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Abstract

In the last 5 years, machine learning algorithms, in particular the
neural network, have proven to be a very powerful tool for high en-
ergy physics at the LHC. In the realm of top quark physics, machine
learning has risen to prominence both in event selection and event
reconstruction.

In this thesis a Deep Neural Network for jet flavour identification
is presented. It is capable of identifying b jets, c jets, light quark jets
and gluon jets. By utilizing a novel neural network architecture that
can efficiently exploit the full jet information it achieves state of the art
performance in each of the jet classification tasks. This neural network
is extended further to estimate jet energy corrections. Since the jet
energy response depends on the flavour of the jet, the architecture
and inputs for jet flavour identification can be utilized for making a
general jet energy correction, which leverages the flavour information
going beyond the standard approach of jet energy corrections that has
no jet flavour dependence.

Machine learning has not just found success for particle physics re-
construction, but it is also heavily used for particle physics event
selection. In this case the machine learning methods are optimized to
minimize the statistical uncertainty on the measurement by increasing
selection efficiency and reducing the rate of background. However
in modern particle physics analyses the systematic uncertainty is the
dominant component of the total uncertainty. In this thesis a novel
machine learning method is developed that makes an event selection
that reduces the systematic uncertainty. A showcase of the method is
done in the setting of a top quark mass measurement.
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Samenvatting

In de afgelopen 5 jaar hebben machine learning-algoritmen, in het
bijzonder het neurale netwerk, bewezen een zeer krachtig hulpmiddel
te zijn voor hoge-energiefysica aan de LHC. Op het gebied van de
fysica van top-quarks is machine learning uitgegroeid tot een veel-
belovende applicatie zowel bij de selectie als bij de reconstructie van
deeltjesbotsingen.

In dit proefschrift wordt een diep neuraal netwerk voor jet-smaak
identificatie gepresenteerd. Het is in staat om b-jets, c-jets, lichte quark-
jets en gluon-jets te identificeren. Gebruikmakend van een nieuwe
netwerkarchitectuur die op een efficiënte manier de volledige verza-
meling jet-informatie kan benutten, bereikt het netwerk een technisch
hoogtepunt wat betreft de prestaties in elk van de jet-classificatietaken.
Dit neurale netwerk wordt verder uitgebreid om jet-energiecorrecties
te schatten. Aangezien de respons van de jet-energie afhangt van de
smaak van de jet, kunnen de architectuur en inputs voor jet-smaak
identificatie ook benut worden voor het maken van een algemene
jet-energiecorrectie, die gebruik maakt van de smaakinformatie en
daardoor voorbij de standaardmethode voor jet-energiecorrecties gaat
die geen jet-smaak afhankelijkheid in rekening brengt.

Machine learning heeft niet enkel succes gevonden bij de reconstructie
van deeltjesbotsingen, maar het wordt ook veel gebruikt bij de selectie
van deeltjesbotsingen. In dit geval zijn de machine learning-methoden
geoptimaliseerd om de statistische onzekerheid op de metingen te
minimaliseren door de selectie-efficiëntie te verhogen en de achter-
grond te verminderen. In de analyse van een modern deeltjesfysica
experiment vormt de systematische onzekerheid echter de dominante
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component van de totale onzekerheid. In dit proefschrift is er een
nieuwe machine learning-methode ontwikkeld die een selectie maakt
van deeltjesbotsingen zodat deze systematische onzekerheid vermin-
derd wordt. Een toepassing hiervan wordt gedemonstreerd in de
context van een top-quark massa meting.
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“An expert is a person who has found out
by his own painful experience all the mistakes
that one can make in a very narrow field.”

— Niels Bohr





Chapter 1.

Introduction

When the LHC experiments at CERN discovered the Higgs boson in 2012 after 2
years of data collection [1, 2], it was a great achievement of the Standard Model
of particle physics [3–6], as the Higgs boson was the missing piece of the original
theory formulated in the 1970s. Several signs however indicate that the Standard
Model is incomplete as it fails to explain phenomena such as the matter-antimatter
asymmetry [7], the cosmological observations of dark matter and energy [8], as well
as neutrino masses [9, 10]. However when probed at extreme energies at the LHC [11],
the Standard Model has proven to be highly robust. During the 10 years since the
discovery of the Higgs boson, the LHC has been collecting data, and every conducted
measurement has been in agreement with the Standard Model prediction. If an
observable discrepancy between theory and the collected data is present, it is clear
that it must be a very small effect. The LHC is going to run for many years to come
at a center of mass energy up to 14 TeV, collecting additional collision data, and the
core goal will be to try to measure the Standard Model particle properties to the
highest precision that can be achieved, as minute differences can illuminate physics
beyond the Standard Model. However, hadron colliders, like the LHC, are historically
perceived as discovery machines and not precision machines. Because of the low rate
of synchotron radiation emitted by protons, they can be collided at very high center of
mass energy, allowing physicists to push the boundaries of the energy frontier in order
to discover new particles. However, since protons are composite particles interacting
via the strong force, their collisions produce many particles, most of which are not of
interest for the physics analysis. This means that performing precision measurements
is very challenging. In fact, despite the LHC only having collected a small fraction of
the projected data that will be obtained, many precision measurements already have
a larger systematic uncertainty component compared to the statistical uncertainty
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2 Introduction

component. For the LHC program to continue to push the boundaries of particle
physics in the next 20 years, it will be crucial to improve the methods, which are used
to study the collected collision data. A physics analysis conducted with a particle
physics detector like the CMS experiment [12], is entirely dependent on the collision
event reconstruction, which consists of combining the measurements from millions
of silicon pixels, silicon strips and calorimeters cells to estimate and reconstruct the
thousands of final state particles that are produced in intervals of 25 ns. This is an
extremely challenging procedure employing statistical methods that have been refined
over the last 40 years of experience at particle physics experiments. However, in the
last 5 years, deep learning has come to the forefront of the field. Due to the multivariate
nature of modern particle physics reconstruction, deep neural networks have shown an
incredible potential to outperform the traditional methods. Investigating, developing
and adopting such methods for reconstruction can significantly increase the sensitivity
for new physics at the LHC, and it is an essential ingredient for a successful physics
program.

A particle which is crucial to study further at the LHC is the top quark [13–15].
When top quarks are produced they quickly decay into b quarks as well as additional
particles. These decay products then hadronize and form showers of particles that are
measured. To study the top quark properties it is essential to reconstruct the original
top quark from all the decay products. That task encompasses identifying the type of
quark that initiated a given particle jet as well as identifying the correct kinematics
of the initiating quark. In this thesis both these tasks are being tackled using deep
neural networks that perform jet identification and jet energy regression respectively.
Both methods significantly outperform traditional methods. Given that the LHC will
run for many more years, the dataset to perform physics analysis will become much
larger, driving down statistical uncertainties. This enables us to impose more stringent
selection criteria for physics analyses. Building on top of the ReSYST method [16], a
neural network method is developed in the context of a top quark mass measurement,
in order to find an optimal event selection for minimizing the systematic uncertainty
on the measurement.

This thesis is organized in five main chapters. Chapter 2 functions to give a brief
overview of top quark physics at the LHC, providing the needed context to under-
stand the other chapters in thesis. It briefly introduces the Standard Model of particle
physics, and it gives an overview of why and how the top quark is important. Then, the
experimental apparatus needed to conduct top quark physics is described in terms of
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the LHC and the CMS experiment. Finally, the reconstruction algorithms that are used
to process the data collected by the CMS experiment are described. Chapter 3 briefly
describes the basic methods of machine learning, and then provides an overview of
how machine learning has been adopted in the particle physics toolbox. A description
of the main machine learning methods used for the algorithms developed in this thesis
is included. Chapter 4 describes a novel deep neural network that identifies what type
of quark initiated a given jet. Chapter 5 describes a neural network developed with
the aim of calculating an energy correction to the measured jets, which improves the
jet energy resolution and response. Chapter 6 details, in the context of a top quark
mass measurement study, a neural network method that tries to find an optimal event
selection for reducing the systematic uncertainty on the measurement.
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Chapter 2.

Top Quark Physics at the LHC

The top quark is a one of the fundamental particles of what is called the Standard
Model of particle physics. Theorized in 1973 by Kobayashi and Maskawa [13], it was
experimentally discovered in the Tevatron proton-antiproton collider in 1995 by the
CDF and DØ experiments [14, 15]. The top quark plays an important role in the Stan-
dard Model warranting detailed study. However, due to its high mass and extremely
short lifetime, large and powerful particle colliders and advanced particle detectors
are needed to measure its properties. The state of the art for this is represented by the
Large Hadron Collider and the CMS experiment at CERN.

This chapter functions to give a brief overview of the necessary elements for modern
top quark physics studies, setting the stage for the following chapters. First the Stan-
dard Model will be introduced, followed by an overview of the role of the top quark
in the Standard Model as well as a description of the phenomenology of the top quark.
Then, the experimental apparatus for producing top quarks will be covered, the LHC.
The CMS particle physics detector that is used for measuring the decay products of
these top quarks will then be described. Finally, the techniques used to reconstruct the
top quarks from the raw measurements of the CMS experiment will be described.

2.1. The Standard Model

The Standard Model of particle physics [3–5, 17–20] is a theory that classifies and
describes the elementary particles of physics along with their interactions. The model
was developed in the early 1970’s and it has been highly successful, being able to

5



6 Top Quark Physics at the LHC

explain particle physics phenomena to a high precision. The Standard Model consists
of 12 elementary particles of spin 1

2 referred to as fermions. Additionally, there are
4 gauge bosons with spin 1 that mediate the three fundamental forces and thereby
allow for interactions between the fermions. Finally, there is a single scalar boson with
spin 0, the infamous Higgs boson that has its own unique role in binding together
the theory. Each of these fundamental particles have their own unique properties,
some are extremely similar except for having different masses, while some have wildly
different interaction properties.
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Fermions

The fermions can be divided into two groups called quarks and leptons. Additionally,
they can be divided into three generations. Each generation consists of 4 particles with
different properties as shown in Table 2.1.

Elementary Fermions - spin 1/2 [17]

Quarks
Carry color charge

Leptons
No color charge

Generation Name Q [qe] m [GeV]
Year of

discovery
Name Q [qe] m [GeV]

Year of
discovery

1st
up
(u)

+2/3
2.16 · 10−3

± 0.5 ·10−3 1969
Electron

(e−)
-1

5.1 · 10−4

± 1·10−9 1897

down
(d)

-1/3
4.67 · 10−3

± 0.5 ·10−3 1969
Electron
neutrino

(νe)

0 < 10−9 1956

2nd
charm

(c)
+2/3 1.27± 0.02 1974

Muon
(µ−)

-1
1.05 · 10−1

± 1 ·10−6 1937

strange
(s)

-1/3
9.3 · 10−2

± 1 ·10−2 1969
Muon

neutrino
(νµ)

0 < 10−9 1962

3rd
top
(t)

+2/3 172.76± 0.3 1 1995
Tau
(τ−)

-1
1.78

± 1 ·10−4 1975

bottom
(b)

-1/3 4.18± 0.3 1977
Tau

neutrino
(ντ)

0 < 10−9 2000

Table 2.1.: The properties of the Standard Model fermions. Q corresponds to the electromag-
netic charge, and qe indicates the electron charge.

1The definition of the top quark mass is ambiguous as will be discussed later. The value reported
corresponds to the mass from direct measurements.
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Each particle has a corresponding partner in the different generations that are
nearly identical, but are only separated by the higher generation of particles having a
larger mass as well as having different flavour quantum numbers. In fact, the third
generation particles are in between 105 and 106 times heavier than the first generation.
As they all have spin 1

2 , they obey Fermi-Dirac statistics [21].

The 1st generation of fermions consists of the particles that make up the world as we
know it, as they are the only stable particles with mass in the Standard Model. The 1st
generation of leptons consists of the electron with a charge of −1 · qe = −1.602 · 10−19

C and its neutral and nearly massless partner, the electron neutrino. The 1st generation
of quarks consists of the up and down quark that make up protons and neutrons
that together with the electrons form atoms. They have fractional electrical charge of
−1

3 qe and +2
3 qe respectively. Additionally, they interact via the strong force as will be

discussed further in the following section. The 2nd generation of leptons consists of
the muon and the muon neutrino. As the muon is unstable, it almost always decays to
the electron, an electron antineutrino and a muon neutrino with a life time of around
2.2 · 10−6 seconds. The second generation of quarks consists of the strange and charm
quark that have significantly larger masses than their 1st generation counterparts.
Finally, the third generation of particles is considered the most exotic, as their large
masses make them exceedingly rare to find outside of dedicated particle physics ex-
periments. The leptons consist of the tau lepton and its neutrino counterpart. With a
mass of 1.7 GeV the tau is able to decay into quarks unlike the muon and electron. The
third generations of quarks consists of the top quark and the bottom quark, the two
main objects of study in this thesis. The top quark is the heaviest know fundamental
particle with a staggering mass of ∼ 173 GeV. This means that despite the top quark
being pointlike, the mass is comparable to that of a gold atom. This enormous mass
also causes the top quark to be very short lived with a life time 5 · 10−25 seconds.
It almost always decays into its third generation quark partner, the bottom quark.
While being 40 times lighter than the top quark, it is still significantly heavier than
the other fermions. Additionally, each of the fermions have a corresponding antiparti-
cle, which has the same mass, but opposite charges with respect to the fundamental
forces. For instance the electron has an antiparticle named the positron with Q = +1qe.

Gauge bosons and the particle interactions

While the fermions are the constituents that make up the universe, the gauge bosons
are the force mediators that allow them to interact with each other. Altogether there
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exists four kinds of gauge bosons, which are mediating three distinct forces. These are
the electromagnetic force, the strong force and the weak force. Clearly, a fourth force
of gravity also exists in nature, but it is not described by the Standard Model. All the
gauge bosons are spin 1 and obey Bose-Einstein statistics.

