention and sum implicitly over a repeated upper-
and lower-index. However, since we restrict ourselves to compact algebras, the position of the
index does not matter here and we simply sum over repeated indices.
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1.3 The Standard Model

1.3.1 The SM Lagrangian density

The Standard Model is based on the gauge groups SU(3)c, SU(2)L and U(1)Y .
The electromagnetic and weak forces are unified in the electroweak theory based
on the SU(2)L×U(1)Y symmetry that was formulated in the 60’s by Glashow [7],
Weinberg [8] and Salam [9]. Around the same time, Gell-Mann came up with the
quark model [10,11] which, together with the work of Gross and Wilczek [12–14]
and Politzer [15,16] in the 70’s, laid the foundations for quantum chromodynam-
ics (QCD), the quantum field theory based on the gauge group SU(3)c describing
the strong interactions. The subscripts indicate that the strong interaction cou-
ples with a colour charge (c), SU(2)L couples only to left-handed particles and
the coupling to U(1)Y is determined by the hypercharge Y of the particle.

We denote the coupling strengths of SU(3)c, SU(2)L and U(1)Y respectively
by gs, g and g′ while TA, T I and Y represent the respective generators of the
fundamental representation.3 The covariant derivative of a field transforming
under the fundamental representation of all gauge groups of the SM, like the
left-handed quarks, is then generally given by

Dµ = ∂µ + igsG
A
µT

A + igW I
µT

I + ig′BµY (1.20)

where A = 1 . . . 8 and I = 1 . . . 3 denote the indices of adjoint representations of
the strong and weak interaction. If a field transforms as a singlet under a certain
gauge group, the generator is zero and the corresponding term in the covariant
derivative will drop out. The covariant derivative of the SM quarks, leptons and
scalars can hence be derived based on the transformation properties of the fields
given in table 1.1.

The field strength tensor for the U(1)Y gauge field is given by

Bµν = ∂µBν − ∂νBµ. (1.21)

For non-abelian gauge groups, the structure constant enters in the field strength
tensor. The field strength tensor of the SU(3)c gauge field is given by

GA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν (1.22)

while the one of SU(2)L reads

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν . (1.23)

Finally, we define /D = Dµγ
µ and ψ̄ = ψ†γ0 where ψ is a Dirac spinor. This

allows us to write the SM Lagrangian density as
3The generators are given by TA = λA/2 and T I = σI/2 where λA are the Gell-Mann

matrices and σI the Pauli matrices which can be found in appendix A.
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Field Spin SU(3)c SU(2)L Y T 3 Q

q =

(
uL
dL

)
1/2 3 2 1/6

(
1/2
−1/2

) (
+2/3
−1/3

)

uR 1/2 3 1 2/3 0 +2/3
dR 1/2 3 1 −1/3 0 −1/3

l =

(
νL
eL

)
1/2 1 2 −1/2

(
1/2
−1/2

) (
0
−1

)

eR 1/2 1 1 −1 0 −1

φ =

(
φ+

φ0

)
0 1 2 1/2

(
1/2
−1/2

) (
+1
0

)

GA
µ 1 8 1 0 - -

W I
µ 1 1 3 0 - -

Bµ 1 1 1 0 - -

Table 1.1: The fields of the SM and their transformation properties under the
SM gauge groups. The electric charge is given by Q = T3 + Y . Only the indices
of the adjoint representations are written explicitly, A = 1 . . . 8 and I = 1 . . . 3
respectively run over the generators of the strong and weak interaction.

LSM = LF + LV + LS + LY (1.24)

where the first term involves the fermions

LF = q̄i /Dq + ūRi /DuR + d̄Ri /DdR + l̄i /Dl + ēRi /DeR, (1.25)

the second the gauge bosons

LV = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν (1.26)

and the third the scalar doublet

LS = (Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2. (1.27)

In the previous equations, the generation, colour and SU(2)L indices were im-
plicit. However, it is instructive to write the generation indices explicitly now.
Using the representation for the generators of SU(2)L where T I = σI

2
with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1.28)

we can define φ̃ = iσ2φ∗ which transforms according to the fundamental repre-
sentation of SU(2)L but has hypercharge −1

2
. This allows us to write the last
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term which contains interactions between the scalar doublet and the fermions,
known as Yukawa interactions

LY = −[q̄iλuiju
j
R φ̃+ q̄iλdijd

j
R φ+ l̄iλlije

j
R φ+ h.c.] (1.29)

where i and j = 1 . . . 3 denote the generation indices. The Yukawa coupling
matrices λu, λd and λl are each 3× 3 matrices in generation space.

In the following we will see how the gauge bosons acquire mass through the
Brout-Englert-Higgs mechanism while mass terms for the fermions are generated
through the Yukawa couplings.

1.3.2 Massive gauge bosons and the
Brout-Englert-Higgs mechanism

Let us have a closer look at the Lagrangian density of the scalar doublet in
equation (1.27). When µ2 > 0, the scalar potential breaks the SU(2)L × U(1)Y
symmetry spontaneously to U(1)em which, analogously to the discussion in sec-
tion 1.2.3, generates mass terms for the gauge bosons of the weak interaction.
The photon remains massless due to the remaining U(1)em. We choose

〈φ〉 =
1√
2

(
0
v

)
(1.30)

where again v = µ√
λ
. In unitary gauge we expand the scalar doublet around its

vev as

φ =
1√
2

(
0

v + h(x)

)
(1.31)

and substitute this in the Lagrangian density. Through a calculation analogous
to the discussion in section 1.2.3, which will not be detailed here, we can find
the mass terms of the gauge bosons. Suppose we work in the basis (1.28) of
the SU(2)L generators. W 3

µ and Bµ appear not to be the mass eigenstates, the
propagating fields are found by diagonalizing the mass matrix and are given by

(
Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3
µ

Bµ

)
(1.32)

where sin θW = g′√
g2+g′2

. Zµ and Aµ correspond respectively to the Z boson of

the weak interaction and the photon mediating the electromagnetic force. The
W±
µ boson is a linear combination of W 1

µ and W 2
µ and is given by

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
. (1.33)
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The covariant derivative in terms of the propagating fields, is then given by

Dµ = ∂µ + igsG
A
µT

A + ig
1√
2

(
W+
µ σ

+ +W−
µ σ
−)

+ i
Zµ√
g2 + g′2

(
g2σ

3

2
− g′2Y

)
+

igg′√
g2 + g′2

Aµ

(
σ3

2
+ Y

)
(1.34)

with

σ+ ≡ 1√
2

(σ1 + iσ2) =
√

2

(
0 1
0 0

)
, (1.35)

σ− ≡ 1√
2

(σ1 − iσ2) =
√

2

(
0 0
1 0

)
. (1.36)

The photon is massless and the masses of the gauge bosons of the weak interaction
are given by

mW =
∣∣∣gv

2

∣∣∣ , mZ =
mW

cos θW
. (1.37)

From the covariant derivative, it is clear that the coupling strength of the photon
to the field on which the derivative is acting is proportional to σ3/2+Y = T 3+Y .
We identify the unit of electric charge as

e =
gg′√
g2 + g′2

(1.38)

so that the electric charge of the field is given by Q = T 3 + Y . Q as well as T 3

and Y are shown in table 1.1.

1.3.3 Massive fermions and the CKM-matrix

Spontaneous symmetry breaking also gives mass to the SM fermions. Substitut-

ing the vev of the scalar doublet 〈φ〉 = 1√
2

(
0
v

)
in the Yukawa couplings (1.29)

yields the mass terms

Lmass = −
[
v√
2
λuijū

i
Lu

j
R +

v√
2
λdij d̄

i
Ld

j
R +

v√
2
λlij ē

i
Le

j
R + h.c.

]
(1.39)

so that the mass matrices are given by v√
2
λu,d,l. To find the propagating fields,

we have to diagonalize the mass matrices. We focus first on the quark sector.
Applying the unitary transformations

uL → VuLuL, uR → VuRuR, dL → VdLdL, dR → VdRdR (1.40)

on the quark fields changes the mass matrices to
v√
2
λu → v√

2

(
V †uLλ

uVuR
)
≡ v√

2
λ′u (1.41)
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and analogously for the down-type mass matrix, where the transformation ma-
trices can be chosen such that the λ′ matrices are real, diagonal and positive.
Since the right-handed quarks are singlets under SU(2)L, their kinetic term and
gauge interactions are given by

ūRi /DuR = ūRi

(
/∂ + igs /G

A
TA +

2

3
ig′ /B

)
uR (1.42)

which is diagonal in flavour space and hence invariant under (1.40).
The same holds for the kinetic term and the couplings to GA

µ , Aµ and Zµ of the
left-handed fields. However, since σ± have off-diagonal terms, the interactions
with W±

µ do change the flavour of the quarks so that transforming to the mass
eigenbasis of the quarks yields

ig√
2

(
ūL /W

+
dL + h.c.

)
→ ig√

2

(
ūL /W

+ (
V †uLVdL

)
dL + h.c.

)
. (1.43)

The matrix V †uLVdL is called the Cabibbo–Kobayashi–Maskawa matrix VCKM, the
CKM-matrix for short [17, 18]. Since VCKM is a 3 × 3 unitary matrix, it can
be parametrized by 3 real parameters and 6 phases of which 5 phases can be
removed by redefining the fields leaving us with 3 real parameters and 1 phase.

Since there are no right-handed neutrinos in the SM, the lepton sector is
simplified with respect to the quark sector. Similarly to the quark sector, we can
diagonalize the lepton mass matrix v√

2
λl by applying the unitary transformation

eL → VeLeL, eR → VeReR. (1.44)

Since there is no mass term for the neutrino fields to be diagonalized, we are free
to also transform the left-handed neutrino as

νL → VeLνL (1.45)

which yields the interaction terms diagonal in the generations. We hence do not
have a lepton analogue of the CKM-matrix in the SM and, therefore, there are
no generation-changing processes in the lepton sector.

The Standard Model does not contain right-handed neutrinos since there is
no compelling evidence for their existence. However, as we will see in section 1.5,
neutrinos have been observed to oscillate which implies they should have a small
but non-zero mass. The precise origin of these masses is yet unclear, but right-
handed neutrinos could play a crucial role in explaining them. If we would
include right-handed neutrinos, the lepton sector would have a mixing matrix
similar to the CKM-matrix for the quarks. This matrix is called the Pontecorvo-
Maki-Nakagawa-Sakata matrix, or the PMNS-matrix for short [19,20].
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Figure 1.3: Comparison of the results from the electroweak precision fit with the
direct measurements in units of the experimental uncertainty σmeas. Figure taken
from [21]

.
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1.4 Successes of the Standard Model

Up to now we mainly constructed the Standard Model on theoretical grounds but
the Standard Model is not merely a theoretical construction, it has been tested
experimentally to a very high precision and has shown to perform very well.

The most recent success of the Standard Model is without doubt the dis-
covery of the Brout-Englert-Higgs boson with a mass of 125 GeV by the CMS
and ATLAS Collaborations at the Large Hadron Collider.4 The discovery was
announced on the 4th of July 2012 [22, 23] and one year later in 2013, François
Englert and Peter Higgs were awarded the Nobel Prize in Physics for their the-
oretical discovery of the Brout-Englert-Higgs mechanism in 1964 [24]. With the
Brout-Englert-Higgs boson, all the particles of the Standard Model have been
experimentally observed.

If we do not include right-handed neutrinos, the Standard Model has 19 free
parameters to be measured which have to be consistent with all the experimental
data. Electroweak precision observables allow us to probe energy scales that are
otherwise hard to reach. They have been measured precisely at lepton colliders
such as LEP and SLC5 and can be used to fit the SM parameters related to the
electroweak sector. An example of the electroweak precision fit by the GFitter
group [25] is shown in figure 1.3. The figure shows for each measurement in the
list how many standard deviations σmeas the SM prediction deviates from the
measurement. All observables fall within 3σmeas and we can conclude that the
SM describes the data very well.

Also the flavour sector is very sensitive to new physics and fitting flavour
observables similarly leads to a fit of the flavour sector of the SM, in particu-
lar the CKM-matrix. In the Wolfenstein parametrization [27], the CKM-matrix
is parametrized by four parameters λ, A, ρ̄ and η̄. Figure 1.4 shows the ex-
perimental constraints in the plane of η̄ and ρ̄ as obtained by the CKMFitter
group [28]. The coloured regions show the regions consistent with the indicated
measurement at 95% confidence level. All allowed regions overlap leading to the
global fit region indicated in red and showing that Standard Model is in good
agreement with the experimental data.

1.5 Where the Standard Model falls short

Despite its successes, we know that the SM is not sufficient when we go to,
for example, the Planck scale. The SM is expected to be an effective theory, a

4CMS and ATLAS are the two general-purpose experiments at the Large Hadron Collider
(LHC), a proton-proton collider in Switzerland. The LHC as well as its experiments will be
introduced in chapter 3.

5We will explain in chapter 3 why lepton colliders are better suited for precision measure-
ments than hadron colliders.
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Figure 1.4: Constraints on the parameters ρ̄ and η̄ resulting from the global
SM CKM-fit. The regions outside the coloured regions are excluded at 95%
Confidence Level. Figure taken from [26].

theory in which the heaviest particles are integrated out, which describes low-
energy effects well but yet will break down at higher energy scales. There are
many open questions leading to the assumption that there must be something
more, we will briefly discuss a couple of them below. One of them, the fine-tuning
problem, is discussed in more detail in section 1.5.1.

Gravity

Gravity, one of the four fundamental forces, is not included in the SM since
no consistent quantum theory of gravity has been formulated yet. We hence
know that the SM has to break down at the scale where quantum gravitational
effects become important, namely, when the Compton wavelength h

mc
of a mass

m becomes comparable to its Schwarzschild radius 2Gm
c2

. h denotes Planck’s
constant, c the velocity of light and G the gravitational constant. We hence
know that new physics will have to enter at the Planck scale,

MP ∼
√
hc

2G
∼ 1019 GeV/c2. (1.46)

The huge energy range between the weak scale O(102 GeV) and the Planck scale
does not only suggest there must be some other physics in between, it is also at
the origin of the fine-tuning problem which will be discussed in section 1.5.1.
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Dark matter and dark energy

A careful study of the velocity of visible objects like stars or gas clouds within
galaxies [29, 30] shows that they move faster than one would expect by taking
into account the gravitational interactions of visible objects. This problem can be
solved if we assume there is also matter that does not interact with photons, dark
matter. This is only one of the experimental indications for the existence of dark
matter in the universe. The latest results from the Planck space observatory [31]
have led to the conclusion that only 5% of all the energy and mass present in the
universe is described by the SM. Of the remaining 95%, about 26% consists of
dark matter while dark energy makes up for the remaining 69%. Neutrinos could
contribute to the dark matter density, but it has been shown [27] that their relic
density cannot be large enough to account for the all the dark matter. The SM
does not provide any other particle that could be a dark matter candidate, nor
does the model provide any explanation for dark energy.

Neutrino oscillations

The Super-Kamiokande [32] and SNO [33] experiments studied respectively at-
mospheric and solar neutrinos and were the first experiments to show that neu-
trinos can change flavour over time, they oscillate. This can only be explained
if they differ in mass, however, neutrinos are assumed massless in the SM. To
explain neutrino oscillations, we will have to extend the SM.

Free parameters in the SM

The 19 free parameters of the SM are the gauge coupling strengths gs, g and
g′, the parameters µ2 and λ from the scalar potential, 6 quark masses, 3 real
parameters and 1 phase from the CKM-matrix, 3 masses for the leptons and the
θQCD parameter.6 Adding up to 19 parameters which all have to be measured
experimentally. We already showed in section 1.4 that the measurements lead to
consistent results and therefore, in itself, there is not really a problem with the
SM in itself. However, it does give the impression that there is another theory
behind the SM governing the parameter values and it would be aesthetically
much more appealing if they all could be calculated from first principles.

Fermions: families and mass hierarchy

Electroweak precision measurements studying the production and decay of the
Z boson [35] show that there are exactly three generations of fermions with a
neutrino with mass lower than half the Z-boson mass. Moreover, fruitless collider

6We can add a CP-violating term proportional to θQCDF
A
µν F̃

µνA to the SM Lagrangian
density and its coefficient θQCD is a free parameter. More information about this term can for
example be found in [34].
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searches for fourth generation quarks (see e.g. [36,37]) together with the discovery
of the Brout-Englert-Higgs boson with a mass of about 125 GeV, imply that a
fourth generation of SM-like chiral quarks is considered to be ruled out [38].7

The SM therefore appears to have three generations of fermions. Naturally
we can ask ourselves the question ‘Why three families and not more or less?’
Moreover the fermion masses span a huge range, the mass of the top quark,
173GeV, is about five orders of magnitude larger than the mass of electron which
amounts to 0.511MeV and the neutrino masses are even lower. The SM does not
offer any clue why. This is known as the fermionic mass hierarchy problem.

Gauge coupling unification

Even though the electromagnetic and strong and weak nuclear forces are well
described as gauge theories within the Standard Model, we do need three dif-
ferent, independent gauge groups, each with their own coupling constant, which
makes the overall SM gauge structure rather complicated. However, the values of
the couplings constants evolve depending on the energy scale and the SM gauge
couplings can be shown to almost unify at a scale of order 1016 GeV, the scale
of grand unification [39]. If the gauge couplings are equal, it might be possible
to unify the SM gauge symmetry groups into one, larger symmetry group. Such
a scenario is referred to as a Grand Unified Theory (GUT) and would consider-
ably simplify the SM gauge structure. However, within the Standard Model the
gauge couplings, do not exactly unify and for grand unification to take place,
new physics would have to enter in between the electroweak scale and the scale
of grand unification.

1.5.1 The fine-tuning problem

The fine-tuning problem concerns the sensitivity of the mass mh of the Brout-
Englert-Higgs boson h to quantum corrections. Suppose we have Nf Dirac
fermions f with mass mf which couple to h as −λf f̄fh. The one-loop con-
tribution of the fermion to mh due to the fermions is shown in figure 1.5 and
leads to a correction of m2

h given by [40]

∆m2
h =

λ2
fNf

8π2

[
−Λ2 + 6m2

f log
Λ

mf

− 2m2
f

]
+O

(
1

Λ2

)
(1.47)

where we introduced a cutoff Λ on the momentum to regulate the loop-integral.
The correction depends quadratically on

the scale where we expect new physics to enter and for Λ → ∞ it diverges
quadratically. Naturally we would expect mh to be roughly of the same order

7However, searches for exotic non-chiral types of quarks like vector-like quarks are still
ongoing. They couple differently to the BEH-boson and therefore evade many of the constraints
on chiral fourth generation quarks.
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of magnitude as its quantum corrections. However, Λ = MP ∼ 1019 GeV implies
that ∆m2

h is more than 30 orders of magnitude larger than m2
h ∼ 104 GeV2.

This would imply that some of the parameters within the Standard Model would
have to be fine-tuned to O(10−30) to achieve the cancellation required to get a
reasonable value for mh. Technically this is possible, but it seems very unnatural
and the theory would be more reliable if there would be another way to remove
the divergences.

This is for example the case for the fermions and gauge bosons of the SM
where symmetry ensures that both are stable under quantum corrections. A non-
zero fermion massmf breaks chiral symmetry which would be restored ifmf → 0.
As a consequence, the quantum corrections to mf depend only logarithmically
on Λ and are proportional to mf . Similarly, an explicit gauge boson mass term
would break local gauge symmetry which also restricts the quantum corrections
to its mass and no quadratic divergences appear. In the SM, the fine-tuning
problem only occurs for in the case of the Brout-Englert-Higgs boson since its
mass is not protected by any symmetry.

However, suppose we add Ns complex scalars s with mass ms which couples
to h through −λs|h|2|s|2 and −λsvh|s|2. The one-loop contributions of the scalar
to h are shown in figure 1.6 and can be calculated as

∆m2
h =

λsNs

16π2

[
Λ2 − 2m2

s log

(
Λ

ms

)]
− λ2

sNs

16π2
v2

[
−1 + 2 log

(
Λ

ms

)]
+O

(
1

Λ2

)
.

(1.48)
This correction depends again quadratically on Λ. However, if we assume λ2

f = λs
and Ns = 2Nf , the total correction to mh is given by

∆m2
h =

λ2
fNf

4π2

[
(m2

f −m2
s) log

(
Λ

ms

)
+ 3m2

f log

(
ms

mf

)]
+O

(
1

Λ2

)
(1.49)

which is no longer quadratically divergent. A logarithmic divergence remains, but
is relatively small and even disappears if ms = mf . A symmetry between bosons
and fermions could hence solve the fine-tuning problem as long as ms ≈ mf . As
we will see in the next chapter, this is exactly what is done in supersymmetry.
However, we know from experiment that ms � mf and a certain amount of
fine-tuning will remain. In the next chapter, we will introduce a measure for
the level of fine-tuning in a theory and we will discuss how much fine-tuning we
consider to be acceptable.
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Figure 1.5: One-loop correction of a fermion to mh.
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Figure 1.6: One-loop correction of a scalar to mh.
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Chapter 2

Supersymmetry

Supersymmetry is a symmetry connecting fermions and bosons which, as was
shown in the previous chapter, is exactly what is needed to solve the fine-tuning
problem of the Standard Model. In addition to solving, or at least softening, the
fine-tuning problem, SUSY can also naturally improve the unification of the SM
gauge couplings at the scale of grand unification, as is for example the case for
the Minimal Supersymmetric Standard Model (MSSM).

In section 2.1 of this chapter we will introduce supersymmetry and describe
how we can construct a supersymmetric model. In section 2.2 we will then use
the SUSY formalism to introduce the Minimal Supersymmetric Standard Model,
the MSSM, and in section 2.3 we explain how supersymmetry can be broken. In
section 2.4 we explain what is the current status of SUSY given the lack of any
experimental confirmation so far.

2.1 Supersymmetry in a nutshell

Supersymmetry is a symmetry relating particles of integer spin to particles with
half-integer spin, differing in spin by 1

2
. A generator Q of supersymmetry chang-

ing bosons in fermions and vice versa,

Q |fermion〉 = |boson〉 and Q |boson〉 = |fermion〉 , (2.1)

therefore has to be an anticommuting spin-1
2
spinor. As we will see below, in

supersymmetry it is convenient to describe spin-1
2
particles with two-component

Weyl spinors instead of the four-component Dirac spinors. The generators Qα

and Q†α̇ are respectively a left-handed and a right-handed Weyl spinor, where
α = 1, 2 and α̇ = 1, 2 (and generally the first letters of the Greek alphabet)
denote the corresponding Weyl-spinor indices. In the following, we will restrict
ourselves to N = 1 supersymmetry where we have only one set of supersymmetric
generators Q.

27
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2.1.1 The SUSY algebra

Since supersymmetry changes the spin of a field, it modifies its properties under
the symmetry group describing space-time symmetries, the Poincaré group. Q
can hence not commute with all the generators of the Poincaré group (i.e. the
generators of the translations, Pµ, and Lorentz transformations, Mµν) and this
constraint strongly limits the possibilities to incorporate supersymmetry in a
quantum field theory.

In particular, Coleman and Mandula [41] showed that the Poincaré group
cannot mix non-trivially with any other bosonic symmetry group of the theory,
they should commute. Haag, Lopuszanski and Sohnius [42] extended this theo-
rem to include fermionic generators, like the generators of supersymmetry Q, as
well. It turned out that, whereas all the symmetry groups we encountered up
to now were determined by a Lie algebra which imposes commutation relations
on its generators, supersymmetry has to obey a Lie superalgebra which contains
anticommutation as well. The Lie superalgebra is given by

{Qα, Q
†
β̇
} = 2 (σµ)αβ̇ Pµ (2.2)

{Qα, Qβ} = {Q†α̇, Q†β̇} = 0 (2.3)

[Qα, Pµ] = [Q†α̇, Pµ] = 0 (2.4)

[Qα,Mµν ] = −1

2
(σµν)

β
α Qβ (2.5)

[Q†α̇,Mµν ] =
1

2
(σ̄µν)

β̇
α̇ Q†

β̇
(2.6)

where σµ = (1, σi) and σ̄µ = (1,−σi). The Pauli matrices σi with i = 1, 2, 3 and
σµν and σ̄µν are defined in appendix A. The (anti-)commutation relations (2.2)-
(2.6) together with Poincaré algebra1 not mentioned here, forms the complete
N = 1 SUSY algebra.

2.1.2 Supermultiplets

A set of particles that are transformed into each other by SUSY transforma-
tions and make up an irreducible representation of the SUSY algebra, form a
supermultiplet. From the anti-commutation relation (2.2) it can be seen (see for
example [39]) that each supermultiplet contains an equal number of fermionic
and bosonic degrees of freedom. Moreover, since the SUSY generators commute
with all the generators of the SM gauge groups as well as with P 2, all particles
in the same supermultiplet will have the same quantum numbers under the SM
gauge groups as well as the same masses.

Since we have not detected any supersymmetric particle yet, it is clear that
in reality, they do not have the same masses. This, however, does not per se

1The Poincaré algebra can for example be found in [43].



2.1. SUPERSYMMETRY IN A NUTSHELL 29

exclude SUSY, a difference in mass between the Standard Model particles and
their superpartners can still occur when SUSY is broken. We will discuss this in
more detail in section 2.3,

For our purposes, two kinds of supermultiplets are sufficient:

• The chiral supermultiplet (ψ, φ, F ) is composed of a left-handed Weyl
fermion ψ, a complex scalar φ and an auxiliary, non-propagating, complex
scalar field F .

• The vector or gauge supermultiplet (Aµ, λ,D) consists of a massless spin-
1 vector boson Aµ, a massless spin-1

2
Majorana Weyl fermion λ and an

auxiliary, non-propagating, real scalar field D.

By construction, the number of bosonic and fermionic degrees of freedom in each
supermultiplet has to be equal for real or on-shell particles as well as for virtual
or off-shell particles. In a chiral supermultiplet, φ and F each have 2 off-shell
degrees of freedom, while ψ has 2 complex components corresponding to 4 off-
shell degrees of freedom. In a vector supermultiplet on the other hand, Aµ, λ and
D respectively have 3, 4 and 1 off-shell degrees of freedom. Off-shell, a chiral and
vector supermultiplet therefore each have 4 bosonic and 4 fermionic degrees of
freedom. If supersymmetry is preserved, the auxiliary fields F and D will vanish
if we go on-shell. The number of bosonic and fermionic degrees of freedom will
however stay equal since ψ, λ and Aµ will all lower their degrees of freedom to 2
when they are on-shell.

2.1.3 A general supersymmetric Lagrangian

The Lagrangian density of a general, renormalizable, supersymmetric model con-
taining n chiral and m vector supermultiplets, can be written as

LSUSY = Lsg + LW − Vφ. (2.7)

The first term in the Lagrangian density contains, among others, the kinetic
terms of all the fields and is obtained from requiring gauge invariance and invari-
ance under supersymmetry. It is given by

Lsg =
n∑

j=1

[
|Dµφj|2 + ψ̄ji /Dψj

]
+

m∑

k=1

[
λ̄akk i /Dλ

ak
k −

1

4
(Vµν)

ak
k (V µν)akk

]

−
[
√

2
∑

j,k

gk
(
φ∗jT

ak
k ψj

)
λakk + h.c.

]
(2.8)

where, in addition to the sum over the supermultiplets which is written explicitly,
we also sum over the adjoint indices ak corresponding to the gauge group of the
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vector supermultiplet. Vµν denotes the field-strength tensor of the vector field of
the vector supermultiplet.

The second term of equation (2.7) contains SUSY-invariant interaction terms
and is completely determined by the superpotential W , a holomorphic function
of the complex scalar fields with mass dimension 3 which is at most cubic in the
fields. In its most general form, the superpotential is given by

Wφ(φ) = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (2.9)

where, since φ has mass dimension 1, Li, M ij and yijk are constants of respective
mass dimension 2, 1 and 0. The second part of the Lagrangian is then given by

LW = −1

2

n∑

i,j=1

ψiψj
∂2Wφ

∂φi∂φj
+ h.c. (2.10)

Finally, the scalar potential Vφ can be expressed in function of the auxiliary fields
as

Vφ =
n∑

i=1

|Fi|2 +
1

2

m∑

k=1

g2
kD

ak
k D

ak
k . (2.11)

We can, however, always replace F and D by their equations of motion

Fi =
∂Wφ

∂φi
and Da

G =
∑

i

(φ∗iT
a
Gφi) (2.12)

such that the scalar potential indeed only depends on the scalar fields of the
chiral supermultiplets.

As soon as we fix the chiral and vector superfields and their representation
under the gauge groups, the only freedom when writing down a renormaliz-
able, supersymmetric and gauge-invariant Lagrangian density, is the choice of
the superpotential (2.9). All the other terms in the Lagrangian are completely
determined by requiring gauge invariance and invariance under SUSY.2

2.2 The Minimal Supersymmetric
Standard Model

The Minimal Supersymmetric Standard Model, the MSSM for short, is the min-
imal way to accommodate the Standard Model in a supersymmetric theory. All
the SM particles fit into a chiral or vector supermultiplet and hence all have a
partner with spin differing by 1

2
. The superpartner of a SM particle is always

denoted with a tilde. In the following, we will always assume the auxiliary fields
F and D have been replaced in function of the other fields by their equations of
motion.

2This is the case since we assume a canonical Kähler and renormalizability.
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2.2.1 The particle content of the MSSM

The particle content of the MSSM and their representations under the SM gauge
groups are shown in tables 2.1 and 2.2.

The matter sector of the SM, the quarks and leptons, fit into chiral supermul-
tiplets and their scalar superpartners are respectively called squarks and sleptons.
Each quark and lepton is described by a left-handed as well as a right-handed
Weyl fermion and therefore, each has two superpartners. Since chiral supermul-
tiplets only contain left-handed Weyl fermions, it is the conjugate of the right-
handed Weyl spinors that occurs in the chiral supermultiplets. For example, the
up-type quark comes in two chiral supermultiplets (uL, ũL) and (ucR, ũ

∗
R).

The gauge bosons are best accommodated in vector multiplets. Since their
SUSY partners have to carry the same quantum numbers, the corresponding
Weyl fermions, referred to as gauginos, have to transform according to the adjoint
representation of the gauge group as well. The superpartners of the gluon gµ, the
SU(2)L gauge bosons Wµ and the U(1)Y gauge boson Bµ are respectively called
the gluino g̃, the winos W̃ and the bino B̃.

As for the scalar sector of the SM, the most straightforward choice is to embed
the Higgs doublet in a chiral supermultiplet, the corresponding Weyl fermion is
then called the higgsino. However, the presence of only one higgsino would imply
that perturbation theory does not conserve gauge invariance, in other words, our
supersymmetric theory would contain gauge-anomalies. Within the MSSM this
problem is solved by introducing a second chiral supermultiplet for the Higgs
sector, with opposite hypercharge.3 We then have two scalar doublets, one, Hu,
gives mass to the up-type quarks while the other, Hd, gives mass to the down-type
quarks. The corresponding hissginos are denoted as H̃u and H̃d.

2.2.2 The MSSM Lagrangian

As was shown in section 2.1.3, once the particles and supermultiplets are fixed,
the Lagrangian density of a renormalizable supersymmetric theory is fully de-
termined by the superpotential. The most general superpotential for the MSSM
would however lead to baryon number (B) or lepton number (L) violation which
is strongly constrained by experiment. In the Standard Model B and L are acci-
dental symmetries, but in the MSSM we can impose the conservation of B and
L by imposing and additional, discrete symmetry called R-parity defined as

R = (−1)2S+3B+L (2.13)

3The condition for the cancellation of the gauge anomalies is Tr[T 2
3 Y ] = Tr[Y 3] = 0 where

the traces run over all the left-handed Weyl fermions. If we add one Higgs supermultiplet, the
contribution from the corresponding higgsino can be cancelled by adding a second higgsino
with opposite hypercharge as is done in the MSSM.



32 CHAPTER 2. SUPERSYMMETRY

spin 0 spin 1
2

SU(3)c SU(2)L U(1)Y

q̃ =

(
ũL
d̃L

)
q =

(
uL
dL

)
3 2 1

6

ũ∗R ucR 3̄ 1 −2
3

d̃∗R dcR 3̄ 1 1
3

l̃ =

(
ν̃L
ẽL

)
l =

(
νL
eL

)
1 2 −1

2

ẽ∗R ecR 1 1 1

Hu =

(
H+
u

H0
u

)
H̃u =

(
H̃+
u

H̃0
u

)
1 2 1

2

Hd =

(
H0
d

H−d

)
H̃d =

(
H̃0
d

H̃−d

)
1 2 −1

2

Table 2.1: The chiral supermultiplets describing the matter and Higgs sector of
the MSSM. The first two columns on the right show their representation under
SU(3)c and SU(2)L while the last column shows their U(1) hypercharge Y .

spin 1 spin 1
2

SU(3)c SU(2)L U(1)Y

gµ g̃ 8 1 0

Wµ W̃ 1 3 0

Bµ B̃ 1 1 0

Table 2.2: The same as for table 2.1 for the vector supermultiplets within the
MSSM.



2.2. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL 33

where S denotes the spin quantum number. The SM and SUSY particles re-
spectively have R-parity 1 and −1. As a consequence, supersymmetric particles
will always be produced in pairs and the lightest SUSY particle, the LSP, has
to be stable. R-parity conservation therefore has important consequences for the
phenomenology of supersymmetric theories.

The superpotential

The superpotential of the MSSM, assuming R-parity conservation and neglecting
right-handed neutrinos is given by

WMSSM = (yu)ij ũ
i†
Rq̃

j ·Hu − (yd)ij d̃
i†
Rq̃

j ·Hd − (ye)ij ẽ
i†
R l̃
j ·Hd + µHu ·Hd (2.14)

where the indices i, j = 1 . . . 3 now run over the generation indices. The dimen-
sionless Yukawa couplings yu, yd and ye are 3 × 3 matrices in generation space,
µ has mass dimension one and will appear in the mass matrices of the Higgses
and higgsinos. Finally, the dot product stands for SU(2)L invariant products, for
example

Hu ·Hd = εabH
a
uH

b
d = H+

u H
−
d −H0

uH
0
d (2.15)

where a and b are fundamental SU(2)L indices and ε12 = −ε21 = 1.

Soft SUSY-breaking terms

The particle content and superpotential of the MSSM we specified up to now,
leads to a theory invariant under supersymmetry. As we mentioned earlier, since
no SUSY particles are observed up to now, they have to be more massive than
their SM partners and SUSY has to be broken. We postpone a discussion of
how this breaking can be accomplished to section 2.3, for now we will suffice
assuming that SUSY has been broken at an unspecified higher energy scale. At
the low scale, this results in a set of effective couplings that explicitly break
SUSY. Including all of them in the MSSM Lagrangian covers all possible SUSY-
breaking mechanisms at the high scale.

As we do not want to reintroduce the fine-tuning problem described in sec-
tion 1.5.1, we eliminate the couplings that could introduce quadratically diver-
gent corrections to the scalar masses. Since the cut-off scale ΛUV and a scalar
mass ms both have mass dimension one, any coupling giving rise to a correc-
tion ∆m2

s ∼ Λ2
UV, is necessarily dimensionless. From this dimensional analysis,

we conclude that SUSY-breaking terms involving couplings with a positive mass
dimension will not reintroduce the fine-tuning problem, they are said to break
SUSY only softly. The soft SUSY-breaking Lagrangian of the MSSM is given by

LMSSM
soft = Lgauginosoft + Lscalarsoft + Ltri/bisoft (2.16)
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where the first term contains mass terms for the gauginos

Lgauginosoft =
1

2

[
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

]
, (2.17)

the second mass terms for the squarks, sleptons and the two scalar SU(2)L dou-
blets

Lscalarsoft =−
(
M2

Q̃

)
ij
q̃i†q̃j −

(
M2

Ũ

)
ij
ũi†Rũ

j
R −

(
M2

D̃

)
ij
d̃i†Rd̃

j
R

−
(
M2

L̃

)
ij
l̃i†l̃j −

(
M2

Ẽ

)
ij
ẽi†Rẽ

j
R −m2

HuH
†
uHu −m2

Hd
H†dHd (2.18)

and the third term represents tri- and bilinear couplings among the scalars

Ltri/bisoft =− (Tu)ij ũ
i†
Rq̃

j ·Hu + (Td)ij d̃
i†
Rq̃

j ·Hd

+ (Te)ij ẽ
i†
R l̃
j ·Hd − bHu ·Hd + h.c. (2.19)

where b has mass dimension two. The mass matrices M2
Q̃
, M2

Ũ
, M2

D̃
, M2

L̃
and M2

ẽ

as well as the trilinear couplings Tu, Td and Te are 3×3 matrices in family space.

2.2.3 Sparticle masses in the MSSM

Electroweak symmetry breaking in the MSSM

As in the SM (see section 1.3), the scalar potential breaks electroweak symmetry
spontaneously which generates mass terms for the gauge bosons, the leptons and
quarks. In the SM, there was only one scalar doublet to get a vev whereas SUSY
contains many more scalar fields that could acquire a vev. A non-zero vev for a
squark, for example, would however not be desirable as it would lead to a charge
and colour-breaking vacuum state. We therefore assume that the Higgs doublets
are the only fields with a vev. Gathering all terms contributing to the Higgs
scalar potential from the Lagrangian discussed in the previous sections, we get

V =
(
|µ|2 +m2

Hu

) (
|H0

u|2 + |H+
u |2
)

+
(
|µ|2 +m2

Hd

) (
|H0

d |2 + |H−d |2
)

+
[
b
(
H+
u H

−
d −H0

uH
0
d

)
+ h.c.

]

+
1

8

(
g2 + g′2

) (
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)2

+
g2

2

∣∣H+
u H

0∗
d +H0

uH
−∗
d

∣∣2 . (2.20)

We can always use the SU(2)L symmetry to rotate the Higgs doublet Hu such
that the vev of the charged component is zero, 〈H+

u 〉 = 0. If we impose this to be
the minimum of the potential (2.20), we immediately find that also

〈
H−d
〉

= 0.
The minimum of the potential hence does not break charge conservation, only
the neutral components of the Higgs doublets can acquire a vev

〈Hu〉 =
1√
2

(
0
vu

)
and 〈Hd〉 =

1√
2

(
vd
0

)
(2.21)
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and the ratio of their vevs defines tan β as

tan β =
vu
vd
. (2.22)

Since vu and vd are real and positive, 0 < β < π/2. The masses of the Z and W
bosons are given by

mW =
g
√
v2
u + v2

d

2
, mZ =

mW

cos θW
. (2.23)

Comparing with the SM result (1.37), we see that vu and vd are related to the
vev of the Standard Model scalar by

v =
√
v2
u + v2

d. (2.24)

The Higgs sector is defined by the parameters mHu , mHd , µ and b of the scalar
potential (2.20) and two additional parameters specifying EWSB which can be
chosen as (vu, vd) or (tan β,mZ). However, the scalar potential (2.20) will only
break electroweak symmetry if the potential has a minimum for |Hu,d| 6= 0. This
imposes the following two constraints on the parameters

m2
Hu + |µ|2 − b cot β − m2

Z

2
cos(2β) = 0 (2.25)

m2
Hd

+ |µ|2 − b tan β +
m2
Z

2
cos(2β) = 0 (2.26)

and allows to eliminate two of the six parameters of the Higgs sector in the
MSSM. Since mZ is experimentally measured, the Higgs sector is described by
three parameters, that can for example be chosen to be tan β, b and µ.

Higgs masses

The Higgs doublets of the MSSM are two SU(2)L doublets, containing 4 complex
or 8 real degrees of freedom. Similarly to the SM, 3 of them are absorbed by
the longitudinal modes of the W± and the Z boson to make them massive. The
remaining 5 degrees of freedom, mix to form the physical Higgs fields. We expand
the Higgs doublets around their vacuum expectation value as

Hu =

(
h+
u

1√
2
(vu + h0

u + ip0
u)

)
and Hd =

( 1√
2
(vd + h0

d + ip0
d)

h−d

)
, (2.27)

extract the mass matrices of the scalar fields h0
u/d, the pseudoscalar p0

u/d and the
charged fields h±u/d and diagonalize them to come to the mass eigenstates. The
pseudoscalar fields p0

u/d mix as
(
G0

A0

)
=

(
sin β − cos β
cos β sin β

)(
p0
u

p0
d

)
(2.28)
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to form the two neutral CP-odd pseudoscalar fields G0 and A0. G0 remains
massless while A0 has mass

m2
A =

2b

sin(2β)
= 2|µ|2 +m2

Hu +m2
Hd
. (2.29)

This equation is often used to eliminate b in favour of mA so that they can be
used interchangeably to parametrize the Higgs sector. The charged components
mix as (

G±

H±

)
=

(
sin β − cos β
cos β sin β

)(
h±u
h±d

)
(2.30)

where the G± are massless and the mass of H± is given by

m2
H± = m2

A +m2
W . (2.31)

Note also that the mixing of the pseudoscalar fields in (2.28) and the charged
fields in (2.30) is fully determined by the ratio of the vevs tan β = vu/vd. Finally,
the two scalar fields h0

u/d mix as
(
h0

H0

)
=

(
cosα − sinα
sinα cosα

)(
h0
u

h0
d

)
(2.32)

where the mixing angle α can be found at tree level to be

α =
1

2
arctan

(
m2
A +m2

Z

m2
A −m2

Z

tan(2β)

)
. (2.33)

The mass of the two neutral CP-even scalar mass eigenstates h0 and H0 is given
by

m2
h0,H0 =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2(2β)

)
. (2.34)

The three Goldstone bosons G0 and G± give mass to the massive gauge bosons,
through a calculation similar to the one in the Standard Model, we can obtain
the W - and Z-boson masses given in (2.23).

Even thoughmA, mH± andmH0 can in principle be arbitrarily high since they
grow with b

sin(2β)
, the mass of the lightest Higgs boson is, at tree-level, bounded

from above as
mh0 < mZ | cos 2β| (2.35)

which is clearly incompatible with the experimental observations (cfr. figure 1.1).
This can however be solved when we include the quantum corrections. The
lightest Higgs boson mass receives large quantum corrections, mainly from top
and stop loops, which leads to a higher, more realistic, upper bound of the order
mh0 . 135 GeV [39].
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Neutralino mixing

In electroweak symmetry breaking, the neutral higgsinos H̃0
u and H̃0

d will mix
with the neutral electroweak gauginos B̃ and W̃ 3 to form the mass eigenstates.
If we work in the basis of the gauge eigenstates (iB̃, iW̃ 3, H̃0

d , H̃
0
u) the mass matrix

Mχ0 is given by

Mχ0 =




M1 0 −mZsW cβ mZsW sβ
0 M2 mZcW cβ −mZcW sβ

−mZsW cβ mZcW cβ 0 −µ
mZsW sβ −mZcW sβ −µ 0


 (2.36)

where we defined sβ ≡ sin β, cβ ≡ cos β, sW ≡ sin θW and cW ≡ cos θW . Follow-
ing the SLHA convention [44], we absorbed the factors i in the gaugino fields to
make sure the mass matrix is real and symmetric and can be diagonalized by a
unitary transformation N

N∗Mχ0N−1 = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
). (2.37)

The mass eigenstates χ0
1,2,3,4 are referred to as neutralinos and are defined in

order of increasing mass mχ0
1
< mχ0

2
< mχ0

3
< mχ0

4
. They are related to the

interaction eigenstates by



χ0
1

χ0
2

χ0
3

χ0
4


 = N




iB̃

iW̃ 3

H̃0
d

H̃0
u


 . (2.38)

Generically speaking, the eigenvaluesmχ0
i
in equation (2.37) can be complex. We

can however choose them to be non-negative and real by choosing the mixing
matrix N accordingly and/or absorbing the complex phases in the fields χ0

i . This
implies that the mixing matrix N is in general complex.

Up to now, the neutralino fields were always expressed as two-component Ma-
jorana Weyl fermions. The four-component Majorana spinor Ψχ0

i
corresponding

to a neutralino mass eigenstate χ0
i can be obtained as

Ψχ0
i

=

(
χ0
i

χ̄0
i

)
(2.39)

where i = 1 . . . 4 and we suppressed the spinor indices. χ0
i is a left-handed Weyl

fermion while χ̄0
i is right-handed.

Chargino mixing

Moving on to the charged fields, the charged higgsinos H̃+
u and H̃−d will mix

with the charged electroweak gauginos W̃±. Their mass term in the Lagrangian
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density can be written as

Lχ± = −
(
iW̃−H̃−d

)
Mχ±

(
iW̃+

H̃+
u

)
+ h.c. (2.40)

where the mass matrix reads

Mχ± =

(
M2

√
2sβmW√

2cβmW µ

)
. (2.41)

This mass matrix is not necessarily hermitian and we need two unitary matrices
U and V to diagonalize this matrix

U∗Mχ±V
−1 = diag(mχ±1

,mχ±2
). (2.42)

the mass eigenstates, the charginos χ±1,2, are again defined in order of increasing
mass, mχ±1

< mχ±2
. The transformation matrices U and V relate the charginos

to the interaction eigenstates as
(
χ+

1

χ+
2

)
= V

(
iW̃+

H̃+
u

) (
χ−1
χ−2

)
= U

(
iW̃−

H̃−d

)
(2.43)

and can be obtained by respectively diagonalizing Mχ±M
†
χ± and M †

χ±Mχ± . The
masses of the charginos are given by

m2
χ±1,2

=
1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin(2β)|2
]
. (2.44)

Similarly to the case of the neutralinos, all the chargino fields are expressed as
two-component Weyl fermions. The four-component Dirac spinor Ψχ±i

corre-
sponding to a chargino mass eigenstate χ±i can be obtained as

Ψχ±i
=

(
χ±i
χ̄∓i

)
(2.45)

where the spinor indices are suppressed and i = 1, 2. χ±i and χ̄∓i are a left- and
righ-handed Weyl fermion respectively.

Mixing in the quark sector

As in the Standard Model, the Yukawa couplings will transform to mass terms
for the quarks after EWSB which, as was described in section 1.3.3, can be
diagonalized by applying the unitary transformations

uL → VuLuL, uR → VuRuR, dL → VdLdL, dR → VdRdR (2.46)
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on the quark fields. Whereas the mass matrix of the quarks is determined solely
by the Yukawa couplings, the mass matrix of the squarks also contains contri-
butions from the soft breaking parameters and the D- and F-terms of the scalar
potential (2.11). Even though the squark mass matrix will most likely not be
diagonal in this basis, we can still align the squark fields to the SM fields and
transform them as

ũL → VuLũL, ũR → VuR ũR, d̃L → VdL d̃L, d̃R → VdR d̃R. (2.47)

In this basis, we can write the superpotential as

WMSSM = (ŷu)ij ũ
i†
Rq̃

j ·Hu −
(
ŷdV

†
dL
VuL

)
ij
d̃i†Rq̃

j ·Hd + . . . (2.48)

where ellipses denote the terms not related to the quark sector. In this equation
we redefined the left-handed down-type (s)quark fields as

dL → VCKMdL, d̃L → VCKMd̃L with VCKM = V †uLVdL (2.49)

and introduced the diagonal Yukawa matrices

ŷu ≡ V †uRyuVuL , ŷd ≡ V †dRydVdL . (2.50)

The squark basis defined by the redefinitions (2.47) and (2.49), is called the
super-CKM basis [45]. If we further define

M̂2
Q̃
≡ VCKMM

2
Q̃
V †CKM M̂2

Ũ
≡ V †uRM

2
Ũ
VuR M̂2

D̃
≡ V †dRM

2
D̃
VdR

and

T̂u ≡ V †uRTuVuL T̂d ≡ V †dRTdVdL ,

the soft masses can be written as

Lscalarsoft = −
(
VCKMM̂

2
Q̃
V †CKM

)
ij
q̃i†q̃j −

(
M̂2

Ũ

)
ij
ũi†Rũ

j
R −

(
M̂2

D̃

)
ij
d̃i†Rd̃

j
R + . . .

while the tri- and bilinear couplings among the scalars become

Ltri/bisoft = −
(
T̂u

)
ij
ũi†Rq̃

j ·Hu +
(
T̂dV

†
CKM

)
ij
d̃i†Rq̃

j ·Hd + h.c. + . . . (2.51)

where the terms unrelated to the quark sector are again contained in the ellipses.
Whereas the transformed Yukawa matrices ŷ are defined to be diagonal in this
basis, this is does not necessarily hold for the soft masses M̂ and the trilinear
couplings T̂ .
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In addition to the soft masses and the trilinear couplings, the scalar poten-
tial (2.11) will also contribute to the squark mass matrix. After EWSB, the
F -term

1

2

m∑

i=1

|Fi|2 =
1

2

m∑

i=1

∣∣∣∣
∂Wφ

∂φi

∣∣∣∣
2

(2.52)

contains the diagonal mass terms

(m2
u)
ij
(
ũi†L ũ

j
L + ũi†Rũ

j
R

)
+ (m2

d)
ij
(
d̃i†L d̃

j
L + d̃i†Rd̃

j
R

)
(2.53)

as well as the left-right mixing terms

− µ∗

tan β
mij
u ũ

i†
Rũ

j
L − µ∗ tan β mij

d d̃
i†
Rd̃

j
L + h.c. (2.54)

where we defined the diagonal matrices

mu =
vu√

2
ŷu =

v sin β√
2
ŷu and md =

vd√
2
ŷd =

v cos β√
2

ŷd. (2.55)

The D-term

1

2

m∑

k=1

g2
kD

ak
k D

ak
k =

1

2

m∑

k=1

[
g2
k

∑

i

(φ∗iT
ak
k φi)

∑

j

(
φ∗jT

ak
k φj

)
]
, (2.56)

on the other hand, contains terms with structure (squark)2(Higgs)2 which trans-
form to mass terms for the squarks after EWSB. The D-term contributions to
the squark mass matrix are diagonal in flavour and depend on the SU(2) and
U(1)em charge of the squarks as

Dq̃,L = m2
Z

(
T3q −Qq sin2 θW

)
cos 2β and Dq̃,R = m2

ZQq sin2 θW cos 2β
(2.57)

where Qq and T3q (with q = u, d) are the electric charge and the weak isospin
quantum numbers of the (s)quarks as were indicated in table 1.1 and 2.1.

In the super-CKM bases (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R), the
up- and down-type squark mass matricesM2

ũ andM2
d̃
are given by

M2
ũ =

(
VCKMM̂

2
Q̃
V †CKM +m2

u +Dũ,L
vu√

2
T̂ †u −mu

µ
tanβ

vu√
2
T̂u −mu

µ∗

tanβ
M̂2

Ũ
+m2

u +Dũ,R

)
(2.58)

and

M2
d̃

=

(
M̂2

Q̃
+m2

d +Dd̃,L
vd√

2
T̂ †d −mdµ tan β

vd√
2
T̂d −mdµ

∗ tan β M̂2
D̃

+m2
d +Dd̃,R

)
(2.59)

respectively. They are both 6 × 6 matrices and all four terms in these matrices
stand for a 3 × 3 matrix which is generally not diagonal. The mass matrix for
the sleptons formulated in the super-PMNS basis is completely analogous.
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2.2.4 The phenomenological MSSM

Even though the supersymmetric part of the MSSM based on the superpoten-
tial (2.14) does not introduce extra parameters, we do need no less than 105
new parameters [46] to specify the soft supersymmetry-breaking terms in equa-
tion (2.16). The parameter space of the full MSSM is therefore much larger than
the 19-dimensional parameter space of the Standard Model. Experimental con-
straints however show that the soft SUSY-breaking terms can not be arbitrary.

One important set of constraints comes from the flavour observables involv-
ing flavour-changing neutral currents (FCNCs). FCNCs are processes connecting
two flavours of the same charge, as for example in the decay b → sγ, and are
constrained by the experimental constraints on the rare decays of B-mesons or
kaon mixing. In the Standard Model, flavour-changing neutral currents (FC-
NCs) only occur at the loop-level and are additionally suppressed by the GIM-
mechanism [47]. Consequently, new physics could easily yield contributions com-
parable to the Standard Model predictions and given that the SM prediction is
in good agreement with the data, flavour changing processes are strongly con-
strained by experiment. On the other hand, since the soft SUSY-breaking param-
eters are generally complex, they would also contribute to CP-violating effects.
As these are also strongly constrained by experiment, the complex parts can not
be chosen freely.

The flavour constraints are not naturally met within the formalism of super-
symmetry and the problem of formulating a complete supersymmetric theory
consistent with the flavour observables is referred to as the SUSY flavour prob-
lem. One way to solve the SUSY flavour problem, is to impose Minimal Flavour
Violation (MFV). The MFV paradigm essentially assumes that all flavour- and
CP-violating interactions are related to the structure of the Yukawa couplings.
The flavour constraints and the validity of MFV will be studied in more detail
later in chapter 6. In the following we will describe how we can restrict the pa-
rameter space of the MSSM to come to a more phenomenologically viable model,
the phenomenological MSSM.

The parameter space of the phenomenological MSSM

The phenomenological MSSM, the pMSSM [48], reduces the parameter space of
the MSSM based on phenomenological arguments. In the first place, undesirable
flavour mixings and CP-violation are avoided by assuming MFV and we restrict
the soft masses of the sfermions as well as the trilinear couplings to be real
and diagonal. Assuming some more simplifications brings us to the following
parameter space:

1. The soft masses are real and diagonal and the first generations are degen-
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erate. The soft parameters in the squark sector then reduce to the set

(
M̂Q̃

)
11

=
(
M̂Q̃

)
22
≡MQ̃1,2

(
M̂Q̃

)
33
≡MQ̃3

(2.60)
(
M̂Ũ

)
11

=
(
M̂Ũ

)
22
≡MŨ1,2

(
M̂Ũ

)
33
≡MŨ3

(2.61)
(
M̂D̃

)
11

=
(
M̂D̃

)
22
≡MD̃1,2

(
M̂D̃

)
33
≡MD̃3

(2.62)

while the soft masses of the sleptons are parametrized by

(
M̂L̃

)
11

=
(
M̂L̃

)
22
≡ML̃1,2

(
M̂L̃

)
33
≡ML̃3

(2.63)
(
M̂Ẽ

)
11

=
(
M̂Ẽ

)
22
≡MẼ1,2

(
M̂Ẽ

)
33
≡MẼ3

. (2.64)

The soft sfermion masses are therefore fully determined by 10 parameters.

2. The trilinear couplings are defined proportional to the diagonal Yukawa
matrices as

T̂u ≡ Au ŷu T̂d ≡ Ad ŷd T̂e ≡ Ae ŷe. (2.65)

We then impose the matrices A to be real and, similar to the sfermion soft
masses, we impose

(
Au
)

11
=
(
Au
)

22
≡ Au,c

(
Au
)

33
≡ At (2.66)(

Ad
)

11
=
(
Ad
)

22
≡ Ad,s

(
Ad
)

33
≡ Ab (2.67)(

Al
)

11
=
(
Al
)

22
≡ Ae,µ

(
Al
)

33
≡ Aτ (2.68)

which leaves us with 6 parameters describing the trilinear couplings.

3. The gaugino soft masses also have to be real which adds 3 parameters, M1,
M2 and M3, to the parameter space.

4. Finally, the Higgs sector is described by 3 more parameters, mA, tan β and
µ, which we also impose to be real.

These assumptions define the 22-dimensional parameter space of the pMSSM.
Compared to the 105-dimensional parameter space of the full MSSM, the pMSSM
is clearly much more accessible for phenomenological studies.

We introduced the pMSSM based on pragmatic arguments at the low en-
ergy scale. From a theoretical point of view, however, these assumptions are
still arbitrary. It would be much more satisfying if the observed structure in
the soft SUSY-breaking Lagrangian could be explained from a SUSY-breaking
mechanism taking place at a higher energy scale.
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2.3 Mechanisms of SUSY breaking
If we want to break SUSY without reintroducing the fine-tuning problem, SUSY
should be restored at an energy scale MSUSY in between the electroweak scale
(∼ 100 GeV) and the GUT scale (∼ 1016 GeV). This can be done by breaking
SUSY spontaneously. We will first generally discuss SUSY breaking after which
we will briefly introduce the most common mechanisms to break SUSY.

2.3.1 General aspects of supersymmetry breaking

Similarly to the breaking of electroweak symmetry in the Standard Model, su-
persymmetry is spontaneously broken if the Lagrangian density is still invariant
under SUSY transformations, but the vacuum state |Ω〉 is not or, equivalently,
Qα |Ω〉 6= 0 or Q†α̇ |Ω〉 6= 0. From the SUSY algebra (2.2) we can infer that the
energy E = P 0 is related to the generators as

E = P 0 =
1

4

(
Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2

)
. (2.69)

When SUSY is conserved, we have E |Ω〉 = 0 and the vacuum has zero energy.
On the other hand, when SUSY is spontaneously broken, we have

〈Ω|E |Ω〉 =
1

4

(
|Q†1 |Ω〉 |2 + |Q1 |Ω〉 |2 + |Q†2 |Ω〉 |2 + |Q2 |Ω〉 |2

)
> 0 (2.70)

so that the energy of the vacuum state is always positive. SUSY is broken if and
only if E > 0 and conserved if and only if E = 0, the energy of the vacuum state
can therefore be seen as the order parameter of the breaking of the symmetry.

At the classical level, the only contribution to the vacuum energy comes
from the scalar potential. Therefore we know that 〈Ω|V |Ω〉 ≥ 0. From equa-
tion (2.11), we then see that SUSY is spontaneously broken if an only if the
expectation value of one of the auxiliary fields Fi or Dak

k does not vanish in the
vacuum.

The goldstino, local supersymmetry and the gravitino

Goldstone’s theorem tells us that, when a global symmetry is broken, there will be
a massless particle with the same quantum numbers as the broken generator. The
spontaneous breaking of SUSY therefore leads to a massless neutral Goldstone
Weyl fermion, referred to as the goldstino. The proof of the supersymmetric
version of the Goldstone theorem can be found in [39].

If we promote supersymmetry from a global to a local symmetry, we will have
to introduce a supersymmetric analogue for the gauge bosons we mentioned in
section 1.2.2. Due to the fermionic nature of supersymmetry, we will instead
need a ‘gauge fermion’ which is called the gravitino. In section 1.2.3 we saw how
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spontaneous symmetry breaking can generate a mass term for the gauge boson
through the Brout-Englert-Higgs mechanism. Similarly, when supersymmetry is
broken spontaneously, the gravitino will absorb the goldstino through the super-
Higgs mechanism and become massive.

Suppose the hidden sector contains an auxiliary field F which breaks local
SUSY spontaneously by acquiring a non-zero vev 〈F 〉. 〈F 〉 then corresponds to
the scale of SUSY breaking and the mass of the gravitino m3/2 can be estimated
as

m3/2 =
〈F 〉√
3MP

. (2.71)

The gravitino mass is zero if SUSY is unbroken, or equivalently 〈F 〉 = 0, or if
gravity can be neglected MP →∞.

The supertrace theorem

After spontaneously breaking SUSY, the masses of the particles in supermulti-
plets will no longer be degenerate. For a theory containing chiral as well as gauge
supermultiplets, a relation between the tree-level masses can be obtained from
the explicit calculation of the mass matrices. This is referred to as the supertrace
theorem and relates the tree-level masses squared m2

i by
∑

i∈s

m2
i − 2

∑

i∈f

m2
i + 3

∑

i∈v

m2
i = 0 (2.72)

where s, f and v respectively denote the scalars, Weyl fermions and vector bosons
of the theory. As a consequence, the masses of the particles within the super-
multiplets will be split around an average value related to the mass the particle
would have had if SUSY were unbroken. This implies that at least part of
the superpartners of the SM particles have masses below the SM ones which is
clearly excluded by experiment. Accommodating spontaneous SUSY breaking
at tree-level is therefore a non-trivial task and SUSY breaking will have to be
accomplished radiatively or by introducing non-renormalizable terms.

Mediating SUSY breaking and the renormalization group equations

Supersymmetry breaking then occurs in a ‘hidden sector’ of particles that do
not interact directly, or only very weakly, with the ‘visible sector’, the MSSM.
Instead, messenger fields which interact with both sectors will be responsible
for mediating SUSY breaking. The nature of the mediating interactions will
determine the structure of the soft SUSY-breaking terms in the visible sector at
the SUSY-breaking scale which is usually rather high. From these terms at the
high scale, the UV, the parameters, masses and couplings at the low scale, the
IR, have to be calculated.



2.3. MECHANISMS OF SUSY BREAKING 45

The renormalization group equations (RGEs) are differential equations con-
necting the parameters at different energy scales and the variation of the param-
eters is referred to as the RG-running. The RGEs of the MSSM can for example
be found in [39] and several publicly available software packages have been devel-
oped to calculate the RG-running and the mass spectrum of a SUSY theory, for
example SOFTSUSY [49], SPheno [50] and SuSpect [51]. Once you specify
the SUSY-breaking mechanism and the input variables at the high scale, the
corresponding parameters at the low scale are automatically calculated.

There are several proposals of how supersymmetry breaking can be mediated
to the visible sector. The two main mediation mechanisms, gravity- and gauge-
mediated SUSY breaking, will be detailed in the following.

2.3.2 Gravity-mediated SUSY breaking

In gravity-mediated SUSY breaking (see e.g. [52]), SUSY breaking is mediated by
gravitational interactions. Since no renormalizable quantum theory of gravity has
been formulated yet, the interaction is implemented in the Lagrangian by means
of non-renormalizable couplings. If SUSY is broken by the non-zero vacuum
expectation value of an auxiliary scalar field 〈F 〉, the soft masses should vanish
if 〈F 〉 = 0. The same should hold if gravity would be decoupled (MP →∞) and
therefore we know that

msoft ∼
〈F 〉
MP

. (2.73)

If the soft masses are to be of the order O(103) GeV, low enough not to rein-
troduce the fine-tuning problem again and high enough to match the current
experimental limit, this implies that the scale of SUSY breaking

√
〈F 〉 should

be of the order O(1010 − 1011) GeV. The gravitino mass (2.71) will be of or-
der O(103) GeV. Since the coupling strength of the gravitino to SM particles is
proportional to (m3/2MP )−1, it typically interacts only very weakly unless the
gravitino is very light. In gravity-mediated SUSY-breaking scenarios, the gravi-
tino is typically too heavy to be observable at colliders.

The Constrained MSSM (CMSSM)

In gravity-mediated SUSY breaking, the SUSY flavour problem (as discussed
in section 2.2.4) is not naturally solved. Instead, additional assumptions on
the parameters have to be made which is, for example, done in the constrained
MSSM (CMSSM). Motivated by the apparent unification of the gauge couplings
at the GUT-scale, the CMSSM applies the following boundary conditions at the
GUT-scale:

• The gaugino masses unify.
M1 = M2 = M3 = m1/2
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Figure 2.1: Exclusion limits at 95% Confidence Level for the 8 TeV analyses for
mSUGRA/CMSSM. The limits are shown in the (m0, m1/2) plane, the other
parameters are taken to be tan β = 30, A0 = −2m0 and µ > 0. The part of the
parameter space underneath the curves is excluded. Figure taken from [53].

• The soft terms for the scalar masses are universal.
MQ̃2 = M2

Ũ
= M2

D̃
= M2

L̃
= M2

Ẽ
= m2

01 and m2
Hu

= m2
Hd

= m2
0

• The trilinear couplings are defined by one parameter A0.
Tu = A0yu, Td = A0yd and Te = A0ye

The corresponding soft parameters at the weak scale are then obtained by run-
ning the parameters at the Planck scale down to the weak scale by solving the
RGEs. In the Higgs sector, tan β is taken as an input parameter. Requiring that
electroweak symmetry is broken successfully fixes b and |µ|, leaving the sign of µ
as a free input parameter (equations (2.25) and (2.26)). mSUGRA is therefore
defined by only four parameters and a sign (m1/2, m0, A0, tan β and sign(µ))
which makes the theory more accessible for phenomenological studies.

Experimental constraints on the CMSSM

How well does the CMSSM when we confront it with experiment? The most
stringent constraints on the CMSSM parameter space come from collider exper-
iments. We will introduce colliders later in chapter 3, for now we will suffice by
stating the limits on the parameter space shown.

Figure 2.1 shows which part of the (m0, m1/2) plane is excluded by collider
experiments, the part underneath the red curve is excluded at 95% Confidence
Level. The remaining CMSSM parameters are related to the Higgs sector and
are chosen as tan β = 30, A0 = −2m0 and µ > 0 which ensures the lightest Higgs
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mass is around 125 GeV. The figure also shows the masses of the gluino and
the squarks corresponding to the parameter points and we see that, within the
CMSSM, gluinos and squarks are excluded to have masses lower than roughly
1.4 and 1.5 TeV respectively.

2.3.3 Gauge-mediated SUSY breaking

In gauge-mediated supersymmetry breaking (GMSB) [54] or its more general
formulation, general gauge-mediation (GGM) [55], supersymmetry breaking is
mainly communicated to the visible sector through messenger particles charged
under the gauge interactions of the Standard Model. Since the SM gauge inter-
actions are flavour universal, GMSB naturally solves the SUSY flavour problem
mentioned in section 2.2.4. SUSY breaking is also mediated to the visible sector
through the gravitational interactions, but these effects are subdominant with
respect to the gauge interactions.

There are several ways to mediate SUSY breaking to the visible sector in
gauge mediation. One possibility consists of introducing new messenger particles,
chiral supermultiplets, which on the one hand couple to a SUSY-breaking vev 〈F 〉
and, on the other hand, couple indirectly to the MSSM through the SM gauge
interactions. The soft SUSY-breaking terms then arise from loop processes that
will give rise to soft masses for the gauginos and sfermions of the order

msoft ∼
g2

(4π)2

〈F 〉
Mmess

(2.74)

where g andMmess respectively denote a gauge coupling strength and the charac-
teristic scale of the messenger field. This equation behaves as expected: there are
no soft terms if all the SM gauge couplings vanish, if there is no SUSY-breaking
vev 〈F 〉 = 0 or if the messengers become infinitely heavy Mmess → ∞. The
contributions to the trilinear couplings are suppressed with respect to the other
soft SUSY-breaking parameters and can be neglected.

If we assume
√
〈F 〉 ∼ Mmess, a SUSY-breaking scale as low as

√
〈F 〉 ∼

104 GeV still results in a soft mass for the gluino at the experimental border
of O(1 TeV). The scale of supersymmetry breaking in GMSB can therefore be
much lower than the SUSY-breaking scale in gravity-mediated SUSY breaking
and the gravitino mass can be as low as O(eV). Requiring on the other hand
that gauge-mediating effects dominate over the effects of gravity mediation, gives
an upper-limit on the gravitino mass of the order O(GeV). As a result, in gauge
mediation, the gravitino has a low mass of the order O(eV−GeV) and will always
be the lightest supersymmetric particle, the LSP.

Minimal gauge-mediated supersymmetry breaking (mGMSB)

In the simplest realization of gauge mediation, referred to as minimal GMSB
(mGMSB), we only have one set of messenger chiral supermultiplets q, q̄, l
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and l̄ respectively transforming under SU(3)c × SU(2)L ×U(1)Y as (3,1,−1/3),
(3,1, 1/3), (1,2, 1/2) and (1,2,−1/2). The messenger fields couple to a gauge-
singlet chiral supermultiplet that breaks supersymmetry by means of non-zero
vev 〈F 〉 of its F-term. The scalar component of the SUSY-breaking multiplet
also acquires a vev, generates the masses of the messenger fields and therefore
determines the messenger scale Mmess. The soft masses of the gauginos then
arise from interactions with the messenger fields at the one-loop order leading to
gaugino soft masses given by

Mi(Mmess) ≈
αi(Mmess)

4π
Λ (2.75)

where we defined the effective SUSY-breaking scale Λ ≡ 〈F 〉 /Mmess and denoted
the coupling strength of the i’th gauge group by αi. The scalar fields, on the
contrary, acquire their soft masses from the interactions with the messenger sector
at the two-loop order. The soft mass of a scalar φi therefore reads

M2
φi

(Mmess) ≈ 2Λ2

3∑

i=1

ki

(
αi(Mmess)

4π

)2

(2.76)

with k1 = 3Y 2/5 where Y denotes the hypercharge, k2 = 3/4 for SU(2)L doublets
and 0 for singlets and k3 = 4/3 for colour triplets and 0 for colour singlets.