The most well known Standard Model force is the electromagnetic force, which
is responsible for the electric and magnetic fields. The fundamental theory that
describes this force is called Quantum Electrodynamics (QED). The mediator of the
electromagnetic force is the photon, which in itself is electrically neutral. It is also
massless allowing the electromagnetic force to be long ranged compared to the other
forces described by the Standard Model. The force couples to particles that carry
electric charge.

The weak force is another of the Standard Model forces. The force mediators of
the weak force is the W+, W− and Z boson. The W bosons have a mass 80.379± 0.012
GeV and the Z boson has a mass of 91.1876± 0.0021 GeV. These large masses make
the weak force extremely short range, which is why the force has appropriately been
named weak. Beyond that the W boson carries electrical charge and therefore interacts
via the electromagnetic force as well. The weak force couples to particles with different
flavours, meaning that it is a mechanism that allows particle decays. Consequently, all
the 12 fermions interact via the weak force. The weak and electromagnetic force are
deeply interconnected as will be described later on.

The final force is the strong force, which is described by the theory of Quantum
Chromodynamics (QCD). Its mediator is the massless particle, the gluon. The gluon
contains color charge itself and it exists in eight different varieties that can couple to
the quarks, which carries one of three distinct color charges. Correspondingly, the
anti-quarks carries anti-color. The strong force has the strongest coupling strength by
far. Despite the mediator being massless, it is in general limited by range. Because of
the extremely strong coupling and because the mediator itself interacts via the force, a
phenomenon called color confinement occurs that make the strong force effectively
short ranged. Due to this nature of strong force interaction, particles with color charge
are never observed, but are always found inside bound states referred to as hadrons.
Hadrons mostly come in two varieties of baryons and mesons. The baryons consists
of three quarks that each carry a separate color charge to achieve the net charge of
zero. The proton (uud) and neutron (udd) are examples of such baryons. The mesons
consist of a quark-antiquark pair that carry color and the corresponding anti-color to
cancel each other achieving a neutral color state. The QCD theory does allow for more
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exotic bound states such as tetraquarks (two pairs of quark-antiquark), pentaquarks (4
quarks and 1 antiquark) as well as glueballs (pure gluon state).

Gauge theory [18–20]

The mathematical formulation of the Standard Model relies on relativistic quantum
field theory. The aim of this mathematical description is to model the dynamics and
interactions of the particles. The described particles are each connected to a quantized
field ψ(x), where x refers to the coordinates in spacetime. Particles as observed at the
particle physics colliders are described as excitations of these fields. Their dynamics
and interactions can be found by evaluating the action S and imposing the principle of
least action.

S =
∫

d4xL(ψ(x), ∂µψ(x)) (2.1)

Here the L indicates the Lagrangian of the Standard Model, which therefore needs
to be formulated. A non-interacting theory of fermions represented via a spinor field
ψ(x) is described by the Lagrangian in Equation 2.2.

L = ψ(x)(iγµ∂µ −m)ψ(x) with ψ(x) = ψ(x)†γ0 (2.2)

Here the indices µ run from 0 to 3, γ corresponds to the Dirac matrices and m is the
mass of the fermion. Using the principle of least actions a relativistic wave equation
can be found, and it is referred to as the aforementioned Dirac equation 2.3.

(iγµ∂µ −m)ψ(x) = 0 (2.3)

Four plane wave solutions exist to solve this equation being combinations of spin up
and down as well as positive and negative energy solutions. The negative energy
solutions are reconciled by describing them as negative particles moving backwards in
time. Since the time dependence of the wavefunction takes the form of e−iEt, a positive
energy can be recovered by performing the transformation t → −t. These negative
solutions yield the antiparticles related to the fermions. By examining the Equation
of 2.2, it is clear that a global (i.e. no dependence on spacetime) U(1) symmetry is
present, as the Lagrangian is invariant if the field ψ is rotated by a arbitrary phase
θ that is constant through spacetime, i.e. ψ → e−iθψ. Noether’s theorem for global
symmetries [22] states that if the Lagrangian of a physical system is invariant under a
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global symmetry, then there must be a current and conserved charge associated with it.
In the case of this U(1) symmetry it gives you the conservation of the electromagnetic
current and charge. The interaction terms for the electromagnetic theory follow from
imposing that the identified global symmetry, should also be a local symmetry. It is
clear that due to the derivatives in Equation 2.2 if θ gets a spacetime dependence, the
transformation ψ→ e−iθψ changes the expression.

L =ψ(x)(iγµ∂µ −m)ψ(x)→ (2.4)

L =eiθ(x)ψ(x)(iγµ∂µ −m)e−iθ(x)ψ(x) (2.5)

=− ψ(x)mψ(x) + ψ(x)iγµ∂µψ(x) + eiθ(x)ψ(x)(−(i)2γµ∂µ(θ(x)))e−iθ(x)ψ(x) (2.6)

=− ψ(x)mψ(x) + ψ(x)iγµ∂µψ(x) + ψ(x)(γµ∂µ(θ(x)))ψ(x) (2.7)

=ψ(x)(iγµ∂µ −m + γµ∂µ(θ(x)))ψ(x) (2.8)

As can be seen from Equation 2.4, the local transformation of U(1) adds an additional
term. The gauge principle states that a gauge field should be introduced that cancel
this contribution. That can then be done by adding a field to the Lagrangian Aµ that
under the local U(1) transformation becomes Aµ(x) → Aµ(x)− ∂µ(θ(x)). This field
corresponds to the gauge boson and mediator of QED, the photon. The Lagrangian
can then be written in the local U(1) invariant form as shown in Equation 2.9.

L =ψ(x)(iγµ∂µ −m + γµ Aµ(x)))ψ(x) (2.9)

=ψ(x)(iγµDµ −m))ψ(x) (2.10)

Here the operator Dµ = ∂µ − iAµ(x) acting on ψ is also transforming as ψ itself under
the symmetry. Finally, because a new gauge field Aµ was introduced, a kinetic term to
describe the propagation of the associated particle is needed. Of course, this must be
gauge invariant as well.

Fµν = ∂µ Aν + ∂ν Aµ (2.11)

Here Fµν is referred to as the field strength tensor, and the complete Lagrangian is
shown in Equation 2.12.

L = ψ(x)(iγµDµ −m))ψ(x)− 1
4

FµνFµν (2.12)
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All the gauge bosons of the Standard Model follow from this gauge principle in an
analogous way to this QED example. The full Standard Model Lagrangian’s interaction
terms follow from ensuring that the theory is locally invariant under the symmetry
group shown in 2.13.

SU(3)C× SU(2)L×U(1)Y (2.13)

Here the SU(3)C group is the symmetry group that yields the strong interactions, and
it yields the 8 gluon gauge bosons. The SU(2)L×U(1)Y group yields the electroweak
interactions, which in the "low" energy case breaks into both the electromagnetic and
weak interaction generating the W+, W−, Z0 and γ bosons.

Equipped with the formulation for the Lagrangian, the action can be evaluated. In
quantum mechanics the probability of an event is given by the square of the probability
amplitude, which can be found by taking the sum of all possible paths between the
initial state and final state for the event, where the probability of a specific path is
proportional to eiS/h̄. This then results in a probability amplitude that can be found by
integrating over the probability of all possible paths. In quantum field theory these

Figure 2.1.: The two Feynman diagrams of Bhabha scattering process e+e− → e+e−. Due to
each diagram having two QED vertices the amplitude is proportional to α2.

probability amplitude calculations are based on approximate solution made using
pertubation theory, by doing a series expansion around the coupling constant of the
interaction terms. Terms of these infinite series for a given process can be represented
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in a pictorial manner using what is called Feynman diagrams. Feynman diagrams of
the leading order terms from the Bhabha scattering process is shown in Figure 2.1. For
QED where the coupling constant is small α = 1/137, this pertubative approach is very
successful as higher order terms become small, and approximate QED solutions can
be made and tested to extreme precision. However for QCD the situation is different.

Figure 2.2.: The coupling constant strength of the three SM forces are shown at different energy
scales. From Ref. [23].

The strong force coupling constant αS is close to 1 at low energy scale. However a
phenomenon known as asymptotic freedom [24, 25] affects QCD, and it causes the
interaction strength to decrease in an asymptotic manner as the energy scale of the
interaction increases. Figure 2.2 shows an illustration of the behaviour of the couplings
of the three forces at different energy scales. At large energy scales it turns out that
the QCD coupling strength becomes weak enough that perturbation theory can be
applied and approximate solutions can be found. However at larger distance scales,
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such as the one to describe the process of color confinement, perturbation theory is
not possible. Powerful computer simulations using the approach of lattice QCD have
shown color confinement to emerge from the laws of QCD, and can in a very computa-
tional expensive manner calculate quantities such as the proton versus neutron mass
difference [26]. Qualitatively color confinement can be understood as an effect where
if two color charges are separated, a gluon "string" is created between them. Since the
gluon has color charge itself, at some point the charges are far enough away from each
other that forming a new quark-antiquark pair becomes favorable. Therefore, the free
color charges are not observed as they always form neutral color states when isolated.

Brout–Englert–Higgs mechanism

The final piece of the Standard Model puzzle is the scalar Higgs boson. The par-
ticle is the crown achievement for illustrating the theoretical value of the Standard
Model, as it was predicted already in 1964 by Brout, Englert and Higgs [6, 27–30], and
then experimentally confirmed almost 50 years later at the LHC [1, 2] as a scalar boson
with mass ∼ 125 GeV. The need for the Higgs field comes from identifying that the
fermions and gauge bosons need to be massless in order to be gauge invariant under
the symmetry shown in Equation 2.13. Of course measurements of the Standard Model
particles showed that the particles did indeed have a non-zero mass indicating that
some additional mechanism was needed to generate the mass term in a gauge invari-
ant way. This can be resolved by adding a self-interacting complex scalar field φ with
a potential term V(φ) = µ2φ†φ + λ(φ†φ)2 to the Standard Model Lagrangian. Figure
2.3 illustrates the Higgs potential. Unlike the other fields of the Standard Model, the
vacuum expectation value of this Higgs field is non zero, and it takes value of v ' 246
GeV. Below the scale of the electroweak unification, the SU(2)L×U(1)Y symmetry
of this Higgs field is spontaneously broken, which causes the W+, W− and Z0 boson
to get an effective mass. The fermions acquire a mass via a Yukawa interaction with
the Higgs field. The Higgs bosons coupling strength to fermions is proportional to
their mass, meaning that the strongest Higgs boson coupling to a fermion, is to the top
quark. The coupling of the Higgs boson to the gauge bosons are proportional to the
square of the gauge boson mass.
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Figure 2.3.: The Higgs potential when µ2 < 0. From Ref. [31].

2.1.1. The Top Quark

The top quark stands out in the Standard Model as both the fundamental particle
with highest mass, and the fundamental particle with the smallest lifetime. The large
mass creates a deep connection with the Higgs boson, and thereby as well with the
Electroweak symmetry breaking. The decay of the top quark is almost exclusively
to a bottom quark and a W boson with the other down type quark being extremely
suppressed. Furthermore, because of the extremely short lifetime the top quark is the
only quark not to hadronize, as the timescale of the hadronization process is longer
than the 5 · 10−25 seconds lifetime. These unique elements of the top quark make it an
interesting subject for particle physics studies.

Electroweak fits and vacuum stability

The Standard Model consists of 19 free parameters [18] corresponding to the fermion
masses and the Higgs boson mass, the mixing angles and CP violation phase of the
CKM matrix [13] that dictates the weak decay rates of the three generation of quarks,
the coupling strengths of the forces as well as the vacuum expectation value of the
Higgs field. As these quantities are not given by the theory, their values are instead
input based on experimental data. Of course while they are free parameters of the
theory, they are all interconnected, and each of their values put constraints on the
others. For instance, as the top quark appears as radiative corrections to the W, Z
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and Higgs boson propagators, its mass affect their masses. Historically electroweak
fits [32] have been highly successful for constraining particle masses. In fact before
the experimental discovery of the top quark, electroweak fits were used to predict the
value of its mass. Figure 2.4 shows the electroweak fits of the top quark mass over
time, which are in good agreement with the later measurements of top quark mass.
Similarly, before the experimental discovery of the Higgs boson, it was determined
that the Higgs boson was light from electroweak fits. The Standard Model can be fitted
to see how well it describes the experimental data, and from this it can be inferred
if new physics is needed to explain the measured parameters. Figure 2.5 shows the
current best fitted values of the top quark mass in comparison with the experimentally
measured values at the Tevatron and LHC. Similarly is shown a 2D fit of both the W
boson mass and top quark masses compared with the experimental values. As of now,
there is no indication that the Standard Model electroweak sector fails to describe the
measured values, but increasing the measurement precision of the quantities might
give further insight.

Figure 2.4.: The historical data of the predicted top quark mass through electroweak fits are
shown by lines and shaded bands. The points are experimental measurements of
the top quark mass from different years. From Ref. [32].
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Because of the large radiative corrections of the top quark induced on the Higgs
boson self coupling, the top quark mass plays an effect on the stability of the elec-
troweak vacuum [33–35]. In fact the value of Higgs quartic coupling, λ, evolves at
different energy scales. Depending on the specific values of particularly the strong cou-
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Figure 2.5.: The predicted top quark mass through electroweak fits are shown on the left plot.
A 2D fit of the mW and mt is shown on the right. From Ref. [32].
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pling αs and the top quark mass, λ can take negative values at very high energy scales.
If this is the case, quantum tunneling effects could make the electroweak vacuum
unstable. Figure 2.6 shows calculations based on the Higgs mass, αs and the top quark
mass of the vacuum stability. Absolute stability means that the electroweak vacuum
will never decay, metastability means that it will decay, but the lifetime is larger than
the lifetime of the universe, and instability implies that the universe should already
have decayed. Interestingly the current measurement values happen to lie right on the
boundary between metastability and absolute stability. According to Andreassen et
al. [35], if the top quark mass was known to a precision below 250 MeV, the question
of whether we are in the realm of metastability or absolute stability could be resolved.