The soft masses in mGMSB are fully determined by the mass scale Λ and the
messenger scaleMmess. We mentioned in section 2.2.3 that the Higgs sector of the
MSSM is parametrized by 6 parameters: mHu , mHd , µ, b, tan β and v. The first
two are fixed within mGMSB and further requiring EWSB (cfr. equations (2.25)
and (2.26)) allows us to eliminate two more parameters, for example |µ| and b.
Since v is experimentally known, we only need one parameters and a sign to
parametrize the Higgs sector of the MSSM and the full mGMSB is parametrized
by [56]

tan β, Λ, sign|µ| and Mmess. (2.77)

Equations (2.75) and (2.76) imply that the ratios of the masses of the gauginos
and scalars at the messenger scale are respectively given by

M3 : M2 : M1 ' α3 : α2 : α1 (2.78)

and
M2

Q̃
: M2

L̃
: M2

Ẽ
' 4

3
α2

3 :
3

4
α2

2 :
3

5
α2

1 (2.79)

whereM2
Q̃
'M2

Ũ
'M2

D̃
. We can also relate the scalar soft masses to the gaugino

masses as
M2

Q̃
' 8

3
M2

3 M2
L̃
' 3

2
M2

2 M2
Ẽ
' 6

5
M2

1 . (2.80)

If the messenger scale is well below the GUT-scale, we generally have α3 � α2 >
α1 which implies that, at the messenger scale, the soft masses of the coloured
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Figure 2.2: Exclusion limits in the gluino-bino mass plane for a scenario based
on gauge mediation, the region underneath the red curve is excluded at 95%
Confidence Level. Figure taken from [57].

superpartners are always the largest and the soft mass of the bino will be at the
bottom of the mass spectrum. These tendencies are usually even enforced by the
RG-evolution necessary to obtain the masses at the electroweak scale.

Experimental constraints on mGMSB

We can now use the above discussion about the mass spectrum in GMSB to
interpret the exclusion plot shown in figure 2.2. This figure presents the limits
on the pair-production of gluinos decaying to two quarks and the next-to-lightest
supersymmetric particle, a bino-like neutralino, which will then decay to the gra-
vitino LSP and a photon. The mass of the bino-like neutralino is shown on the
horizontal axis while the vertical axis shows the mass of the gluino. Since every-
thing underneath the red curve is excluded, we conclude that, in this scenario,
the gluino mass has to be larger than 1.4 TeV. Using the aforementioned mass
relations within mGMSB, we find that this limit on the gluino mass roughly
corresponds to Λ > 175 TeV, MQ̃ > 2.4 TeV and M1 > 460 GeV. The limits on
the other sparticles can be computed analogously.4

4As a rule of thumb, the gauge coupling strengths at the electroweak scale are of the order
α−1
3 ' 10, α−1

2 ' 30 and α−1
1 ' 60.
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2.4 The status of supersymmetry

In section 2.2.4 we defined the pMSSM as a phenomenologically more viable
subset of the parameter space of the whole MSSM. In section 2.3.2 and 2.3.3
we then formulated two high-energy theories, mSUGRA and mGMSB, leading
to phenomenologically acceptable and more accessible subsets of the parameter
space of the (p)MSSM. We looked at the current experimental constraints and
saw that within mSUGRA and mGMSB the masses of squarks and gluinos have
to be higher than roughly 1.5− 2.5 TeV.

It is now worthwhile to come back to one of the main motivations for super-
symmetry, the fine-tuning problem originating from the quadratic sensitivity of
the Higgs boson mass to the scale of new physics. In the following we will quantify
the level of fine-tuning and apply this to the simple models we constructed.

2.4.1 Naturalness

The level of fine-tuning in a model is related to a feeling of how natural a theory
is and is therefore often referred to as the naturalness of the model. One way
to quantify naturalness in SUSY, is based on the sensitivity of, for example, the
mass of the Z boson, to the parameters ai of the theory: a relative variation of
a2
i , δa2

i /a
2
i , of a few percent should not result in a very large relative variation of

m2
Z , δm2

Z/m
2
Z . More specifically, we can require the maximum of their ratio ∆

defined as [58]

∆[ai] =

∣∣∣∣
a2
i

m2
Z

∂m2
Z

∂a2
i

∣∣∣∣ =

∣∣∣∣
∂ lnm2

Z

∂ ln a2
i

∣∣∣∣ ∆ = maxi ∆[ai] (2.81)

to be lower than a certain predefined value. There is however no unique way to
define this sensitivity parameter, replacing a2

i with ai in equation (2.81) would
be equally valid, and there is no single correct way to combine several ∆’s. Also,
the acceptable value of ∆ floats from 10 to 1000 depending on personal taste. So
clearly, this (and any other) quantification of naturalness has to be treated with
care. In the following we will assume ∆ ≤ 10.

In SUSY, the tree-level mass of the Z boson (2.25) reduces to

m2
Z = −2(m2

Hu + |µ|2) + . . . (2.82)

in the limit where tan β is large. We have ∆[µ] ∼ 2µ2/m2
Z and, consequently,

naturalness requires µ to be low, µ ≤ 200 GeV so that we expect higgsinos to
be naturally light. At the one-loop level, the most important loop correction to
mHu comes from the stop mass and is given by

δm2
Hu = −3y2

t

4π2
m2
t̃ ln

(
ΛUV

mt̃

)
(2.83)
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where ΛUV represents the UV cut-off. This correction cannot be too large which
constrains mt̃ to be of the order of 400 GeV for a cut-off ΛUV ∼ 10 TeV. A
similar reasoning for the winos leads to an expected wino mass of the order of 1
TeV. Then, finally, at the two-loop level, the loop-corrections to the top squark
have to be taken into account. The main corrections come from the gluino and
naturalness constrains the mass of the gluino to be less than twice the stop
mass [59].

Given that naturalness requires stops with a mass of at most 400 GeV and
gluinos with a mass below 800 GeV, it becomes clear that reconciling natural-
ness, mSUGRA or mGMSB and the collider constraints discussed in sections 2.3.2
and 2.3.3 becomes hard and, as a consequence, the minimal realizations of su-
persymmetry became less and less attractive. There is however a whole plethora
of supersymmetric models left to be looked for. The many possibilities combined
with the lack of any experimental indications of where to go, demand a more
model-independent approach in the experimental search for supersymmetry. To
this end, the attention has shifted towards simplified models.

2.4.2 Simplified models and their experimental constraints

Simplified models are motivated by the observation that many supersymmetric
theories would lead to similar signatures at colliders. If R-parity is conserved,
the LSP is stable and, therefore, the collider signatures are largely determined by
the supersymmetric particles at the bottom of the mass spectrum. For collider
physics, it is often sufficient to assume that only a hand-full of supersymmetric
particles have masses within the experimentally reachable range, the other spar-
ticles are assumed to be too heavy and effectively decoupled, they are irrelevant
for collider studies. Simplified models are widely used in experimental analyses
and make it possible to set limits in a model-independent way.

The exclusion limits in the plane of the masses of the stop and the lightest
neutralino obtained in the context of simplified models are shown in figure 2.3.
The part underneath the curves is excluded at 95% Confidence Level. Clearly,
also in the simplified model approach, there is little room left for 400 GeV stops
as required by naturalness arguments.5 In figure 2.4, we show an overview of the
limits on the sparticle masses. We see that gluinos are experimentally bound to
have masses above roughly 1 TeV, electroweak gauginos cannot be lighter than
about 400 GeV and sleptons should have a mass above 300 GeV.

Given that no sign of supersymmetry has been observed so far, if SUSY is
realized in Nature, it has to be hiding somewhere and we have to abandon some
of the simplifications we made and look at more complicated theories which
might cause SUSY to evade detection. In this thesis, we went along this road.

5In the region where the neutralino and stop mass are comparable, the limits are less
stringent. The gaps correspond to the regions where stop-pair production is very similar to
top-pair production and/or where the decay length of the stops becomes to large.
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In chapter 4 we will study a simplified model motivated from GGM that was
overlooked so far. In chapter 5 we will investigate the implications of having two
instead of one SUSY-breaking sector in gauge mediation and in chapter 6 we will
revisit the flavour-violating terms in the soft masses of the squarks. But first, we
will introduce collider physics and the phenomenological tools that will be used
later in chapter 3.
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Chapter 3

Collider phenomenology

In chapter 1 and 2, we introduced the Standard Model and supersymmetry and
discussed their experimental constraints without providing much detail on the
experimental set-up. In this chapter, we will explain how quantum field theories
are confronted with experiment, focussing in particular on collider experiments.
Colliders study the particles and their interactions by colliding two particles
with high energy on each other. Due to the high energy of this collision, other
particles are produced which then pass through detectors. This way of studying
the physics of the Standard Model and beyond has proven to be very successful.

Collider physics certainly owes a large part of this success to the develop-
ment of simulation tools which make an efficient confrontation of a theory with
experimental results feasible. We will discuss the basics of collider physics and
introduce the colliders relevant for this work in section 3.1. Section 3.2 is devoted
to the simulation tools. As the development of phenomenological tools was also a
part of this thesis, I will also briefly touch upon my own contribution, ASperGe,
in section 3.2.6.

3.1 Colliders

3.1.1 Basics of collider physics

When two particles collide, the probability for a certain process to occur, is given
by its cross section σ, usually expressed in femtobarn fb (1b = 10−28m2). The
number of events per second dN/dt produced by the collider, depends on the
instantaneous luminosity L of the collider as

dN
dt

= L × σ. (3.1)

Not all the events are stored and observed by the detectors. Since there are
too many events to record all the information, only the events that pass certain
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trigger criteria are selected1 and it is also possible that an event falls outside
the region covered by the detectors. We can correct for this by introducing the
efficiency ε. The total number of recorded events N that took place during a
certain running period of the collider, can then be estimated as

N = L× σ × ε (3.2)

where L =
∫
Ldt denotes the integrated luminosity.

The cross section depends on the centre-of-mass energy
√
s of the collision

which is defined as
s = (p1 + p2)2 (3.3)

where p1 and p2 denote the four-momenta of the two colliding particles. A high
centre-of-mass energy is crucial to probe new physics at high energy scales and
depends largely on the collider design which can be linear or circular.

In a linear collider, the particles pass only once through the accelerating
facilities and, therefore, the energy-gradient has to be very high which makes it
technically hard to design a linear collider with a centre-of-mass energy in the
TeV-range. In a circular collider, on the contrary, the energy of the particles
can be gradually increased with each revolution. However, a charged particle
following a circular path looses energy due to synchrotron radiation. For each
revolution, the energy ∆E lost due to synchrotron radiation is

∆E ∼ E4

Rm4
(3.4)

where R denotes the radius of the accelerator and E and m respectively the
energy mass of the beam particle. Accelerating to a higher and higher energy
therefore becomes increasingly more difficult. Moreover, we see that heavier
particles will loose less energy: at the same beam energy, a proton will loose
8×1012 times less energy per revolution than an electron which is approximately
2000 times lighter. Circular hadron colliders will therefore typically collide at
a higher centre-of-mass energy than their lepton equivalents which makes them
well-suited to probe new, high-energy ranges.

However, an important drawback of hadron colliders comes from the internal
structure of the hadrons, the processes of our interest result from the hard scat-
tering of the constituent partons (the quarks and gluons) of the hadron. Their
precise initial energy and hence the centre-of-mass energy of the hard scattering
is a priori unknown. Moreover, since hadrons and their constituent partons are
strongly interacting, they will give rise to large QCD backgrounds which will
complicate the analysis. Since leptons are fundamental particles, lepton colliders

1At the time of writing, the LHC is colliding protons at a centre-of-mass energy of 13 TeV
and the instantaneous luminosity at the CMS and ATLAS experiments is about 1034cm−2s−1.
Since the total proton-proton cross section at this energy is about 100 mb [61], we expect
O(109) events per second.
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produce clean collisions with a well-defined centre-of-mass energy which makes
them ideal for precision measurements. Lepton and hadron colliders therefore
both have their benefits and drawbacks and we will briefly describe two examples
of each.

3.1.2 Lepton colliders

The Large Electron-Positron collider (LEP)

The Large Electron-Positron collider (LEP) was a circular electron-positron col-
lider installed at the CERN laboratory (European Organisation for Nuclear Re-
search), located near Geneva on the border between Switzerland and France.
With its circumference of 26.7 km, it is the largest circular electron-positron
collider built so far. Collisions were achieved at four interaction regions around
which detectors were constructed, these correspond to the four LEP-experiments
ALEPH, DELPHI, L3 and OPAL. LEP operated from 1989 to 2000 with a centre-
of-mass energy ranging from 91 to 209 GeV and mainly contributed to the pre-
cision measurements of the parameters in the Standard Model, in particular the
masses, partial and total widths and couplings of the W and Z boson [35].

The International Linear Collider (ILC)

The International Linear Collider (ILC) is a future linear electron-positron col-
lider. The Technical Design Report was published in 2013 and currently the
possibilities to build the ILC in Japan are being investigated. The ILC would
have a centre-of-mass energy of 500 GeV and is mainly designed to study the
origin and nature of the Brout-Englert-Higgs field [62,63].

3.1.3 Hadron colliders

The Tevatron

The Tevatron was operational from about 1987 to September 2011 and was a
circular proton-antiproton collider with a centre-of-mass energy of about

√
s = 2

TeV, has a circumference of 6.3 km and is located at the Fermi National Accel-
erator Laboratory (Fermilab) near Chicago. The collisions took place at the two
interaction points around which the CDF and D0 experiments were built. Each
experiment collected about 10 fb−1 of data and their main achievement was the
discovery of the top quark in 1995 [64,65].

The Large Hadron Collider

The Large Hadron Collider (LHC) [66] was built at the CERN laboratory near
Geneva, in the 26.7 km tunnel that previously housed LEP. The LHC is mainly
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Figure 3.1: The LHC accelerator complex at CERN [67].

designed to perform proton-proton collisions at a centre-of-mass energy of 7−14
TeV and is currently the world’s largest particle accelerator. The accelerating
complex of the LHC is shown in figure 3.1. As for LEP, there are four interaction
regions around which experiments are conducted.

CMS [68] and ATLAS [69] are the two general-purpose experiments with a
rather broad physics programme. They were designed to search for the Brout-
Englert-Higgs boson as well as for physics beyond the Standard Model and their
main difference lies in their magnet system. Having two similar experiments
allows for cross-checks crucial to confirm potential discoveries. ALICE [70] is a
detector designed to study the quark-gluon plasma that can be created in heavy-
ion collisions and, finally, LHCb [71] mainly investigates B-mesons to understand
the matter-antimatter asymmetry in the universe.

The timeline of the LHC, including the future plans for the high-luminosity
LHC (HL-LHC), is shown in figure 3.2. After collecting about 30 fb−1 at 7 − 8
TeV during the Run 1, the LHC was prepared to perform collisions at 13 − 14
TeV during the first long shutdown (LS1). In June 2015, the LHC successfully
performed the first collisions ever at 13 TeV and started taking data. At this
centre-of-mass energy, the LHC will collect about 270 fb−1 of data by 2022 after
which the HL-LHC will be installed during LS3. The HL-LHC will still collide
at 14 TeV, but its luminosity will be 5 to 7 times higher which will lead to a total
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Figure 3.2: The timeline of the LHC and its future successor, the high-luminosity
LHC (HL-LHC). The lower line indicates the luminosity while the centre-of-mass
energy of the collisions is shown by the upper line. The first, second and third
shutdowns are denoted by LS1 − 3 while EYETS stands for the Extended Year
End Technical Stop, both serve to prepare the LHC for the next period of data
taking [72].

integrated luminosity of 3000 fb−1 by 2035 [72].
At the moment of writing, we just entered Run 2 and the LHC has performed

very well up to now: on the 4th of July 2012, CMS [23] and ATLAS [22] an-
nounced the discovery of the Brout-Englert-Higgs boson which resulted in 2013
in a Nobel Prize for François Englert [3] and Peter Higgs [5], two of the theo-
rists who independently predicted its existence about 50 years before, in 1964.
However, despite a couple of suggestive excesses of which one will be discussed
in chapter 4, no sign of physics beyond the Standard Model has been found in
the 7 − 8 TeV data set of Run 1. Also the first analyses of the 13 TeV data of
Run 2 did not yield any sign of new physics up to now.

3.1.4 Detectors

Detectors consist of several layers of instruments which allow us to measure the
energy and momentum of the particles. We will only provide a brief overview of
the features that are important here and we will restrict ourselves to the ATLAS
and CMS detectors. More details can be found in [68–71] or [27].

The momentum of electrically charged particles is measured in the tracker.
The particles move through a strong magnetic field which causes their path to
bend and the momentum of the particles can be derived from the curvature
of their trajectory. The trajectories are measured very precisely by means of
silicon pixels and silicon strip detectors which leads to accurate knowledge of the
momentum.

Calorimeters absorb the particles and measure their energy deposition as
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well as their direction. The energy of electrons and photons is measured in the
electromagnetic calorimeter, ECAL for short, whereas the hadronic calorimeter,
the HCAL, measures the energy of strongly interacting particles.

Muons leave a trace in the tracker, but will fly through the calorimeters. The
muon chambers are usually constructed behind the ECAL and HCAL and serve
to track the muons with a higher precision. The only known particles that escape
detection are the neutrinos. Since they are electrically neutral, they do not leave
a trace in the tracker and since they only interact weakly they also will not be
absorbed in the calorimeters.

3.1.5 The coordinate system and kinematical variables

The origin of the coordinate system is always chosen at the interaction point.
The x-axis is directed radially towards the centre of the LHC while the y-axis
points upwards. The z-axis is then aligned with the beam direction and is chosen
such as to make a right-handed coordinate system. The (x, y)-plane is referred
to as the transverse plane, the transverse momentum pT =

√
p2
x + p2

y and the
transverse energy ET =

√
p2
T +m2 of a particle are obtained from the projection

of its four-momentum on this plane.
In spherical coordinates, the azimuthal angle φ is measured in the (x, y)-

plane from the x-axis whereas the polar angle θ is measured from the z-axis. The
pseudorapidity η

η = − ln (tan [θ/2]) (3.5)

is however more commonly used in particle physics because, contrary to θ, dif-
ferences in η are invariant under Lorentz boosts along the beam direction. This
feature is especially useful in hadron colliders where the boost along the z-axis
is unknown due to the internal structure of the hadrons. The angular separation
between two particles is defined as

∆R =
√

(∆η)2 + (∆φ)2 (3.6)

and is invariant under Lorentz-boosts along the z-axis as well.

3.2 Simulation tools for colliders
At this point, it might not be so clear how collider experiments can be connected
with the Lagrangian densities we constructed in chapters 1 and 2. Indeed, the
path from a quantum field theory to the interpretation of experimental results
is rather long and involves many steps. A whole research community has been
working on collider phenomenology and, as a result, dedicated software programs
have been developed for every stage of the calculation. A schematic overview of
a hadron-hadron collision is shown in figure 3.3, in the following we will discuss
and illustrate every step in the computation.
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Figure 3.3: A schematic overview of a hadron-hadron collision showing the hard
scattering, the hadronization and the showering [73].

3.2.1 The QCD factorization theorem and
parton distribution functions

In a hadron-hadron collision, the actual process of interest is the hard scattering
interaction between the partons inside the hadrons which is shown on the bot-
tom of figure 3.3. The hadronic cross section can be calculated from the QCD
factorization theorem which dictates that the hadronic cross section σ of two
hadrons with four-momentum P1 and P2 is related to the partonic cross section
σ̂ij of two partons i and j with four-momentum p1 = x1P1 and p2 = x2P2 by

σ(P1, P2) =
∑

i,j

∫ 1

0

dx1dx2f1,i(x1, µF )f2,j(x2, µF )σ̂ij(p1, p2, µF ) (3.7)

where we integrate over the four-momentum fractions x1,2 of the partons and
where the sum goes over all the partons i, j inside the hadrons. fh,i(x, µF ) de-
notes the Parton Distribution Function (PDF) and, at leading order, this func-
tion quantifies the probability to find a parton i carrying a four-momentum
fraction x in a hadron h at the factorization scale µF . The factorization scale
is the scale at which the hadron is probed, this can for example be the momen-
tum transfer in deep inelastic scattering. The PDFs of the partons arise from
non-perturbative effects, they have to be measured experimentally and PDFs
at different factorization scales are related to each other by renormalization-
group running, more specifically the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
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Figure 3.4: The NNPDF3.0 [77] parton distribution functions for µ2
F = 10 GeV2

(left) and µ2
F = 104 GeV2 (right). Figure taken from the Particle Data Group [27]

review 2016.

(DGLAP) equations [74–76]. The best choice of the parametrization of the PDF
and the loop-order of the DGLAP equations depends on the process under study
and, consequently, many PDF sets are available. Figure 3.4 shows the NNPDF3.0
PDF [77] set at two different factorization scales.

Once the PDFs are known, the only missing piece to calculate the hadronic
cross section in equation 3.7 is the partonic cross section as a measure for the
probability for the hard scattering to occur.

3.2.2 The hard subprocess

The partonic cross section of a hard scattering process can be calculated from
perturbation theory and all the information we need is contained in the La-
grangian density. After extracting the Feynman rules from the Lagrangian and
drawing all the possible Feynman diagrams leading to the process of interest, we
can write down the helicity amplitudes and the matrix elements M which will
then lead to the partonic cross section after integrating over the phase space dΦ
of the final state particles. More specifically, we have

σ̂ij =
1

2ŝ

∫
|Mij|2dΦ (3.8)

where ŝ = x1x2s denotes the partonic centre-of-mass energy.
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Suppose we want to study a simplified model in which the only supersymmet-
ric particles in reach of the LHC are the lightest stop and the lightest neutralino.
The stops can be produced in pairs and will always decay to the lightest neu-
tralino and a top. As a first step we will use the FeynRules package to extract
the Feynman rules.

Model building – FeynRules

FeynRules [78,79] is a Mathematica package designed to automatically com-
pute the Feynman rules starting from a Lagrangian implemented by the user.
All gauge symmetries, fields and parameters as well as the gauge- and Lorentz-
invariant Lagrangian density have to be specified in the model file.

For details on the syntax and mode implementation, we refer to the Feyn-
Rules manual. In our example, we can simply use the model file of the MSSM [80]
which is publicly available on the FeynRules website [81]. Loading the Feyn-
Rules package and model file into a Mathematica notebook, then allows us
to compute the Feynman rules of the model. The Feynman rule for the vertex
connecting the up-type squark (su), up-type quark (uq) and gluino (go) can for
example be obtained as

{{{
−uq, 1

}
, {go, 2}, {su, 3}

}
,

i
√

2gs(RRu)∗i3,f1P−s1,s2T
a2
m1,m3

− i
√

2gs(RLu)∗i3,f1P+s1,s2T
a2
m1,m3

}

where the index i runs over the up-type squarks while f , s, a and m respectively
represent the generation, Lorentz, adjoint and fundamental colour indices. RRu

and RLu denote the first and last three columns of the squark mixing matrix,
P± = 1±γ5

2
are the chiral projection operators and T a represent the generators of

the strong interaction in the fundamental representation. For a top quark and a
purely right-handed stop this reduces to

i
√

2gs
1− γ5

2
T a. (3.9)

After fully implementing our theory in FeynRules, we can move on to calcu-
lating the cross section. FeynRules provides specific interfaces that export
the model and its Feynman rules to Feynman-diagram or matrix-element gen-
erators like CalcHep/CompHep [82–85], FeynArts/FormCalc [86–89] and
Whizard/O’Mega [90,91]. A more generic interface is provided by the Univer-
sal FeynRules Output, also known as the UFO-format [92], which is currently
used by Aloha [93], Gosam [94,95], Herwig++ [96], MadAnalysis 5 [97] and
MadGraph5_aMC@NLO [98]. We will focus on MadGraph5_aMC@NLO
(MG5_aMC for short) in the following.
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Event generation – MG5_aMC

After specifying a certain process in terms of the initial and final state particles,
MG5_aMC generates all the Feynman diagrams contributing to the process
and the computer codes necessary to evaluate the matrix elements. The latter
is achieved by calling a helicity amplitude function library, either the Helas
subroutines [99] or Aloha. The MadEvent package then uses this code to
generate events and calculate the requested cross section and decay widths.

To calculate the cross section for stop-pair production at the LHC at leading
order (LO), we start MG5_aMC and type

generate p p > t1 t1~

where t1 and t1˜ denote the lightest stop and its antiparticle. The generated
Feyman diagrams are shown in figure 3.5 and 3.6, they all arise from the strong
interaction and therefore, the cross section of stop-pair production does not de-
pend on the left-right mixing of the stops. After setting the parameters such
as the stop mass, centre-of-mass energy, PDF and the factorization and renor-
malization scale, the launch-command calls MadEvent and starts the event
generation. We choose

√
s = 8 or 13 TeV and the CTEQ6L1 [100] PDF set. For

each
√
s, we scanned over the stop masses mt̃ while fixing µF = µR = mt̃. The

result is shown in figure 3.7.
For more precise results, we would have to generate the events at the next-

to-leading order (NLO) or, less precisely, we could simply rescale the number of
events with the ratio of the NLO cross section over the LO cross section, the
K-factor. We will adopt the latter approach. The higher-order calculation of the
cross section (next-to-leading order (NLO) + next-to-leading logarithm (NLL))
as obtained by the LHC SUSY Cross Section Working Group [101, 102] is also
shown in figure 3.7 and the K-factor in our case is about 1.7− 1.8.

If mt̃ = 500 (1000) GeV, MG5_aMC predicts the production-cross-section of
stop pairs at the LHC to be about 47.1 (0.17) and 308.3 (3.3) fb at

√
s = 8 and

13 TeV respectively. Consequently, at leading order, we expect about 940 (3)
stop pairs in the 20 fb−1 data-set collected in Run 1 at 8 TeV while the 100 fb−1

of data that will be collected during Run 2 should contain about 31000 (330)
stop pairs. For the corresponding higher-order yields, we have to multiply these
numbers by the K-factor. How many of these stop pairs will be detected depends,
among others, on the decay of the stops.

In our simplified model, the stop will always decay to a top quark and the
lightest neutralino n1 after which the top quark decays to a bottom quark and
a W boson. The W boson can decay hadronically or leptonically and we will
focus on the semileptonic decay channel, i.e. one of the two W bosons decays
leptonically while the other decays hadronically. This decay channel occurs in
28% of the cases and we generate this process inside MG5_aMC as
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Figure 3.5: All the Feynman diagrams with gluon-gluon initial state contributing
to stop-pair production, generated with MG5_aMC.

Figure 3.6: The Feynman diagrams with quark-anti-quark initial state contribut-
ing to stop-pair production, generated with MG5_aMC.
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Figure 3.7: The cross section of the pair production of left-handed stops at the
LHC at

√
s = 8 and 13 TeV in function of the stop mass mt̃. We obtained the

LO cross section with MG5_aMC with µF = µR = mt̃ using the CTEQ6L1
PDF sets. The NLO + NLL cross section is taken from the LHC SUSY Cross
Section Working Group [101,102].
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Figure 3.8: One of the Feynman diagrams contributing to the production of
semileptonically decaying stop-pairs at the LHC, generated with MG5_aMC.

generate p p > t1 t1~, (t1 > n1 w+ b, w+ > j j), \
(t1~ > n1 w- b~, w- > l- vl~)

where we used the multiparticles j which represents all first and second genera-
tion quarks and l- which stands for the electrons and muons. We assumed the
stops and the W bosons to be on-shell, the top quarks can be off-shell as well.
Issuing

add process p p > t1 t1~, (t1 > n1 w+ b, w+ > l+ vl), \
(t1~ > n1 w- b~, w- > j j)

in a shell adds the other half of the decay channel. Figure 3.8 shows one of the
diagrams as such generated by MG5_aMC. Since the width of the top squark
depends on the left-right mixing of the stops and the mixing of the lightest
neutralino, we ask MG5_aMC to calculate its width by setting the stop width
to AUTO in the parameter card. The launch command then starts the event
generation, yielding the cross section of the hard scattering process as well as the
parton-level events.

In our illustration, we fix mt̃ = µF = µR = 500 GeV and mχ0
1

= 130 GeV.
We fix the lightest neutralino to be fully bino-like and generate two samples at√
s = 8 TeV, one with left- and one with right-handed stops. The black lines

in figure 3.9 show the parton level pT distribution of the leptons we obtained.
Clearly, the left-right mixing of the stops has an influence on the kinematical
distributions.

This effect has for example been studied in [103] and is due to the polarization
of the top. Since a bino connects stops and tops with the same chirality, a right-
handed stop decaying to a bino-like neutralino, will result in a right-handed
or positively polarized top which then decays to a lepton flying in the forward
direction, i.e. in the direction in of the momentum of the top. On the contrary,
a left-handed stop decaying to a bino-like neutralino will decay to a left-handed
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Figure 3.9: The pT distribution of the leptons coming from left- or right-handed
stop pairs with mass mt̃ = 500 GeV. Each stop decays to a top and bino-like
neutralino, the tops then decay to a bottom quark and a W boson. One of
the two W bosons decays leptonically while the other decays to hadrons. The
black and red lines respectively show the pT distribution at parton- and analysis
level. We ran the CMS search for stop pairs in the single lepton final state [104]
recasted within MadAnalysis 5 [105] (cfr. section 3.2.4) and show the number
of events expected at the LHC for

√
s = 8 TeV and L = 19.5fb−1.

or negatively polarized top which will result in a lepton emitted in the backward
direction. For a lighest neutralino which is mainly bino-like, we therefore expect
the lepton resulting from the decay of a right-handed stop to be more energetic
than the one from a left-handed stop.

The pT distribution we obtained with MG5_aMC shown in figure 3.9 meets
our expectations and is additionally in agreement with figure 12 in [103].

3.2.3 The parton shower and hadronization

We now generated the hard subprocess of interest at the parton level. The
partons of the initial hadrons and the strongly interacting decay products will
result in initial and final state QCD radiation. As is shown in figure 3.3, the
parton will radiate until its energy is lowered to the non-perturbative regime of
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QCD, the parton is said to undergo a parton shower. When partons move into
the non-perturbative regime, they will hadronize. Quarks and gluons produced
in the collision will therefore result in a large number of particles in the detector,
referred to as jets. The parton shower and hadronization can for example be
simulated by Herwig++, Sherpa or Pythia [106, 107]. In our example we
used Pythia to shower the b-quarks, as this program can easily be called inside
MG5_aMC. For more details on the parton shower and hadronization, we refer
to the corresponding manuals or [108]. Since leptons are not so much affected by
the parton shower, the pT distributions of the leptons after showering will not
differ much from the parton level distributions shown in figure 3.9.

3.2.4 Detector simulation and experimental analysis

After the parton shower and hadronization, the particles pass through the de-
tector. As was described in section 3.1.4, a detector consists of the tracker, the
electromagnetic and hadronic calorimeter and the muon chambers and their re-
sponse to the particles flying through has to be simulated. For a detailed detector
simulation, Geant 4 [109] can be used. This package is however computation-
ally intensive and simplified parametrizations of the detectors were for example
implemented in the Delphes 3 [110] fast-simulation package. Delphes 3 sim-
ulates the detector response and reconstructs the physics objects. The hadrons
have to be clustered into jets and several jet-clustering algorithms have been
designed to this end. Delphes 3 relies on the FastJet [111] package for jet
clustering.

With the reconstructed objects, we use the MadAnalysis 5 [97,112] frame-
work to simulate the experimental analyses and investigate if and how the process
under study will contribute. CheckMATE [113] has been developed with the
same purpose as MadAnalysis 5 and can be used alternatively. MadAnal-
ysis 5 has two working modes: the normal interaction mode and the expert
mode. The interaction mode allows the user to quickly impose selection cuts
and make plots of the observables and was used to make figure 3.9 while the
expert mode is well-suited for the detailed implementation of experimental anal-
yses. MadAnalysis 5 can process parton- and hadron- as well as detector-level
events and Delphes 3 or FastJet can be easily called within MadAnalysis
5 for detector simulation or jet clustering. MadAnalysis 5 also has a database
of publicly available validated experimental analyses [114, 115] which currently
contains 19 analyses of the CMS and ATLAS experiments that can be used at
will by the user.

For our semileptonically decaying stops, the CMS search for stop-pair produc-
tion in the single-lepton final state at

√
s = 8 TeV [104] is especially relevant. Us-

ing the publicly available MadAnalysis 5 implementation of this analysis [105],
it is now straightforward to check whether the previously used reference point
(mt̃ = 500 GeV, mχ0

1
= 130 GeV) of our simplified model is still allowed. To this
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Figure 3.10: CMS exclusion plot in the plane of the stop mass mt̃ and the mass
of the lightest neutralino mχ̃0

1
. The parts of the parameter space underneath the

curves are excluded. Taken from the CMS-search for stop pair production in the
single-lepton final state [104].

end, we use MG5_aMC to generate unpolarized stop pairs (i.e. stops consisting
of an equal left- and right-handed component) at

√
s = 8 TeV and let Pythia

perform the parton shower and hadronization. Starting MadAnalysis 5 in the
reconstruction mode by typing .\bin\ma5 -R, issuing

set main.recast = on
import [path-to-sample] as sample
set sample.xsection = [xsec in pb]
submit

where the square brackets have to be filled by the user, and indicating which
experimental analyses we would like to run, will then start the detector simulation
with Delphes or DelphesMA5tune (a Delphes-version adjusted for MadA-
nalysis 5) depending on the chosen analysis. For each analysis, MadAnalysis
5 then generates the cut-flow tables and histograms as well as the expected and
observed upper limits on the cross section and the 95% confidence-level (CL)
exclusion limits for each signal region.

Our leading-order (LO) sample is sufficient for our purposes, but in order to
obtain realistic exclusion limits, we need the cross section up to a higher-order
in perturbation theory. The ratio of higher-order cross section over the one at
LO is called the K-factor and can be used for rescaling.
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The next-to-leading-order and next-to-leading-log (NLO+NLL) cross section
at
√
s = 8 TeV for the production of stop pairs with mt̃ = 500 GeV can be found

at the webpage of the LHC SUSY Cross Section Working Group [101, 102] and
reads 85.6 fb. Multiplying with the branching ratio for the semileptonic decays,
we get σ(semileptonic stop-pair) = 24.6 fb. Using this information, MadAnal-
ysis 5 shows that there are several signal regions in which our signal is excluded
at 99% CL or higher. We can therefore conclude that our simplified model in
which all SUSY particles are very heavy and decoupled except the top-squark
and the lightest neutralino, is excluded for mt̃ = 500 GeV and mχ0

1
= 130 GeV.

This is in agreement with the CMS-exclusion plot shown in figure 3.10.
We can now come back to the pT distributions of the leptons for the left-

and right-handed stops at the analysis level. They are shown by the red lines in
figure 3.9. The difference in the pT distribution which was clearly visible at the
parton level, more or less disappeared after applying the analysis.

3.2.5 Introducing stop-scharm mixing

Suppose now that the lightest squark is not a pure stop, but a mixture of a stop
and scharm. How would the limits from the aforementioned CMS search change?
To investigate this, we assume that the lightest squark q̃ has a mass of 500 GeV
and mixes the right-handed top and charm squark as q̃ = t̃R cosα+ c̃R sinα. The
stop and scharm states will always decay as t̃R → tχ̃0

1 and c̃R → cχ̃0
1.

We generated the Monte Carlo samples for pp → q̃ ¯̃q at
√
s = 8 TeV with

MG5_aMC for various mixing angles between 0 and π/2. In addition to the
Feynman diagrams shown in figure 3.5 and 3.6, the scharm states could also be
produced from charm-anticharm initial states through a t-channel gluino. How-
ever, apart from being suppressed due to the high gluino mass in our simplified
model, this process is additionally suppressed by the PDF: as can be seen from
the PDFs shown in figure 3.4, the fraction of the proton momentum carried by
the initial-state charms is usually too low for this channel to contribute. The
K-factor could possibly depend on the mixing angle, but the difference would
anyway be small [116] and we therefore assume the cross section to be indepen-
dent of the mixing angle.

Using MadAnalysis 5, we calculated the expected and observed 95% CL
upper limits on the cross section, the results are shown in figure 3.11. We also
show the NLO+NLL MSSM prediction for the cross section, our simplified model
is excluded if this cross section is higher than the upper limits. We see that, the
larger the charm content of the squark, the higher the upper limit becomes. This
is as expected: contrary to the top quark which can give rise to a lepton and a
b-jet, a final-state charm will just be observed as a jet. Since the CMS search
requires one lepton and a b-jet, a squark pair with a large charm content is less
likely to pass the event selection and we expect the limit to be lower. As soon as
the mixing angle becomes larger than roughly 40 degrees, our simplified model
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Figure 3.11: The expected and observed 95% CL upper limits on the cross section
for the pair production of squarks mixing stop and scharm in function of the
mixing angle. Limits obtained for the CMS search for stop-pair production in
the single-lepton final state [104] using MadAnalysis 5 [105].

is no longer excluded by this search.
In this regime, we expect the LHC searches for multijets and missing energy,

with or without charm-tagging, to become relevant and we can wonder what the
overall impact of flavour mixing on the squark limits would be if we combine all
the searches. This question was investigated in [117] and we show two plots of
interest in figure 3.12. These figures show the sensitivity of four LHC searches
to the signatures of a simplified model containing a gluino and the two lightest
squarks which are a mixture between a right-handed stop and scharm. Their mass
difference is 500 GeV, sin θR23 = 0 corresponds to a lightest squark which is purely
stop-like and our scenario roughly corresponds to gluino masses which are much
higher than the mass of the lightest squark. The coloured regions are excluded,
red and yellow correspond to the exclusion due to the multijet analyses of ATLAS
(ATLAS-SUSY-2013-04 [118]) and CMS (CMS-SUS-13-012 [119]) respectively,
blue corresponds to the CMS search for stops in single lepton events we considered
in our example (CMS-SUS-13-011 [104]) while green corresponds to an ATLAS
search using charm-tagging to set limits on scharm-pair production (ATLAS-
SUSY-2014-03 [120]).

Similar to the conclusion of our illustrative example, we can conclude that,
whereas the CMS search for stop-pair production in the single lepton final state
(blue) is very relevant if the lightest squark is mainly stop-like (left-hand side in
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Figure 3.12: The sensitivity of four LHC searches to squark pair production. The
coloured regions are excluded and the colour coding as well as more details are
explained in the text. Taken from figure 9 in [117].

figure 3.12), this is no longer the case if the scharm component becomes dominant
(right-hand side in figure 3.12). In that case the multilepton searches and the
search for scharm-pair production take over and the limit on the gluino mass is
not influenced by introducing flavour mixing. For very heavy gluinos, however,
the limit on the lightest squarks is slightly softer.

3.2.6 Supersymmetric mass spectra with ASperGe

So far, we just studied a simplified model and we assumed the chosen mass spec-
trum and mixing could also be realised within a theory. Given the mass matrix
of the up-type squarks (see equation 2.58), we can now ask ourselves which val-
ues for the SUSY parameters correspond to a scenario where the lightest squark
has mass 500 GeV and is a mixture of top and charm squarks with. To make
this connection, we can use an extension of the FeynRules package, ASper-
Ge [121], dedicated to the automatic, numerical diagonalisation of mass matrices
associated with any Lagrangian associated with any quantum field theory.

After implementing the model including the description of the mixings in the
FeynRules model file, ASperGe extracts the mass matrices and writes the
results to a numerical code which can then diagonalise the matrix numerically.
The code provided by ASperGe can be used in itself, but it can also be called
inside FeynRules or MadGraph to calculate and update the mass and mix-
ing parameters of a certain model. Mass matrix diagonalisation is one of the
steps necessary to calculate the SUSY mass spectrum starting from the UV in-
put parameters in for example mSUGRA, as is for example done in the SUSY
mass spectrum generators SOFTSUSY [49], SPheno [50] or SuSpect [51] we
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mentioned already before in section 2.3. ASperGe could be part of a model-
independent mass spectrum generator based on FeynRules.

However, we will just use the diagonalisation module of the MSSM gener-
ated by ASperGe to show that scenarios in which the lightest squark mixes the
right-handed stop and scharm and has a mass of 500 GeV while the other squarks
are decoupled are indeed possible within the low-energy parametrization of the
MSSM. The soft squark masses M̂2

Ũ
are the most important parameters deter-

mining the masses and mixing of the right-handed up-type squarks. We take the
entries related to the second and third generation as (M̂2

Ũ
)22 = 700 000 GeV2,

(M̂2
Ũ

)33 = 560 000 GeV2 and (M̂2
Ũ

)23 = (M̂2
Ũ

)32 = 370 000 GeV2 and set the re-
maining off-diagonal terms to zero while the diagonal terms are taken to be
107 GeV2. If we additionally set T̂c = T̂t = µ = 0 GeV to avoid left-right mixing,
ASperGe indeed yields a lightest squark mixing the right-handed top and charm
squarks with a mixing angle of 40◦ and a mass of about 500 GeV while the other
squark masses are 1 TeV or larger. It should however be noted that a scenario
in which the other, orthogonal state mixing the right-handed stop and scharm is
also at the bottom of the spectrum, is more natural within the parametrization of
the MSSM. An analysis in which both states are included, would be completely
analogous to the illustrative example presented here.
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In Part I, we explained how the known fundamental particles and interac-
tions are described within the Standard Model and we introduced supersymme-
try to meet at least some of the shortcomings of the SM. We then showed how
theoretical models within high-energy physics, such as the SM or SUSY, can
be confronted with experimental observations at particle colliders and we illus-
trated how phenomenological simulation tools facilitate connecting theory and
experiment.

We also discussed the current status of SUSY and we saw that not a single
supersymmetric particle has been observed so far which puts natural SUSY un-
der pressure. However, up to now collider searches for SUSY mainly focussed
on minimal realisations of SUSY. Supersymmetry, however, encompasses a very
broad class of models and it is important to get a more comprehensive overview
of the SUSY phenomenology in order to ensure that we did not overlook any-
thing. In Part II, we investigate how we can go beyond minimal SUSY, to which
extent this is still allowed and how it would change the SUSY phenomenology.

In chapter 4, we investigate a GGM-inspired simplified model featuring a
bino-like neutralino, the right-handed sleptons and the very light gravitino at
the bottom of the spectrum. Part of this simplified model, namely the case
in which the right-handed selectron and smuon are lighter than the stau, has
escaped attention up to now and can lead to interesting multilepton signatures.
In particular, we show that they can explain a, not yet significant, excess observed
in a CMS search for three or more leptons while satisfying other constraints from
multilepton searches.

In chapter 5 we have a closer look at the SUSY-breaking mechanism. Usu-
ally one assumes there is only one SUSY-breaking sector, however, there is no
real motivation why this should be the case. In this chapter, we abandon this
assumption and study the phenomenology of GMSB with two SUSY-breaking
sectors. There will be one goldstino for each SUSY-breaking sector, one linear
combination of them will be eaten by the gravitino while the remaining fields
give rise to the pseudo-goldstino. The pseudo-goldstino can acquire a mass in
between the mass of the light gravitino and the lightest of the remaining SUSY
particles which, as we will see, can considerably change the collider signatures.

In chapter 6, we revisit the minimal-flavour violating paradigm which was
introduced in chapter 2 in the context of the pMSSM. We investigate to which
extent non-minimal flavour violation (NMFV) in the squark sector is still allowed
by low-energy flavour observables such as meson mixing and the constraint com-
ing from the Higgs boson. We use the Markov Chain Monte Carlo scanning
technique and see there is still room left for NMFV in the squark sector. We
also observe that the lightest squarks within NMFV are typically not the third
generation squarks, as is the case in the usual SUSY scenarios.

Clearly, the work presented in this thesis is not the end of the story and there
remains a lot of room for further investigation. In chapter 7 we summarize our
findings and discuss the remaining open questions that can be studied in the
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future.



Chapter 4

Multilepton signals of
gauge-mediated supersymmetry
breaking at the LHC

Even though the LHC has not delivered any conclusive evidence for physics
beyond the Standard Model yet, some searches did observe 2-3σ deviations from
the Standard Model predictions. They do not reach the 5σ significance needed
to claim a discovery, but still they might give a hint of where to go. One of
these excesses was observed in the CMS search for anomalous production of
events with three or more leptons. In this chapter, based on the work presented
in reference [122], we will investigate the collider signatures of a GGM-inspired
simplified model and show that we can provide an explanation for the observed
excess, while satisfying other existing experimental constraints. These models
also give rise to final states with more than four leptons which offers alternative
channels in which they can be probed. We estimate the corresponding production
rates at the LHC.

We begin this chapter with an introduction in section 4.1. In section 4.2 we
then construct the simplified models of interest and confront them with collider
searches in section 4.3. Our findings are summarized in section 4.4.

4.1 Introduction

In this chapter, we consider the framework of gauge-mediated SUSY breaking in
its general formulation (GGM) where it is possible to construct models in which
all the coloured superpartners are heavy but some (or all) of the electroweak
superpartners are light. One benefit of this kind of spectrum is that a 125 GeV
Higgs boson can be easily accommodated by means of multi-TeV top squarks.

We focus on models in which the three generations of right-handed sleptons,
together with the nearly massless gravitino, are in the low mass region of the

79
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ℓ̃R = ẽR, µ̃R

τ̃R

G̃

M.I M.II

τ̃R

G̃

B̃ B̃

ℓ̃R = ẽR, µ̃R

Figure 4.1: Mass spectra for our simplified model of type M.I (left) and M.II
(right). In M.I scenarios, the stau τ̃R is the NLSP and the right-handed selec-
tron/smuon ˜̀

R are co-NNLSP. In models of class M.II, the situation is reversed.

superpartner spectrum. Such models can be probed at the LHC by analyzing
events originating from the pair-production of sleptons that decay promptly into
lepton-rich final states with missing transverse energy E/T carried by gravitinos.

We show that some of these GGM models can provide an explanation for
a possible anomalous production of events with four leptons recently observed
by the CMS collaboration [123, 124]. We also discuss the compatibility with
the constraints extracted from the dilepton+E/T searches at both LEP and LHC
experiments, as well as from other LHC multilepton searches. We finally propose,
for the model that fits the data best, additional signatures that could be searched
for using both data from the previous LHC runs and future data from the run
at a centre-of-mass energy of

√
s = 13 TeV.

4.2 Theoretical framework and
benchmark scenarios

We consider a class of GGM models where the selectron and smuon (generi-
cally referred to as sleptons in the following), as well as the stau, lie in the
low-mass range of the superparticle spectrum. As for any scenario with gauge-
mediated SUSY breaking, the lightest supersymmetric particle (LSP) is the gra-
vitino, whose typical mass is O(eV) for SUSY-breaking scales of O(100 TeV).

Adopting a bottom-up approach for new physics, we investigate the phe-
nomenology of a simplified model in which we extend the SM field content by
adding a nearly massless gravitino G̃, a pair of mass-degenerate right-handed
sleptons ˜̀

R = ẽR, µ̃R and a (for simplicity, non-mixed) stau τ̃R. In addition, we
also include the lightest neutralino state, considered to be bino-like and heav-
ier than both the sleptons and the stau. All the remaining superpartners are
assumed heavy and effectively decoupled. Similar scenarios were considered
in [125,126].
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Figure 4.2: Right-handed slepton/stau pair-production cross section at the LHC,
for a single flavour, as a function of the slepton mass.

In this simplified model, two possible hierarchies can be realized in the slep-
ton/stau sector. As presented in figure 4.1, we consider both of these and denote
byM.I scenarios where the stau is the next-to-lightest superparticle (NLSP) and
sleptons the next-to-next-to-lightest superpartners (NNLSP), and by M.II sce-
narios with an inverted hierarchy, with the sleptons being co-NLSP and the stau
the NNLSP. While models of type M.I are typical in GGM (even in minimal
gauge mediation), models of type M.II can be realized when the soft masses
for both Higgs fields at the UV scale are allowed to receive extra, non-gauge
mediated, contributions [127,128].

Slepton pairs are produced via the electroweak Drell-Yan process1 and the
production cross section of a right-handed slepton/stau pair at the LHC, for√
s = 8 TeV and 13 TeV, as computed by Resummino [129–133] is shown in

figure 4.2. Since the cross section steeply falls with increasing slepton mass [134],
we consider slepton and stau masses only up to 300 GeV, a range above which
it is unlikely that the LHC at

√
s = 8 TeV is sensitive.

For both types of scenarios, the NLSP universally decays into a gravitino and
the corresponding SM partner,

τ̃R → τG̃ (M.I); ˜̀
R → `G̃ (M.II). (4.1)

Generally speaking, the decay width of a SUSY particle X̃ to its SM partner X

1Drell-Yan production of slepton pairs occurs in hadron-hadron collisions if a quark from
one hadron annihilates with a corresponding anti-quark of the other hadron to form a virtual
photon or Z boson which then consequently decays to two sleptons.
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Figure 4.3: Branching ratio of the NNLSP as a function of the stau mass for two
different choices of the gravitino mass, mG̃ = 1 eV (left) and 0.1 eV (right), where
the bino and slepton masses are fixed at 500 GeV and 150 GeV, respectively. The
dashed blue line corresponds to the two-body decay to the gravitino, while the
solid red line indicates the total three-body decay branching ratio. The red
dashed-dotted and dotted lines represent the opposite-charge and same-charge
three-body decays, respectively, as explained in the text.
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and a gravitino G̃ depends on the gravitino mass and is given by [54]

Γ(X̃ → XG̃) '
m5
X̃

16π 〈F 〉2
'

m5
X̃

16π
(√

3MPm3/2

)2 (4.2)

where we assumed mX � mX̃ and from which we can estimate the decay length
as L ' ~c

Γ
. If we require the sleptons and staus to decay promptly (i.e. L <

0.1 mm), the width has to be large and the gravitino mass can not be too high.
We impose the gravitino mass to be lower than 10 eV.

Concerning the NNLSP, the analogous two-body decay competes with possi-
ble three-body decay modes via an off-shell bino,

˜̀
R → `τ τ̃R (M.I); τ̃R → τ`˜̀R (M.II) . (4.3)

Figure 4.3 presents, for two different choices of the gravitino mass mG̃ = 1 eV
(left) and 0.1 eV (right), the NNLSP two-body and three-body branching ratios
when fixing the bino mass to 500 GeV, the slepton mass m˜̀

R
to 150 GeV and

when varying the stau mass mτ̃R . When mτ̃R < m˜̀
R

(M.I), we display the
decay modes of the slepton, whereas when mτ̃R > m˜̀

R
(M.II) the ones of the

stau. The three-body decay is found dominant except in the region where the
NNLSP and NLSP are close in mass (mτ̃R ≈ m˜̀

R
). This result is robust under

variations of the bino mass. In contrast to other SUSY scenarios, our models
exhibit a suppression of the two-body decay mode of the NNLSP into the LSP
by the SUSY-breaking scale. As will be shown below, this is a key feature to get
agreement with data.

We briefly notice that the three-body decay distinguishes between the differ-
ent charge channels, i.e., the NLSP can have either the opposite charge of the
NNLSP (˜̀−R → `−τ−τ̃+

R ) or the same (˜̀−R → `−τ+τ̃−R ) [125], denoted by dashed-
dotted and dotted lines in figure 4.3. Generically, the more the bino is off-shell,
the more the opposite charge channel dominates. Since the dominance of one
channel with respect to the other is very much dependent on whether the slep-
tons are right- or left-handed, on the amount of stau mixing and on the nature of
the neutralino, a detailed analysis of these effects might give us a way of probing
non-trivial properties of the spectrum. However, the current LHC statistics is
too low to allow for this analysis and we leave it for further investigation.

4.3 Multilepton signals at the LHC
Recently the CMS collaboration reported a slight excess in events with three
electrons or muons (out of which one opposite-sign same flavour lepton pair can
be formed) and one hadronically decaying tau, in the category with a Z-veto,
low hadronic activity and no jet issued from the fragmentation of a b-quark [123].
With 19.5 fb−1 of collisions at

√
s = 8 TeV, the number of observed (expected)
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Figure 4.4: The observed and expected number of events for the categories of
the CMS analysis [124] with four or more leptons featuring the excess. For more
details we refer to reference [124].
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Figure 4.5: The 95% confidence level upper limits for the stau-(N)NLSP scenarios
(corresponding to our M.I and M.II scenarios without bino) in the stau versus
the slepton mass plane. The region to the left and below the contours is excluded.
The discrepancy between the observed and expected limits is due to the excesses
shown in figure 4.4. Figure taken from [124].

events in this category is 15 (7.5±2), 4 (2.1±0.5) and 3 (0.6±0.24) for the three
regions E/T < 50 GeV, E/T ∈ [50, 100] GeV and E/T > 100 GeV, respectively. The
corresponding table and exclusion plot are shown in figure 4.4 and 4.5.

Motivated by this result, we investigate the contributions arising from slepton
and stau pair production for models of class M.I and M.II. To display our
results, we fix the bino and gravitino masses to 500 GeV and 1 eV, respectively,
and scan the slepton and stau masses from 50 GeV to 300 GeV. Within our choice
of parameters, the NNLSP dominantly decays via its three-body mode in most
of the (m˜̀

R
,mτ̃R) mass plane. This allows for a possible enhancement of the

production rates of final states comprised of 4τ + 2` + E/T and 2τ + 4` + E/T for
M.I and M.II scenarios, respectively, as depicted in figure 4.6. The actual final
state lepton multiplicity however depends on the number of leptonically decaying
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Figure 4.6: Diagrams leading to multilepton production in association with
missing energy in scenarios of type M.I (left) and M.II (right).

taus.

4.3.1 Simulation

For our SUSY signal simulation, we use the goldstino model [135, 136] imple-
mented in the FeynRules package [78, 80] and export it to a UFO library [92]
which has been linked to MadGraph 5 [137]. The generated parton-level events
have then been processed by Pythia [106] for parton showering and hadroniza-
tion, Tauola [138] for tau decays and by Delphes [139] for detector simulation
using the recent CMS detector description of [140]. We have analyzed 19.5 fb−1

of events describing NNLSP pair production at the LHC, running at
√
s = 8 TeV,

with MadAnalysis 5 [97]. Generated events have been reweighted using signal
cross sections predicted by Resummino at the next-to-leading order and next-
to-leading logarithmic accuracy, as shown in figure 4.2. This results in typical
K-factors of about 1.2 for the scanned mass range.

For event selection, we follow the CMS multilepton analysis of [123] and
base our results on an investigation of the properties of isolated electron and
muon candidates whose transverse-momentum pT is greater than 10 GeV and
pseudorapidity |η| is smaller than 2.4. We enforce lepton isolation by imposing
the amount of transverse activity in a cone of radius R =

√
∆ϕ2 + ∆η2 = 0.3

centered on the lepton, ϕ being the azimuthal angle with respect to the beam
direction, to be less than 15% of the lepton pT . Additionally, we impose the lead-
ing lepton (electron or muon) transverse momentum to satisfy pT > 20 GeV and
include efficiencies of 95%, 93% and 90% to simulate the effects of the double-
electron, electron-muon and double-muon triggers relevant for the considered fi-
nal state topologies. Finally, events featuring a pair of opposite-sign same flavour
(OSSF) leptons whose invariant-mass is smaller than 12 GeV are rejected. While
leptonically-decaying taus are accounted for as the electrons or muons in which
they decay into, hadronically-decaying taus τh are reconstructed as such and we
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Figure 4.7: The number of signal events in the (m˜̀
R
,mτ̃R) plane for some rep-

resentative categories, after summing E/T bins. The numbers of expected and
observed events are also presented [123], as well as LEP and LHC bounds from
direct slepton searches.

demand their visible pT to be greater than 20 GeV and their pseudorapidity to
fulfill |η| < 2.3.

The CMS analysis classifies events as having HT greater or less than 200 GeV
as well as counting the number of b-tagged jets in the final states for which we
employ the b-tagging algorithm described in [140]. The HT variable is defined
as the scalar sum of the transverse energy of all isolated reconstructed jets (not
including hadronic tau contributions) with pT > 30 GeV and |η| < 2.5, for which
we use an anti-kT algorithm whose radius parameter is fixed to R = 0.5 [141],
as implemented in the FastJet package [111], and we consider a jet as isolated
only if no electron, muon or tau lies within a cone of radius R = 0.3 centered
on the jet. Concerning signal events, the hadronic activity mainly arises from
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initial state radiation so that HT is always found smaller than 200 GeV and the
number of b-jets is rarely above zero. This feature is actually welcome since the
CMS experiment does not see any excess in the regions where HT > 200 GeV or
Nb-jets ≥ 1.

After applying the above requirements, events with at least three leptons are
selected, where at most one of them is a hadronic tau. Further categories are
made by classifying each event in terms of the maximum number of opposite-sign
same flavour (OSSF) lepton pairs. Final state signatures predicted by both M.I
and M.II models contain at least one OSSF lepton pair in most of the parameter
space, which is again a welcome feature since the bins with zero OSSF lepton
pairs do not exhibit any excess. The ‘on-Z’ region is populated if at least one
OSSF lepton pair has an invariant mass in the Z-window |m`+`−−mZ | < 15 GeV
while in the ‘off-Z’ region, each OSSF dilepton invariant mass lies outside the
Z-window.

4.3.2 Results

After summing the E/T bins, we have six categories for both the four lepton
and the three lepton cases. We focus our discussion mainly on the four lepton
channels since in the three leptons ones, the expected background is so large
that the contributions from our signal region, characterized by a small yield, are
always in agreement with the expectation within the statistical precision.

For illustrative purposes, in figure 4.7 we show four categories out of the
possible six for the four lepton case, displaying the number of signal events in
the (m˜̀

R
,mτ̃R) mass plane. We also quote the numbers of expected and observed

events from table 2 in the CMS note [123]. The lower half plane, withmτ̃R < m˜̀
R
,

corresponds to the M.I models, while the upper half plane, with mτ̃R > m˜̀
R
,

corresponds to the M.II models.
In the category with two ‘off-Z’ OSSF lepton pairs, corresponding to the

first panel of figure 4.7, the CMS analysis finds good agreement with the SM
expectation. While models of class M.I do not give rise to any signal events
in this category, the M.II models that are best compatible with the data in
this category are those with mτ̃R & 150 GeV, i.e. those that give rise to very
few signal events. The category with one ‘off-Z’ pair of OSSF leptons and no
hadronic tau is shown as the second panel of figure 4.7. For very low stau
masses, M.I scenarios can populate this bin with events featuring at least two
leptonically decaying taus. By comparing with the first panel of the figure, we
observe that out of the four leptons, M.I models generally predict, in the absence
of hadronic taus, that one single OSSF lepton pair can be formed, whereas two
OSSF lepton pairs are rather expected in M.II models. In the third panel of
figure 4.7, we turn to the four lepton category including one hadronic tau and
where one single OSSF lepton pair can be formed and lies in the Z-window.
All scanned M.I and M.II scenarios predict number of events lying comfortably
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Figure 4.8: The same as in figure 4.7, but for the category where the excess
events are observed. We show the results for different E/T bins.

within 1σ variation of the SM expectation. The last panel of figure 4.7 shows
the four lepton category including one hadronic tau and one OSSF lepton pair
whose invariant mass is not compatible with the Z-boson mass. This category
corresponds to the observed excess and both types of signal scenarios can provide
good candidates for explaining it.

In figure 4.8, we display the precise distribution of our signal in the different
E/T bins corresponding to the last panel of figure 4.7. Scenarios of class M.I do
not populate the bin with E/T > 100 GeV, unless in a narrow region where the
stau is very light. Performing a χ2 fit restricted to the three bins displayed in
the figure for both class of models, the best benchmark scenarios are given by

M.I : m˜̀
R

= 140 GeV, mτ̃R = 50 GeV, χ2
exc. = 1.22 ;

M.II : m˜̀
R

= 50 GeV, mτ̃R = 140 GeV, χ2
exc. = 2.28 .
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Both models end up providing an explanation for the excess. However, as de-
tailed below, experimental constraints arising from direct NLSP pair production
exclude all M.II candidates explaining the excess, and have also non-trivial con-
sequences on the best fit for M.I models.

InM.IImodels, where the right-handed sleptons are co-NLSP, current bounds
on the slepton mass apply,m˜̀

R
> 230 GeV [142,143]. These bounds are extracted

from slepton pair production and subsequent decay into a lepton and a gravitino
(a nearly massless LSP). As indicated in both figures 4.7 and 4.8, this excludes
the entire region of the M.II parameter space possibly relevant for explaining
the CMS excess. On the other hand, for M.I scenarios in which the right-handed
stau is the NLSP, the most stringent constraints are those set by LEP experi-
ments, mτ̃R > 87 GeV [144], as the corresponding LHC searches have a too low
sensitivity [145, 146]. Consequently, M.I models still provide viable candidates
for explaining the excess.

The point of the M.I parameter space ending up to be the best fit of the
three bins with the excess becomes, after accounting for LEP limits on the stau
mass,

m˜̀
R

= 145 GeV, mτ̃R = 90 GeV, χ2
exc. = 2.42 ,

where mτ̃R lies at the edge of the excluded region. The significance of our best
fit scenario is found reduced as signal contributions to the low missing energy
bin of figure 4.8 are smaller for larger stau masses. As a crosscheck of our
reasoning, we perform a global fit on the M.I parameter space including all
four lepton categories. Not surprisingly, the same best fit benchmark point with
mτ̃R = 90 GeV and m˜̀

R
= 145 GeV is obtained.

4.3.3 Confronting with other searches

Focusing from now on on the best fit point, we briefly comment on other sig-
natures that it induces and which could be probed through other multilepton
searches at the LHC. Firstly, CMS searches for R-parity violating (RPV) SUSY
in leptonic final states are not expected to be sensitive to such models as it
requires four electrons or muons in the final states [147]. Such a signature is
suppressed in the framework of M.I models (as already shown on the first panel
of figure 4.7) as it requires at least two of the taus to decay leptonically.

Secondly, the ATLAS collaboration has recently performed a multilepton
search which features one signal region, dubbed ‘SR1noZ’, that might be rel-
evant for models of class M.I [148]. This analysis has been designed for RPV
SUSY searches and requires exactly three electrons or muons and at least one
tau. An extended Z-veto is demanded so that events with a lepton pair, triplet
or quadruplet whose invariant mass lies within a 20 GeV interval centered on
the Z-boson mass are rejected. The search strategy additionally requires either
a selection on the missing energy E/T > 100 GeV or on the effective mass, defined
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N(`) N(τh) Nevents(8 TeV) Nevents(13 TeV)

4 2 22.5 223
5 0 0.074 0.79
5 1 1.7 14.7
5 2 7.4 76.1
6 0 0 0
6 1 0.075 0.66
6 2 1.0 7.89
> 6 0 0.038 13.9

Table 4.1: Number of multilepton events Nevents predicted by the scenario that
fits the CMS excess best (M.I model, m˜̀ = 145 GeV, mτ̃ = 90 GeV). The
third column corresponds to 19.5 fb−1 of LHC collisions at

√
s = 8 TeV and the

fourth column to 100 fb−1 of LHC collisions at
√
s = 13 TeV. Moreover, N(`)

denotes the total number of charged leptons and N(τh) how many of these are
hadronically-decaying taus.

as the sum of the missing energy and of all the transverse momenta of the recon-
structed final state objects (leptons, hadronic taus, jets), meff > 400 GeV. On
the one hand, our signal does not populate the E/T > 100 GeV category as shown
on figure 4.8. On the other hand, the tail of the effective mass distribution for our
best benchmark point has been found to only extend up to about 350 GeV, which
can be heuristically understood as most of the reconstructed final state objects
come from the decay of a slepton pair with an invariant mass of about 300 GeV.
This ATLAS search is therefore expected to be insensitive to our benchmark.

Lastly, the ATLAS collaboration has recently performed an investigation
of ditau events [149], making use of a dedicated trigger on two reconstructed
hadronic taus. This analysis could be relevant in our case since the signal is
likely to populate bins with two hadronic taus, as shown in table 4.1. How-
ever, these taus are always accompanied by extra electrons or muons issued from
NNLSP three-body decays, so that no hint in the ATLAS signal regions, which
also include a veto on additional leptons, is foreseen.

4.3.4 Suggestions for future analyses

Let us finally discuss how some of the existing searches can be optimized to
improve their sensitivity for signal scenarios of class M.I. As an illustrative ex-
ample, we show in table 4.1 that our best fit point is considerably contributing to
final states with two hadronically decaying taus plus either two or three electrons
or muons. In particular, predicting a considerably large number of events featur-
ing three electrons or muons shows that the lepton abundance in the final state
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can be considerably enhanced by the leptonically decaying taus, even though the
associated branching fraction is reduced. For these reasons we point out that
an optimized search strategy for M.I models should impose selections on the
lepton multiplicity as inclusive as possible, as already suggested in the context
of optimizing Tevatron searches for gauge mediation scenarios [126]. Moreover,
one peculiar feature of our benchmark scenario is the presence of at least two
hadronically decaying taus which are hard enough to be reconstructed. We there-
fore suggest an effective search dedicated to M.I scenarios that could be made
by combining triggers on two hadronically decaying taus with a binning on the
number of extra leptons in the final state.

4.4 Summary
We have investigated the phenomenology of models involving light charged slep-
tons, realized within the framework of general gauge-mediated supersymmetry
breaking. Motivated by the recent CMS observation of an excess in multilepton
events, we have demonstrated that some of these models can not only provide an
explanation for the excess but also explain why no hint of new physics has been
found in other leptonic searches by both the ATLAS and CMS collaborations.
We have shown that the model that best fits the data, and which is compatible
with all current experimental constraints, involves right-handed selectrons and
smuons of 145 GeV and a right-handed stau of 90 GeV. Finally, we proposed
new investigations in multileptonic channels that could probe this type of GGM
models and further constrain them in the future.
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Chapter 5

Collider signatures
of goldstini
in gauge mediation

Since the most straightforward realizations of low-scale supersymmetry become
less and less attractive, we have to broaden our view and consider also more
general, unconventional realizations of supersymmetry and their signatures at
colliders. In this chapter, we work in the framework of gauge mediation and
assume there are two hidden SUSY-breaking sectors instead of only one. As we
will see, the corresponding collider signatures are less energetic, softer, and more
structured compared to standard gauge mediation. The work presented in this
chapter is based on the work presented in reference [135].

This chapter is organized as follows: After further introducing the project
in section 5.1, we provide the theoretical background behind gauge mediation
with two SUSY-breaking sectors in section 5.2. In section 5.3 and 5.4 we then
consider the two most common simplified models within GMSB (namely, where
the gravitino is the lightest and the neutralino or stau the next-to-lightest SUSY
particle) and investigate how a second SUSY-breaking sector would modify their
appearance at colliders. We summarize our work in section 5.5.

5.1 Introduction

In the coming years we will receive the final verdict from the LHC experiments
as to whether low-energy supersymmetry is present or not in Nature. So far,
both ATLAS and CMS experiments have not seen any signal of SUSY yet and
imposed strong bounds on the masses of coloured superpartners [60,150]. In this
chapter, we will work in the framework of gauge mediation where the SUSY-
breaking effects are communicated to the observable sector by gauge interactions
and gravity effects are subleading. A subclass of these models, namely those with

93
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a light neutralino and a low SUSY-breaking scale, have already been constrained
by the search for prompt photons plus missing energy [151–155]. Given that the
most straightforward searches have not yielded any results yet, it is important at
this stage to consider broadening the class of models to assure we are not missing
anything.

Due to the large spectrum of possible SUSY theories, the collider searches
shifted from theory-dependent studies to the more general simplified model ap-
proach (cfr. section 2.4.2). However, even within the general framework of simpli-
fied models, it is important to keep exploring less conventional avenues to make
sure we get the most out of the current searches. When breaking supersymmetry,
one usually assumes there is only one SUSY-breaking sector. There is, however,
no real theoretical motivation why this should be the case. In this chapter, we
will investigate the collider signatures of gauge mediation with more than one
SUSY-breaking hidden sector interacting with the observable sector.

The possibility of having more than one SUSY-breaking hidden sector was
first mentioned in [156] after which the theoretical formulation and phenomenol-
ogy were further investigated in [157, 158] and later in [159–165]. If there are
multiple SUSY-breaking sectors, each sector will give rise to a goldstino and,
consequently, there will be multiple goldstini. A linear combination of the golds-
tini is eaten by the gravitino while the remaining fields give rise to light, neutral,
spin one-half particles, the pseudo-goldstini. In our work, we will consider a
set-up where there are only two decoupled hidden sectors and hence only one
pseudo-goldstino, but the analysis can be trivially extended to the more general
case and the qualitative features of the model are unchanged.