Top Quark Mass definition in QFT and simulation [36]

The top quark mass as measured with direct measurements at hadron colliders is
assigned an additional 0.5 GeV theoretical uncertainty when used in the electroweak
fits [32]. Direct measurements of the top quark rely on using reconstructed kine-
matic observable of the top quark decay products, and then comparing these with the
distributions obtained using Monte Carlo event generators using a given parameter
for the top quark mass, mMC

t . However, there is significant theoretical ambiguity in
relating the measured top quark mass based on the mMC

t with the top quark mass as
it enters in quantum field theory. In quantum field theory the mass of a particle can
only be defined within a given renormalization scheme [20]. These renormalization
schemes allow for a way to absorb infinite terms from radiative corrections into the
particle propagators. Several renormalization schemes can be chosen, as they have
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Figure 2.6.: The stability of the universe is shown as a function of the top quark mass in units
of GeV and the strong coupling αs on the left. On the right it is illustrated as a
function of the Higgs boson mass in units of GeV and the top quark mass in units
of GeV. From Ref. [35].
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different utility depending on what observable quantities are to be calculated. In
many calculations using pertubation theory, such as the electroweak fits and vacuum
stability, the pole scheme is used for the top quark mass. This renormalization scheme
absorbs all the radiative corrections from all energy scales. However, because the
top quark is strongly interacting, this approach becomes nonphysical below a mass
precision of ∼ 0.5 GeV. This is because below a certain energy scale the strong force
coupling becomes too large, and it can no longer be used in pertubation theory. A
way to circumvent that problem is to use a renormalization scheme such as the MSR
scheme [37], which only absorbs energy self corrections coming from scales larger
than a fixed scale R. By setting R to a sufficiently large value, the low energy QCD
corrections are not absorbed into the top quark mass. In the Monte Carlo event gen-
erators used for proton collisions several factorized steps are used for simulating
events. Matrix elements are used for representing the hard scattering probabilities of
the colliding particles, experimentally derived parton distributions functions are used
for representing the internal structure of the protons, parton shower models are used
for describing how the produced hard particles split into soft particles, and finally a
hadronization model is used for dictating how the final particles will hadronize. The
parton shower terminates at a energy value called the shower cut, which is often set
to 1 GeV, in order to avoid the non-pertubative region of QCD. Therefore, there has
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been much discussion as to whether the event generator mass is more analogous to
the MSR scheme mass than the pole mass, as well as how close the MSR mass and
the pole mass are to each other. Currently there is not a clear consensus as to how the
direct top quark mass measurement should be interpreted. One attempt is made in
reference [38], which compares e+e− collision event observables calculated analytically
with simulated top quark events using the PYTHIA 8.205 MC event generator [39] to
obtain a value of mMC

t −mpole
t = 570± 290 MeV.

Top Quark Production

The dominant top quark production process at large energy hadron colliders is top
quark pair production. At 13 TeV proton-proton collisions the production cross section
is σtt ' 780 pb [40]. The leading order Feynman diagrams are shown in Figure 2.7.
Roughly 10% of the production cross section comes from the quark-antiquark anni-
hilation process. The remaining 90% are generated via the gluon fusion process. As

Figure 2.7.: The leading order Feynman diagrams for top quark pair production. The leading
order quark annihilation process is shown as the leftmost diagram. The other three
diagrams correspond to leading other gluon fusion processes.

the top quark has a very short lifetime it quickly decays to an on shell W boson and a
down type quark. The down type quark corresponds to a bottom quark more than
95.5% of the time [17] and for most analysis it is estimated to be 100%. This means that
the top quark pairs produced in a hadron collider will usually result in a process like:

tt→W+W−bb (2.14)

The produced on shell W bosons have a lifetime of ∼ 3.2 · 10−25 s and they will
therefore also quickly decay. The main decay modes of the W is W− → qq and
W− → lν, where l is one of the three leptons and qq refers to an up and down type
quark-antiquark pair. Each possible decay occurs at the same rate of ∼ 1/9. The quark
pair decay occurs roughly ∼ 2/3 of the time [17]. The decay rate of the W boson to a
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quark flavour pair is proportional to 3|Vij| where Vij is the corresponding CKM matrix
element. Therefore the hadronic decay should be dominated by the ud and cs pairs.
This indicates three main decay channels exist for the top quark pair system.

tt→ bbW+W− → bbqqqq (2.15)

tt→ bbW+W− → bbqql−ν(l+ν) (2.16)

tt→ bbW+W− → bbl+νl−ν (2.17)

In the first decay mode both W boson decays to quarks. It is the most common decay
mode and it occurs around 46% of the time [17]. Due to color confinement the quarks
will hadronize into the collimated sprays of particles known as jets. This means that
the experimental signature of such a process would be 6 jets, where two of them should
have been initiated by the hadronization of a b-quark. This decay channel is therefore
named the all-jets channel. In the second decay mode one of the W boson decays
to a pair of quarks while the other decays to a lepton (antilepton) and antineutrino
(neutrino). This corresponds to a rate of roughly 44%. This channel results in an
experimental signature of four jets as well as a highly energetic lepton due to the large
mass of the W boson. This channel is referred to as the semileptonic decay channel.
Finally, both W bosons can decay to leptons which occurs around 10% of the time.
Here two high energy leptons are produced.

Therefore, a particle physics experiment that can probe the top quarks properties,
first needs to be able to produce the top quark at a high rate. Since the mass of the
top quark is so large, extremely high energy transfers are needed along with a high
luminosity. To then measure the top quarks decay products, sophisticated detectors
that can precisely resolve particle jets as well as high energetic leptons are needed.
Additionally, it is crucial to identify the jets originating from b quarks to distinguish
the quark coming from the top quark decay from the quarks produced in the W boson
decay.

2.2. The LHC

The Large Hadron Collider (LHC) [11] is a circular proton-proton collider located at
CERN in Geneva. Built in a massive underground tunnel with a circumference of 26.7
km, it is the largest particle accelerator ever constructed. It is capable of reaching the
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highest particle collision energies in the world with a center of mass energy of 13 TeV
with a design energy of 14 TeV. Since the top quark is heavy and interacting via the
strong force, proton collisions at large energies produces top quarks in abundance,
which makes the LHC the premier top quark factory today. It is part of the CERN
accelerator complex pictured in Figure 2.8. The complex consists of several accelerators
that bring the protons to a progressively increasing energy.

Figure 2.8.: The CERN accelerator complex is shown. The LHC ring is shown, as well as the
different injector accelerators. From Ref. [41].

A bottle of hydrogen gas is used as the proton source and with electromagnetic
fields the protons are stripped of their electrons. The initial accelerator is the LINAC4
[42], recently replacing the LINAC2 accelerator. The protons are accelerated to 160 MeV
using radiofrequency (RF) cavities. These metal chambers produce an electromagnetic
field that oscillates in a specific frequency. Protons are timed such that if they have
energies below the target, the field will pull them as they approach the cavity and
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subsequently push them as they exit. If a proton has a higher energy than designated
it will arrive early to the cavity and instead be slowed down to the target energy. As
protons are injected in bunches the oscillation also ensures that high energy protons in
a given bunch get a smaller boost compared to the lower energy protons, making the
momentum distribution in a given bunch more uniform. After the linear accelerator
is a series of circular accelerators with progressively larger circumference. In circular
colliders a larger circumferences enables a higher energy, as it limits the energy loss
from synchrotron radiation, and it makes it feasible to curve the high energy protons
enough with dipole magnets. The first is the Proton Synchrotron Booster (PSB) [43],
which accelerates the protons to 2 GeV. This is followed by the Proton Synchrotron
(PS), which accelerates the protons further to 26 GeV. The Super Proton Synchrotron
(SPS) is then used to bring them to an energy of 450 GeV.

After this process the protons are ready to be injected into the LHC, which consists
of two beam pipes with a diameter of ∼ 4 cm. Each pipe contains protons that are
going around the ring clockwise and counter clockwise respectively. Throughout the
system of accelerators, the beam pipes are kept in near perfect vacuum to avoid proton
collisions with air molecules. Dipole magnets are used to curve the trajectories of the
protons through the rings. As the LHC beam design energy is 7 TeV, these dipoles
need to be very powerful to sufficiently curve the beam. The LHC dipoles are 15 meter
long superconducting magnets that can generate a magnetic field of 8.3 T. Throughout
the ring 1232 dipoles are used, each containing superconducting coils that need to be
cooled to ∼ 2 K. Since the proton beam is electrically charged, it will disperse over
time if left unchecked. Therefore quadrupole magnets are used to focus the beam
throughout the accelerators. At four points the beam pipes merge to form collision
points. Here the four LHC experiment (CMS, ATLAS, LHCb and ALICE) are located
in order to measure the results of the collision. In order to achieve the best physics
program at the LHC, it is needed to maximize the luminosity. For head on collisions
with Gaussian distributed beams, it can be described as in Equation 2.18.

L =
f N2nb

4πσxσy
(2.18)

Here f is the frequency, N is the number of protons in a bunch, nb is the number of
bunches in the collider and the σ is the width of the beams in the transverse plane.
At the LHC each of these factors are optimised to achieve a design instantaneous
luminosity of 1034cm−2s−1. Each proton bunch consists of 1011 protons with each



Top Quark Physics at the LHC 23

ring containing ∼ 3000 bunches. Right before collision points, the beam is further
"squeezed" using quadrupole magnets in order to reduce the transverse size of the
beam.

2.3. The CMS experiment

The pp → tt̄ event has several different signatures, and specialized particle physics
detectors are needed to identify them precisely. At the LHC there are two general pur-
pose particle physics detectors that are ideal for measuring such events, the CMS and
ATLAS experiment [12, 44]. The acronym CMS stands for Compact Muon Solenoid,
which is meant to highlight the core difference in design with respect to the ATLAS
detector. As can be seen from the Figure 2.9, which shows an illustration of the de-
tector, it is cylindrical and contains several layers for measuring different particle
properties. The whole detector is 15 meters high, 15 meters wide and 21 meters long,
and it weighs 14000 tons. The CMS detector uses a powerful solenoid magnet to curve
the trajectories of the charged particles produced at the LHC collision point as these
trajectories can be used to measure the momentum of the particles. With 2169 turns
and a current of 19.5 kA, a magnetic field of 3.8 T is produced over a length of 12.5
meters. The innermost part of the detector is the tracker, designed for measuring the
curvature of the trajectory of charged particles. While both in the ATLAS and CMS
detector the tracker is inside a solenoid magnet, the CMS detector is designed to be
more compact in the sense that the electromagnetic and hadronic calorimeter are also
enclosed by this magnet. This is done to reduce the amount of material the particles
have to traverse before reaching the calorimeters in order to improve the measurement
resolution. This compactness puts strict design constraints on the calorimeters.

The coordinate system used with the CMS detector is illustrated in Figure 2.10. The
origin is defined at the nominal proton collision point at the center of the detector. The
z-axis aligns with the direction of the beams, and it points towards the Jura moun-
tains. The x-axis points towards the center of the ring, and the y-axis points vertically
upwards. The azimuthal angle φ is defined in the transverse (x,y) plane, and it is
measured from the x-axis. The polar angle θ is defined between the z-axis and the
transverse plane, and it is measured from the z-axis. The pseudorapidity η is defined
as η = −ln(tan(θ/2)).
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Figure 2.9.: A cutaway diagram of the CMS detector is shown. From Ref. [45].

Figure 2.10.: The CMS coordinate system. From Ref. [46].
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2.3.1. The Silicon Tracker

The CMS silicon tracker [47–50] is the detector closest to the beam pipe. Its function
is to measure the trajectories of charged particles produced at the LHC. As a particle
with charge q traveling with momentum p at right angles to a magnetic field with
magnitude B moves in a circular path with radius r given by p = Bqr, a measurement
of r therefore gives the momentum of the particle. The trajectories of the particles can
also be used to perform vertexing to identify the primary collision point. Furthermore
it can be used to reconstruct secondary vertices from particle decays which are crucial
for heavy flavour identification. In order to measure the trajectories, ∼ 20000 silicon
sensor modules are used to make up two endcaps and a barrel, which altogether
provide a coverage up to |η| < 2.5. Figure 2.11 shows a cross section of the tracker in
the (r,z) plane of the original CMS detector. In the years 2016 and 2017 the tracker was
further upgraded by adding an additional pixel layer changing the design to what is
illustrated in Figure 2.12.