Contrary to the goldstino which is always massless, the pseudo-goldstino will
obtain a tree-level mass of twice the gravitino mass due to supergravity effects
and will additionally acquire a mass from radiative corrections ranging from 1
to 100 GeV. Since in gauge mediation the gravitino is very light, the mass of
the pseudo-goldstino will be dominated by its radiative corrections [166]. If the
pseudo-goldstino is the next-to-lightest supersymmetric particle (NLSP), it can
only decay through a three-body decay to the gravitino and two SM particles
and naturally has a long lifetime. The pseudo-goldstino can also be relevant for
dark matter studies but we will refrain from considering cosmology in our work.1
For our collider studies, we just assume that the pseudo-goldstino escapes the
detector and, therefore, we are left with two invisible particles at the bottom of
the spectrum. The next-to-next-to-lightest supersymmetric particle (NNLSP) is
hence the lightest observable supersymmetric particle, referred to as LOSP, and
will be very important in studying collider signatures.

In gauge mediation, the SUSY-breaking scale can be very low. Consequently,
the gravitino LSP can be almost massless (cfr. equation (2.71)) implying that

1See e.g. [161, 166] for consideration on the pseudo-goldstino lifetime and its relevance for
cosmology.
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it behaves as the massless true goldstino (denoted by G) up to a very high
level of accuracy. Yet, the LOSP decays predominantly through other channels,
namely those containing the massive pseudo-goldstino (denoted by G′). One of
the consequences of this fact is that it softens the spectra of the final states. We
investigate those effects for the two most common scenarios where the LOSP is
either a neutralino or a stau.

In the case of a neutralino LOSP (denoted by χ) the most accessible signa-
ture arises when χ is mostly a gaugino, promptly decaying into a photon and a
(pseudo)-goldstino. The final state will contain photons and missing energy. A
mostly gaugino χ can also decay into a Z boson and we will analyze these two
situations in detail. In the case of the stau LOSP (denoted by τ̃), lepton number
conservation requires the staus to be created in pairs and the final state contains
two taus and missing energy.

In the spirit of simplified models, our analysis is independent from many
detailed features of the spectrum of superpartners. When forced to pick specific
values for sparticle masses and mixing angles we will choose those used in common
benchmark points [167] such as SPS8 (χ LOSP) and SPS7 (τ̃ LOSP), in order
to make a comparison with the standard gauge-mediated models. It should also
be emphasized that although the points based on a minimal GMSB model have
been constrained by the Tevatron [168, 169] and by the LHC [155], the multiple
goldstini scenario eases the constraints due to the softer final spectrum.

5.2 GGM with two susy-breaking sectors

5.2.1 General formalism

The purpose of this section is to derive the relevant couplings of the (pseudo)-
goldstino. We consider a set-up where there are two completely decoupled hid-
den sectors, each communicating to the supersymmetric Standard Model (SSM)
through gauge interactions. In other words, each sector is a model of gauge medi-
ation on its own. Each sector will then have a goldstino, G1 and G2 respectively,
coupling to the SSM particles in a way dictated by the universal low-energy
effective action of the goldstino, applied to each sector. If F1 and F2 are the
respective SUSY-breaking scales of each sector, and F =

√
F 2

1 + F 2
2 , then the

true and pseudo-goldstino are respectively given by

G =
1

F
(F1G1 + F2G2), (5.1)

G′ =
1

F
(−F2G1 + F1G2). (5.2)

For definiteness, we will always assume F1 > F2. It has been shown in [166]
that, while G can be considered massless to all effects, G′ acquires radiatively a
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mass that is of the order of GeV if the scales in the two hidden sectors are of the
same order. Moreover, when there is a hierarchy in the SUSY-breaking scales
F1 � F2, the mass is enhanced to

mG′ ∼
F1

F2

GeV. (5.3)

Since the exact expression formG′ is very much model dependent, for phenomeno-
logical purposes it should be taken as a free parameter, recalling that it will rea-
sonably fall in the 1–100 GeV range. We will always assume that G′ is the NLSP,
i.e. it is lighter than the LOSP otherwise its presence is virtually impossible to
detect.

The couplings of G and G′ to the SSM particles can be derived by considering
the couplings of G1 and G2, each as if it were the only source of SUSY breaking.
The physical processes we are interested in involve only vertices with at most
one (pseudo)-goldstino so we will not have to deal with the intricacies of the
full (pseudo)-goldstino Lagrangian. We start by considering the couplings to
a generic observable sector whose chiral and vector multiplets we denote by
Φ 3 (φ, ψα, Fφ) and Wα 3 (λα, Aµ, D) respectively (gauge and flavour indices
suppressed). After discussing the general features in this language, we present
the explicit couplings in the context of the SSM, which are slightly more involved
due to the additional presence of electroweak symmetry breaking (EWSB).

Let us begin by considering the true goldstino G, whose coupling at the linear
level is fully understood since the seminal work of the ’70s [170]. It is well known
that there are two equivalent ways of writing the linear coupling of G to the
matter fields. One is the derivative coupling to the supercurrent

L∂ =
1

F
(∂µG

αJµα + h.c.), (5.4)

where, in the conventions of [171]

Jµ = σν σ̄µψDνφ
∗ − iσµψ̄Fφ + i

1

2
√

2
σν σ̄ρσµλ̄Fνρ +

1√
2
σµλ̄D. (5.5)

The other action is the non-derivative coupling obtained from the previous
one by integrating by parts and using the equation of motion to obtain ∆α =
∂µJ

µ
α |e.o.m.

Lð = − 1

F
(Gα∆α + h.c.). (5.6)

Since the non-conservation of the supercurrent is entirely due to the presence of
supersymmetry-breaking soft terms, the expression for ∆α must be a function of
the latter.



5.2. GGM WITH TWO SUSY-BREAKING SECTORS 97

Let us consider the most general soft SUSY-breaking terms, namely:

Lsoft = −1

2
mλλλ−

1

2
m∗λλ̄λ̄− U(φ, φ∗), (5.7)

where U is a (at most cubic) gauge invariant function of the scalars, containing
for instance the sfermion soft masses and the Bµ term and mλ are the Majorana
masses for the gauginos. The divergence of the supercurrent is now

∂µJ
µ
α = ∆α =

mλ

2
√

2
σµσ̄νλαFµν − i

mλ√
2
λαD − ψα

∂U

∂φ
(5.8)

from which the coupling follows using (5.6). This expression is valid regard-
less of whether the gauge symmetry is spontaneously broken or not (see for
instance [172] for a complete treatment in the MSSM). The form of (5.6) can
also easily be derived from a superspace formulation of the broken SUSY theory,
in terms of the goldstino superfield X.

The derivative and non-derivative actions are completely equivalent, of course,
but some issues are easier to investigate in one formalism than in the other. It
turns out that it is the non-derivative action that is more directly generalized
to the pseudo-goldstino case. This can be seen in various ways but perhaps the
easiest argument comes by looking at the leading high energy behaviour of the
2 → 2 scattering amplitudes involving a goldstino. The action (5.4) contains
terms of dimension six and one would expect the tree-level unpolarized squared
amplitudes to scale like s2 where

√
s is the centre-of-mass energy. This is not what

happens however since SUSY ensures that the leading order behaviour cancels
between the different contributions. This must be so since (5.4) is equivalent to
(5.6) which contains terms of dimension at most five and yields a scaling of order
s.

The same scaling must occur for the pseudo-goldstino since, after all, at
tree level it is a linear combination of two decoupled goldstini, but now the
relative coefficients between the various terms in the action are no longer fixed by
SUSY. Using the non-derivative action ensures that the high energy behaviour
is preserved. One can of course use the equations of motion “backwards” and
rewrite the non-derivative action in terms of the same type of terms that appear
in the derivative action but with different relative coefficients. In the process
however one also picks up dimension six contact terms schematically like Gλψψ
that once again cancel the s2 behaviour. Thus it is clearly more convenient to
work with (5.6).

In order to derive the couplings of the pseudo-goldstino, let us start at tree
level with the two fields Gh (h = 1, 2) that are the goldstini of the respective
hidden sectors contained in the superfields Xh. For each goldstino-gaugino-gauge
boson vertex, we have

1

2

∫
d2θ

mλ(h)

Fh
XhW2 ⊃ mλ(h)

2
√

2Fh
λσµσ̄νGhFµν . (5.9)
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For the goldstino-fermion-sfermion vertex, we have
∫
d4θ

m2
φ(h)

F 2
h

XhX
†
hΦΦ† ⊃

m2
φ(h)

Fh
Ghψφ

∗. (5.10)

The terms (5.9) and (5.10) correspond to the first and last terms in (5.8) inserted
into (5.6), the last one with U = m2

φφ
∗φ. We ignore further vertices that do not

contribute to the processes of interest but a full treatment can be found in [173].
Rotating to the G,G′ basis, we obtain the couplings

mλ

2
√

2F
λσµσ̄νGFµν +Kλ

mλ

2
√

2F
λσµσ̄νG′Fµν (5.11)

and

m2
φ

F
Gψφ∗ +Kφ

m2
φ

F
G′ψφ∗, (5.12)

where mλ = mλ(1) + mλ(2) and m2
φ = m2

φ(1) + m2
φ(2), and the factors Kλ and Kφ

are the ratios between the coupling of the pseudo-goldstino to the one of the true
goldstino. Their expressions are

Kλ = −mλ(1)

mλ

F2

F1

+
mλ(2)

mλ

F1

F2

, (5.13)

Kφ = −
m2
φ(1)

m2
φ

F2

F1

+
m2
φ(2)

m2
φ

F1

F2

, (5.14)

where in general there will be different coefficients for each gauge group and
matter multiplet. In some specific models, there can be relations or bounds
between Kλ and Kφ. However, in the phenomenological set-up, one assumes
that these two parameters are free. In any case, below we will use couplings of
G′ only to a very limited set of (s)particles. The interesting case will be when
Kλ, Kφ � 1. Note however that both cannot be larger than F1/F2, hence they
are limited to be somewhat smaller than 103. (If F1/F2 is too large, the above
picture is no longer valid because the SUSY-breaking vacuum of the second sector
is destabilized [166].)

5.2.2 Pseudo-goldstino couplings in the SSM

We now specialize to the case where the observable sector is a SUSY extension
of the SM. A couple of technical issues arise since one must also rotate to the
physical bases of mass eigenstates of the observable sector after EWSB. More
generally the (pseudo)-goldstini will also mix with the particles in the observable
sector carrying the same quantum numbers but it is possible to treat this mixing
to first order in the SUSY-breaking parameter.
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Let us begin with the coupling of the neutralino to the G/G′ and the photon.
This involves an element of the neutralino mixing matrix, essentially proportional
to how much the neutralino is the would-be photino. More precisely for the
goldstino there is a factor (see e.g. [171])

aγ = N∗11 cos θW +N∗12 sin θW , (5.15)

where N∗11 and N∗12 are the mixing angles between the lightest neutralino and the
bino and wino respectively. For the pseudo-goldstino, we can multiply the above
by a factor Kγ that can be larger than one as discussed above. The relevant part
of the Lagrangian is thus

LχGγ + LχG′γ =
aγmχ

2
√

2F
χσµσ̄νGFµν +

Kγaγmχ

2
√

2F
χσµσ̄νG′Fµν . (5.16)

The coupling of the goldstino and the pseudo-goldstino to the neutralino and
the Z boson is slightly more subtle. Standard computations, such as in [174],
use the goldstino couplings in derivative form. After EWSB, there are two such
couplings:

L∂ = i
aZT

2
√

2F
χ̄σ̄µσν σ̄ρ∂µGFνρ −

aZLmZ√
2F

χσµσ̄ν∂µGZν + h.c., (5.17)

where

aZT = −N∗11 sin θW +N∗12 cos θW , (5.18)
aZL = N∗13 cos β −N∗14 sin β. (5.19)

N∗13 and N∗14 are the higgsino components of the lightest neutralino, and tan β
is the ratio of the vacuum expectation values of the two higgs doublets.2 The
notation follows from the notable fact that the first and second term respec-
tively couple only transverse and longitudinal components of the Z to a massless
goldstino.

Integrating by parts and using the equations of motion, one obtains the fol-
lowing terms in the non-derivative Lagrangian:

LχGZ =
aZTmχ + aZLmZ

2
√

2F
χσµσ̄νGFµν + i

mZ(aZTmZ + aZLmχ)√
2F

χ̄σ̄µGZµ + h.c.

(5.20)

It might seem at first that the second term in the Lagrangian above cannot
be reproduced using (5.8). This term appears because after EWSB there are
off-diagonal mass terms involving the goldstino and the neutralinos. The mass

2Although we do not consider the decay into higgs, we will nonetheless treat the decay into
Z exactly by including the contribution of the longitudinal component.
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eigenstates have then to be shifted by O(1/F ) terms mixing the goldstino with
the neutralinos. Eventually the term above arises from the neutralino gauge
couplings, and its precise form follows from using the equations leading to the
EWSB vacuum (for a discussion, also including the pseudo-goldstino, see [163]).

The pseudo-goldstino couplings to the Z boson will be of the form above,
with however some model-dependent factors in front of each term. Since there
are two independent terms in (5.20), there will be two independent coefficients
and we choose to associate them directly to the rescaling of the aZT and aZL
coefficients:3

LχG′Z =
KZT aZTmχ +KZLaZLmZ

2
√

2F
χσµσ̄νG′Fµν

+ i
mZ(KZT aZTmZ +KZLaZLmχ)√

2F
χ̄σ̄µG′Zµ + h.c. (5.21)

We now move on to the couplings of the stau. Even in this case the general
formula (5.12) requires some well known modifications after EWSB. Namely,
the presence of a SUSY contribution to the tau mass makes the coefficient in
the action depend on the difference of the masses in the multiplet. The large
soft off-diagonal corrections to the stau mass matrix require rotating from the
gauge eigenbasis τ̃L, τ̃R to the mass eigenbasis τ̃ , τ̃ ′. For the couplings to the
first two families these effects can be neglected. We focus only on the LOSP
τ̃ = cos θτ̃ τ̃L + sin θτ̃ τ̃R and write the Lagrangian as

Lτ̃Gτ + Lτ̃G′τ =
m2
τ̃ −m2

τ

F

(
cos θτ̃ GτL + sin θτ̃ G

†τR
)
τ̃ ∗

+
m2
τ̃ −m2

τ

F

(
KτL cos θτ̃ G

′τL +KτR sin θτ̃ G
′†τR
)
τ̃ ∗ + h.c.,

where we have set PL/Rτ = τL/R. Once again, we treat the coefficients KτL and
KτR as free parameters.

5.3 The case of the neutralino LOSP

We begin our analysis by considering the case where the neutralino χ is the
LOSP. For this we use the Lagrangians (5.16), (5.20) and (5.21).

3One could have also chosen to rescale each Lorentz invariant term in (5.20) independently
but this would obscure the comparison in the simulation.
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5.3.1 Decays of the neutralino

The partial widths for neutralino decay into a photon and a (pseudo)-goldstino
are:

Γ(χ→ γG) =
a2
γm

5
χ

16πF 2
, (5.22)

Γ(χ→ γG′) =
K2
γa

2
γm

5
χ

16πF 2

(
1− m2

G′

m2
χ

)3

. (5.23)

We could also write F =
√

3m3/2Mp in the denominators above, with the mass
of the gravitino (i.e. the true goldstino) m3/2 and the reduced Planck massMp =
2.43× 1018 GeV.

For a rather massive pseudo-goldstino, the factor between parenthesis can
be significantly smaller than 1, though it is always of O(1) barring any fine-
tuning of mG′ against mχ. Hence the branching ratios can be of the same order
if Kγ = O(1), or we can have a neutralino decaying almost exclusively to the
pseudo-goldstino if Kγ � 1. For instance we can have Kγ ∼ 100 and then the
decay rate of the neutralino is going to be 104 times larger with respect to a
single sector scenario.

In order for the neutralino to decay inside the detector, its total width cannot
be too small. A rough order of magnitude of the bound is Γtot & 10−16 GeV. For
a single sector scenario and mχ ∼ 200 GeV, it would translate to

√
F . 103 TeV

(see e.g. [39]), but in our case the constraint is more flexible due to the presence
of the Kγ factor.

We now list the partial widths for the decay of the neutralino into a Z boson
and a goldstino or a pseudo-goldstino. For the goldstino, using either (5.17) or
(5.20), one obtains the classic result [174]

Γ(χ→ ZG) =
(2a2

ZT
+ a2

ZL
)m5

χ

32πF 2

(
1− m2

Z

m2
χ

)4

. (5.24)

For the pseudo-goldstino, the decay rate is given by

Γ(χ→ ZG′) =
β

16πmχ

|M|2, (5.25)

where β ≡ β(
m2
Z

m2
χ
,
m2
G′

m2
χ

) with

β(a, b) = (1 + a2 + b2 − 2a− 2b− 2ab)1/2 (5.26)

is the usual phase space factor and the spin summed and averaged amplitude
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Figure 5.1: Branching ratios for the lightest neutralino decay into a (pseudo)-goldstino
and a photon or Z at the SPS8 benchmark point. On the left the coupling of the pseudo-
goldstino to the photon is gradually enhanced, while on the right the case of enhanced
coupling of the pseudo-goldstino to the Z boson is shown.

squared is

|M|2 =
1

2F 2

{
(m2

χ −m2
Z)3(2K2

T +K2
L) + 6mG′mZ(m2

χ −m2
Z)2KTKL

+m2
G′(m

2
χ −m2

Z)
[
(−4m2

χ −m2
Z)K2

T + (−2m2
χ +m2

Z)K2
L − 6mχmZKTKL

]

− 6m3
G′mZ

[
mχmZ(K2

T +K2
L) + (m2

χ +m2
Z)KTKL

]

+m4
G′

[
(2m2

χ +m2
Z)K2

T + (m2
χ + 2m2

Z)K2
L + 6mχmZKTKL

]}
,

where KT ≡ KZT aZT and KL ≡ KZLaZL . The decay channel is open only when
mG′ < mχ −mZ .

We note that, upon setting Kγ = KZT = KZL = 1, the decay rates to a
pseudo-goldstino slightly differ from those to a massive spin-3/2 gravitino, as
detailed for instance in [175].

In figure 5.1 we plot the branching ratios for the lightest neutralino decay for
varying pseudo-goldstino mass and for various values of Kγ, KZT and KZL . The
remaining relevant SUSY parameters are taken at the SPS8 benchmark point
as calculated by SOFTSUSY [49]. Namely, we have mG (= m3/2) = 4.74 eV,
mχ = 139.2 GeV, N11 = 0.99, N12 = −0.031, N13 = 0.124, N14 = −0.048 and
tan β = 14.5. In general, the partial widths for decay into Z bosons are very
much suppressed with respect to the ones for decay into photons, except when
KZT and/or KZL are the only large factors. In the following we will not assume
this. Also, the partial width for decay into higgses is negligible at the SPS8 point.
See [163] for a different set-up where this is not the case.
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It is obvious that the neutralino total width will always be exceedingly small,
e.g. Γtot ∼ 10−12 GeV for Kγ = KZT = KZL = 1, compared to mχ, so that we can
safely place ourselves in the narrow width approximation (NWA) in all processes
of interest with an intermediate neutralino. In the next sub-sections we will
discuss observable signatures involving the production and decay of neutralinos.
Thus, the (differential) cross sections will be proportional to the square of the
amplitudes for production of neutralinos, and to the branching ratios for their
decay.

5.3.2 Goldstini and single-photon production
in e+e− collisions

We now perform an analytic computation with the purpose of highlighting the
differences with respect to the single sector case and the role played by the
extra parameters Kλ and Kφ, characterizing the pseudo-goldstino couplings. For
simplicity, in this subsection only, we stick to the case where the neutralino is a
pure photino, i.e. aγ = 1 and aZT = aZL = 0.

There are three kinds of diagrams contributing to this process, as in figure 5.2.
In the s-channel, the intermediate particle is a photon, since the neutralino is pure
photino. Note also that there is another s-channel diagram with the outgoing
arrows reversed. (We are using the two-component notation of [171].) In the t-
and u-channels, the intermediate particle is either of the right- and left-handed
selectrons. We assume here that the factor Kφ is the same for both selectrons.

The couplings of the (pseudo)-goldstino have been reviewed in section 5.2 and
for a pure photino neutralino they are (see (5.11) and (5.12))

LG′ ⊃ Kλ
mχ

2
√

6Mpm3/2

λσµσ̄νG′Fµν +Kφ
m2
ẽ√

3Mpm3/2

G′ψφ∗, (5.27)

where m3/2 = F/
√

3Mp is the gravitino mass, mẽ is the right and left selectron
mass (we have neglected the mass of the electron with respect to the mass of the

e+

e−

χ

G/G′

ẽ

e+

e−

χ

G/G′

ẽ

e+

e− G/G′

χ

a) b) c)

Figure 5.2: All diagrams contributing to e+e− → χG/G′: a) s-channel, b) t-channel
and c) u-channel.
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selectrons) and finallymχ ≡ mλ. The other couplings needed for the computation
can be gathered from e.g. [171].

Note that in the amplitude squared all diagrams actually interfere due to
the mass of the pseudo-goldstino. The computation is thus more involved than
the one for a massless goldstino [176, 177]. The differential cross section for
production of a photino and a pseudo-goldstino reads

dσe+e−→χG′ =
1

2s
|M|2 dΦ2 (5.28)

with the spin summed and averaged amplitude squared

|M|2 =

e2

3M2
pm

2
3/2

{
K2
λm

2
χ

s

(
2tu−m2

χ(t+ u) + 2mG′mχs+m2
G′(2m

2
χ − t− u)

)

+K2
φm

4
ẽ

(
(t−m2

G′)(t−m2
χ)

(t−m2
ẽ)

2
+

(u−m2
G′)(u−m2

χ)

(u−m2
ẽ)

2
+

2mG′mχs

(t−m2
ẽ)(u−m2

ẽ)

)

− 2KλKφmχm
2
ẽ

(
mχ(t−m2

G′) +mG′(t−m2
χ)

t−m2
ẽ

+
mχ(u−m2

G′) +mG′(u−m2
χ)

u−m2
ẽ

)}
, (5.29)

where e is the electromagnetic coupling constant. We refer to e.g. [27] concerning
kinematics. One can check that in the limit mG′ → 0 and Kλ = Kφ = 1 this
reproduces the result reported in [177]. Plugging |M|2 in (5.28) and integrating
over cos θ we get the total cross section.

It is interesting to note that the above amplitude is slightly different depend-
ing on the relative sign of the respective (real) Majorana masses of the neutralino
LOSP and the pseudo-goldstino. This relative sign is model dependent.

It should be stressed that the cross section scales with K2
λ,φ/m

2
3/2. In the

spirit of [177–181], LEP bounds on such cross sections can be translated into
upper bounds on K/m3/2, or alternatively on K at a given value of m3/2. (Here
K is for simplicity a common value for Kλ and Kφ.) Roughly, we get K <
104−5(m3/2/eV), which allows us some elbow room. Note that in the case of the
single true goldstino production, i.e. with Kλ = Kφ = 1, the cross section is
very small, unless the gravitino mass is of order 10−5 − 10−4 eV [177]. In the
case of the pseudo-goldstino, instead, the cross section can be enhanced by the
couplings Kλ and Kφ while keeping the gravitino mass to standard values for
gauge mediation scenarios, i.e. m3/2 ∼ eV.

To exemplify the physics of this process, and in particular the dependence on
the pseudo-goldstino parameters, in figure 5.3 we plot the total cross section as a
function of the pseudo-goldstino mass for some values of the parameters Kλ and
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Figure 5.3: Total cross section of e+e− → χG′ at
√
s = 500 GeV (black lines) and

1 TeV (red lines) as a function of the pseudo-goldstino mass, for various values of Kλ

and Kφ.

Kφ. Here we consider a photino LOSP and take the masses as m3/2 = 10−9 GeV,
mχ = 140 GeV and mẽR = mẽL = 400 GeV.

There is a destructive interference between the diagrams and thus the cross
section for large Kφ turns out to be greater than the cross section when both Kλ

and Kφ are large. We notice that rather large values of Kλ and Kφ are required
to obtain the cross section around O(102−3) fb with the eV order gravitino mass,
while such large values are not favoured by the stability of the SUSY-breaking
vacuum as mentioned before.

One can also easily see that in these cases the emitted photons can be signif-
icantly softer than in usual gauge mediation scenario, since the pseudo-goldstino
has a non negligible mass. Moreover, similar to the discussions in [182], the
photon energy distribution can tell us about the masses of the neutralino and
pseudo-goldstino as we will explicitly see in the next section. On the other hand,
different K factors would give different photon angular distributions.

All the results presented here can be obtained numerically running Mad-
Graph 5 [137] simulations adapted to the (pseudo)-goldstino scenario (building
on [136]), having implemented the model using FeynRules [78, 80, 92]. This
provides also a non trivial test of our FeynRules implementation, which we
will use afterwards to simulate pp collisions.
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5.3.3 Goldstini and di-photon production in e+e− collisions

The production of two neutralinos will lead to a di-photon plus missing energy
signature, which is evidence for the processes

e+e− → γγGG, e+e− → γγGG′, e+e− → γγG′G′. (5.30)

The total cross section (σLO
e+e−→χχ ∼ 177 fb at

√
s = 500 GeV at SPS8) is sim-

ilar to the single sector case, since the couplings that can be enhanced in the
pseudo-goldstino scenario only appear in the decay of the neutralinos. However
the photon spectrum, and in particular the edges of the energy distribution, is
sensitive to the mass of G′, both if the branching ratios are comparable or if the
decay to G′ is favoured.

In figure 5.4, the distributions of the leading photon energy (left) and of the
missing invariant mass (right) for e+e− → χχ → γγ + /E at

√
s = 500 GeV are

shown. To obtain both plots, we applied a cut on the energy and the rapidity of
the photons, Eγ > 15 GeV and |ηγ| < 2, as the minimal cuts for the detection
of photons. In addition, we imposed the invisible invariant mass cut Minv >
100 GeV to remove the SM (Z → νν̄)γγ background. The remaining background
comes from the t-channel W -exchange process, and this can be reduced by using
the polarized e± beams.

Besides the reference point mG′ = 0 with Kγ = 1 (for which we have es-
sentially two indistinguishable copies of a light goldstino), we take two different
pseudo-goldstino masses, 85 GeV and 125 GeV, with different couplings as in the
following table:

1a. mG′ = 85 GeV with Kγ = 1 [B(χ→ γG′) ∼ 0.2]
1b. mG′ = 85 GeV with Kγ = 2 [B(χ→ γG′) ∼ 0.5]
1c. mG′ = 85 GeV with Kγ = 10 [B(χ→ γG′) ∼ 1]
2a. mG′ = 125 GeV with Kγ = 10 [B(χ→ γG′) ∼ 0.5]
2b. mG′ = 125 GeV with Kγ = 100 [B(χ→ γG′) ∼ 1]

Here, we keep KZT = KZL = 1, and hence the decay modes into Z are negligible;
see also figure 5.1 for the branching ratios. We have also run the simulations
for mG′ = 10 GeV with Kγ = 1, 2 and 10, for which the branching ratio is
respectively 0.5, 0.8 and 1, but we found distributions essentially overlapping
with the massless one.

The edges of the energy distributions allow to determine both the mass of
the neutralino LOSP and of the pseudo-goldstino. A simple generalization of the
massless goldstino case discussed in [174] gives the following expression for the
minimal and maximal energy of each emitted photon:

Emax,min
γ =

√
s

4

(
1− m2

G′

m2
χ

)(
1±

√
1− 4m2

χ

s

)
. (5.31)
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Figure 5.4: The distributions of the leading photon energy (left) and of the missing
invariant mass (right) for e+e− → χχ→ γγ + /E at

√
s = 500 GeV, where the pseudo-

goldstino mass is fixed at 85 GeV (red) and 125 GeV (blue). The mG′ = 0 case (black)
is also shown as the reference point as well as the SM background.

In this case, it is difficult to determine the minimal edges due to the detector cut.
On the other hand, the Emax

γ is rather clear although the edge of the high energy
region is smeared by the missing invariant mass cut. It is interesting to note that,
unless the branching ratio is not close to unity, we can find the two Emax

γ edges
with mG′ 6= 0 and mG′ = 0, which can determine both mχ and mG′ . Moreover,
we can also determine the branching ratio from the shape of the distributions,
i.e. the information on the coupling.

5.3.4 Goldstini production in pp collisions

We now turn to consider the processes which are relevant to the LHC.
Similar to the process e+e− → χG′ in section 5.3.2, the cross section of

pp → χG′ is proportional to K2/m2
3/2 and could be enhanced by the factor K.

However, rather large K values of O(104−5) are needed to obtain a visible cross
section for an eV-order gravitino, leading to a bound for the K values by the
γ + /ET events at the Tevatron [183] similar to the LEP bound discussed above.
We note that at the parton level the amplitudes are the same as the ones studied
in the previous section after replacing the incoming electrons with the quarks.4

The clean γγ + /ET signal is given by the neutralino LOSP pair production.
However, the cross section is too small (σLO

pp→χχ ∼ 0.3 (1.2) fb at
√
s = 7 (14) TeV

at SPS8) to be significant over the SM background.5 It is worth to emphasize

4Note that only in this process, and the following one, we would need to specify some
squark masses. These can also be easily extracted from SPS8, however as we will argue the
most interesting process that we study in more details does not involve intermediate coloured
superpartners.

5It is well known that the NLO QCD corrections enhance the LO cross section by a factor of
1.3-1.4 for

√
s = 14 TeV [134]. It is also interesting to note that gg collisions can give a certain
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again that the emitted photons associated with a pseudo-goldstino are softer
than those with a true goldstino, which makes it difficult to apply some cuts
to enhance the signal over the background. In other words, the experimental
constraints for the SPS8 point in the standard minimal GMSB model as well as
for general gauge mediation [55] (e.g. [185–189]) could be eased in the multiple
goldstini scenario.

Among the exclusive processes with at most two extra particles in the final
state, the cleanest one is the one where the two photons and missing energy are
accompanied by two leptons. By far the main contribution to the signal comes
from the pair production of sleptons, which subsequently decay into a lepton and
the neutralino LOSP, pp → l̃+R/Ll̃

−
R/L → l+l− + γγ + /ET (l = e, µ). The electron

and muon pairs give the same contributions due to the degeneracies between
the first two slepton families. The Standard Model background is completely
negligible compared to the signal of new physics.

The signal cross section is 1.1 (3.3) fb at
√
s = 7 (14) TeV at SPS8, where

the slepton masses are ml̃R/L
= 180.2/358.2 GeV and we employ the CTEQ6L1

PDFs [100] with the factorization scale chosen as µ = (ml̃R
+ml̃L

)/2.6 Here, the
leptons and photons are required to have pT > 20 GeV, |η| < 2.5, and Rll,γγ > 0.4,
where pT and η are the transverse momentum and the pseudorapidity of a final-
state particle, respectively, and Rij describes the separation of the two particles
in the plane of the pseudorapidity and the azimuthal angle.

Because of the peculiarities of hadronic collisions, raising the centre-of-mass

contribution to the neutralino pair production through one loop [184]. The corresponding
amplitudes are suppressed by the loop factor, while they are enhanced because of the larger
gluon PDF, and also because all (s)quarks can run in the loop.

6The NLO cross section is about 1.35 times larger than the LO one at
√
s = 14 TeV [134,190].

The gluon fusion contribution to the slepton pair productions has been also studied in [191,192].
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Figure 5.6: The same as figure 5.5, but the missing transverse energy distribution.

energy from 7 TeV to 14 TeV increases the total cross section but does not alter
significantly the shape of the distributions. Therefore, we present the results
only for the 14 TeV LHC here. In Figs. 5.5 and 5.6, the distributions of the pT of
the leading photon and of the transverse missing energy are shown, respectively,
where the same benchmark points are taken as in Sec. 5.3.3. The SM background
is invisibly small. The two plotted variables show different shapes with respect
to the standard goldstino scenario (mG′ = 0) depending on the mass and the
coupling of the pseudo-goldstino. This fact could in principle be used to extract
the masses and the couplings by using techniques explained in [193–196]. We
note that in the case of mG′ = 125 GeV the signal cross section is largely reduced
by the experimental cuts, especially for large Kγ. This is due to the fact that,
for more massive pseudo-goldstino, the emitted photons will be softer, and hence
more excluded by the kinematical cuts.

Before closing the section, we note that the production cross sections of the
coloured SUSY particles at SPS8 are small due to their large masses in the TeV
range. In general, although we have presented the exclusive signals without jets
here, the inclusive search is also interesting, we leave this for future work.

5.4 The case of the stau LOSP

We now move on to the case where the τ̃ is the LOSP, and use the Lagrangian
(5.22) to study it. The effect of the coefficients KτL and KτR is that of enhancing
the G′ production.
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Figure 5.7: Branching rations of τ̃ → τG′ at the SPS7 benchmark point, for various
values of KτL and KτR .

5.4.1 Decays of the stau

The decay amplitude squared for the process τ̃ → τG′ can be easily computed
in terms of the coefficients in the Lagrangian yielding

|M|2 =

(
m2
τ̃ −m2

τ

F

)2 (
(K2

τL
cos2 θτ̃ +K2

τR
sin2 θτ̃ )(m

2
τ̃ −m2

G′ −m2
τ )

+ 4KτLKτR sin θτ̃ cos θτ̃ mG′mτ

)
. (5.32)

The width can be written as

Γ(τ̃ → τG′) =
β

16πmτ̃

|M|2 (5.33)

with β ≡ β(m
2
τ

m2
τ̃
,
m2
G′
m2
τ̃

) as in (5.26). Notice that the width depends not only on
the magnitude but also on the ratio of the coefficients KτL and KτR . The well
known expression for the true goldstino case is obtained from the above by simply
setting KτL = KτR = 1 and mG′ = 0.

For illustration we plot the branching ratios of the decay τ̃ → τG′, choosing
the stau mass and mixing angle given by the SPS7 benchmark point, namely
mτ̃ = 124.0 GeV and cos θτ̃ = 0.154. The smallness of cos θτ̃ at the SPS7 point
makes the branching ratio largely independent from KτL but this would of course
change for a different mixing angle.
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Figure 5.8: The distributions of pT of the leading tau (left) and of the missing trans-
verse energy (right) for pp→ τ̃+τ̃− → τ+τ− + /ET at

√
s = 14 TeV for mG′ = 85 GeV.

The mG′ = 0 case (black) is also shown as the reference point as well as the SM
background.

The total width of the stau LOSP at SPS7, where mG(= m3/2) = 0.76 eV,
is of the order of 10−10 GeV for KτL = KτR = 1, and hence the stau will de-
cay promptly into the detector. Scenarios with long lived staus could also be
envisioned, with even the possibility of stopping them and then measuring their
decays. In that case the branching ratio and the mass of the invisible particle(s)
should be more directly accessible. We will not delve further on this scenario.

5.4.2 Goldstini and di-tau production

We now turn to stau production at colliders and subsequent decay into taus and
(pseudo)-goldstini. Though we could first consider stau pair production at e+e−

colliders, we will omit this rather straightforward exercise. In the neutralino
LOSP scenario, the benefit of this set-up was the ability to infer the neutralino
and pseudo-goldstino masses from the energy distribution of the emitted photons.
In the present case the same considerations are practically harder to achieve
because of the difficulties inherent in tau reconstruction. We thus proceed to
consider directly the case of hadron colliders.

The process we are interested in is pp → τ̃+τ̃− → τ+τ− + /ET . The lighter
stau-pair production cross section at SPS7 is 41 fb at

√
s = 14 TeV,7 while

the irreducible SM background τ+τ−νν̄, mainly coming from Z and W pair
productions, is ten times larger with the minimal cuts pTτ > 20 GeV, |ητ | < 2.5,
and Rττ > 0.4. Since the background is located in the low tau-tau invariant
mass region, we impose the additional cutMττ > 150 GeV in the analyses below.
Figure 5.8 shows the distributions of the pT of the leading tau and of the missing
transverse energy for the following benchmark points covering different branching

7See footnote 6, and also [197] for more details on the stau-pair production.
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mG′ = 0 mG′ = 85 background
Kτ = 1 Kτ = 2 Kτ = 10

σ [fb] 15.5 13.2 10.1 5.9 86.4
s/b 0.18 0.15 0.12 0.07
S (100 (30) fb−1) 5.1 (2.8) 4.4 (2.4) 3.4 (1.8) 2.0 (1.1)

Table 5.1: Cross sections for the signals and the background. The significance
S in (5.34) is calculated with an integrated luminosity of 100 (30) fb−1 and a
di-tau detection efficiency A = 0.1.

ratios for stau decays into G or G′:

1a. mG′ = 85 GeV with KτL = KτR = 1 [B(τ̃ → τG′) ∼ 0.2]
1b. mG′ = 85 GeV with KτL = KτR = 2 [B(τ̃ → τG′) ∼ 0.5]
1c. mG′ = 85 GeV with KτL = KτR = 10 [B(τ̃ → τG′) ∼ 1]

The reference pointmG′ = 0, i.e. the standard goldstino scenario, is also shown by
a black solid line. As in the neutralino LOSP scenario, a sizable branching ratio
of stau decays to pseudo-goldstini has an impact on the shape of the distribution,
once again making the spectrum softer. Another noticeable fact is that the new
physics signal becomes dominant especially for high missing transverse energy
only when the stau decays to true goldstinos are significant. Therefore, the
pseudo-goldstini scenario makes it harder to achieve enough significance for its
observation.

In order to quantify the sensitivity of the missing transverse energy cut, in
tables 5.1 and 5.2 we list the cross sections, signal (s) over background (b) and
significances (S) for our benchmarks, without and with a cut on /ET at 100 GeV
respectively. Taking into account the branching ratio of the hadronic tau decays,
B(τhad) = 0.648 [198], and the efficiency of the hadronic tau identification, ε =
0.5 [199,200], we assume the di-tau detection efficiency A = (B(τhad)× ε)2 ∼ 0.1.
We use the signal significance defined as [201]

S =
√

2((s+ b) ln(1 + s/b)− s). (5.34)

We observe that for 100 fb−1 of integrated luminosity, a satisfactory significance
can be achieved for most of our benchmarks, especially for /ET > 100 GeV. How-
ever, in the Kτ = 10 case, i.e. in the case of the heavy pseudo-goldstino with the
enhanced coupling, the cut on /ET does not improve the significance of the signal.

Finally we note that, although we took KτL = KτR for simplicity, tau po-
larization may be exploited to determine the case that the two coefficients are
different, KτL 6= KτR [202].
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mG′ = 0 mG′ = 85 background
Kτ = 1 Kτ = 2 Kτ = 10

σ [fb] 5.6 4.8 3.4 0.9 3.5
s/b 1.59 1.36 0.95 0.25
S (100 (30) fb−1) 7.9 (4.3) 6.9 (3.8) 5.0 (2.7) 1.4 (0.8)

Table 5.2: The same as Table 5.1, but with the additional /ET > 100 GeV cut.

5.5 Summary

Motivated by the persisting absence of any sign of low-scale supersymmetry at
colliders, we abandon the most straightforward SUSY scenarios. In this chapter,
we extended usual gauge-mediation to include a second hidden SUSY-breaking
sector and analyzed how this modifies the expected collider signatures.

We first considered the case of a gaugino-like neutralino LOSP and showed
that the decay modes of the LOSP into a photon or Z boson and a pseudo-
goldstino can be significant. We studied in detail the goldstini phenomenology
in the photon(s) plus missing energy signals in e+e− and pp collisions. Our aim
was to provide clues to interpret prompt photon plus missing energy signals at
the LHC. We found that the resulting photon spectrum is typically softer and
differs in shape compared to the standard gauge-mediation scenario with only
one hidden sector.

We then proceeded to consider the case of a stau LOSP. Similarly to the pre-
vious case, the stau can significantly decay into a tau and a pseudo-goldstino. We
studied a possible tau pair plus missing energy signal at the LHC, again finding
that the pseudo-goldstino scenario leads to an altered shape in the tau energy
distributions. The signature however seems more promising in the neutralino
LOSP scenario, not only because photons have cleaner experimental features
than taus, but also because the SM background is virtually absent in the process
that we studied.

We performed our analyses at two particular benchmark points (SPS8 for χ
LOSP and SPS7 for τ̃ LOSP) to make a comparison with the standard gauge
mediation model and we emphasize that the precise experimental signatures do
depend on the parameters related to the second SUSY-breaking sector, namely
the pseudo-goldstino mass and its couplings. However, we also observed rather
model-independent features. In particular, due to the mass of the pseudo-
goldstino, the SM decay products of a decaying LOSP will generically have a
lower energy compared to the usual gauge-mediation scenarios. In this way such
a scenario evades most experimental bounds that tend to exclude gauge-mediated
scenarios.

In our work, we restricted ourselves to the case in which the LOSP is a
gaugino-like neutralino or a stau. There are however many more possibilities
such as a higgsino-like neutralino (as studied in [203, 204]) or coloured LOSP
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which could lead to interesting collider signatures. Our goldstini model can
be easily extended to other benchmark points and LOSP scenarios due to the
implementation into an event generator, MadGraph 5.



Chapter 6

Non-minimally flavour-violating
supersymmetry

Another interesting unconventional road to study supersymmetry, can be found
when questioning the minimal-flavour violating (MFV) paradigm which we in-
troduced in the context of the pMSSM (cfr. section 2.2.4). In this chapter we will
abandon MFV and allow for more general flavour mixing in the squark sector.
This opens up a large parameter space. If we want to study the phenomenology
of a theory with many free parameters, the first step is scouting the parameter
space. What is still possible given the current experimental constraints? What
are typical values for the parameters? The project presented in this chapter,
based on the work presented in [205, 206], gives a good example of how this
can be done. gives a good example of how this can be done. We will see that
non-minimally flavour violating (NMFV) supersymmetry is still allowed by the
constraints from flavour observables as well as the constraint on the Higgs mass.
We will also show that within NMFV, unlike the usual MFV scenarios, the light-
est squarks are often not the top or bottom squark.

After further introducing the project in section 6.1, we motivate and specify
the choice of our parameter space in section 6.2. In section 6.3 we describe the
Markov Chain Monte Carlo technique that we use to probe the parameter space.
We present the results in section 6.4 and four benchmark scenarios are proposed
in section 6.5. We summarize our findings in section 6.6.

6.1 Introduction

We introduced supersymmetry in chapter 2 as a well motivated extension of the
Standard Model of particle physics. Many search channels have been investi-
gated at colliders and in particular [60, 150] at the Large Hadron Collider, the
LHC. Since no signal of supersymmetry has been found so far, the results have
been interpreted either in terms of limits on specific set-ups like constrained
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versions of the Minimal Supersymmetric Standard Model (MSSM) or in terms
of simplified model spectra inspired by the MSSM. As a result, either super-
symmetric particles are constrained to reside at scales that are not reachable in
proton-proton collisions at a centre-of-mass energy of 8 TeV, or the spectrum
must present specific properties that allow the superpartners to evade detection
as in the case of compressed supersymmetric spectra or non-minimal realizations
of supersymmetry. In the project presented in this chapter, we follow this lat-
ter guiding principle and explore to which extent deviations from the minimal
flavour-violation paradigm are allowed by current data.

We introduced minimally flavour-violating (MFV) supersymmetry in the con-
text of the pMSSM in section 2.2.4 as a way to avoid undesirable flavour-violating
effects. In MFV, all the flavour properties of the model stem from the diago-
nalization of the Yukawa (and hence the mass) matrices yielding different mass
and gauge eigenbases for the (s)quarks and (s)leptons. The misalignment of the
two bases and corresponding flavour-violating effects are therefore completely
determined by the CKM and PMNS matrices.

MFV does avoid the strong constraints coming from low-energy flavour ob-
servables, but accomplishes this in a rather rough way and a more subtle treat-
ment of FV is in place. Moreover, there is no theoretical motivation for the flavour
structure of a supersymmetric model to be the same as in the Standard Model.
New sources of flavour violation could be allowed when, for instance, supersym-
metry is embedded in a Grand Unified framework [207]. The soft supersymmetry-
breaking mass and trilinear coupling matrices of the sfermions could therefore
comprise non-diagonal flavour-violating entries that are not related to the CKM
and PMNS matrices. This set-up is referred to as non-minimally flavour-violating
(NMFV) supersymmetry.

We consider the most general mixings between second and third generation
squarks. Any non-CKM induced mixing with the first generation is ignored as a
result of constraints imposed by kaon data [208]. Choosing a phenomenological
approach, we model the flavour-violating effects under investigation by a set of 19
free parameters defined at the TeV scale and identify the regions of the parameter
space that are favoured in light of current data by means of the Markov Chain
Monte Carlo parameter scanning technique.

6.2 Motivation, theoretical set-up
and parameter space

In this section we will introduce the parametrization of NMFV in supersymmetry
we adopted and discuss the state of the art of the experimental and phenomeno-
logical studies to motivate our choices for the parameter space.
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6.2.1 Parametrizing NMFV in the squark sector

When we discussed the mass spectrum of the supersymmetric particles in the
MSSM in section 2.2.3, we obtained the mass matrix for the up- and down-type
squarks in the super-CKM bases (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)
as

M2
ũ =

(
VCKMM̂

2
Q̃
V †CKM +m2

u +Dũ,L
vu√

2
T̂ †u −mu

µ
tanβ

vu√
2
T̂u −mu

µ∗

tanβ
M̂2

Ũ
+m2

u +Dũ,R

)
(6.1)

and

M2
d̃

=

(
M̂2

Q̃
+m2

d +Dd̃,L
vd√

2
T̂ †d −mdµ tan β

vd√
2
T̂d −mdµ

∗ tan β M̂2
D̃

+m2
d +Dd̃,R

)
(6.2)

For the precise definition of the symbols we refer to the discussion around equa-
tions (2.58) and (2.59). In the MSSM, each of the four elements in the squark
mass matrices correspond to a diagonal 3 × 3 matrix and is therefore flavour
diagonal.

If we want to abandon minimally flavour-violating supersymmetry in the
squark sector, we can do so by introducing non-diagonal terms in the soft mass
matrices M̂2

Q̃,Ũ ,D̃
and/or the trilinear coupling matrices T̂u,d. Following the stan-

dard prescriptions [209], we normalize the off-diagonal terms with respect to the
diagonal soft masses as

(δLL)ij =
(M̂2

Q̃
)ij

(M̂Q̃)ii(M̂Q̃)jj
, (δuRR)ij =

(M̂2
Ũ

)ij

(M̂Ũ)ii(M̂Ũ)jj
,
(
δdRR
)
ij

=
(M̂2

D̃
)ij

(M̂D̃)ii(M̂D̃)jj
,

(δuRL)ij =
vu√

2

(T̂u)ij

(M̂Ũ)ii(M̂Q̃)jj
, (δuLR)ij =

vu√
2

(T̂ †u)ij

(M̂Q̃)ii(M̂Ũ)jj
,

(
δdRL
)
ij

=
vd√

2

(T̂d)ij

(M̂D̃)ii(M̂Q̃)jj
,

(
δdLR
)
ij

=
vd√

2

(T̂ †d )ij

(M̂Q̃)ii(M̂D̃)jj
.

(6.3)

where i, j = 1 . . . 3 and i < j. The lower half of the soft mass matrices is then
completely determined by requiring hermiticity so that NMFV is parametrized by
21 dimensionless, possibly complex, δ’s that can be constrained by experimental
data. Note that the trilinear coupling matrices do not have to be hermitian so
that (δuRL)ij and (δuLR)ij can be different.

6.2.2 Constraints from flavour physics

Meson oscillations and rare meson decays are very sensitive to new physics and
strongly constrain any flavour violating interactions. Mesons are particles made
of two quarks. Kaons, for example, consist of a strange quark and a quark of
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the first generation (u or d). We will discuss the kaon system and corresponding
observables a bit more in detail.

The neutral kaons K0 and K̄0 have respective quark content ds̄ and d̄s and
under CP, charge conjugation combined with parity, they transform as CP |K0〉 =
−
∣∣K̄0

〉
and CP

∣∣K̄0
〉

= − |K0〉. The neutral kaons are hence clearly no CP-
eigenstates. It is however straightforward to construct CP-odd and CP-even
eigenstates as KO = 1√

2

(
|K0〉 −

∣∣K̄0
〉)

and KE = 1√
2

(
|K0〉+

∣∣K̄0
〉)

and we can
write the physical states KL/S as

|KL〉 =
1√

1 + |εK |2
(|KO〉+ εK |KE〉) (6.4)

|KS〉 =
1√

1 + |εK |2
(εK |KO〉+ |KE〉) . (6.5)

If CP were an exact symmetry of Nature, εK would vanish. However, it has
been shown experimentally that εK is small but different from zero and is given
by [210]

εK = (2.228± 0.29th × 10−3). (6.6)

The physical eigenstates are therefore no CP-eigenstates and the level of CP-
violation is quantified by εK .

When KL and KS evolve in time, they can oscillate into one another and the
period of their oscillation is related to their mass splitting ∆MK = mKL −mKS

which has been measured to be [210]

∆MK = (3.484± 0.006)× 10−12 MeV. (6.7)

In non-minimally flavour violating supersymmetry, non-zero (δLL)12, (δdRR)12 or
(δdLR)12 would imply processes like the ones shown in figure 6.1. These diagrams
contribute to the calculation of ∆MK and εK and are strongly constrained by
experiment.

In a similar way, the electrically neutral D0 = c̄u, B0
d = db̄ and B0

s = sb̄
mesons mix with their antiparticles and experimental constraints on DD̄-mixing
put limits on (δLL)12, (δuRR)12 and (δuLR)12, BdB̄d-oscillations constrain the 13-
mixing and the BsB̄s system limits the 23-mixing. Depending on the experimen-
tal and theoretical precision, the constraints will be more or less strong and the
NMFV parameters mixing the first and second/third generation appear to be
the most strongly constrained [208, 209, 211]. In our study, we therefore restrict
ourselves to the 23-mixing.

6.2.3 State of the art

In recent years, the consequences of non-minimal flavour violation in the squark
sector have been investigated in various areas, we provide here an, unavoidably
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Figure 6.1: A sample from the supersymmetric contributions to KK̄-mixing,
related to (δLL)12, (δdRR)12 and (δdLR)12 6= 0.

incomplete, overview. NMFV effects on low-energy observables such as rare
decays (see e.g. reference [212] and references therein) or electroweak precision
parameters [213] have been considered, and the potential signatures at the LHC
have been investigated. Recently also the contributions to the mass of the lightest
SUSY Higgs-boson have been obtained [214].

Due to the complexity of the problem, the studies presented in [215–220] and
more recently [221], chose to focus on a couple of MFV reference scenarios and
investigate what happens if they turn on one or at most two NMFV parame-
ters at the time. They scan over the one- or two-dimensional parameter space
and study the impact on the branching ratios for flavour-violating decays while
imposing constraints from low-energy flavour observables, electroweak precision,
cosmology and/or direct collider searches. These studies give an idea of the al-
lowed magnitude of the NMFV couplings, they all conclude that NMFV is not
excluded and can be relevant for colliders.

Instead of investigating the impact of NMFV only in a limited set of reference
points, one can also take a UV-complete SUSY model, add flavour-violating
parameters at the low scale and check which parts of the NMFV SUSY parameter
space are still allowed by experiment. This has for example been done for the
CMSSM, minimal gauge mediation and models with minimal anomaly-mediated
SUSY breaking in [43,222–224]. They considered left-left and right-right mixing
between the second and third generation squarks and found that, compared to
MFV, the constraints in the NMFV case are stronger, especially for large left-left
mixing. There are however still large regions of the parameter space that are left
unconstrained.

Whereas the work in the two previous paragraphs introduced their NMFV
parameters at the electroweak scale without questioning whether they can be
realized in a UV-complete theory, the studies in [225] and [226] showed that
NMFV can be realized in the Minimal R-symmetric Supersymmetric Model as
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well as in gauge mediation.
Apart from describing the constraints on the NMFV parameters, the previ-

ously mentioned works also showed that NMFV might lead to interesting collider
signatures and has to be taken into account when interpreting the limits on the
masses of the supersymmetric particles set by the experiments. This can have
important consequences for naturalness. As was explained in chapter 2, the per-
sisting absence of any sign of SUSY at colliders, puts naturalness, one of the
main motivations for SUSY, under pressure. Allowing for NMFV in the squark
sector and in particular introducing mixing between the right-handed charm and
top squark can slightly reduce the experimental bound on the stop and gluino
mass. This improves the current situation of naturalness and can meanwhile lead
to interesting signatures at colliders [117,227].

All the aforementioned results studying the viability of NMFV, have been
derived under the restriction that only few off-diagonal elements of the squark
mass matrices are non-zero, and that at most two of them are varied at the same
time. One would however generally expect that several of the flavour-violating
entries could be non-vanishing, especially if the flavour structure is generated by
some mechanism at a higher scale. A comprehensive study of the most general
NMFV configuration in the MSSM, where all flavour-violating Lagrangian terms
are taken into account and confronted to current data and theoretical constraints,
is in order. A first step in this direction is achieved with the work presented in
this chapter.

6.2.4 Choice of the parameters

We start from the 22-dimensional parametrization of the pMSSM discussed in
section 2.2.4. We extend the squark flavour sector and simplify the slepton and
gaugino sector. As for the pMSSM, the diagonal soft masses of the first and
second generation are degenerate while the third generation is kept separate,

(
M̂Q̃

)
11

=
(
M̂Q̃

)
22
≡MQ̃1,2

(
M̂Q̃

)
33
≡MQ̃3

(6.8)
(
M̂Ũ

)
11

=
(
M̂Ũ

)
22
≡MŨ1,2

(
M̂Ũ

)
33
≡MŨ3

(6.9)
(
M̂D̃

)
11

=
(
M̂D̃

)
22
≡MD̃1,2

(
M̂D̃

)
33
≡MD̃3

. (6.10)

Unlike the pMSSM however, in NMFV the soft masses in the squark sector
can be off-diagonal as well and we extend the squark flavour sector with the
21 dimensionless NMFV couplings introduced in 6.2.1. However, as detailed in
section 6.2.2, any mixing involving one of the first generation squarks is strongly
constrained by low-energy flavour observables and we restrict ourselves to mix-
ing between the second and third generation squarks leaving us with the seven
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dimensionless quantities
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Ũ
)23
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(6.11)

The slepton sector is defined in a flavour-conserving fashion, implying diagonal
soft mass matrices. Since we are mainly interested in the squark sector, we do
not expect details in the slepton sector to have much influence and we simplify
the soft masses as

(
M̂L̃

)
11

=
(
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)
22

=
(
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)
33

=
(
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)
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=
(
M̂Ẽ
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=
(
M̂Ẽ

)
33

= Ml̃. (6.12)

In addition, the gaugino sector is chosen to be determined by a single parameter,
the bino mass M1. The wino and gluino tree-level masses M2 and M3 are then
obtained by making use of a relation inspired by Grand-Unified theories,

M1 =
1

2
M2 =

1

6
M3 . (6.13)

The trilinear couplings of the squarks as well as the sleptons are defined propor-
tional to the Yukawa couplings as

T̂u ≡ Au ŷu T̂d ≡ Ad ŷd T̂e ≡ Ae ŷe. (6.14)

We neglect the first and second generation Yukawa couplings so that only the
trilinear coupling parameters related to the third generation squarks and sleptons
are considered as free parameter. We then simplify the parameter space as

At = Ab = Aτ ≡ Af (6.15)

so that the trilinear couplings are determined by one single parameter. All
flavour-conserving trilinear sfermion interactions with the Higgs bosons are con-
sequently driven by a single input parameter Af . Finally, the Higgs sector is
parametrized in terms of the µ parameter, tan β and the pole mass of the pseu-
doscalar Higgs boson mA.

This leaves us with 19 parameters which fully determine our NMFV model
and hence the squared mass matrices of the squarks M2

ũ and M2
d̃
defined in

equations (2.58) and (2.58). These are the mass matrices written in the super-
CKM bases (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R). The fields in these
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bases are however not the propagating, physical fields. The physical squark
states ũi and d̃i (with i = 1, . . . , 6) are obtained by diagonalizing M2

ũ and M2
d̃

according to

diag
(
m2
q̃1
,m2

q̃2
, . . . ,m2

q̃6

)
= Rq̃M2

q̃R†q̃ for q = u, d . (6.16)

By convention the mass eigenstates are taken ordered such that m2
q̃1
< · · · < m2

q̃6
.

The 6× 6 rotation matrices Rũ and Rd̃ carry the information about the flavour
decomposition of the squarks,

(
ũ1 ũ2 ũ3 ũ4 ũ5 ũ6

)t
= Rũ

(
ũL c̃L t̃L ũR c̃R t̃R

)t
(
d̃1 d̃2 d̃3 d̃4 d̃5 d̃6

)t
= Rd̃

(
d̃L s̃L b̃L d̃R s̃R b̃R

)t (6.17)

and their different entries directly appear in couplings of the squarks to the other
particles (see e.g. references [218,222]).

The parameter space we specified up to now, consists of 16 soft supersymmetry-
breaking parameters and three parameters related to the Higgs sector. In ad-
dition to these 19 SUSY parameters, we also have to specify the parameters of
the Standard Model. The QCD interaction strength is computed from the value
of the strong coupling constant at the Z-pole αs(mZ), while we choose as three
independent electroweak inputs the electromagnetic coupling constant evaluated
at the Z-pole α(mZ), the Fermi constant GF and the Z-boson mass mZ . The
fermion sector is defined by the pole mass of the top quark mpole

t , the MS mass
of the bottom (charm) quark mb (mc) evaluated at the mb (mc) scale and the
MS masses of the three lightest quarks evaluated at a scale of 2 GeV. Finally,
we include the masses of the electron (me), the muon (mµ) and the tau (mτ )
in our parametrisation and we calculate the CKM matrix using the Wolfenstein
parameters λCKM, ACKM, ρ̄CKM and η̄CKM. In our parameter scan, we will fix all
Standard Model parameters except αs(mZ), mpole

t and mb(mb), which we allow
to vary according a Gaussian around their experimentally measured value. The
total parameter space we want to probe is hence 22-dimensional.

6.3 Probing the parameter space

If we want to get a representative idea of a n-dimensional parameter space using
a grid scan, the number of points we have to scan scales like xn where x stands
for the number of points per parameter, which quickly becomes too time and
computing-power consuming for a high-dimensional parameter space. In sec-
tion 6.2.1 we saw that our NMFV supersymmetric model has 19 free parameters
which is too much to be suitable for a gridscan and we will rely on Markov chains
instead.
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6.3.1 The Markov Chain Monte Carlo scanning technique

The Markov Chain Monte Carlo (MCMC) scanning technique [228–230] probes
the parameter space guided by the likelihood of the points. It is based on
Bayesian statistics and provides us with a set of points of which the distribution
is proportional to the likelihood. Consequently, we get an idea of the parameter
regions preferred by experiment and we can select benchmark scenarios from the
points with the highest likelihood. This will be explained in more detail in the
following.

Bayesian inference

Assume a certain model, or hypothesis H, is the true theory of Nature and we
would like to know what the experimental observations, the data D, can tell us
about the set of parameters Θ in this theory. In other words, we want to calculate
the probability distribution P (Θ|D,H) of the parameters Θ assuming the model
H is correct, after imposing the experimental data D. Bayes’ theorem tells us
that P (Θ|D,H), referred to as the posterior in the following, is proportional to

P (Θ|D,H) ∼ P (D|Θ, H)P (Θ, H). (6.18)

where P (D|Θ, H) ≡ L(D) is the likelihood to observe the data D assuming H
and Θ and P (Θ, H) ≡ π(Θ) is called the prior. The prior encodes everything
we know about the parameters before imposing D. This includes constraints
from earlier experimental observations as well as from theory. The posterior
distribution can be obtained using the Metropolis algorithm [230].

The Metropolis algorithm

The Metropolis algorithm draws a sample from a distribution provided we are
able to calculate a function proportional to this distribution. The algorithm
relies on Markov chains: it walks through the parameter space and every next
step depends solely on the current state and the likelihoods of both points. The
algorithm goes as follows:

1. Draw a point Θ1 in the parameter space from the prior distribution. Set
Θ1 = Θold.

2. Choose a new point Θnew in the neighbourhood of Θold. For each supersym-
metric parameter, we draw a point from a Gaussian distribution around
Θold with standard deviation or width w = 5% of the scanned range. The
width is chosen to optimize the convergence of the sample obtained in the
scan to the distribution we are probing.1

1For more details, we refer to appendix B.2.
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3. Suppose we want to include m measurements Di where i ∈ 1 . . .m and
we set Li(Θ) = P (Θ|Di, H). We then define the likelihood of a point as
L(Θ) =

∏m
i=1 Li and calculate the ratio

R =
L(Θnew)

L(Θold)
. (6.19)

4. Accept Θnew with a probability min(R, 1). If the point is accepted, set
Θold = Θnew. Otherwise, just proceed to the next step.

5. Start the procedure again from point 2 until the sample of parameter points
is likely to have converged.

We applied the Metropolis algorithm on equation (6.18) to obtain the posterior
distributions of our 19 supersymmetric parameters. The posterior distributions
for the SUSY parameters can be calculated as soon as we know the likelihood
and the prior.

The prior

The prior distribution of the parameters quantifies the initial belief of what the
distribution should look like and is clearly not always well defined. Several choices
for the prior are possible and the final posterior distribution can depend on this
choice. This may seem worrying, but prior dependence in itself is not necessarily
a problem. If the results strongly depend on the prior, it rather indicates that
the experimental constraints are not strong enough to state anything conclusive
about the model and more measurements are needed. If we would be interested
in the true posterior distribution of the parameters, we would have to check
whether the final results depend on the choice of prior.

In our study, we only considered one kind of prior and consequently, we do not
claim that our posterior distributions are the true distributions. It is however still
possible to get an idea of the influence of the measurements on the most likely
parameter values by looking at the difference between the prior and posterior
distributions. This is why we will always show the posteriors together with the
prior, it is the difference between the two that matters.

The parameter space we want to probe contains 19 NMFV supersymmet-
ric and 3 Standard Model parameters, the total parameter space is hence 22-
dimensional and every parameter has its own prior. The prior of the SM param-
eters is chosen to be a Gaussian around the experimentally measured value while
the supersymmetric parameters are drawn from a prior which is flat over the
scanned parameter range. However, all the points entering the scan should yield
theoretically viable models, there should not be any tachyons in their spectrum
and electroweak symmetry has to be successfully broken. Moreover, if the model
is to provide a dark matter candidate, the lightest supersymmetric particle (LSP)
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should be the lightest neutralino. We include all these theoretical requirements
in the theoretical prior πth(Θ). The total prior is then given by

π(Θ) = πth(Θ)×
22∏

i=1

πi(θi) (6.20)

where Θ = {θ1 . . . θ22} and πi(θi) respectively denote a point in the parameter
space and the prior corresponding to point i in the parameter space.

Convergence

Parameter scans based on MCMC algorithms are often subject of discussion.
Not only because of the prior dependence explained in the previous section,
but also because proving that the posterior distributions converged to the true
distributions has been a long-standing problem which, unfortunately, remains
unsolved. It is not possible to prove that the scan has converged. If the chains
get stuck in a local instead of a global maximum, the distributions will definitely
be different. In our case, this also means that the points with maximal likelihood
which we will use to set-up our benchmark scenarios might not be the true
maxima. This has to be kept in mind when looking at the results.

However, even though we will never be able to prove convergence of the scan,
we can still do as much as we can to avoid bias of any kind. First of all, it is clear
that including the first points of the chains would introduce a bias, the number
of points it takes to remove this bias, is called the burn-in length. We solve this
problem by removing the first 15% of each chain.

Additionally, we can run convergence tests on the chains. Even though they
can not ensure whether the chains converged, they do provide necessary criteria
that have to be fulfilled. Several tests have been designed, we ran the convergence
test of Gelman and Rubin [231] and we showed that all the chains passed the
test. Details on the convergence test of Gelman and Rubin as well as the results
of for scan are provided in appendix B.1.

Interpretation of MCMC results

In principle, the posterior distribution of parameter values indicate the real prob-
ability distribution of the parameters given constraints from experimental data.
However, the distribution can still depend on the choice of the prior and one has
to be careful when interpreting the results too strictly. Nevertheless, comparing
the posterior and prior distributions does show how the data influences the like-
lihood distribution of the parameter and can be used to get an idea of what a
‘typical NMFV scenario’ would be like.

Studying the impact of every observable separately also shows which exper-
imental constraints are the most stringent. Finally, if the chains converged, the
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Parameter Value

α−1(mZ) 127.934
mZ 91.1876 GeV
GF 1.16637× 10−5 GeV−2

mMS
c (mc) 1.25 GeV

mMS
s (2 GeV) 120 MeV

mMS
u (2 GeV) 3 MeV

mMS
d (2 GeV) 7 MeV

Parameter Value

me 510.9989 keV
mµ 105.6583 MeV
mτ 1.77699 GeV
λCKM 0.2272
ACKM 0.818
ρ̄CKM 0.221
η̄CKM 0.34

Table 6.1: The fixed part of the Standard Model sector of our NMFV MSSM
parameter space.

points with the highest likelihood in the sample also represent the regions in
parameter space that are the most likely given the experimental constraints and
can be used to define benchmark points to further study NMFV supersymmetry.

6.3.2 Specifying the parameter space

For our exploration of the NMFV MSSM, we start by fixing the Standard Model
parameters to the values provided in the review of the Particle Data Group [210],
as shown in table 6.1. We then allow αs(mZ), mpole

t and mMS
b (mb) to vary ac-

cording to Gaussian profiles with their measured central values and uncertainties
taken as expectation value and square-root of the variance, as shown in Table 6.2.
This table also shows the intervals over which the 19 supersymmetric parameters
will be allowed to vary in our study.

Before moving on to scanning the parameter space, we need to know how we
to confront a single point to experiment. The next section explains which exper-
imental measurements are relevant and how we can calculate their predictions
for a given point in the parameter space.

6.3.3 Experimental constraints

The masses and flavour-violating mixings of the superpartners can be indirectly
probed by numerous flavour physics constraints, the anomalous magnetic mo-
ment of the muon as well as by the properties of the recently discovered Standard-
Model-like Higgs boson. In our MCMC scanning procedure, we additionally im-
pose the lightest superpartner to be the lightest neutralino, so that it could be a
phenomenologically viable dark matter candidate. We dedicate the rest of this
section to a brief description of all observables that have been considered in the
scan and that are summarised in table 6.3.



6.3. PROBING THE PARAMETER SPACE 127

Parameter Scanned range

αs(mZ) N (0.1184, 0.0007)

mpole
t N (173.3, 1.3928) GeV

mb(mb) N (4.19, 0.12) GeV
MQ̃1,2

[300, 3500] GeV
MQ̃3

[100, 3500] GeV
MŨ1,2

[300, 3500] GeV
MŨ3

[100, 3500] GeV
MD̃1,2

[300, 3500] GeV
MD̃3

[100, 3500] GeV

Af
[-10000, 10000] GeV

or |Af | < 4 max{Mq̃,M˜̀}

Parameter Scanned range

tan β [10, 50]
µ [100, 850] GeV
mA [100, 1600] GeV
M1 [100, 1600] GeV
M˜̀ [100, 3500] GeV
δLL [-0.8, 0.8]
δuRR [-0.8, 0.8]
δdRR [-0.8, 0.8]
δuLR [-0.5, 0.5]
δuRL [-0.5, 0.5]
δdLR [-0.05, 0.05]
δdRL [-0.05, 0.05]

Table 6.2: Supersymmetric and Higgs sectors of our NMFV MSSM parameter
space, as well as varying Standard Model parameters. N (µ, σ) denotes a Gaus-
sian profile with an expectation value µ and square root of the variance σ.

NMFV squark mixing involving third generation squarks is by construction
very sensitive to constraints arising from B-physics observables. In particular, B-
meson rare decays and oscillations are expected to play an important role as the
Standard Model contributions are loop-suppressed. Although we only consider
squark mixing between the second and third generations, we also include con-
straints arising from observables related to the kaon sector. Even if not present
at the scale at which we calculate the supersymmetric spectrum (i.e. the elec-
troweak symmetry breaking scale), squark mixings with the first generation are
induced by the non-vanishing CKM matrix and renormalisation-group running
so that kaon physics observables (calculated at a different scale) are also relevant
for extracting constraints on the NMFV MSSM parameter space.