Figure 2.11.: A schematic illustrating a cross section of the original CMS tracker in the (r,z)
plane. As the tracker is symmetrical around r=0, only the top half is shown. From
Ref. [51].
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It has a detector radius of 1.2 m and a length of 5.6 m. Closest to the beam pipe
at a distance of around 3 cm is the pixel detector. It is made up of high granularity
silicon sensors with pixels of size 150x100 microns with a transverse (longitudinal)
hit position resolution of 10 micron (20-40 micron). The barrel has four layers of pixel
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Figure 2.12.: A schematic illustrating the difference between the original and upgraded CMS
tracker in the (r,z) plane. As the tracker is symmetrical around r=0, only the top
half is shown. From Ref. [50].

sensors and each endcap consists of three layers. Altogether the pixel detector has
∼ 120 million pixels and with a total active area of roughly 1.9 m2. The outer tracker is
made of silicon strip sensors with a lower granularity compared to the pixel modules,
but the outer tracker allows a large coverage with an active area of roughly 198 m2.
The barrel consists of ten layers whereas there are 12 layers in each of the endcaps.
A total of 9.8 million strips are used throughout. The strip pitch and width varies
depending on the module location in the detector. The pitch can be between 80 and
205 µm, and a fixed width/pitch ratio of 0.25 is used. The CMS tracker is able to
measure the transverse momentum, pt, of charged particles at a resolution between
1− 2% depending on the particle pt [52]. Primary vertices (PV) can be reconstructed
at a resolution of around 10− 12 micron in the three coordinates. The transverse track
impact parameter resolution strongly depend on the pt of the track, and can be seen
on Figure 2.13. The transverse track impact parameter is defined as the distance of
closest approach of the track to the axis of beam.
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Figure 2.13.: The transverse impact parameter resolution of tracks reconstructed with the CMS
tracker is shown. From [52].
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2.3.2. Electromagnetic Calorimeter

The CMS electromagnetic calorimeter (ECAL) [53, 54] is made to measure the energy
of electrons and photons with high resolution. Since the ECAL of CMS has to fit inside
the solenoid magnet, it is designed to be fairly small. The calorimeter is homogenous
and the chosen medium is lead tungstate (PbWO4) crystals. This material has a
radiation length of ∼ 0.89 cm, which means that the crystals only need to be 22-23 cm
long in order to contain almost all of electromagnetic shower of high energy photons
and electron. Like with the tracker, the ECAL consists of two endcaps covering
1.479 < |η| < 3.0 and a barrel covering |η| < 1.479. As the lead tungstate has a Molière
radius of 2.2 cm, the face of the crystals are chosen to be 2.2 x 2.2 cm2 corresponding
to ∆η×∆φ = 0.0174× 0.0174. The endcap crystals are slightly larger with a face of 2.9
x 2.9 cm2. Altogether there are 75848 crystal in the two endcaps and the barrel.

As can be seen from Figure 2.14 the energy resolution of electrons is 2− 4%, and a
better resolution is obtained in the barrel. Photons are similarly reconstructed with an
energy resolution of roughly 2− 4%.
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Figure 2.14.: The energy resolution of electrons as reconstructed with the CMS ECAL. The
electrons were produced in Z → ee. Refined indicates the obtained resolution
after a data calibration procedure is performed. Superclusters refers to a collection
of ECAL cells where the electron was assumed to deposit energy (see the later
reconstruction section). From Ref. [55].
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2.3.3. Hadronic Calorimeter

The CMS hadronic calorimeter (HCAL) [56–58] is a calorimeter designed to measure
the energies of both charged and neutral hadrons produced in the LHC collisions. A
schematic of the HCAL can be seen in Figure 2.15. Like the tracker and the ECAL it is
composed of two endcaps (HE) and a barrel (HB). Additionally, it contains a forward
calorimeter (HF) as well as a calorimeter outside the solenoid magnet (HO). It is a
sampling calorimeter. The HB covers |η| < 1.3 and it uses brass as the passive medium
and plastic scintillator tiles as the active medium. The brass layers are 5 cm thick and
the plastic scintillator tiles are 3.7 mm thick. Altogether it consists of 17 layers, and
it covers 5.8 nuclear interaction lengths for particles at η = 0. The HE uses slightly
thicker brass absorbers of 8 cm and it covers 1.3 < |η| < 3.0. It consists of 19 layers,
which yields a depth covering roughly 10 nuclear interaction lengths. Both HE and HB
are segmented into 2304 modules each covering ∆η×∆φ = 0.087× 0.087. The outer
calorimeter HO consists of plastic scintillator layers and uses the CMS magnet coil as
the absorber. Finally, the forward calorimeter HF, which is situated 11 m down the
beam line from the collision point, covers 2.9 < |η| < 5.0. It is a Cherenkov calorimeter
with steel absorbers and quartz fibers for collection the Cherenkov radiation. The CMS
hadron energy resolution [59] depends on the hadron pseudorapidity, but for single
pions in the barrel it is of order 120%/

√
E.

Figure 2.15.: A schematic illustration showing a cross section of a quarter of the CMS HCAL.
From Ref. [58].
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2.3.4. Muon detectors

Beyond the solenoid magnet and the outer calorimeter is the CMS muon system [60,61],
which is used to identify and measure the momenta of muons. The magnet steel return
yoke confines the magnetic field, and it is interleaved with the detector layers. Gen-
erally, only muons and neutrinos manages to reach this part of the CMS experiment.
The detectors comprising the system are all gaseous detectors. A schematic illustrating
the muon system layout can be seen on Figure 2.16. The muon system consists of a
barrel that covers |η| < 1.2 and two endcaps which cover 0.9 < |η| < 2.4. The barrel
consists of four segmented layers of drift tube (DT) chambers. They can measure the
position of muon hits with great spatial resolution, and they are supplemented further
with resistive plate chambers (RPC) to obtain better timing resolution. Each endcap
contains four disks of cathode strip chambers (CSC) which have a faster response time
than the DTs but a more coarse spatial resolution. The CMS muon detectors have a
typical muon reconstruction efficiency of ∼ 95%− 99%.
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Figure 2.16.: A schematic illustration showing a quarter of the CMS muon detector system.
Longitudinal layout of one quadrant of the CMS detector. From Ref. [60].
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2.3.5. Trigger system

The LHC produces bunch crossings every 25 nanoseconds yielding a rate of 40 MHz,
and in every crossing roughly 20 proton collisions happen depending on beam con-
ditions. The majority of the collisions are "glancing" inelastic collisions, where the
momentum transfer is low, while the main interest of CMS is head on collision where
the momentum exchange is high such that heavy particles like the top quark and the
Higgs boson can be produced. Due to the enormous rate of proton collisions it is
not feasible to store everything, which means that an extremely quick physics event
selection needs to be applied to choose which events are of interest and therefore need
to be stored. The CMS trigger system accomplishes this by employing a two level
trigger system. The first part of this system is a level 1 (L1) trigger [62]. This system has
to evaluate whether an event should be processed and kept in roughly 3 µs. Therefore
there are significant constraints as to what event information can be used, as it needs
to be reconstructed extremely quickly. These triggers rely on hit information from the
muon system and energy measurements from the calorimeters, but it does not include
tracking information. The trigger information is processed using dedicated hardware
to meet the strict evaluation speed requirements, most commonly field-programmable
gate arrays (FGPAs). The information is combined to determine whether an event
should be kept, and the L1 trigger is able to reduce the selected event rate to 100 kHz.
It is followed by a high level trigger (HLT) [63], which can perform a more refined
selection as it has a couple of seconds to process the event. It uses simplified and faster
versions of the offline reconstruction algorithms that will be covered in the following
section. The HLT reduces the rate further to 1 kHz, which is manageable to process
and store.

2.4. Reconstruction

The raw detector inputs consist of multiple silicon sensor and muon detector hits, as
well as calorimeter clusters. In order to properly measure and identify a process like
top quark pair production, it is essential to employ advance algorithms to identify
which combination of hits and clusters are caused by which particles. This is further
challenged by the many simultaneous proton collisions in an event and by electrical
detector noise causing fake signals.
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2.4.1. Particle Flow

In the CMS experiment the particle flow (PF) algorithm [64] is used to combine the
information from all the separate detectors to create particle candidates. On Figure
2.17 the detector response of different particle types is illustrated. In top quark pair
production the W boson can decay to quarks or leptons, resulting in the possible
production of many types of particles. Neutral and charged hadrons are produced in
the hadronization of the quarks from the top quark decay and the hadronic W boson
decay. Neutral hadrons mostly leave a signal in the HCAL, but they can also start a
hadronic shower already in the ECAL. The charged hadrons can leave a signal in both
the HCAL, ECAL and tracker. Photons can also be produced in the process of the quark
hadronization from the decay of produced hadrons or as radiation. They only leave a
signal in the electromagnetic calorimeter. The W bosons leptonic decay can produce
electrons, which leave a signal both in the ECAL and the tracker. Finally, a muon can
be produced in the W bosons leptonic decay, and it can be measured in the tracker and
the muon chamber. Since most particles are measured in multiple detectors, using the
global event description allows the CMS experiment to achieve better reconstruction
efficiency, compared to what can be done using individual detector systems separately.
This is done using the PF algorithm. It relies on the reconstruction of PF elements
using individual detector information, and then using a link algorithm to combine
elements in order to form particle candidates.

PF Elements

The particle tracks left in the silicon tracker are a signature of most particles pro-
duced in proton collisions and are an essential element in the PF algorithm. The CMS
tracking is done using a combinatorial track finder based on Kalman Filtering [52, 65]
in an iterative manner. The algorithm aims to identify which of the many hits in the
pixel and strip detectors are associated with single particle trajectories. An iteration of
the algorithm functions in three stages. First, an initial track seed is generated to be
compatible with a few hits caused by a single particle. The trajectory is further built
by extrapolating into subsequent layers using the initial track seed, and then trying to
identify hits that are compatible with this seed track. When a hit is found within the
uncertainties of the trajectory extrapolation, it is added and the trajectory is updated.
In the case that multiple hits are compatible with the same trajectory, multiple tracks
are constructed, and the procedure continues for both. After this tracking building
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Figure 2.17.: The different particle types are illustrated moving through the CMS detector.
Each type have a unique detector response that can be used for identification and
reconstruction. From Ref. [64].

step is done the ambiguities from multiple tracks that use the same hits or seeds are
resolved, by keeping the tracks with the most total hits or best track fit χ2. After this is
done, the constructed tracks are fitted in order to extract the momentum from their
curvature, as well as the direction and origin of the track. After one of these track
iteration is done, the hits used to construct tracks are masked. A subsequent iteration
is then done using less stringent track quality requirement with the remaining hits.
The first iteration of the tracking specifically targets high energetic tracks identified
by requiring good initial seeds with many pixel hits, as well as hits in nearly all
detector layers. However, roughly 10− 30% of particles will undergo a significant
nuclear interaction with the tracker material before being measured in all tracker
layers. Therefore, subsequent iterations do not require the track to contain hits in all
layers. The more loose requirements on the number of hits increase the fake track rate,
so additional quality requirements are imposed on the track fit χ2, the track seed and



36 Top Quark Physics at the LHC

primary vertex compatibility. Three iterations using triple pixel hits as seeds are done
with progressively looser quality requirements. Following iterations are done using
seeds formed of less pixel hits and eventually strip hits. Two final iterations are done
using muon detectors hits as well as seeds.

Due to the low mass of the electron, it radiates significant amounts of bremsstrahlung
in the CMS magnetic field, and it therefore requires a tracking procedure that can
accommodate the energy loss. Additionally, it can also be measured in the ECAL and
this information can be used to improve tracking. Seperate approaches are used for
energetic well isolated electrons and softer electrons in jets. Due to the bremstrahlung,
a larger fraction of the electrons energy is emitted as photons before reaching the
ECAL. For energetic isolated electrons it is possible to collect most of this energy in a
supercluster using a small η range with a wider φ range around the electron direction.
The position and energy of these superclusters can then be used to extrapolate to the
tracker and be matched with hits there. This is referred to as the ECAL based approach.
For lower energy electrons, the tracks are curved by the magnetic field to such an
extent that the bremsstrahlung is spread out in the ECAL, and cannot be fully gathered
in the supercluster. This makes it difficult to extrapolate back to the tracker from the
ECAL. The ECAL based approach is also inefficient for electrons inside a jet, as it is
difficult to extrapolate from the ECAL to the tracker, since other particles in the jet
also left hits in the tracker. Additionally the supercluster will contain energy deposits
from the jet particles. Therefore a tracker based approach is instead used to identify
these electron tracks. Here tracks are instead matched to clusters in the calorimeter.
A track can be identified as an electron seed if the momentum of the track roughly
corresponds to the energy deposit in the calorimeter. Since the electron loses energy
through the tracker, a candidate electron track is refitted using a Gaussian-sum filter
(GSF) [66] instead of a Kalman Filter. A final selection using a boosted-decision-tree
is applied on the GSF tracks. The ECAL and tracker based electrons are combined
and they are used as seeds for a higher component GSF tracking, obtaining the final
electron tracks.

A different approach is used for muons as they also leave track segments in the
muon chambers that can be helpful for tracking [67]. The muon tracks with the worst
momentum resolution are the group referred to as standalone muons. They are com-
posed of a fit consisting of only the segments measured in the muon chambers. These
standalone muons can however be improved by matching them to tracks reconstructed
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in the inner tracker, and then performing a new fit. These are referred to as global
muons. These have the highest reconstruction efficiency for muons that have segments
in several planes of the muon detector. However, for lower energy muons, segments
in different planes might not be properly matched due to multiple scattering effects.
Therefore muons are also reconstructed using another approach that relies on using
tracks from the inner tracker and extrapolating them to the muon chambers to see if
there is a match with a segment. These are referred to as tracker muons, and they often
overlap with global muons, but they are better in low pt cases. If a global muon and
tracker muon share the same track reconstructed in the tracker, they are considered to
be the same muon and are therefore merged.

Calorimeter clusters also functions as a PF element, and it is essential as it is the
only method for measuring stable neutral particles. It also helps for measurements
of the charged hadrons energy as well as for the electron reconstruction. In order
to detect low energy particles in the calorimeters, and in order to properly separate
energy deposits from different particles, an advanced clustering algorithm is needed.
Since there are different detector geometries in the endcaps and barrel of both the
HCAL and ECAL, the clustering algorithm is run separately in each of these. The
algorithm functions by finding a seed consisting of a calorimeter cell with a large
energy deposit exceeding a predefined threshold. To ensure it is the center of a cluster,
it is required to have no cells with a larger energy deposit as a neighbour. From the
cluster seed, a large cluster is then formed by adding cells that are adjacent, and have
an energy larger than the twice the expected noise level. Using that the energy deposits
roughly should have a Gaussian shape, larger clusters caused by multiple particles are
separated into multiple clusters using an expectation-maximization algorithm based
on a Gaussian-mixture model [64].