We focus on the branching ratios associated with the rare B → Xsγ, B →
K∗µµ, B → Xsµµ and Bu → τν decays, as well as on the forward-backward
asymmetry (AFB) arising in B → K∗µµ decays. The associated predictions are
calculated with the SuperIso package [237, 238]. In addition, we compute the
neutral B-meson mass difference ∆MBs , the branching ratio associated with the
Bs → µ+µ−, K0 → π0νν and K+ → π+νν decays and the kaon parameter εK
with the SPheno code [50, 239]. We furthermore employ SPheno for the esti-
mation of the supersymmetric contributions to the anomalous magnetic moment
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of the muon aµ2 and for a calculation of the lightest Higgs boson mass mh. The
data transfer between SPheno and SuperIso is achieved through the Flavour
Les Houches Accord standard [240], and the Wilson coefficients for all hadronic
observables are calculated in SPheno (at the scale Q = 160 GeV) and SuperIso
(at a scale Q = mW ) from the values of the running coupling constants and the
supersymmetric masses and parameters that have been evaluated with SPheno.

We now briefly collect all references where the formulas that have been em-
ployed for the calculation of the considered observables can be found, and we in-
dicate which NMFV MSSM parameters are mainly constrained by each of these
observables. The calculation of the B → Xsγ branching ratio is mainly based
on the results of [241–243], while those of the B → Xsµ

+µ− and B → K∗µ+µ−

branching ratios respectively follow [244–247] and [248–253]. All three decays
are sensitive to the left-left and to the left-right squark mixing parameters.

In the case of the Bs → µ+µ− branching ratio, the formulas of [254] have been
used. For large values of tan β, the pseudoscalar Higgs boson contribution gives
a sizeable deviation from the Standard Model expectation so that when non-
minimal flavour violation in the squark sector is allowed, this observable mainly
restricts left-right mixing parameters [255]. Additionally, it is also sensitive to
δLL and δdRR when the gluino is not too heavy [256]. For the B-meson oscillation
parameter ∆MBs , we use the formulas of [255,257] with the hadronic parameters
P̄LR

1 = −0.71, P̄LR
2 = −0.9, P̄ SLL

1 = −0.37 and P̄ SLL
1 = −0.72. The NMFV

contributions are mainly sensitive to the δLLδdRR, δdLRδdRL and δuLRδuRL products,
the relative suppression and enhancement of their contributions being driven by
the ratio of the chargino over the gluino mass [215,255].

In the kaon sector, the εK observable is estimated by combining the formulas
of [255, 258], the loop-contributions being evaluated with ηtt = 0.5, ηct = 0.47
and ηcc = 1.44 [259]. In addition, we fix all hadronic parameters at the scale
Q = 2 GeV as BV LL

1 = 0.61, BSLL
1 = 0.76, BSLL

2 = 0.51, BLR
1 = 0.96 and

BLR
2 = 1.2 [258], and we set the decay constant fK to 155.8 MeV. The quantity

εK is not directly sensitive to a single NMFV MSSM parameter but will allow us
to constrain δLL,13δ

d
RR,23 and δLL,23δ

d
RR,13 products (recalling that first generation

squark mixings are generated by renormalisation-group running). On different
lines, the branching ratios associated with the rare K+ → π+νν and KL → π0νν
decays are calculated from the formulas given in [260] with κL = 2.1310−11,
κ+ = 5.1610−11 and Pc = 0.39. These observables mainly constrain the product
δuLR,13δ

u∗
LR,23 as well as higher-order combinations of δ-parameters that in partic-

ular appear in gluino/down-type squark box-contributions [260,261].
In all the calculations described above, we have used the results of [262]

for calculating chirally-enhanced interaction strengths that include e.g. the re-

2Imposing predictions for aµ to agree with the related measured values leads to a preference
for a lighter slepton mass spectrum. This can indirectly imply constraints on the NMFV MSSM
parameters via the flavour observables that involve sleptons.
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summation of loop-induced holomorphic coupling effects when tan β and/or the
sfermion-Higgs trilinear couplings are large.

As we allow for relatively light sleptons, charginos and neutralinos, we calcu-
late the supersymmetric contributions to the anomalous magnetic moment of the
muon by using the formulas of [263]. The related impact in terms of constraints
on our NMFV MSSM parameter space depends on the higgsino/gaugino nature
of the lighter charginos and neutralinos.

Finally, the calculation of the Higgs boson mass includes the complete one-
loop contribution that embeds all possible flavour structures and that is obtained
by extending the formulas of [264]. For the two-loop corrections, we have made
use of the formulas of [265–270] where generation mixing is neglected so that
only third generation mass parameters in the super-CKM basis are used as input
parameters. Although flavour effects can shift the Higgs mass by a few GeV
at the one-loop level, in particular when the product δuLRδuRL is large [214, 220,
271], the two-loop effects are expected to be of one order of magnitude smaller
so that ignoring the associated flavour mixing is expected to be a reasonable
approximation.

6.4 Results

The analysis of the results of the Markov Chain Monte Carlo scan presented
in the previous sections gives us information on the regions of parameter space
that are favoured by the experimental data shown in table 6.3. The influence
of a specific experimental result on a given parameter can be studied by com-
paring its theoretical prior distribution to the posterior one that is derived after
imposing the related constraint. The prior distributions of all parameters are
obtained from a uniform random scan in which we ignore scenarios that exhibit
tachyons, where the electroweak symmetry is not successfully broken and where
the lightest neutralino is not the lightest supersymmetric particle. We hence in-
clude about 1.5× 106 theoretically accepted set-ups. The posterior distributions
are then computed on the basis of our MCMC scan in which all the experimental
constraints, except, at this initial state, the one on the Higgs boson mass, are
imposed. This scan consists of 100 chains of 6000 scenarios in which the first
900 ones (the burn-in length) are removed. The constraint on the Higgs boson
mass is eventually imposed and the final posterior distributions include about
100 000 points. To estimate the importance of each observable separately, we
have run a separate MCMC scan consisting of 100 chains of 2000 scenarios for
each observable. After removing the burn-in length, 170 000 points remain. For
each scan, the convergence test of Gelman and Rubin has been verified [231].

Although we are mainly interested in the non-minimally flavour-violating
parameters defined in equation (6.11), we first also discuss for completeness the
flavour-conserving parameters of our model description.
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6.4.1 Flavour-conserving parameters

We start the discussion with the twelve flavour-conserving parameters of our
NMFV MSSM description. Figure 6.2 shows their probability density distri-
butions over the respective parameter ranges. In each panel, we display the
theoretical prior (yellow area) as well as the posterior distribution (solid line),
which shows the impact of all constraints given in table 6.3 together.

The prior distribution of the gaugino mass parameter M1 is centred at rela-
tively low values of M1 ∼ 400 GeV and may reach values ranging up to about
1000 GeV. When imposing all considered experimental constraints, the distribu-
tion is shifted by about 100 GeV to higher values. This feature can be traced to
the chargino contributions to the Bs → µµ branching ratio and to the neutral
B-meson mass difference ∆MBs , as we have fixed the ratios of the gaugino mass
parameters M1 and M2 so that chargino effects are connected to M1.

For the trilinear coupling parameter Af , the prior distribution is centred
around zero. Large values of Af are indeed often rejected since they can in-
duce a large left-right squark mixing implying tachyonic states. Imposing the
experimental constraints drastically changes the shape of the distribution and
leads to two peaks corresponding to |Af | ∼ 3000 GeV. This feature is induced by
the Higgs boson mass requirement that necessitates, in order to be satisfied, a
relatively large splitting of the masses of the squarks exhibiting the largest stop
component mq̃1 and mq̃2 . More precisely, the flavour-conserving formula for the
leading contributions to the Higgs mass,

m2
h = m2

Z cos2 2β +
3g2m4

t

8πm2
W

[
log

M2
SUSY

m2
t

+
X2
t

M2
SUSY

(
1− X2

t

12M2
SUSY

)]
, (6.21)

where Xt = At − µ/ tan β and M2
SUSY = mq̃1mq̃2 , stays approximatively valid in

the NMFV regime, so that peaks defined by |Xt| ∼
√

6MSUSY are expected (see
e.g. reference [270] and references therein).

Moving on with the slepton mass parameterM˜̀, we observe a peak centred at
around 600 GeV after imposing all experimental constraints. This is mainly in-
ferred by the anomalous magnetic moment of the muon requirement that strongly
depends on the slepton sector properties. Turning to the Higgs sector (second
line of figure 6.2), the prior distribution of the µ-parameter shows a preference for
low values while its posterior distribution slightly peaks around µ ∼ 200 GeV due
to the Bs → µµ, ∆aµ and ∆MBs constraints which all depend on the chargino
and neutralino sector. Next, the tan β parameter tends towards lower values
both in its prior and posterior distributions, the favourite values being pushed
to satisfy 12 . tan β . 18. Finally, the posterior distribution of the mass of the
pseudoscalar Higgs boson mA is shifted towards higher values with respect to its
prior distribution. This results from the interplay of most considered observables
for which low values of mA would induce too large Higgs contributions.

The last two lines of figure 6.2 concern the soft squark mass parameters. Low
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Figure 6.2: The one-dimensional prior (yellow histogram) and posterior (violet
curve) distributions of the parameters of our NMFV MSSM description. The
prior only incorporates theoretical inputs while the posterior distribution shows
the impact of all experimental observations listed in table 6.3. The probability
density on the y-axis is shown on a linear scale.
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values are preferred for the first and second generation squark masses MQ̃1,2
,

MŨ1,2
and MD̃1,2

, a feature that is mostly caused by the Higgs boson. This
behaviour can be understood from the limiting case in which M2

Q̃1,2
' M2

Ũ1,2
'

M2
D̃1,2
≡ m̃2. The one-loop corrections to mh that are proportional to δuLR are

here approximately given by [214]

∆m2
h =

3v4
u

8π2(v2
d + v2

u)

[
(Tu)

2
23

m̃2

(
Y 2
t

2
− (Tu)

2
23

12m̃2

)]
, (6.22)

while the corresponding contributions of down-type squarks are obtained by re-
placing Tu by Td, Yt by Yb and by exchanging vu and vd. In our parameterisation,

(
T̃u

)
23

=

√
2

vu
δuLRMQ̃1,2

MŨ3
(6.23)

so that for non-zero δuLR, the Higgs boson becomes tachyonic if m̃2 is too large.
Similarly, the requirement of a physical solution for the electroweak vacuum also
favours lower values for MQ̃1,2

. The distributions of the third-generation mass
parameters MQ̃3

and MŨ3
prefer in contrast larger values due to ∆MBs and

the mass of the Higgs boson constraints. Finally, both the prior and posterior
distributions of the right-handed down-type squark massMD̃3

prefer lower values
and are in this case very similar.

6.4.2 Flavour-violating parameters

We now turn to the analysis of the constraints that are imposed on the seven
non-minimally flavour-violating parameters δqαβ that are at the centre of interest
of the present analysis. The corresponding prior and posterior distributions
are displayed in figure 6.3, and we detail the impact of the most important
observables on figure 6.4, figure 6.5 and figure 6.6.

The theoretical constraints on any additional stop-scharm mixing in the left-
left sector (δLL) are relatively mild such that an almost flat behaviour is observed
(see figure 6.3). The δLL parameter is then mainly constrained by the B-meson
oscillation parameter ∆MBs (which favours smaller absolute values of δLL) and
the branching ratio for the Bs → µµ decay (which causes a slight preference
to positive values), as shown in figure 6.4. Values ranging up to |δLL| = 0.8
can nevertheless be reached, but this simultaneously requires large values for
other δ quantities so that cancellations between the different contributions to
the considered observables occur (see section 6.4.3). In a similar way, the prior
distributions of the parameters δuRR and δdRR show a mild preference for low
absolute values. The posterior distribution of the δuRR parameter does not differ
much from its prior distribution so that δuRR is not sensitive to the experimental
constraints under study. In contrast, the B-meson oscillation parameter ∆MBs

restricts the posterior distribution of δdRR to be narrower while the Bs → µµ
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Figure 6.3: Same as figure 6.2 in the case of the flavour-violating input parameters
of our NMFV MSSM description.
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Figure 6.4: The same as figure 6.2. The blue curve shows the most relevant
observables constraining the δLL (upper panel) and δdRR (lower panel) parameters.

branching ratio implies a preference to negative values (see figure 6.4). However,
the full explored range of −0.8 . δu,dRR . 0.8 stays accessible in the context of
both right-right mixing parameters.

The flavour-violating left-right and right-left elements of the up-type squark
mass matrix (δuLR and δuRL) turn out to be mainly constrained by the necessity
to incorporate a Higgs boson with a mass of about 125 GeV, as can be seen in
figure 6.5. The posterior distribution of δuLR exhibits two peaks at |δuLR| ∼ 0.05
and is restricted to −0.15 . δuLR . 0.15. Theoretically, this behaviour is expected
from equation (6.23). The δuRL parameter however receives extra constraints
stemming from the BR(Bs → µµ) observable (see figure 6.5) so that the posterior
distribution peaks around zero and has a maximal value of |δuRL| ∼ 0.2. We recall
that the two parameters δuLR and δuRL are independent and induce different mixing
patterns. More precisely, δuLR describes a c̃L–t̃R mixing, while δuRL corresponds to
mixing between the c̃R and t̃L eigenstates. The impact of the constraints and the
resulting distributions are therefore different and directly related to the structure
of the chargino-squark-quark and neutralino-squark-quark interactions.

In the down-type squark sector, the prior distributions of the δdLR and δdRL
mixing parameters show a clear peak for values close to zero. Large values are
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Figure 6.5: The same as figure 6.4, showing the most relevant observables con-
straining the δuLR (left panel) and δuRL (centre and right panel) parameters.
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Figure 6.6: The same as figure 6.4, showing the most relevant observables con-
straining the δdRL parameter.

often discarded as they imply large off-diagonal terms in the Md̃ mass matrix so
that the resulting spectrum likely contains tachyons. Both parameters are hardly
constrained by any of the observables under consideration and we only observe
minor effects. The posterior distribution of δdLR slightly prefers negative values,
and the posterior distribution of δdRL is slightly narrower, when both distributions
are compared to their respective prior. This mostly results from an interplay of all
observables, although but for the δdRL case, the B-meson oscillation observable
∆MBs and the Higgs boson mass requirement play a non-negligible role (see
figure 6.6).

We now illustrate the global distribution of all NMFV parameters. To this
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Figure 6.7: The one-dimensional prior (yellow histogram) and posterior (violet
curve) distributions of the quantities |~δ| and log |Πδ| defined in equation (6.24).
The probability density is shown on a linear scale.

end, we introduce the quantities

|~δ| =
[(
δLL
)2

+
(
δuRR
)2

+
(
δdRR
)2

+
(
δuLR
)2

+
(
δuRL
)2

+
(
δdLR
)2

+
(
δdRL
)2
]1/2

,

log |Πδ| = log
∣∣δLLδuRRδdRRδuLRδuRLδdLRδdRL

∣∣ .
(6.24)

The former, |~δ|, corresponds to the norm of a vector whose components are
the seven NMFV parameters. Its value gives a measure of how far a given
benchmark is situated from the minimally flavour-violating set-up where |~δ| =

0. The maximum value that can be reached in our scan is |~δ| ≈ 1.56. The
second quantity, log |Πδ|, corresponds to the logarithm of the absolute value
of the product of the seven NMFV parameters. The case where all NMFV
parameters are maximum corresponds to log |Πδ| ≈ −3.5. In figure 6.7, we show
the prior and posterior distributions of these two quantities. All scanned points
feature |~δ| > 0 so that at least one of the NMFV parameters is sizeable and non-
vanishing. The second quantity is in general large and negative so that at least
one of the NMFV parameters has to be small. However, since the distribution
shows a peak around log |Πδ| ≈ −7 it is clear that a large fraction of the scanned
points exhibit seven non-vanishing (with some sizeable) NMFV parameters.

6.4.3 Correlations within the flavour-violating parameters

Having discussed the distribution of single parameters, it is interesting to inves-
tigate possible correlations between different NMFV quantities. A correlation
indicator between two parameters x and y can be computed as

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (6.25)
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Figure 6.8: Two-dimensional distributions of the mostly correlated pairs of
NMFV parameters after including all constraints. The red colour indicates the
highest and dark purple the lowest likelihood. The grey and black lines respec-
tively indicate the 68% and 95% Bayesian Credibility Regions (BCR).

where the sum runs over all the points (xi, yi) of the sample and x̄ and ȳ are
the mean values of the two parameters. The correlation factor is vanishing when
there is no correlation, while r = ±1 indicates a linear correlation with the
exception of the case in which the sampled points lie on a line parallel to one
of the x and y axes. We restrict our analysis to the NMFV parameters. The
correlation indicators have been computed for any pair out of the seven NMFV
parameters and the results are shown in table 6.4 when one only accounts for the
theoretical prior (second column) and after imposing the full set of constraints
(last column). The correlations are found not particularly pronounced with all
r-values being close to zero.

We illustrate the correlations between different NMFV parameters on fig-
ure 6.8. We however only focus on cases where the correlation indicator is above
|r| > 0.25, namely on the (δLL, δ

d
RR), (δdLR, δ

u
RL) and (δuRL, δ

d
RL) pairs. This shows

that scenarios in which several NMFV parameters are non-zero (and even signif-
icantly large) simultaneously are still allowed by current low-energy flavour and
Higgs data.

6.4.4 Squark masses and flavour decomposition

We discuss in this section the distributions of the masses of the squarks, their
flavour decomposition and the mass differences between states relevant for the
LHC phenomenology of NMFV MSSM models. Figure 6.9 shows the prior and
posterior distributions for the up-type squark masses. The shapes of the dis-
tributions for the two lightest states ũ1 and ũ2 are very similar and they both
peak at about 800–1000 GeV. The two lightest up-type states ũ1 and ũ2, that
are mostly of the first and second generation (see figure 6.10), are in general
relatively close in mass. This is due to the choice of common mass parameters
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Parameters th th + exp

(δLL, δ
d
RR) -0.003 0.270

(δdLR, δ
u
RL) 0.007 0.267

(δuRL, δ
d
RL) -0.000 -0.254

(δdRR, δ
u
RL) -0.002 0.185

(δLL, δ
u
RL) 0.009 -0.158

(δuRR, δ
u
RL) 0.003 -0.037

(δLL, δ
u
LR) 0.002 -0.031

(δdRR, δ
d
LR) -0.021 -0.028

(δdLR, δ
d
RL) -0.001 0.027

(δLL, δ
d
LR) -0.002 0.023

(δLL, δ
d
RL) -0.024 0.013

(δuLR, δ
d
LR) -0.006 -0.012

(δuRR, δ
u
LR) 0.003 0.010

(δuRR, δ
d
RL) -0.000 -0.010

(δdRR, δ
d
RL) -0.002 -0.008

(δuLR, δ
u
RL) 0.002 -0.007

(δuRR, δ
d
RR) 0.001 -0.006

(δuRR, δ
d
LR) 0.000 -0.003

(δdRR, δ
u
LR) -0.001 0.002

(δuLR, δ
d
RL) 0.000 0.000

Table 6.4: The correlation coefficient r defined in equation (6.25) for all pairs
of NMFV parameters. The parameter pairs are ordered by their correlation
indicators when taking into account all imposed constraints (‘th+exp’). We also
display the indicator values when only the theoretical prior is imposed (‘th’).
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Figure 6.9: One-dimensional prior (yellow histogram) and posterior (violet curve)
distributions of the masses of the six up-type squarks. The probability density
is shown on a linear scale.
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Figure 6.10: Resulting correlations between the stop flavour content and the
masses of the three lightest up-type squarks after imposing all experimental con-
straints mentioned in table 6.3. The red colour indicates the highest and dark
purple the lowest likelihood. The grey and black lines respectively indicate the
68% and 95% Bayesian Credibility Regions (BCR).

for the first and second generation squarks. The heavier ũ3, ũ4 and ũ5 states
exhibit more spread distributions, the masses ranging from 1 to 3.5 TeV. Finally,
the heaviest state ũ6 is barely reachable at the LHC, with a mass lying in general
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Figure 6.11: Same as figure 6.9 for the down-type squark sector.

above 2 TeV. Although the considered experimental constraints affect all NMFV
supersymmetric parameters, the associated effects on the mass eigenvalues is at
the end only mild, the mass distributions being only slightly shifted towards
higher values.

From a phenomenological point of view, it is interesting to examine the flavour
(in particular the stop) content of the six up-type squarks. The posterior dis-
tribution of the stop content of the three lightest up-type squarks is depicted
in figure 6.10 and shown in correlation with the respective squark mass. The
lighter states ũ1, ũ2, ũ3 (and also ũ4) are mainly not stop-like, i.e. they have
a significant up or charm component. Most scanned scenarios indeed exhibit
a charm-dominated lightest ũ1 squark, while ũ2 is mostly dominated by its up
component. This contrasts with usual flavour-conserving MSSM set-ups where
the lightest squark state is typically a stop. This feature can be traced to the first
and second generation soft masses that are driven to lower values as explained
in section 6.4.1, whilst the third generation squark masses are pushed towards
higher values by the flavour constraints. Furthermore, even in the presence of
large trilinear terms, the lightest states are still found to be up-like or charm-like.

Similar conclusions hold for the sector of the down-type squarks. We show
their masses in figure 6.11 and selected flavour decompositions in figure 6.12. The
three lighter states exhibit comparable distributions, peaking as for the up-type
squarks at about 800–1000 GeV. The mass distributions of the d̃4 and d̃5 states
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Figure 6.12: Resulting correlations between the sbottom flavour content and the
masses of the three lightest down-type squarks after imposing all experimental
constraints mentioned in table 6.3. The red colour indicates the highest and dark
purple the lowest likelihood. The grey and black lines respectively indicate the
68% and 95% Bayesian Credibility Regions (BCR).

feature distributions with a larger spread, and the one of heaviest d̃6 squark is
peaking at about 3 TeV, although masses of about 1 TeV are predicted for a small
subset of scenarios. Flavour mixing in the down-type squark sector is generally
less pronounced than for the up-type squarks, as illustrated on figure 6.12 where
we depict the correlations between the sbottom content and the masses of the
lighter down-type squarks. A majority of scenarios include light down-like and
strange-like squark states and there is only a small number of parameter points
where d̃1 and d̃2 contain a sizeable sbottom content.

In figure 6.13, we show the correlations between the masses of the lightest
squark states and the one of the lightest neutralino. For most (∼ 95%) viable
points, the mass difference is well above 50 GeV, which is a favorable condition
for collider searches as the spectrum is not compressed. A considerable number
(∼ 40%) of parameter points features ũ1 masses of about 500 – 1000 GeV together
with neutralino masses of the order of 150 – 400 GeV. Such mass configurations
are likely to be ruled out by Run I LHC data. This is accounted for in the next
section, where we include collider constraints on the NMFV MSSM set-up and
define benchmark scenarios suitable for searches at the LHC Run II.

6.5 Benchmark scenarios

In this section, we identify an ensemble of benchmark scenarios capturing typical
features of the parameter space regions favoured by the constraints previously
investigated. We have ordered all acceptable parameter set-ups according to
their likelihood and selected four scenarios among the best ones. Our selection is
aimed to cover different phenomenological properties of the NMFV MSSM and
to be relevant for future LHC searches. The input parameters corresponding to
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Figure 6.13: Correlations between the lightest neutralino mass and the lightest
up-and down-type squark masses. The grey and black lines respectively indicate
the 68% and 95% Bayesian Credibility Regions (BCR).

the benchmark scenarios of our choice are indicated in table 6.5.
The values stated in this table are rather precise and we can wonder how

stable our reference scenarios would be under small variations of the parameters.
As we can see from the 1D posterior distributions shown in figures 6.2 and 6.3,
all the reference points are situated in a well-populated part of the parameter
space. This suggests they can be stable. However, since the dependence of
the low-energy observables on the parameters is rather complicated and hard to
predict, we would need a detailed analysis studying the stability of the reference
points to state anything more concrete.3

In figure 6.14, we present the mass spectra of the four selected scenarios and
depict the flavour content of the different squark eigenstates. We finally show
in tables 6.6–6.8 the branching ratios related to the dominant decay modes of
the squarks ligther than about 1 TeV. Additionally, we have verified that the
electroweak vacuum is stable for all selected points by using the programme
Vevacious [272]. We now briefly outline the main characteristics of the four
proposed benchmark scenarios.

Scenario I

This benchmark point presents one up-type and two down-type squarks with
masses below 1 TeV. The lightest up-type squark is mostly stop-like, although
it contains a small scharm component, and has a mass of 831 GeV which im-
plies a sizeable production cross section at the LHC. In the sector of the down-
type squarks, the two lightest states are almost purely sbottom-like with masses
of 763 GeV and 854 GeV respectively. Since only the heaviest neutralino and

3We presented an example of such an analysis for a different set of reference points based
on a grid scan of a more restricted parameter space in [205].



144 CHAPTER 6. NMFV SUPERSYMMETRY

Parameter I II III IV

αs(mZ) 1.187 · 10−1 1.194 · 10−1 1.176 · 10−1 1.176 · 10−1

mpole
t 176.00 GeV 175.53 GeV 173.53 GeV 174.02 GeV

mb(mb) 4.10 GeV 4.24 GeV 4.28 GeV 4.10 GeV

MQ̃1,2
1192.7 GeV 2288.2 GeV 637.7 GeV 753.2 GeV

MQ̃3
883.7 GeV 425.3 GeV 3483.0 GeV 2662.7 GeV

MŨ1,2
2412.6 GeV 1757.7 GeV 934.0 GeV 984.7 GeV

MŨ3
2344.3 GeV 2753.8 GeV 2862.2 GeV 2010.6 GeV

MD̃1,2
2295.1 GeV 551.6 GeV 1331.1 GeV 882.7 GeV

MD̃3
843.8 GeV 713.5 GeV 901.8 GeV 670.5 GeV

Af -2424.1 GeV 1807.3 GeV 1586.3 GeV -2833.4 GeV

tan β 17.4 21.1 29.2 34.0
µ 615.7 GeV 772.8 GeV 508.1 GeV 442.7 GeV
mA 1334.5 GeV 1300.3 GeV 1294.8 GeV 1431.0 GeV
M1 474.5 GeV 315.3 GeV 525.2 GeV 390.0 GeV
M˜̀ 2466.5 GeV 1552.5 GeV 3396.7 GeV 2813.4 GeV

δLL 1.4 · 10−1 −4.6 · 10−2 3.7 · 10−1 5.9 · 10−1

δuRR 1.7 · 10−1 2.2 · 10−1 7.3 · 10−1 6.0 · 10−1

δdRR 1.4 · 10−1 −1.4 · 10−1 −2.9 · 10−1 −7.5 · 10−1

δuLR 9.2 · 10−2 3.5 · 10−2 1.7 · 10−1 1.0 · 10−1

δdLR −3.9 · 10−2 −3.6 · 10−3 −6.1 · 10−3 4.6 · 10−3

δuRL −9.7 · 10−2 1.4 · 10−2 −9.9 · 10−2 −7.2 · 10−2

δdRL −7.6 · 10−4 −1.4 · 10−2 −1.2 · 10−3 1.6 · 10−3

Table 6.5: Definition of four benchmark points suitable for phenomenological
studies of the NMFV MSSM.
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ũ5

ũ6
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Figure 6.14: Mass spectra of the benchmark scenarios defined in table 6.5. The
colour code that has been employed for depicting the squark eigenstates indicates
their flavour content: the {red, green, blue} colour corresponds to the {first,
second, third} generation flavours.
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Decay I II III IV
ũ1 → tχ̃0

1 0.14 0.99 0.06 0.09
ũ1 → cχ̃0

1 0.01 0.24 0.07
ũ1 → tχ̃0

2 0.24 0.11
ũ1 → tχ̃0

3 0.43 0.06 0.26
ũ1 → tχ̃0

3 0.07
ũ1 → cχ̃0

3 0.27 0.10
ũ1 → bχ̃+

1 0.19 0.24 0.22
ũ1 → sχ̃+

1 0.02 0.17
ũ1 → W+d̃1 0.02
ũ2 → tχ̃0

1 0.07 0.04
ũ2 → cχ̃0

1 0.22 0.32
ũ2 → tχ̃0

2 0.08 0.09
ũ2 → tχ̃0

3 0.09 0.11
ũ2 → cχ̃0

3 0.35 0.06
ũ2 → bχ̃+

1 0.11 0.21
ũ2 → sχ̃+

1 0.09
ũ2 → W+d̃2 0.06
ũ2 → Z0ũ1 0.05
ũ2 → h0ũ1 0.02
ũ3 → cχ̃0

1 0.03 0.09
ũ3 → uχ̃0

1 0.03 0.03
ũ3 → tχ̃0

2 0.02
ũ3 → tχ̃0

3 0.02
ũ3 → cχ̃0

3 0.05 0.02
ũ3 → uχ̃0

3 0.45 0.09
ũ3 → cχ̃0

4 0.01
ũ3 → uχ̃0

4 0.15
ũ3 → bχ̃+

1 0.01 0.05
ũ3 → dχ̃+

1 0.41 0.01
ũ3 → dχ̃+

2 0.33
ũ3 → W+d̃2 0.01
ũ3 → Z0ũ1 0.02

Table 6.6: Branching ratios associated with the dominant decay modes of the
up-type squarks lighter than about 1 TeV for the benchmark points defined in
table 6.5. Branching ratios below 1% are not indicated.

chargino states are heavier than the three lightest squark states, various decay
channels are open so that the real challenge for future LHC analyses would be to
become sensitive to flavour-violating branching ratios of a few percents. In this
scenario, the electroweak vacuum is long-lived and has a lifetime larger than the
age of the Universe.
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Decay I II III IV

d̃1 → bχ̃0
1 0.73 0.84 0.35

d̃1 → sχ̃0
1 0.16 0.40 0.09

d̃1 → bχ̃0
2 0.15 0.01 0.30

d̃1 → sχ̃0
2 0.02

d̃1 → bχ̃0
3 0.12 0.25

d̃1 → sχ̃0
3 0.05

d̃1 → tχ̃−1 0.42
d̃1 → cχ̃−1 0.09

d̃2 → bχ̃0
1 0.04 0.05 0.02

d̃2 → sχ̃0
1 0.24

d̃2 → dχ̃0
1 0.70

d̃2 → bχ̃0
2 0.04

d̃2 → sχ̃0
2 0.04 0.95

d̃2 → dχ̃0
2 0.03

d̃2 → dχ̃0
2 0.08

d̃2 → bχ̃0
3 0.04

d̃2 → sχ̃0
3 0.04 0.02

d̃2 → tχ̃−1 0.87 0.51
d̃2 → cχ̃−1 0.09
d̃2 → uχ̃−1 0.15
d̃2 → W−ũ1 0.03
d̃2 → Z0d̃1 0.02
d̃2 → h0d̃1 0.02

Table 6.7: Branching ratios associated with the dominant decay modes of the
down-type squarks lighter than about 1 TeV for the benchmark points defined
in table 6.5. Branching ratios below 1% are not indicated.
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Decay I II III IV

d̃3 → dχ̃0
1 1.00 0.16

d̃3 → dχ̃0
3 0.01

d̃3 → dχ̃0
4 0.25

d̃3 → uχ̃−1 0.07
d̃3 → cχ̃−2 0.02
d̃3 → uχ̃−2 0.48

d̃4 → bχ̃0
1 0.42

d̃4 → sχ̃0
1 0.03

d̃4 → dχ̃0
1 0.83

d̃4 → dχ̃0
3 0.17

d̃4 → W−ũ1 0.27
d̃4 → Z0d̃1 0.13
d̃4 → h0d̃1 0.13
d̃4 → h0d̃2 0.01

Table 6.8: Branching ratios associated with the dominant decay modes of the
down-type squarks lighter than about 1 TeV for the benchmark points defined
in table 6.5. Branching ratios below 1% are not indicated.
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Scenario II

In this scenario, only the lightest of the up-type squarks is expected to lie within
the reach of LHC, with a mass of 526 GeV. It is almost a pure stop state with
a small charm component. Since the only lighter superpartner is the lightest
neutralino, it will preferably decay into a χ̃0

1t system. There are four down-
type squarks lying below 1 TeV, their masses being 519 GeV, 555 GeV, 566 GeV
and 747 GeV. These four states are admixtures of all three flavours and their
dominant decay modes include in particular final states containing the next-
to-lightest neutralino or the lightest chargino. Contrary to the scenario I, the
branching ratios related to flavour-violating decays can reach up to 16 percents,
which make them possibly testable at the LHC. Moreover, the fourth down-type
squark has sizeable branching ratios for decays into the lightest up-type squark
and aW boson as well as into the lightest down-type squark and either a Z boson
or a Higgs boson. Although many squarks are very light, this scenario evades
all LHC Run I constraints thanks to a heavy lightest neutralino of 315 GeV.
Moreover, the vacuum has been found to be stable.

Scenario III

This benchmark point features numerous squark mass eigenstates in the reach
of the LHC. It indeed exhibits three up-type squarks with masses of 836 GeV,
882 GeV and 928 GeV, and three down-type squarks with masses of 880 GeV,
931 GeV and 1050 GeV. The stop-like states are here the heaviest ones, and the
up-type squark states reachable at LHC only contain up and charm flavours.
Similarly, the heavier d̃3 and d̃6 down-type squarks are the only ones containing
a sbottom component. This feature is the direct consequence of the lower values
that are favoured for the MQ̃1,2

, MŨ1,2
and MD̃1,2

parameters, when compared to
the values that are favoured by the third-generation soft parameters MQ̃3

, MŨ3

andMD̃3
. Equivalently, this can be seen as an implication of allowing for flavour-

violating entries in the squark mass matrices (see section 6.4.1). In addition, all
gauginos except the heaviest neutralino and chargino feature lower masses, so
that a variety of decay channels are open. Finally, we found a direction in which,
for extremely large field excitations, the electroweak vacuum is unbounded from
below. This situation is similar to the case of the Standard Model [273, 274],
and higher order corrections to the scalar potential would be needed to make a
conclusive statement.

Scenario IV

Our last scenario features numerous squark states as well as a complete elec-
troweakino spectrum below 1 TeV. More precisely, the lighter up-type squarks
have masses of 751 GeV, 902 GeV and 923 GeV, while the lighter down-type
squark masses are of 582 GeV, 775 GeV and 924 GeV. In addition, three other
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states are not too far above 1 TeV with masses of 1119 GeV (ũ4), 1029 GeV (d̃4)
and 1167 GeV (d̃5). The two lightest up-type squarks consist in this case of a
mixture of all three flavours (with a dominant charm content), which leads to
interesting decay patterns, as shown in tables 6.6–6.8. Similarly to scenario I,
this scenario exhibits a long-lived electroweak vacuum with a lifetime larger than
the age of the Universe.

6.6 Summary
We have studied non-minimal flavour-violation in the MSSM by allowing for
flavour mixing between the second and third generation squarks. We have used a
Markov Chain Monte Carlo scanning technique to explore the underlying param-
eter space and imposed a set of experimental constraints arising from B-meson
and kaon physics and the anomalous magnetic moment of the muon. We have
additionally enforced the model to accommodate a light Higgs boson with a mass
of 125 GeV.

First and second generation soft squark masses are theoretically restricted to
low values in order to avoid tachyons in the Higgs sector. As a consequence, the
lighter squarks are often not the stop and sbottom ones, which contrasts with
scenarios of the usual minimally flavour-violating MSSM. Requiring a theoreti-
cally consistent Higgs sector and a light Higgs boson of about 125 GeV similarly
restrict the left-right and right-left flavour-violating squark mixing parameters
δu,dLR/RL to be small. In contrast, the δLL and δdRR NMFV parameters are mainly
constrained by neutral B-meson oscillations, and the rare Bs → µµ decay mainly
influences δuRL. All other NMFV parameters are left unconstrained by the con-
sidered experimental observations.

In view of the recently started second LHC run, we have used our MCMC
scan results to propose four benchmark scenarios allowed by current data that
exhibit distinct features and that are suitable for future analyses of NMFV effects
in the MSSM. In most proposed scenarios, several squarks have masses close to
1 TeV so that they should be reachable within the next few years.



Chapter 7

Summary and outlook

Elementary particle physics aims at answering the question ‘What is matter
made of?’ and, to this end, particle colliders such as the Large Hadron Collider
(LHC) have been designed. The LHC collides protons with a very high energy
onto each other which allows us to probe matter at distance scales of the order
O(10−16) meter. At these small scales, matter is made up of only a limited
number of elementary particles which are well described within the Standard
Model of particle physics. The Standard Model is formulated as a quantum
field theory and is a very successful theory. One of its biggest and most recent
successes is the prediction and discovery of the Brout-Englert-Higgs (BEH) boson
at the LHC.

However, we also know that the Standard Model has its limitations. Results
from the Planck space observatory have shown that the matter described within
the Standard Model covers only about 5% of all the matter and energy content in
the universe. The remaining matter and energy is called dark matter/energy and
cannot be incorporated within the Standard Model. Also, the SM describes only
three of the four fundamental forces. Every attempt to formulate a quantum field
theory of gravity resulted in a theory which is not renormalizable and, therefore,
lacks any predictive power. We therefore know that new physics should enter at
the scale where quantum gravitational effects become important, namely at the
Planck scale, O(1019) GeV.

The huge energy range between the electroweak scale of the SM (O(102) GeV)
and the Planck scale does not only suggest there is some other physics in between,
it also creates problems within the Standard Model. The radiative corrections
to the mass of the BEH boson depend quadratically on the cut-off scale, i.e. the
scale up to which the theory is valid. If the Standard Model would be valid up
to the Planck scale, this cut-off scale is the Planck scale and, consequently, we
would expect the mass of the BEH boson to be naturally large. To explain the
experimentally observed BEH-boson mass of 125 GeV, the radiative corrections
would have to be cancelled by tuning the parameters within the Standard Model
very accurately. This seems, however, very unnatural. Even if there would be
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some new physics entering at a higher scale, the quadratic sensitivity remains
and a certain amount of tuning would be required. This is referred to as the
fine-tuning problem of the SM.

These, and other, arguments motivate us to keep searching for physics be-
yond the Standard Model (BSM). Many candidates for BSM physics have been
formulated and, currently, supersymmetry is one of the most attractive exten-
sions of the Standard Model. Supersymmetry is a symmetry relating fermions
and bosons. Every particle within the Standard Model is hence predicted to have
a supersymmetric partner with a spin differing by 1/2. Supersymmetry is the
only way in which gravity could be incorporated in a quantum field theory and,
if we assume R-parity conservation, the lightest supersymmetric particle (LSP)
is stable and can be a candidate for dark matter. Additionally, as long as the
masses of the SM particles and their superpartners do not differ too much, it
solves the fine-tuning problem.

If supersymmetry would be an exact symmetry of Nature, the SM particles
and their SUSY partners would have the same mass and the implications of
SUSY should have been observed already experimentally, at colliders or through
low-energy observables such as B-meson mixing. However, no sign of SUSY has
been observed so far and SUSY partners with the same mass are experimentally
excluded. A mass difference between the SM particles and their SUSY partners
can be accomplished if supersymmetry is spontaneously broken, but still we have
to be careful not to reintroduce the fine-tuning problem. Since the latest experi-
mental results impose high mass limits on, especially, the coloured superpartners,
SUSY seems to become more and more fine-tuned and less natural.

However, SUSY encompasses a broad class of theories and up to now, mainly
the minimal versions of SUSY have been studied. In order to get a complete
overview of the status of SUSY, it is crucial to also study less minimal supersym-
metric models. In this thesis, we went beyond minimal SUSY and we presented
a phenomenological study of non-minimal SUSY models.

7.1 Multilepton signals of gauge-mediated
supersymmetry breaking at the LHC

Since the LHC is a hadron machine, the cross section for strong production is
typically much larger than the cross section for electroweak processes. The cross
section for electroweak slepton-pair production, for example, is about three orders
of magnitude lower than the one for stop-pair production. As a consequence, the
LHC has only recently been able to set limits on the slepton masses which are
stronger than the LEP bounds. The data set of LHC Run 2 has, however, more
potential with respect to electroweak production.

Even though the EW production channels are currently not the strongest
point of the LHC, they did yield some interesting results. The CMS search
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for anomalous production of events with three or more leptons, for example,
did observe a deviation from the Standard Model prediction. They observed 22
events where they only expected 10±2.4 in the category where they require three
electrons or muons and one hadronically decaying tau out of which one opposite-
sign same flavour lepton pair can be formed, they impose low hadronic activity
and veto b-jets and leptons coming from the decay of a Z boson. Even though
this corresponds to a 5σ deviation in this particular category, it only shows up
in three out of 64 bins and, after we take into account the look-elsewhere effect,
this deviation becomes less significant. It might however still give a hint for new
physics. In chapter 4, we investigated whether we can explain the excess within
supersymmetry.

We considered a GGM-inspired simplified model in which the bino-like neu-
tralino, the three generations of right-handed sleptons and the gravitino are at
the bottom of the spectrum. We choose the bino to be the heaviest, the selectron
and smuon are mass degenerate while the right-handed stau can have a different
mass and, since we work in gauge mediation, the gravitino is always the LSP.
We fix the mass of the bino and gravitino to 500 GeV and 1 eV respectively, and
let the masses of the NLSP and NNLSP vary in between 50 and 300 GeV. In
this mass regime, the NLSP will always decay promptly to its SM partner and
the gravitino while for the NNLSP the three-body decay through the off-shell
bino will be dominant. The NNLSP stau, for example, will therefore dominantly
decay as τ̃R → τ ll̃R where l = e, µ. Due to this three-body decay, our simplified
model will give rise to multilepton final states at the LHC which, as we have
seen, is crucial to explain the excess. We scanned over the aforementioned pa-
rameters and found that our simplified model, with right-handed selectrons and
smuons of mass 145 GeV and right-handed staus of mass 90 GeV, can explain the
CMS results while satisfying other experimental constraints. We propose this as
a benchmark scenario for further investigation.

Outlook

In order to further probe our best fit point, we investigated how many events
with four or more electrons, muons and hadronically decaying taus we would
expect in the data sets that are or will be collected at the LHC during Run 1
and 2. Even though we only produce two electrons/muons and four hadronically
decaying taus, we saw that there can easily be 2-4 electrons or muons in the final
state and our scenario is very likely to feature two hadronically decaying taus
which are hard enough to be reconstructed. A multilepton search, as inclusive
as possible, which requires two hadronically decaying taus with a binning on the
number of electrons or muons would hence be ideal to probe our best fit scenario.

Another next step that could be made on the experimental side, lies in the
limit on the staus. The right-handed stau in our best fit scenario is rather light
and lies close to the LEP bound. One obvious way to probe our benchmark,
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would be to try to improve this bound using the LHC data. However, tau leptons
are hard to identify, and up to now, nor ATLAS [145], nor CMS [146] have been
able to set limits on the stau mass.

In our work, we only recasted the CMS analysis featuring the excess [123]
within MadAnalysis 5 and the other LHC searches that might be relevant,
were only briefly considered. Moreover, the first 12− 13 fb−1 of data of the LHC
Run 2 at

√
s = 13 TeV have been analysed and these results might be relevant

for our best fit scenario. As an example, CMS recently presented a multilepton
search for electroweak SUSY production in multilepton final states [275] in which
no deviation from the Standard Model is observed. They searched for events
featuring two, three or at least four leptons (electrons, muons, or hadronically
decaying taus) and no b-jets in the final state and order their results according to
the number of leptons, their invariant mass, Emiss

T and two more variables related
to the transverse mass of the leptons. Our signal might contribute to many of
the categories presented in this search, but to be sure about the exact expected
yields, we would need to generate the simulated samples at 13 TeV and recast
the analysis. We leave a detailed analysis of this and other possibly constraining
searches such as [276] for future work.

Finally, the properties of the three-body decay of the NNLSP in our simplified
model also deserve further investigation. The NNLSP will dominantly decay
through the off-shell bino to the NLSP and two SM partners and the NNLSP
and NLSP can have the same or opposite charge. In our set-up, the opposite-
charge channel dominates over the one with the same charge. Generically, the
branching ratios of the same- and opposite-charge decays depend on whether the
sleptons are right- or left-handed, the mixing of the staus and on the nature of
the neutralino. A detailed phenomenological analysis of these effects might allow
us to probe the details of the superparticles in our spectrum. However, such a
study would clearly require much more LHC data than is currently available and
we suggest to postpone this investigation to more appropriate times.

7.2 Collider signatures of goldstini
in gauge mediation

In order to account for the observed mass splitting between the SM particles and
their superpartners, supersymmetry has to be broken. In section 2.3 we explained
that SUSY breaking occurs in a hidden sector which does not interact directly
or only very weakly with the visible sector. In gauge mediation, SUSY breaking
is mediated to the visible sector through messenger particles charged under the
SM gauge interactions. Usually, one assumes there is only one hidden SUSY-
breaking sector, however, there is no theoretical motivation why this should be
the case. We extended the usual scenario of gauge mediation with one SUSY-
breaking sector to the case in which there are two hidden SUSY-breaking sectors
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and we investigated how this would change the collider signatures.
Since each SUSY-breaking sector comes with a goldstino, there will be two

goldstini instead of only one. One linear combination of them, the true gold-
stino G, is eaten by the gravitino while the remaining fields combine to form
the pseudo-goldstino G′. While the true goldstino remains massless, the pseudo-
goldstino can acquire a mass ranging from 1 to 100 GeV due to radiative correc-
tions. As always in gauge mediation, the gravitino is the LSP and we assume the
pseudo-goldstino to be the NLSP. The pseudo-goldstino is further assumed to
have a long enough lifetime to decay outside the detector so that the collider sig-
natures will be largely determined by the Lightest Observable Supersymmetric
Particle (LOSP). We considered the two most common LOSPs, namely neu-
tralino and stau, and showed that their coupling to G′ and their SM partner can
essentially be considered as free parameters. The LOSP can then decay to its
SM partner and the (pseudo-)goldstino and we showed that, depending on the
choice of the couplings and the pseudo-goldstino mass, the decay to G′ can be
significant.

We first considered the case in which the neutralino is the LOSP. The neu-
tralino is assumed to be mainly gaugino-like and, consequently, it can decay to
the photon or Z boson and the (pseudo)-goldstino. The decay to the Z boson
is in most of the cases very much suppressed with respect to the decay to the
photon. If the neutralino decay to γG/G′ is prompt, neutralino production at
colliders will give rise to final states consisting of photons and missing energy.

We first studied single- and di-photon production at e+e− colliders and we
saw that the cross section for single-photon production σ(e+e− → γG/G′) can be
enhanced depending on the choice of the parameters. The di-photon signal arises
from the production and decay of a neutralino pair e+e− → χχ→ γγ+ /E and we
showed that the energy distributions of the leading photon and the distributions
of the missing invariant mass can differ significantly with respect to usual gauge
mediation: the emitted photons can be much softer and both distributions can
exhibit edges which can provide information on the couplings and mass of the
pseudo-goldstino. In pp colliders, the cleanest signal comes from slepton-pair
production pp → l̃+R/Ll̃

−
R/L → l+l− + γγ + /ET where l = e, µ leading to a final

state with two opposite-sign leptons, two photons and missing transverse energy.
The Standard Model background is very low and we showed that the pT - and /ET -
distributions again differentiate between the couplings and mass of the pseudo-
goldstino.

For the case in which the stau is the LOSP, we restricted ourselves to pp
colliders and studied stau-pair production pp→ τ̃+τ̃− → τ+τ−+ /ET . Also here,
the final state is found to be softer and more structured with respect to the
one-sector case. However, compared to neutralino LOSP, the signal is less clean
due to a higher SM background and the difficulties in reconstructing τ -leptons
at colliders.

We performed our analysis on two particular benchmark points, SPS8 for
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neutralino and SPS7 for stau LOSP, and the described experimental signatures
do depend on the parameters related to the pseudo-goldstino. However, we also
observed more model-independent features. In particular, due to the mass of
the pseudo-goldstino, we expect the SM decay products of a decaying LOSP to
have a lower energy compared to the usual gauge-mediation scenarios. Conse-
quently, such a scenario evades most experimental bounds tending to exclude
gauge-mediated scenarios.

Outlook

Since the publication of this work, the phenomenology of the goldstini scenario
has been further investigated within the community. Our work was based solely
on the implementation of the model in FeynRules and the event generation
with MadGraph 5. We did impose the minimal detector cuts as well as some
basic cuts at the analysis level to remove the background, but a detailed simula-
tion of the detector and experimental analyses was lacking. The work presented
in [277] extended our analysis of di-photon production at pp colliders to a more
generic study of the parameters space and used MadAnalysis 5 to confronted
it with an inclusive diphoton+/ET search performed by the ATLAS collaboration.
Additionally, they introduced a third SUSY-breaking sector and showed that this
can result in cascades of the pseudo-goldstini leading to multiphoton final states.

We restricted ourselves to the cases in which the gaugino-like neutralino and
stau are the LOSP. However, the case in which the neutralino LOSP has a large
higgsino component is also worth to be studied and the same holds for a chargino
LOSP. The collider signatures of these two cases have been studied in [204, 278,
279]. The goldstini scenario with a higgsino-like LOSP was also shown [280]
to be able to explain a 3.0σ excess in events featuring a Z-peaked same-flavour
opposite-sign lepton pair recently observed by the ATLAS collaboration. The
LOSP could however also be a coloured SUSY particle and this case has not
been investigated up to now.

We also would like to suggest that models like the one we have presented
here, where the missing energy is carried away by two different particles, one
rather massive and the other almost massless, and with similar couplings but
with different strength, deserve to be considered in LHC data analysis.

7.3 General squark flavour mixing:
constraints, phenomenology and benchmarks

The minimal flavour violation (MFV) paradigm of supersymmetry assumes that
all flavour properties of the model stem from the diagonalization of the SM
Yukawa matrices so that all flavour-violating effects are related to the CKM and
PMNS matrices. In this project, we went beyond MFV and studied to which
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extent non-minimal flavour violation (NMFV) in the squark sector is still allowed
given the current indirect experimental constraints coming from the low-energy
flavour-observables, the anomalous magnetic moment of the muon and the mass
of the recently discovered BEH boson.

We adopted a phenomenological approach and start from a pMSSM-like
parametrisation of the MSSM. Contrary to the MFV case, we now also allow
for off-diagonal NMFV entries in the squark soft masses and trilinear couplings.
Since any mixing involving the first generation squarks is strongly constrained by
kaon-mixing, we only consider mixing between the second and third generation
squarks which leaves us with 7 NMFV parameters. Contrary to most previous
work on NMFV which only varies one or two NMFV parameters at a time, we
allow all our NMFV parameters to vary at the same time. After slightly reducing
the usual pMSSM parameter space, our NMFV model has 19 free parameters.

We probe this parameter space by means of the Markov Chain Monte Carlo
(MCMC) scanning technique which probes the parameter space guided by the
likelihood of the parameter points. Starting from a prior distribution quanti-
fying theoretical constraints and the initial knowledge about the parameters,
the MCMC yields a posterior distribution which is proportional to the real likeli-
hood distribution based on the imposed theoretical and experimental constraints.
Comparing the prior and posterior distributions gives insight in how the imposed
experimental data can influence the likelihood distributions of the parameters.

We found that the typical mass spectrum of the squarks within NMFV super-
symmetry can considerably differ from the one in MFV SUSY. Within NMFV
the first and second generation soft squark masses are theoretically restricted to
be rather low to avoid taychons in the Higgs sector. Consequently, the masses of
the first two generations are pushed towards lower values and, unlike the usual
MFV SUSY scenarios, the lightest squarks are generally not the third generation
squarks. Requiring a theoretically consistent Higgs sector and a light Higgs boson
with a mass of 125 GeV similarly restricts the left-right and right-left flavour-
violating NMFV parameters δu,dLR/RL to be small. On the other hand, the NMFV
parameters δLL and δdRR are mainly constrained by the neutral B-meson oscil-
lations while the rare Bs → µµ decay mainly influences δuRL. All other NMFV
parameters are left unconstrained by the considered experimental observations.

Based on the points with the highest likelihood in our scan, we selected
four benchmark scenarios, allowed by the current data, which cover different
phenomenological features of NMFV SUSY and can be relevant for future LHC
searches.

Outlook

This work was only a first step towards a comprehensive study of NMFV in
the squark sector. In our study, we restricted ourselves to indirect experimental
constraints. Direct constraints from collider searches might however also have a
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Figure 7.1: Cumulative luminosity measured online versus day delivered to
(blue), and recorded by CMS (orange) during stable beams and for pp collisions
at 13 TeV centre-of-mass energy in 2016. Figure and caption taken from [282].

large impact on the constraints on the parameter space and could be included in
a next stage.

We could also improve the MCMC scan itself. It would be interesting to
run a scan for different kinds of priors to see whether our results are robust.
Also, we can wonder whether NMFV SUSY fits the data better compared to
the usual MFV SUSY case and if the higher level of complexity due to the extra
parameters is worth the improvement. This could be done by using an alternative
implementation of MCMC scanning technique which also calculates the Bayesian
evidence as is done for example in [281].

Finally, we would like to stress that flavour-violating effects can have impor-
tant consequences for collider searches. For example (cfr. the references men-
tioned in section 6.2.3), FV effects can loosen the current experimental con-
straints on the stop mass, they can have an influence on the level of fine-tuning
of the model and they can lead to signatures which are currently not probed
at colliders. As we have shown in our work, indirect constraints still allow for
flavour violation in the squark sector and it is therefore important to take FV
effects on the collider signatures into account.

7.4 Overall outlook

The cumulative integrated luminosity at 13 TeV collected by the CMS experiment
during the last three months is shown in figure 7.1 and we can see that the
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LHC is performing very well. CMS and ATLAS each collected already about
20 fb−1 of data, more than the whole 8 TeV data set of Run 1. By the beginning
of August 2016, ATLAS and CMS presented the first results on their 13 fb−1

dataset. A promising diphoton resonance at 750 GeV presented a few months
earlier by both ATLAS and CMS [283,284] now appeared to be a mere statistical
fluctuation [285,286] and no other sign of SUSY or any other physics beyond the
Standard Model has been observed up to now. However, there remain many
more analyses to be done and, as was demonstrated in this thesis, SUSY might
still be hiding somewhere. The LHC will continue collecting data until the end
of October 2016 after which there will be a technical stop to prepare for the next
period of data taking. The dataset collected by then should give us an idea of
the (hopefully new) physics within reach of the LHC.

7.5 Overview of my contributions
As a final conclusion, I can now come back to the overview of my publications
and indicate my own contributions:

• A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de
Traubenberg, Automated mass spectrum generation for new physics, Eur.
Phys. J. C73 (2013) 2325, [arxiv:1301.5932]

I am the author of ASperGe, the numerical code performing numerical mass
matrix diagonalisation and I also worked on the interfaces with FeynRules and
MadGraph5. To complete this project, I participated in the 2012 FeynRules
workshop in Mont Sainte-Odile and the 2012 MadGraph meeting in Natal.

• J. D’Hondt, K. De Causmaecker, B. Fuks, A. Mariotti, K. Mawatari, C.
Petersson and D. Redigolo, Multilepton signals of gauge mediated super-
symmetry breaking at the LHC, Phys. Lett. B731 (2014) 7-12,
[arxiv:1310.0018]

In this project, we all had more or less an equal contribution. I participated in
a broad and deep discussion together with the other authors and I gave an oral
presentation of this work at the SUSY2014 conference in Manchester.

• R. Argurio, K. De Causmaecker, G. Ferretti, A. Mariotti, K. Mawatari
and Y. Takaesu, Collider signatures of goldstini in gauge mediation, JHEP
06 (2012) 096, [arxiv:1112.5058]

I joined this project right after starting my PhD in the VUB phenomenology group
in October 2011. While I was learning the basics of supersymmetric theories and
collider phenomenology, I helped in practice with the analyses.

• K. De Causmaecker, B. Fuks, B. Herrmann, F. Mahmoudi, B. O’Leary,
W. Porod, S. Sekmen and N. Strobbe, General squark flavour mixing:
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constraints phenomenology and benchmarks, JHEP 11 (2015) 125,
[arxiv:1509.05414]

I was one of the driving forces behind this project and my involvement in the
development of the ideas was significant. I am the author of the MCMC code and
I have done all the parameter scans by using the CERN and IIHE clusters. I also
did the visualisation of the data, provided all the figures and wrote parts of the
paper.

• G. Brooijmans et al., Les Houches 2013: Physics at TeV Colliders: New
Physics Working Group Report, (2014), [arxiv:1405.1617]

The preliminary results of the above project were presented in this report.
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Appendix A

Conventions

Throughout this thesis, we assume

~ ≡ h

2π
= c = 1 (A.1)

where h and c are respectively Planck’s constant and the velocity of light. We
also follow the Einstein summation convention: the sum over a repeated upper
and lower index is always implicitly understood and we do not explicitly write
the summation sign.

A.1 Lorentz indices
The Minkowski metric gµν and its inverse gµν are given by

gµν = gµν = diag(1,−1,−1,−1) (A.2)

so that
gµνg

νρ = δ ρ
µ (A.3)

where the sum over repeated indices is implicitly understood. Summing over an
upper and a lower index, as we did for the index ν in equation (A.3), is referred
to as contracting indices. The Minkowski metric is used to define the norm of a
four-vector xµ as

x2 ≡ xµxµ = gµνx
µxν (A.4)

and the group of transformations leaving this norm invariant is called the Lorentz
group. Under a Lorentz transformation xµ transforms as

xµ → Λµ
νx

ν (A.5)

which leaves xµxµ invariant so that

gµνΛ
µ
αΛν

β = gαβ. (A.6)

As a consequence, contracting all Lorentz indices in an expression ensures that
this expression will Lorentz invariant.

163



164 APPENDIX A. CONVENTIONS

A.2 The Pauli matrices
The four-vectors σµ = (1, σi) and σ̄µ = (1,−σi) are built upon the Pauli matrices
σi, i = 1, 2, 3, the unitary and hermitian 2× 2 matrices given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.7)

We further define σµν and σ̄µν as

σµν =
i

4
(σµσ̄ν − σν σ̄µ) and σ̄µν =

i

4
(σ̄µσν − σ̄νσµ) . (A.8)

A.3 The Gell-mann matrices
The Gell-mann matrices form one possible representation for the generators of
SU(3). They are traceless and hermitian and are given

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


λ5 =




0 0 −i
0 0 0

i 0 0




λ6 =




0 0 0

0 0 1

0 1 0


 λ7 =




0 0 0

0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 .



Appendix B

The Markov Chain Monte Carlo
scanning technique

B.1 The convergence test of Gelman and Rubin
When probing the parameter space using the Markov Chain Monte Carlo scan-
ning technique, it is important to check whether the chains are converging. One
of the necessary conditions for convergence, is the convergence test of Gelman
and Rubin [231]. Their test is based on the Possible Scale Reduction Factor
(PSRF) which should approach one if the chains are converging well. Suppose
we perform a parameter scan over a parameter θ using m chains, each contain-
ing n points. Each parameter value is denoted by θti where i ∈ 1 . . .m and
t ∈ 1 . . . n respectively specify the chain and the place within the chain. The
simplest version of the PRSF can then be defined as

PSRF =

√
n− 1

n
+
m+ 1

mn

B

W
(B.1)

where B is the variance among the chains of the averages within the chain

B =
1

m− 1

m∑

i=1

(
θ̄i − ¯̄θ

)2

(B.2)

and W is the average among the chains of the variances within the chain

W =
1

m

m∑

i=1

s2
i (B.3)

where the variance is given by

s2
i =

1

n− 1

n∑

t

(
θti − θ̄i

)2
. (B.4)
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Figure B.1: The PSRF for the scan including all experimental observables after
removing the burn-in length, i.e. the first 15% of the points. Every line corre-
sponds to one input parameter. The PSRF for the scans including only one of
the observables exhibits a similar behaviour.

The PSRF can be calculated at every iteration in the chain and and example is
shown in figure B.1. For all variables it converges to one, as it should, and our
MCMC passes the test. It should however be noted that this test is a necessary
requirement for convergence but it is not sufficient, it not possible to prove that
our final distributions converge to the real distributions.

B.2 Optimizing the Metropolis algorithm

In section 6.3.1, we discussed the Metropolis algorithm to perform an MCMC
scan. In the second step of this algorithm, we choose the next point in the
parameter space by drawing a point from a Gaussian distribution around the
previous point. The standard deviation of this Gaussian distribution has to be
chosen well in order to optimize the convergence of the sample.

Figure B.2 shows the PSRF of the input parameter tan β of a MCMC scan
similar to the scan of which the results are presented in chapter 6 and compares
the convergence for several choices of the standard deviation w = 0.01, 0.05 and
0.1. Choosing w too small, would imply that the scan risks to get stuck in a local
minimum while a too large standard deviation becomes very inefficient: in the
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Figure B.2: The PSRF for tan β for three values of the standard deviation w =
0.1 (blue), 0.05 (red) and 0.01 (green).

limit where w = 1, we would need equally many points to probe the parameter
space as we would need in a gridscan.

Indeed, we observed that the chains with a low standard deviation w = 0.01
had the tendency to get stuck in local maxima resulting in irregularities in the
posterior distributions while, on the other hand, the chains with a large standard
deviation w = 0.1 were very inefficient. The intermediate value w = 0.05 shows a
good balance between the two extremes, this is the standard deviation we chose
for our scan.
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Summary

Elementary particle physics aims at answering the question ‘What are the fun-
damental building blocks of Nature and how do they interact?’ It turns out that
the constituents of all matter can be brought back to a rather small number of
fundamental particles which are described in the Standard Model (SM) of par-
ticle physics. The SM describes most experimental observations very well and
is considered to be a very successful theory. There remain, however, still some
unanswered questions. The SM fails to explain neutrino oscillations, it does not
offer a candidate for dark matter/energy, does not include gravity and exhibits
an undesirable sensitivity to very small variations of some of its parameters. This
motivates us to keep searching for physics Beyond the Standard Model (BSM).

The search for BSM was one of the main motivations to build the Large
Hadron Collider (LHC) at the CERN laboratory in Geneva. The LHC performs
proton-proton collisions at a very high energy in the hope of creating and observ-
ing new, unknown particles or phenomena. However, a huge amount of particles
are created in each collision and searching for new physics is very much like
searching for a needle in a haystack. It is crucial to have a good understanding
of what we would expect to see at the LHC based on the SM or any other theory
we might formulate. Particle physics phenomenology aims at facilitating this
connection between theory and experiment and it is in this field of research that
this thesis is situated. In particular, this work focusses on the phenomenology of
a well-motivated BSM candidate, supersymmetry.

Supersymmetry (SUSY) predicts that for every particle of the SM, there exists
an extra supersymmetric particle, its superpartner. Signs of supersymmetry have
been sought for already for a long time, but not a single supersymmetric particle
has yet been detected. However, supersymmetry encompasses a very broad class
of models and up to now mainly the most straightforward realisations of SUSY
have been studied. The lack of positive results motivates us to broaden our
view and also search for less straightforward and less conventional signatures of
supersymmetry. In this thesis we go beyond minimal SUSY, we study to which
extent the current experimental data allow for this extension and how this would
change the SUSY phenomenology. We follow three different approaches.

The first project starts with an experimental observation. Even though no
conclusive evidence for new physics has been found, yet some hints for new



physics have been observed at the LHC. We look at one of those and show that
it can be explained within a, rather unusual, supersymmetric set-up. The second
project has a more theoretical origin. If SUSY were an exact symmetry of Nature,
the SM particles and their SUSY partners would have equal masses. Since we
did not observe any superpartner yet, this is clearly not the case and we know
that SUSY has to be broken. We investigate an extension of the usual SUSY-
breaking mechanism and find that such a scenario can soften the constraints
on supersymmetry. In a third project we look at generation mixing between
the superpartners of the quarks. Despite the strong experimental limits, we
conclude generation mixing is still allowed. Moreover, we note that it influences
the expectations about the nature of the lightest SUSY particle, which is relevant
for experimental analyses.

We can hence conclude that less conventional supersymmetric scenarios can
influence the interpretation of the current experimental limits and lead to sig-
natures which are currently overlooked. It is therefore important to also take
these scenarios into account, only then can we get a comprehensive view on
supersymmetry and its constraints.



Samenvatting

De elementaire deeltjes fysica zoekt naar een antwoord op de vraag ‘Wat zijn de
fundamentele bouwstenen van de materie en hoe interageren ze?’ Het blijkt dat
alle materie is opgebouwd uit een beperkt aantal elementaire deeltjes, beschreven
in het Standaard Model (SM) van de deeltjesfysica. Het SM wordt beschouwd als
een succesrijke theorie aangezien het de meeste experimentele observaties met een
grote nauwkeurigheid beschrijft. Sommige vragen blijven echter onbeantwoord.
Het SM geeft geen verklaring voor neutrino oscillaties of donkere materie/energie,
het omvat de zwaartekracht niet en is heel gevoelig voor een kleine verandering
van sommige van de parameters zodat het ook vanuit theoretisch standpunt niet
helemaal tevreden stelt. Dit motiveert ons om verder te zoeken naar nieuwe
fysica voorbij het SM.

De zoektocht naar nieuwe fysica was één van de voornaamste motivaties voor
het bouwen van een deeltjesversneller, de Large Hadron Collider (LHC), op het
CERN, het onderzoekscentrum te Genève. De LHC botst protonen met hoge
energie op elkaar in de hoop nieuwe, ongekende deeltjes te creëren en te ob-
serveren. Bij elke botsing wordt echter een enorm aantal deeltjes geproduceerd
en zoeken naar nieuwe fysica heeft dus veel weg van het zoeken naar een naald
in een hooiberg. Een goed begrip van wat we op basis van het SM, of een alter-
natieve theorie, verwachten te zien is bijgevolg cruciaal. Het onderzoeksdomein
van de fenomenologie van de deeltjesfysica houdt zich bezig met deze connectie
tussen theorie en experiment en dit is ook het onderwerp van deze thesis. In het
bijzonder bestudeert dit werk de fenomenologie van supersymmetrie, een goed
gemotiveerde kandidaat voor nieuwe fysica.

Supersymmetrie (SUSY) voorspelt dat er voor elk SM deeltje een extra super-
symmetrisch deeltje bestaat, zijn superpartner. Hoewel er al lang in deeltjesver-
snellers naar een teken van SUSY gezocht wordt, werd tot op vandaag nog geen
enkel supersymmetrisch deeltje waargenomen. Supersymmetrie omvat echter een
heel brede waaier aan modellen en tot nog toe werden voornamelijk de meest voor
de hand liggende modellen bestudeerd. Het uitblijven van een positief resultaat
motiveert ons om onze blik te verruimen en ook te zoeken naar minder voor de
hand liggende tekenen van supersymmetrie. In deze thesis kijken we verder dan
de minimale realisaties van supersymmetrie, we onderzoeken in welke mate de
huidige experimentele data die uitbreiding toelaat en hoe dit de fenomenologie



verandert. We doen dit vanuit drie verschillende invalshoeken.
Het eerste project begint bij een experimentele waarneming. Er is dan wel nog

geen sluitend bewijs gevonden voor nieuwe fysica, dat neemt niet weg dat er wel
een paar, weliswaar nog niet significante, hints for nieuwe fysica waargenomen
werden bij de LHC. We bekijken één dergelijke waarneming en tonen aan dat die
verklaard kan worden met behulp van een, eerder ongewoon, supersymmetrisch
model. Een tweede project vindt zijn motivatie eerder in de theorie. Als SUSY
een exacte symmetrie was van de natuur, dan zouden de SM deeltjes en hun
superpartners dezelfde massa moeten hebben. Aangezien we nog geen enkele
superpartner waargenomen hebben is dit duidelijk niet het geval zodat we weten
dat SUSY gebroken moet zijn. We bekijken een uitbreiding van het gebruikelijke
brekingsformalisme en vonden dat een dergelijk scenario de limieten op super-
symmetrie kan verzachten. In een derde project onderzoeken we wat er gebeurt
als we de generaties van de supersymmetrische partners van de quarks opmen-
gen. Ondanks de sterke experimentele limieten concluderen we dat dit nog steeds
toegestaan is. We merken bovendien op dat het opmengen van generaties een
invloed heeft op de aard van de lichtste SUSY deeltjes, dit is van belang voor
experimentele analyses.

We kunnen dus besluiten dat de interpretatie van de huidige experimentele
limieten op supersymmetrie veranderen wanneer we minder conventionele SUSY
scenarios bekijken. Het is dus van belang ook met deze scenarios rekening te
houden, alleen zo kunnen we een correct en volledig beeld krijgen van supersym-
metrie.
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