PF Reconstruction

Using the different particle flow elements constructed from the different subdec-
tors, particle candidates can now be reconstructed by linking and combining these
elements. A sophisticated algorithm is needed, since there are limitations in resolving
individual particles due to detector granularity, and since trajectories can be affected
by particle interactions with detector material. In order to establish links between the
tracker and calorimeter, reconstructed tracks are extrapolated from its outermost hit in
the tracker to the ECAL as well as to the HCAL. If a cluster is within the extrapolation
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uncertainties in (η, φ) space, it is linked. The (η, φ) separation is recorded, and is used
for arbitration if several tracks are linked to the same cluster or if several clusters are
linked to the same track. For candidate electron tracks an additional procedure to
link potential bremsstrahlung clusters is performed. The tangent position is extrap-
olated from the potential electron track and if a cluster is within the extrapolation
uncertainties, it is linked to the track. Links are made between ECAL and HCAL
clusters by checking if the cluster position in the ECAL in (η, φ) space is within the
cluster position of the less granular HCAL. Again the same arbitration procedure is
performed using the distance as a metric. Together linked PF elements form a PF block
that is processed to reconstruct particles. Since muons are the simplest to identify and
reconstruct, they are processed first, and the associated PF elements are removed from
the block. Next, electrons and isolated photons are processed followed by charged
hadrons, neutral hadrons and nonisolated photons.

Muons

The PF blocks that are considered as muon candidates, are the ones that contain
muon track elements as described in the previous section. The simplest muons to
reconstruct are isolated muons that are for instance produced via W boson decay.
The track associated with a muon element in a PF block is checked to contain other
tracks or calorimeter clusters within ∆R < 0.3, where ∆R =

√
∆φ2 + ∆η2. The total

transverse energy of these nearby elements is required to be less than 10% of the
muons transverse energy to be considered a muon. Of course muons produced in jets
due to hadrons decaying leptonically cannot be identified via the isolation criteria.
In the hadronic showers in the HCAL secondary muons can be produced and cause
signals in the muon chambers that accidentally can be linked to a charged hadron
track in the inner detector. To avoid these fake muons, quality cuts are applied on both
the segments from the muon chamber and the inner detector tracks. For muons, the
momentum is taken to be that of the associated inner track if the momentum is less
than 200 GeV, since it provides the most accurate measurement. Above this threshold
the curvature of the track is low, and the best track fit based on χ2 is used.

Electrons and isolated photons

Electrons and isolated photons are processed in the same step, since electrons emit
photons as bremsstrahlung and photons can convert to electron pairs making the



Top Quark Physics at the LHC 39

tasks intertwined. If a PF block contains a GSF track as described in the previous
section it is considered as an electron candidate. Similarly, if the PF block consists of an
ECAL cluster with no linked tracks it is considered as a photon candidate. Since both
electrons and photons are expected to deposit almost all their energy in the ECAL,
the HCAL is cross checked to confirm that there is no significant deposit near the
ECAL cluster in (η, φ) space. For electron candidates the energy is calculated using
both the linked ECAL clusters and the GSF track momentum. A boosted decision tree
using different quality variables is used to evaluate these electron candidates as a final
selection requirement.

Charged and neutral hadrons and nonisolated photons

The majority of the particles produced at the LHC comes in the form of hadrons
that needs to be reconstructed and identified. Clusters and tracks not accounted for by
electrons, muons and isolated photons are used. The ECAL clusters that are not linked
to a track are considered to be a photon, and the photon energy is reconstructed as
the deposited energy in the ECAL cluster. The HCAL clusters that are not linked to a
track are considered neutral hadrons, and their energy is reconstructed based on the
deposited energy in the HCAL cluster. The HCAL clusters that are linked to tracks
can be used to construct charged hadron candidates. If an ECAL cluster is also linked
to these elements, the sum of the HCAL and ECAL must be compatiable with the
momentum of the track. If there is an excess this is identified as an additional photon
or neutral hadron. If the measured energies are compatible in the sub-detectors, the
hadron energy is estimated using a fit that is leveraging both the calorimeter and
tracker information, as this obtains the most precise energy estimation. Any track that
remains is identified as a charged hadron. No attempt is made to identify what type
of charged hadron is produced, with the standard assumption being a charged pion.
Outside the tracker acceptance of |η| < 2.5 no attempt is made to distinguish between
neutral and charged hadrons.

2.4.2. Vertexing

In a given proton bunch crossing, several proton collisions can occur with an average
number of around 20. As the chance of a collision with a larger momentum transfer
is low, an event of interest usually only contain one high energy collision, with the
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remaining low energy collisions being referred to as pileup. In order to reconstruct
the proton collision points, vertexing using the tracks in the physics event is per-
formed [52]. This task includes associating the tracks that correspond to the same
vertex, but also fitting the position of the vertex. Several primary interaction vertices
can be reconstructed in a single event. The vertex with the largest sum of particle
pt originating from it, is considered the main vertex, with the additional ones being
referred to as pileup vertices. Potential vertices are clustered using a deterministic
annealing algorithm based on the z coordinates of the point of closest approach of the
tracks to the beam spot. This clustering constructs candidate vertices that are then
fitted with an algorithm called the Adaptive Vertex Fitter (AVF) [68].

A different vertexing procedure is used for finding and reconstructing secondary
vertices that are produced in decays of particles with longer lifetimes that originated
from the primary interaction vertex. These are an essential ingredient for jet flavour
identification algorithms that will be described in Chapter 4, since heavy flavour
hadrons in general will undergo a second decay into light hadrons a short distance
away (∼ 0.5 mm) from the primary vertex. This is far enough away to be resolved, but
it is close enough to still be in the beam pipe. The current secondary vertexing algo-
rithm in CMS is the inclusive vertex finder (IVF) algorithm [69]. Secondary vertexing
algorithms preceding it utilized just the tracks in the jet (see next section) connected
to the secondary vertex, however the IVF algorithm uses all tracks in the event, and
then the secondary vertices are mapped to the jets by ∆R matching of the vertex flight
distance with the jet axis. This was observed to significantly increase the performance
of the secondary vertexing, as tracks that were important for a vertex, might not
have been clustered into the jet. The IVF algorithm works by identifying potential
vertex seed tracks that are significantly displaced. Other tracks in the events are then
clustered together with a seed based on the distance at the point of closest approach as
well as their angles. During this process the distance between the track and the seed
has to be lower than the distance to the primary vertex. Using the tracks associated to
the seed, a vertex is fitted to obtain a flight distance and the vertex kinematics.

2.4.3. Jets

As mentioned in the previous section, the quarks produced at the LHC will hadronize
into color neutral states and form a collimated spray of particles referred to as a jet.



Top Quark Physics at the LHC 41

These particles can be charged and neutral hadrons, but also photons, electrons and
muons. Figure 2.18 shows an illustration of a jet being produced and measured. In
general many particles are produced as a result of the hard scattering, and dedicated
clustering algorithms are needed to identify which particles corresponds to a single
quark. Once a jet is identified the energy of the jet needs to be reconstructed, and in
order to get the best possible estimate, detector inefficiencies need to be accounted for
and particles produced from pileup vertices need to be subtracted. Finally, it is of great
value to identify the type of quark that initiated the jet. This task will be described in
detail in Chapter 5 that includes an advanced algorithm developed for this.

Figure 2.18.: An illustration of a quark hadronizing into a jet that interacts with the CMS
detector. From Ref. [70].

Jet clustering

The CMS experiment employs the anti-kT algorithm for jet clustering [71]. This algo-
rithm is both infrared and collinear safe, meaning that if soft radiation or a collinear
splitting from the original parton is added to the event, the clustered jet is mostly
unaffected. The algorithm works by defining a radius parameter that indicates the
average size of a jet in (η, φ) space. Picking this size parameter is non trivial as there
is a trade off. A large size increases the chance of including all particles associated
with the quark, while a small size reduces the amount of particles included from
pile-up. The CMS experiment uses a radius parameter of R = 0.4 for the majority
of the reconstructed jets (AK4 jets). The anti-kT algorithm works by calculating and
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comparing two metrics shown in Equation 2.19 for particle pairs in the event.

dij = min(k−2
t,i , k−2

t,j )
∆η2

ij + ∆φ2
ij

R2 (2.19a)

diB = k−2
t,i (2.19b)

The indices i and j indicate particles being compared, and the transverse momentum
of the particle is referred to as kt. The separation of the particles in angular space is
indicated as ∆η2

ij + ∆φ2
ij. For every possible particle pair in the event dij is calculated,

and diB is calculated for all particles. Particle pairs are associated into a jet if the
pair dij is found to be smaller than both diB and djB. Their momenta are combined
into a pseudo-jet that replaces them for the continuation of the clustering. When no
more particle pairs have dij smaller than both diB and djB, the algorithm stops. The
intuition behind these metrics is to ensure that low-kt particles are clustered around
hard particles and to ensure infrared and collinear safety.

In the CMS experiment the reconstructed jets are clustered using the reconstructed
particle flow candidates. However, the jets pileup is still clustered into the jets, and
an additional pileup mitigation procedure is applied on the jets to reduce this further.
The CMS experiment uses the charged hadron subtraction (CHS) algorithm [64] to
reduce pile-up. It works by identifying reconstructed charged hadrons that are associ-
ated with reconstructed pile-up vertices, and then excluding them from the particle
collection used in the clustering algorithm. Since neutral pile-up particles cannot be
tracked, the effect of these are mitigated using a jet correction factor that depends on
the total jet area [72].

Jet energy corrections

After the jet clustering of reconstructed PF particles is performed there is still a discrep-
ancy with the momentum of the generated quark. This is due to a number of effects
such as detector inefficiencies and response, as well as pile-up particles that might
have been clustered into the jet. In order to correct for this a jet energy correction
method is applied. The CMS experiment applies the jet energy corrections in three
steps [72]. The first is referred to as the level 1 (L1) correction and it attempts to
correct for the fake energy introduced in the jet from pileup particles that has not been
accounted for by the already used pileup mitigation techniques. It is derived from
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simulated dijets events, comparing the response with and without pileup. It is then
parameterized in terms of four variables namely the jet area, the diffuse offset energy
density as well as the jet pt and η. The second and third energy corrections are called
the level 2 and level 3 (L2L3) correction, and they aim at correcting for the detector
response by comparing jets in simulated samples with a generator level jet that is ∆R
matched, and deriving jet energy correction factors. They are parameterized only in pt

and η of the reconstructed jet. Finally, using both simulated events and data events
from γ+jets, Z+jets and dijets process, residual corrections are derived that account
for the difference between data and simulation. More details on this topic will be
described in Chapter 5.

2.4.4. Missing Transverse Energy

The missing transverse energy (MET) is an important reconstruction quantity that can
be used as an estimation of the momentum of particles that do not interact with the
CMS detector such as neutrinos. It utilizes that the sum of the transverse momentum
of all particles produced in the event should be zero as the colliding protons have
no initial transverse momentum. To obtain the missing transverse energy a sum of
negative transverse momentum vectors of all reconstructed particle flow candidates in
the event is taken. Since the missing energy is also affected by jet energy corrections,
these are propagated through in the MET calculation. Pile-up in the event also affects
the MET and it is mitigated with dedicated algorithms [73].
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Chapter 3.

Machine Learning

Machine learning (ML) refers to the science of creating computer algorithms without
having to program explicit instructions. The algorithm produced with machine learn-
ing is a function that maps input data into a set of output values. Depending on how
these values are represented the machine learning algorithm can perform different
tasks such as classification or regression analysis. Usually these algorithms are defined
into three groups of supervised, unsupervised and reinforcement learning. Supervised
machine learning algorithms try to learn from training examples that consists of set
of inputs as well as a training label that needs to be predicted. The algorithm is then
improved by minimizing a defined loss function, which is based on the difference be-
tween the training label and the algorithm prediction. On the contrary, unsupervised
learning tries to construct algorithms using unlabeled data, and therefore needs to be
designed such that they can be optimized without having a target for every training
example. Finally reinforcement learning deals with constructing intelligent agents that
take action in an environment. Machine learning is highly useful for tasks that are dif-
ficult to solve with an algorithm defined with explicit instructions. Such tasks includes
computer vision, natural language processing, speech recognition and self-driving cars.
In particle physics experiments many such tasks exists like reconstruction of particle
trajectories, jet identification and physics process event selection. An additional benefit
for particle physics is that the machine learning algorithm can be trained on raw data
without the need for extensive feature engineering by hand. In particle physics the raw
data collected from the detector, often needs a lot of processing to be interpreted at the
particle physics level. In every level of data processing some information can be lost
that could be relevant for the next task in the analysis. Machine learning algorithms
can be trained directly on data that has undergone minimal processing, referred to as
low level data, skipping many levels of processing. The subject of curve fitting, which
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is extensively used in particle physics, is very closely related to machine learning with
the main difference being that in machine learning the structure of the function to be
fitted does not need to be known. In the last 5 years, machine learning algorithms have
proven to be a very powerful tool in high energy physics, and there has been a surge of
interest in the topic. Particularly, the machine learning method of neural networks has
become the golden standard in particle physics. In this chapter the machine learning
methods and their adoption in the field of particle physics will be reviewed. First the
basic building blocks of the neural network will be reviewed, followed by the state
of the art methods used today. While many interesting possibilities for unsupervised
learning and reinforcement learning in particle physics exists [74–76], the focus of the
chapter will be on the supervised machine learning algorithms. In particle physics it is
possible to obtain large datasets of high quality simulated training examples. These
are easily labeled, and the datasets are therefore well suited for supervised learning.
However this reliance on simulation does introduce some complications, since the
machine learning algorithms have to be calibrated to data subsequently.

3.1. Neural Networks

Machine learning as a subject dates back to the 1950s originally developed by neuro-
scientists and psychologists attempting to mimic the structure of the brain in the hope
of constructing a generic algorithm that can learn a broad set of tasks and become
a candidate for artificial intelligence [77]. One of the earliest and most important
machine learning tools is the artificial neural network. The first neural network was
the perceptron [78] that was tasked with identifying whether an object with a set of
features, x, was part of a specific class, known as binary classification. The perceptron
consists of a weighted sum of the input variables, which is then passed to a threshold
activation function as shown in Equation 3.1.

a(x) = f (b +
N

∑
i=1

xiwi) (3.1)

f (x) =


1, x > 0

−1, otherwise
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Here N is the number of input features, xi is the value of feature number i and wi

is a weight that is obtained by training the algorithm. The bias, b is also a trainable
weight, but it is not multiplied with an input feature. The activation function, f (x), is
a threshold function that forces the output of the perceptron to be either -1 or 1. This
allowed the perceptron to be used for binary classification with the output indicating
the prediction category. An illustration of the perceptron architecture can be seen in
Figure 3.1. The perceptron was a natural starting point for machine learning, as no

Figure 3.1.: An illustration is shown of the basic structure of a perceptron with three input
variables. The connections between the nodes represent a dot product with the
weight vector, w. The connections originating from the +1 nodes are the bias b.

sophisticated learning algorithm was needed to choose a good set of weights. As a
starting point the weights are set to zero. Then iterating through each training example,
the weights of the perceptron can be updated with for instance Equation 3.2.

wupdated = w + r · xn · (yn − a(xn)) (3.2)

Here xn refers to the input vector of training example n, w refers to the weight vector, yn

refers to the training label of training example n and a(xn) refers to the prediction of the
perceptron using the previous set of weights. The parameter of the learning algorithm,
r, is referred to as the learning rate. As can be seen from the equation, if the example
was correctly predicted, then the weights are not updated, as yn− a(xn) would be zero.
If the prediction is incorrect the weights are updated to make the prediction closer to
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the label. This correction term is motivated by the partial derivative of the weights for a
loss function such as L = 1

2(y−w · x)2. Shortly after the perceptron was discovered, it
was proved mathematically that this optimisation procedure guarantees convergence
after a finite number of error corrections [79]. However it was also realized that
the perceptron was limited as a universal function approximator [80]. As it is only
a linear model, it can for instance only be used for classification problems, where
the classification categories can be separated with a hyperplane in the input feature
space. One attempt to extend the number of problems that could be solved using the
perceptron, is by mapping the original input features into a higher dimensional space,
and then separating the categories with a hyperplane in this new feature space. The
assumption is that the separation becomes possible or at least easier with additional
dimensions. This approach evolved into what is known as kernel support vector
machines [81] and was very successful. The second idea for extending the perceptron,
was the realisation that by adding a hidden layer to the perceptron, a much more
general function approximator could be constructed. This multilayer perceptron with
a single hidden layer can be defined as shown in Equation 3.3 and an illustration can
be seen in Figure 3.2.

a(1)i (x) = f (1)(b(1)i + x · w(1)
i ) (3.3)

a(2)(a(1)(x)) = f (2)(b(2) + a(1)(x) · w(2))

The vector a(1) represents the output values of the hidden layer. Each element of
this vector corresponds to a neuron activation value of the hidden layer, where the

number of neurons is a hyperparameter of the network. The vector w(1)
i corresponds

to the weights associated with neuron i in layer 1. This weight vector has the same
dimension as the input vector x. The value b(1)i is the bias associated with neuron

i. The function f (1) is the activation function of the hidden layer. The vector w(1)

corresponds to the weight associated with the output neuron and the value b(2) is the
corresponding bias. The function f (2) is the activation function of the output layer.
a(2) represents the output value. The activation function of the hidden layer, f (1),
should be a non linear function. If a linear function is picked, simple linear algebra
shows that the network simply reduces to a perceptron. The activation of the output
layer can be a threshold function in case of classification problems, but it could also
be a linear function, like the identity function, in case of regression analysis. The
network defined by Equation 3.3 can easily be extended to have more hidden layers
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Figure 3.2.: The basic structure of a multilayer perceptron with three input variables, one
hidden layer with three neurons and one output node. The connections between
the nodes represent dot products with the weight vectors associated with the layer.
The connections originating from the +1 nodes are the biases b(1)i and b(2).

by simply applying a new operation similar to a(1)(x) on the output vector of the
previous layer. It has mathematically been proven [82] that with a single hidden layer
the multilayer perceptron is a universal function approximator. However depending
on the complexity of the function to be estimated, the number of neurons needed in
the hidden layer might be extremely large. The addition of the hidden layer does
introduce additional complications, as it makes optimisation much more challenging,
as the desired states of the neurons in the hidden layer are not directly specified by
the task. For this reason, the multilayer perceptron was mostly ignored until 1986
when the back-propagation algorithm [83] was introduced. This algorithm made it
possible to calculate an appropriate error correction term for the hidden units in a
quick and efficient manner. Back-propagation is essentially an extension of the chain
rule, and it relies on finding the partial derivatives of the neurons in network, with
respect to a loss function that quantifies the difference between the prediction and
the training example label. It is important that this loss function is differentiable for
back-propagation to work. Before performing the back-propagation of error correction
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terms, it is first needed to forward propagate through the network, calculating the
value of the neurons and their activations, as these values are needed to calculate the
partial gradients of the weights. Assuming the example of a binary classifier with
1 neuron in the final layer, referred to as layer n, the partial derivative of the loss
function, ∂L

∂a(n)
, with respect to the final activation can be calculated, since the loss

function is differentiable. If the activation function is differentiable as well, the partial
derivative of the neuron value can be calculated with Equation 3.4.

∂L

∂x(n)
=

∂L

∂a(n)
· ∂a(n)

∂x(n)
(3.4)

x(n) is the neuron value prior to applying the activation function, i.e x(n) = ∑i w(n)
i ·

a(n−1)
i , where a(n−1)

i is the activation of the neuron i in layer n-1, and w(n)
i is the weight

that connects the neuron to the output node in layer n. After calculating the partial
derivative of the output node, the chain rule can again be used to obtain the partial
derivatives of the weights in the previous layer connecting to the output node as
shown in Equation 3.5.

∂L

∂w(n)
i

=
∂L

∂x(n)
· ∂x(n)

∂w(n)
i

=
∂L

∂x(n)
· ∂

∂w(n)
i

(∑
j

w(n)
j · a

(n−1)
j ) =

∂L

∂x(n)
· a(n−1)

i (3.5)

These partial derivatives could then be used to optimize the weights connecting to the
output layer, but in order to also optimize weights in the hidden layer, it is needed
to obtain the partial derivatives for the neurons in the prior layers n-1, ∂L

∂x(n−1) , such
that Equation 3.5 can be applied again. This can be found using the chain rule and the
definition for the neuron value.

∂L

∂x(n−1)
i

=
∂L

∂a(n−1)
i

·
∂a(n−1)

i

∂x(n−1)
i

=
∂L

∂x(n)
· ∂x(n)

∂a(n−1)
i

·
∂a(n−1)

i

∂x(n−1)
i

= (3.6)

∂L

∂x(n)
· ∂

∂a(n−1)
i

(∑
j

w(n)
j · a

(n−1)
j ) ·

∂a(n−1)
i

∂x(n−1)
i

=
∂L

∂x(n)
· w(n)

i ·
∂a(n−1)

i

∂x(n−1)
i

The back-propagation algorithm then starts with the output layer applying Equation
3.4 to calculate the partial derivative for every neuron in that layer ∂L

∂x(n)
. With this

quantity, the partial derivative for every weight connecting to the neurons in layer n
can be calculated with Equation 3.5, and the partial derivative for every neuron in the
previous layer n-1 can be calculated with Equation 3.6. After having obtained ∂L

∂x(n−1)
i

,
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the weights of the layer n-2 can then be calculated using Equation 3.5. Therefore
the partial derivatives for the weights throughout the network can be calculated by
starting from the output derivative, and going backwards through the network in a
sequential manner. The weights of the network can then be updated with a number of
optimisation algorithms, but a simple form of gradient descent could for instance be
Equation 3.7.

wupdated = w− r · ∂L
∂w

(3.7)

Back-propagation also meant that step functions, which had been used in the percep-
tron, stopped being used as activation functions, since the derivative of ∂a

∂x is zero,
which means that all the gradients calculated with back-propagation are zero every-
where. Common activation functions used instead were the hyperbolic tangent and
the sigmoid function. The weakness of these activation functions is that the derivative
goes to zero as the argument goes to large values, and the derivative is bounded in
the range from 0 to 1. If a network is made very deep the gradient can become very
small in the early layers, since for every layer a small value is multiplied with to get
the gradient. This is referred to as the vanishing gradient problem.

After the development of back-propagation, there was a surge in the use of neu-
ral networks to tackle problems of high complexity such as pattern recognition. Since
tasks in particle physics like track reconstruction involve a degree of pattern recogni-
tion with large combinatorial complexity, neural networks were tried [84–86]. While
showing initial promise, the neural networks were neither faster or better performing
than traditional methods. In hindsight it is interesting that track finding was the first
task to be attempted with neural networks, as even with modern methods track finding
with neural networks remains a challenge. Jet identification was also tried with neural
networks. The papers of Lönnblad et al. [87,88] used a fully connected neural network
to separate quark and gluon jets. They used the kinematics of the four leading particles
in the jet as input and 10 neurons in a single hidden layer with three output nodes.
This gave them better results than the traditional methods used at the time. It was also
possible to identify b quarks to some extent as well, despite not using vertex informa-
tion. Again despite promising intial results, likelihood based algorithms are still the
main method of quark gluon tagging at CMS and ATLAS today [89]. The majority of
papers in the 90s on neural networks in high energy physics were test of techniques
and proof of concepts that showed promise, but they were never adopted in data
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analysis. The first published physics application using a neural network was in 1992 by
the DELPHI experiment at LEP, where a simple neural network with 25 hidden nodes
were used for identifying the flavour of quark pairs in Z → qq̄, such that the partial
widths could be calculated [90]. In 1997 at the D0 experiment at the Tevatron collider,
a neural network was used for measuring the top quark mass [91]. The network had 4
inputs consisting of the missing transverse momentum, the event aplanarity as well
as two engineered features. The hidden layer had 5 neurons, and the network was
trained for separating top quark events from background events. While a successful
approach at the time, later top quark mass analyses stopped using neural networks
for classifying signal, reverting to more simple selection methods that where found to
be more robust and better performing. The H1 experiment at HERA constructed and
deployed a neural network L2 trigger [92] for separating physics processes. The CMS
experiment also explored neural networks for triggering. A prototype perceptron L1
trigger for discriminating electrons and photons using calorimeter information was
made, albeit this never ended up being implemented [93]. Indeed, while there was
great excitement and interest for the prospects of neural networks in the 90s, at the
end of the decade there was some disappointment as traditional techniques were often
found to be either competitive or better [94]. This was mainly due to the networks that
were used. They consisted of a single hidden layer with a small amount of neurons,
and they were further limited by a small set of training examples, making it hard for
them to learn complicated patterns using low level information. In 2004 the technique
of boosted decision trees (BDT) was introduced to the particle physics community [95]
as a competitor to the neural networks, and in many use cases the method outper-
formed typical neural networks used at the time, while being easier to tune and train.
Neural networks remained part of the physics toolbox but they were not widely used.
This was in parallel to computer science where interest in neural networks had slowed
down significantly. In 2012 a groundbreaking development was made with a machine
learning algorithm, AlexNet, that achieved state of the art performance for the task of
image classification [96]. AlexNet was a deep learning algorithm, which is a machine
learning algorithm that uses multiple layers. The network consisted of 8 layers where
5 were convolutional layers (see section 3.2.1) followed by 3 fully connected layers
resulting in 60 million parameters, making it much bigger than past networks. This
was made possible by a graphics processing unit (GPU) implementation for training
and evaluating the network. This implementation was much faster than what was
possible in the past. The vanishing gradient problem was overcome by replacing
the hyperbolic tangent activation function, and instead using the ReLU activation
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function f (x) = max(0, x) [97]. While the effectiveness of such an activation function
is a bit surprising, since the gradient is either 1 or 0, vanishing gradients are avoided,
making it easier to optimize a deep network. The network was trained on a dataset
consisting of 1.2 million images making the number of free parameters much larger
than the training set size. This can easily result in the phenomenon known as over-
training, where the neural network learns very specific features of individual training
examples, rather than learning generalizing trends. To avoid this a method known
as dropout [98] was used. During training each neuron in the network has a fixed
probability of not participating in the forward and back-propagation. This encourages
the network to learn more general trends as specific neurons that have learned specific
details are deactivated randomly during training. In validation and deployment all
neurons of the network are used. After this paper showed the possibilities of deep
neural networks (DNN), there was a surge in interest of deep learning and neural
networks in computer science, but also in high energy physics. Shown in Figure 3.3 is
the number of papers by publication year on INSPIRE-HEP with the keywords Neural
Network and Deep Learning since 1985. While papers with neural networks has

Figure 3.3.: The number of papers released in a given year with the keywords "Neural Net-
work" (left) and "Deep Learning" (right) are shown.

been around for many years, there has been an exponential growth in the number
of publications using them since 2012. Deep Learning was barely mentioned before
late 2000s, and similarly to neural networks the number of publications has increased
exponentially. One of the main reasons machine learning has been so successful in
particle physics is the availability of high quality simulation that can be used for
training. This has allowed complex and deep architectures, because large training sets
with accurate labels can be constructed easily. However it also introduces some novel
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challenges, because despite the simulation being in good agreement with data, it is
not perfect. This has created some hesitancy to create very large neural networks, as it
is expected that there is a limit to how much the performance in simulation transfer to
data. Deep neural networks in particle physics are therefore usually several orders
of magnitude smaller than the ones used in state of the art computer science, despite
having comparable sizes of training datasets.

3.2. Architectures

Ideally a fully connected neural network with sufficient width and depth should
be able to approximate any function, and therefore it should be possible to utilizes
such a network for any given number of input data and problems. However, the
AlexNet [96] paper made it clear that to properly train a deep neural network, the
network architecture and layers needed to be well suited for the input data. Over
the past 5 years the field of deep learning has seen the adoption of more complex
and sophisticated network architectures, going much beyond the fully connected
model. Rather than trying to apply the same general algorithm to every problem, a
network is defined using prior knowledge about the specific task at hand. To really
benefit from deep neural networks it is needed to take into account the symmetries and
structure of the input data in the network architecture itself. The fully connected neural
network should in theory be able to learn the exact same functions as these complex
architectures, but in practice it turns out to be too difficult to train. Different network
types have been constructed to handle different tasks such as image recognition on
pictures and videos, object classification on point cloud data and natural language
processing on text. In particle physics the research in machine learning has mainly
been focused on developing new model architectures and designs that are specifically
well suited to the particle physics data, as no machine learning model from traditional
data science fits this task perfectly. This contains identifying the useful architectures
that were developed for tasks that have data similar to what is used in particle physics,
but also constructing architectures and layers specifically for particle physics.
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3.2.1. Convolutional neural networks

The convolutional neural network (CNN) generally refers to a network which includes
convolutional layers [99]. These layers were developed in the field of computer vision
to be used instead of the multilayer perceptron. This was a needed development as
image inputs in general have very high dimensionality. For instance a 1200x1200 pixel
RGB color image would have 4.3 million inputs. If this is used as input to a fully
connected layer with 100 nodes, there will be 100 + 100 · 4.3 · 106 free parameters just
in the first layer. In order to reduce this huge dimensionality, the convolutional layer
seeks to exploit the symmetries of the images. In particular there is a local spatial
structure in an image. Pixels adjacent to each other are more connected than two pixels
in opposite sides of an image. Furthermore a group of pixels in one side of the image,
is similar to a group of pixels in the other side of the image. Therefore the function
applied should be invariant to the global location of pixels being considered. The con-
volutional layer is constructed by encoding these adjacency and invariance properties
into a fully connected network. An illustration of the convolutional approach can be
seen in Figure 3.4. This illustration shows a 2D CNN with a 3x3 kernel and a single

Figure 3.4.: The basic structure of the convolutional layer is displayed. From [100].

filter. The kernel is applied to a 3x3 sub-image by taking the dot product between the
input pixels and the filter. It is called a 2D CNN because the kernel has two dimensions
and therefore is encoding that there is adjacency in both x and y. In this case only one
filter is shown, but in practice usually many more would be used. Each additional
filter has a unique set of values for the 3x3 kernel, and it can therefore be trained to
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capture a unique set of features from the image. After having computed the value for
a sub-image the filter slides over to the next pixel to be computed. The number of
pixels the filter moves after computation is called the stride. Often this value is just 1,
but a higher values enables more dimensional reduction. In case of a stride of 1 and
a 3x3 kernel size the example image shown in Figure 3.4 is reduced from 5x5 to 3x3.
Each additional filter used in the CNN adds an additional output array. In the case
of a color image where each pixel has three values (RGB), the layer can be extended
to match this by adding three weights in each element of the filter, and then taking
the dot product between these and the additional input layers. Adding color refers
to having 2D CNN with a set of feature channels of three, rather than a 3D CNN, as
there is no movement of the kernel in the color dimension.

A special subset of the convolutional layer, is the 1D convolutional layer with a
kernel of size 1x1. Unlike 2D CNN developed for images, the 1x1 CNN does not
incorporate the element of adjacency, but simply incorporates the properties of object
invariance, since the weights of 1x1 kernel is shared throughout the input. In the case
of particle physics, this is a useful tool, since in a lot of scenarios the input consists of
several physics objects of a specific type, for instances jets or particles. Using a fully
connected layer, it is possible to learn a completely different function for processing
the first jet compared to the second jet, and the network has to learn itself that there is
a similarity of the inputs. If you use a 1D convolutional layer to process such objects
instead, it is ensured that a consistent function is used to process them, and the physics
information is encoded directly into the network.

Convolutional based architectures were one of the first approaches beyond fully
connected networks to be adopted in the realm of particle physics. The most sim-
ple approach is to try to represent particle physics data as an image, and then use
conventional image recognition approaches. The ImageTop algorithm [101] tries to
discriminate between boosted top quark jets and QCD jets by representing the jets as
an image in φ and η space with the pt of particle candidates in a given pixel yielding
the pixel intensity. A series of 2D convolutional layers is then employed to perform the
classification. The advantage of this, is that the 2D CNN naturally fits well to extract
kinematic jet substructure, which is highly relevant in boosted jet tagging. However
particle physics data is not naturally well suited for an image representation. The
modern particle physics detector is represented by many different kinds of measured
variables, for instance information about reconstructed tracks curvatures and impact
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parameters. While it is easy to aggregate pt information in pixels with a scalar sum,
it is not possible to aggregate a variable like a tracks impact parameter. This loss of
information could possibly be solved by making the image more granular, but this
would make the image more sparse with more empty cells which causes several other
issues with optimisation, performance and computational overhead of a 2D CNN.
Furthermore, particle physics detectors can have irregular geometry that cannot be
put into a perfect grid. Another approach for employing a CNN is the DeepAK8 [101]
top quark tagging algorithm, which uses convolutional layers with kernel size 1x3,
acting on a particle list rather than a jet image. This list is sorted by the particles pt,
and the convolutional layers acts on groups of three particles in descending order of
pt. This avoids the problem of having empty inputs, and it allows including every
possible input features associated with particle candidates. The disadvantages of this
approach is that it is not really clear how to sort the particle list in an optimal way, as
it might not really be beneficial to convolve the three highest pt particles with each
other. It is also difficult to define the size of the kernel, there is no clear argument for
why it should be optimal to convolve particles in a group of three.

3.2.2. Recurrent Neural Networks

The recurrent neural network (RNN) is a class of networks that are used to process
sequential data. It has been heavily used in the domain of natural language processing,
as it has the ability to encode the structure of the data, in this case the order of the
words in a sentence. However, other tasks that have data that is sequential in nature
can also be tackled by RNNs such as video analysis, speech recognition and time series
prediction. Several types of RNN layers exist but one of the most common and power-
ful is the long short term memory (LSTM) architecture [102]. The main commonality
of RNN layers, which also applies for the LSTM, is that they consist of some repeating
modules, which are referred to as cells. The LSTM architecture consists of several
LSTM cells, shown in Figure 3.5. These cells act on elements of the sequence to be
considered, and they go beyond the fully connected network by containing a memory
mechanism. The h refers to the output of LSTM cell with ht being the current cell and
ht−1 being the previous. xt refers to element t of the input sequence. The memory
value, c, is the unique aspect of the LSTM cells. This value is passed through each
cell as they process elements of the sequence, and each cell can modify the memory
value. The first operation of the LSTM cell is the forget gate, which is a fully connected
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Figure 3.5.: The structure of a LSTM cell is shown. From [103].

layer with a sigmoid activation function that takes ht−1 and xt as input. Due to the
sigmoid function it outputs a number from 0 to 1, which is then multiplied onto the
memory value ct−1 from the previous cells. This regulates how much of the previous
memories of the LSTM chain should be forgotten. Next, new information based on
the current element of the sequence is added to the memory. A fully connected layer
with ht−1 and xt as input and a tanh activation function is calculated to obtain a
memory value for the current sequence element to be added to the global memory.
This is multiplied with the output value of a new sigmoid layer, in order to regulate
how much the current element of the sequence should modify the memory value.
This obtained memory score is then added to the existing memory value. A tanh
activation function is applied to this updated memory, which are multiplied together
with the output of a final sigmoid layer that takes ht−1 and xt as input. The cells
new memory value and output value are then passed on to the next LSTM cell, until
every element in the sequence x has been considered. Importantly each LSTM cell
shares the parameters with every cell in the sequence encoding that the objects in the
sequence can be treated in a similar manner. The LSTM layer can have varying types
of output dimensionality. The number of neurons in the fully connected layers inside
the LSTM cells should all be the same, and this size is equal to the size of the output
vector ht. The LSTM shown in Figure 3.5 outputs one vector for every element in the
sequence, however LSTM layers can also be configured to only give a single output
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for a sequence, which is the output from the final cell in the chain. This is useful for
particle physics, as you often want to consider a sequence of inputs, such as particles
in an event, but the desired output often concerns a single event or jet, therefore
requiring dimensional reduction. Another useful aspect of the LSTM cells for particle
physics is that they can handle variable length input well, which is often the case in
particle physics where there can be a different number of jets or particles in every event.

RNNs have been used as a technique for representing particles in a jet as it encodes
that each element in the sequence is a similar object, and it is flexible at handling
variable length input. It has been successfully employed for jet tagging, for instance
boosted Higgs boson tagging [104]. Since RNNs are good at handling time series they
have also been used for monitoring and fault protection of the LHC superconducting
magnets using voltage distributions [105].

3.2.3. DeepSet

The DeepSet neural network [106] is an attempt to construct an architecture that is
well suited for processing data which has a structure as a set such as point clouds,
which are used for robotics and self driving cars. The important difference between
sets based data and sequence based data, is that there is an inherent order for the
sequence, whereas the set data is invariant under permutations. The DeepSet network
incorporates this permutation invariance into the network architecture. It consists of
a 1x1 convolution layer for transforming every element of the set into a latent space
representation. Then a permutation invariant operation is performed to aggregate
the elements of the set. A simple example of a network architecture can be seen in
Figure 3.6. In the original paper, a simple sum is performed over every element of the
set. This ensures that the network returns the same output no matter how the input is
ordered. Many types of particle physics data is set based data, making the DeepSet
network appealing. For instance the constituents of a jet have no inherent order, so a
jet can be treated as a set. The DeepSet approach has been tried in an architecture for
quark/gluon tagging named energy flow networks [107] with good results. However,
the DeepSet approach is also somewhat lacking in that the aggregating function is
usually quite limiting and inflexible, therefore becoming an information bottleneck.
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Figure 3.6.: A simple example of a DeepSet network. The 1x1 convolutional layer transforms
the set elements into a latent space representation where they are summed together.
This can then be fed to a fully connected network leading to the output nodes.

3.2.4. Other architectures

Since neither LSTMs, CNNs and DeepSets are a "one-size-fits-all" architecture for
particle physics, there is constant experimentation in trying to find new architectures
for a given problem. There has been a lot of interest in graph neural networks for
high energy physics. These are a category of networks that treats the input data as
a graph, meaning a set of points that have neighbors connected in vertices. This
type of network was popularised for molecule data, since molecules can easily be
interpreted as a graph. They have also been used in connections with self driving
cars and robotics, because these use point clouds in a physical 3D space as input. For
these inputs each point has a clear set of neighbors based on the distance in Cartesian
coordinates, making it graph like. Different types of graph neural networks exists, but
in general they consist of some clustering algorithm, usually the k nearest neighbor
(KNN) algorithm, that calculates a set of neighbors for each input element. A network
layer then acts on this cluster of points. For particle physics these types of networks
have been tried for several tasks such as jet tagging for highly boosted particles [108]
and particle reconstruction in calorimeters [109, 110]. The graph neural network fits
particle physics experiments very well to represent data such a cells in a calorimeter,
which can easily be represented as a point cloud in 3D coordinates, and it is more
suited than CNNs since the detector might have irregular geometry that does not
fit on a grid. For jet physics these networks have had great success, however it is
unclear if this is really an optimal representation. Particle candidates in a jet are similar
to a point cloud as they both are a set without a clear order. However for a point
cloud there usually is a clear metric for the distance between the points, which is
then encoded into the network with the KNN algorithm. For a jet there is no such
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obvious metric for particle adjacency and different tasks can require different metrics.
For a task such as AK8 jet top quark tagging where the jet substructure is highly
important, a distance metric between particle candidates could be the distance in
(φ, η) space, but it is unclear if this is optimal. For something like flavour tagging,
where the tracking information provides the most important variables, using the
distance in (φ, η) space is almost certainly not optimal. Since the KNN algorithm
contains a sorting operation, it is not differentiable, which means that it is not possible
to optimize the distance metric during training to automatically find an optimal metric.

An approach alternative to the graph neural networks is transformer networks. These
networks were originally developed for language models, and are like RNNs designed
for sequential data. However, they are more flexible in terms of how the data is
ordered, as they utilize a mechanism called self attention to assign relevance between
the elements of the input. An interesting application of transformer networks is jet
to parton assignment in the reconstruction of top quark events [111]. They have also
been employed for jet tagging of highly boosted particles [112], showing great promise.
Another powerful tool of the transformer network, is that parts of the network can
be pretrained. This refers to a process where the network is trained to predict its own
input values. The pretraining is done using a dataset where some input variables
of each training example are randomly masked, such that they are hidden from the
network. Then the network is trained to predict these masked variables using the ones
available. This allows the structure of the input data to be encoded into the network
in a general way. For instance such a pretraining could be applied on jets, and this
pretrained network could then be utilized for any number of jet physics use cases. The
pretraining can be done on unlabeled training data, which would enable the use of
experimental data rather than simulation and might be a powerful tool for mitigating
data to simulation discrepancies.
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Chapter 4.

Deep Neural Network for Jet
Identification

This chapter mostly covers the content of the JINST publication "Jet flavour classifica-
tion using DeepJet" of Bols et al. [113].

At the LHC experiments it is critical to identify which hard parton is at the origin of
the measured jets, and to identify its flavour. For instance the top quark decays to
a bottom quark more than 95.5% of the time, making it essential to identify jets that
originated from the fragmentation of b quarks, if top quarks are to be identified. For
other physics processes it is needed to identify jets originating from charm quarks such
as for a Higgs boson decaying to a charm quark pair. The jets that originate from heavy
flavour quarks, bottom and charm quarks, have several distinguishing characteristics
that can be exploited for classification. Due to the fragmentation process of the heavy
flavour quark, heavy flavour jets contain a charm or bottom hadron that often has a
large fraction of the momentum of the quark. The bottom hadrons have a lifetime of
τ = ∼ 1.5 ps, giving a range of typical decay lengths from a few millimeters up to a
centimeter. Because of this, they usually decay before they reach the CMS inner tracker,
yet their decay is far enough away from the primary collision vertex for the decay to
create a secondary vertex that can be reconstructed from displaced tracks. The charm
hadrons generally have a slightly lower lifetime of τ = ∼ 1ps, which also makes
them identifiable from secondary vertices, albeit slightly more challenging as their
signatures are in between that of jets originating from light (uds) quarks and b quarks.
Beyond heavy flavour tagging, the task of separating light jets into quark and gluon
jets, is another difficult challenge that is useful for αs measurements, measurements
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of parton distribution functions and new physics searches. The differences between
quark and gluon initiated jets are subtle, but in general quark jets are more narrow than
gluon jets. The quark jets have fewer particle constituents, and individual constituents
are more likely to carry a larger fraction of the jet momentum. The classification of
all jet flavours requires leveraging information of the lifetime, fragmentation and
hadronization properties of the different flavours. From first principles it is not theo-
retically possible to define an all encompassing variable that can do this, and much
less so from experimental observable variables. Due to this inherent multivariable
nature of jet identification, machine learning has been employed extensively to solve
this.

Historically several different machine learning methods have been used for b
tagging in the CMS experiment. Initially algorithms were separated in track based
taggers and secondary vertex based taggers that were then combined to perform
discrimination [114, 115]. Eventually combined algorithms [116, 117] based on either
neural networks with a single hidden layer or boosted decision trees were developed.
These combined algorithms directly incorporated information of both input objects.
The ATLAS b tagging algorithms generally have stuck with keeping vertex based
algorithms and track based algorithms separate. These individual algorithm predic-
tions are then combined in a final high level tagger [118, 119]. The ATLAS track based
b-tagger utilizes a recurrent neural network [120]. This algorithm relies on a small
number of reconstructed tracks associated with the jet. These tracks are required to be
of high quality and strict selection requirements are imposed, for instance requiring 7
or more silicon hits for tracks to be considered. A secondary vertex based b-tagging
algorithm is then used to supplement this track based tagger. The CMS b-tagger,
DeepCSV [117], is a fully connected neural network. It uses 5 hidden layers with 100
neurons each. As input variables it uses several high-level engineered features as well
as the jet pt and η. It also relies on track features such as the 2D impact parameter
significance. The six most displaced tracks associated with the jet are used as input
to the algorithm. As with the ATLAS algorithm these tracks are required to pass
strict selection requirements. DeepCSV differs from the ATLAS algorithms in that it
directly incorporates the input features from a potential secondary vertex, making it a
combined track and vertex tagger.

In general, traditional jet flavour identification algorithms rely on careful track and
feature selection of the inputs to make the classifier learn easier and thereby perform
better. However the selection of tracks and high-level features is done by hand, and
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these tight selection criteria introduce loss of information that could be useful for
the jet flavour identification. Additionally many jet identification algorithms rely
on combining a separate track based and vertex based algorithm, which can hide
important input correlations from the final algorithm. In this chapter the jet flavour
identification algorithm DeepJet is described. This algorithm uses a novel neural
network architecture that overcomes the input limitations past models had. It allows
the algorithm to simultaneously use all jet constituents, secondary vertices as well
as event-level variables. Secondarily, jet flavour tagging was previously done using
separate specialized algorithms for identifying specific flavours. This algorithm unifies
the different task of jet flavour identification, achieving state of the art performance in
both b-tagging, c-tagging and quark-gluon tagging.

4.1. Training Samples and labeling

The DeepJet neural network is trained using a sample of AK4 [71] jets produced in
simulated events. Two simulated physics processes are used. The first is fully hadronic
top quark pair (tt̄) events generated with POWHEGv2 [121–124] as they contain a
high rate of heavy flavour jets. QCD multijet events generated with PYTHIA8 [39] are
also included, as this sample enables large statistics of heavy flavour jets at very high
transverse momentum, pt. The top quark pair (tt̄) b and c jet spectrum falls rapidly at
high pt, making it insufficient on its own. PYTHIA8 is used for the parton showering
and hadronization in both cases. The GEANT4 [125] program is used to perform the
detector simulation. The geometry of the CMS Phase 1 detector [49,126] is used. Pileup
in the jets have been mitigated with the charged hadron subtraction method [127].

The b-tagger is supposed to be used in a general event topology beyond QCD multijet
and hadronic top quark pair events. To avoid the network learning specific kinematic
effects of these physics processes, it is needed to reshape the jet transverse momentum
and pseudorapidity distributions to be the same for all jet flavours. In order to do
this jets from each flavour category are randomly removed until the given flavour
transverse momentum and pseudorapidity distributions are identical to the b jet dis-
tributions. After this process the sample consists of ∼ 130 million jets. The flavour
of the jets are assigned through the process of ghost association [117]. Copies of the
generated b and c hadrons are made before they are allowed to decay. These copies,
referred to as ghosts, have their momentum scaled to an infinitesimal value. The
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ghosts are then included in the reconstructed jet clustering, and if a jet contains at least
one ghost b hadron, it is labeled as a b jet. If a jet contains at least one ghost c hadron,
and no ghost b hadrons, it is labelled a c jet. If neither ghost b or c hadrons are present,
the jet is labelled as a light jet. To further separate these light jets into quark and gluon
jets, parton level information is needed. This is done by matching light jets with the
closest quark or gluon parton in ∆R space. A similar ghost association process is used
for this. If no ghost parton is within ∆R < 0.4 of a light jet, the jet flavour is considered
undefined, and it is not used for training. The b jets are also further labelled into three
categories consisting of b jets where the b hadron is leptonically decaying (blept), b
jets where the b hadron is decaying hadronically (b), and jets where there are two b
hadrons (bb). The addition of the bb jet definition was done since g→ bb̄ is a common
physics analysis background, and it might be useful to exclude this. The separation of
hadronically and leptonically decaying b jets was done to allow for calibration cross
checks, i.e. the calibration of the performance obtained with simulated events to data.
This is because some b jet calibration procedures rely on using leptonically decaying b
jet, but are then applied on hadronically decaying b jets as well. In order to monitor
overfitting, the method of cross-validation is used. A data set, which the algorithm is
trained on, is made from 76.5% of the total collection of jets. A fraction of 10% of the
jets is kept as a testing sample that is used to monitor that the algorithm performance
generalizes beyond the training set. Consequently all performance plots are made on
this sample. Finally, a validation set consisting of 13.5% of the total number of jets is
used to monitor the performance of the algorithm during training on a sample separate
from the training sample. This can help tuning the algorithm as well as identifying
overfitting, as it is occurring, during training.

4.1.1. Input features and preprocessing

The DeepJet algorithm uses ∼ 650 input features. These are separated into four cate-
gories. The first category groups global variables, which consist of jet level variables
such as the jet pt and η, the jet constituent multiplicity, and the number of secondary
vertices in the jets. One event variable is also included in terms of the number of
reconstructed primary vertices (NPV) in the event. Usually, event level variables are
hidden for jet identification algorithms to avoid the algorithm inferring the jet flavour
based on the event topology, as this can ruin the algorithms ability to generalize to
different physics processes. However, the NPV variable doesn’t give information on
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the event topology on its own. It is included, since additional primary vertices produce
additional particles in the event that can affect the jet reconstruction. By including
NPV, the network can identify which jets are most affected by this and take this into
account in the jet identification. The most important features for DeepJet are the
charged particle flow (CPF) candidates. Up to 25 charged particle flow candidates
are considered, and they are sorted by the track impact parameter significance. This
variable is the track impact parameter displacement with respect to the primary vertex,
divided by the uncertainty on the measured impact parameter value. This variable is
used for the sorting as it is assumed to be the most important variable. If more than
25 charged candidates are associated with the jet, the 25 candidates with the largest
track displacement significance are picked. Each charged particle flow candidate has
16 features consisting of different kinematic variables as well as tracking variables,
most notably the track impact parameters. Neutral particle flow candidates are also
included in DeepJet. Traditionally, this information was not used for heavy flavour
tagging, as it has less discrimination power compared to the charged candidates. It is
however important for quark gluon tagging. Up to 25 neutral particle flow candidates
are included, and they are sorted by decreasing angular distance to a secondary vertex.
If no secondary vertex is in the jet, they are sorted by decreasing pt. Each neutral
particle flow candidate has 6 features, mostly kinematic. Up to four secondary vertices
are considered, and they are sorted by displacement significance. They each have 12
features containing information on the kinematics and displacement. The full variable
list can be found in Appendix A.

Figure 4.1 shows some selected input variable distributions. The top left distribu-
tion shows the transverse impact parameter significance of the most displaced charged
particle flow candidate. As can be seen, b and c jets are more likely to have displaced
tracks compared to light jets due to the lifetime properties of heavy flavour hadrons.
The top right plot shows the pt relative to the jet axis of the most displaced CPF
candidate. It is seen that, on average, the b hadron decay products have larger pt,rel,
illustrating the harder fragmentation of b quarks compared to light quarks. The bottom
left plot shows the invariant mass of the tracks associated with a secondary vertex that
was matched to the jet. The light jet distributions is described by a falling spectrum,
whereas bumps at higher masses are observed in the c jet and b jet distributions, since
the HF hadrons have large masses. The differences between quark and gluon jets are
more subtle. The bottom right plot shows the total number of jet constituents in quark
and gluon jets, where it can be seen that gluon jets generally have more constituents
than quark jets.
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Figure 4.1.: Four different input variables are shown for selected jet flavours. The 2D IP
significance of the most displaced track (top left), the pt relative to the jet axis of
the most displaced track (top right), the secondary vertex invariant mass (bottom
left) and the number of jet constituents (bottom right).
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Reconstructed objects in the events can in rare case have features that are either not
available or have infinite values. In that case the value is replaced with a value that is
purposefully picked to be outside of the physical range of values for the specific feature,
without being too large to cause numerical issues in the training. No normalization
of the features is done at this stage, as this is built into the architecture itself. Several
input variables have values that are also bounded within a physically well defined
range.
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Figure 4.2.: The architecture of the DeepJet algorithm is shown.

4.1.2. Neural Network Architecture

The architecture of DeepJet is shown in Figure 4.2. It consists of a series of convo-
lutional 1x1 layers, processing each type of physics object. This exploits the object
symmetry, forcing the network to learn the same transformation for each physics
object regardless of their input order. The charged particle flow candidates are input
to a series of four convolutional layers with 64, 32, 32 and 8 filters respectively. Since
the number of filters is decreased at every step, this can be seen as an automatic fea-
ture engineering, condensing the original 16 input features per charged particle flow
candidate into 8 optimised jet tagging features per charged particle flow candidate.
The secondary vertices are processed with an identical series of convolutional layers.
The neutral particle flow candidates are processed by three 1x1 convolutional layers
in sequence with filters of size 32, 16 and 4. Fewer layers with smaller filters were
chosen as it is assumed that the neutral candidates were less important, and because
there are fewer input features compared to the charged particle flow candidates and
secondary vertices. All the convolutional layers use the ReLU activation function [128].
After this step, the objects with the learned features are input to LSTM layers. The
LSTM layers ensure that a similar transformation is learned for every physics object,
since the parameters are shared across the LSTM cells. The order of the inputs does
however matter, since the LSTM memory value fades as objects are processed, making
the last object in the sequence most influential. It is therefore ensured that the object
considered most important, based on the ordering from the previous section, are
shown to the LSTM last. It was tried to add a sorting layer before the LSTM, which
would order the objects based on one of the engineered features. However, since the
gradient doesn’t propagate through the indices of the sorting, the network wasn’t able
to optimize the convolutional layers to create a better order than what was done by
hand. The charged particle flow candidates are processed by an LSTM of size 150,
whereas the neutral particle flow candidates and the secondary vertices are processed
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by an LSTM of size 50. To combine the information from the groups of physics objects,
the outputs of the LSTM layers are concatenated and together serves as input to a
series of fully connected layers. The first has a size of 200 nodes. This is followed by
seven layers with 100 nodes each. The number of layers were determined by adding
layers until performance stopped improving. The size of the layers were found as
a balance of memory consumption and performance. These fully connected layers
all use the ReLU activation function. The final layer is an output layer with 6 nodes,
representing the six target classes for the training. The output layer uses the softmax
activation function, which ensures each neuron activation has a value between 0 and 1,
and that sum of the nodes is 1. In between every layer of the network, there is a batch
normalization layer [129]. This layer normalizes the features in a batch by subtracting
with its mean and dividing by its standard deviation calculated on the batch. It then
applies a transformation y = γx + β where γ and β are trainable parameters of the
network. This allows the network to rescale the features in a manner that is optimal
for convergence. Batch normalization is applied to avoid sudden shifts in the output
distributions of neurons, when the parameters are being updated in the network
during training. A batch normalization layer is also applied at the start of the network.
Additionally dropout of value 0.1 is applied in between every layer.

4.1.3. Training procedure

The training is done on batches of 10000 jets. The full data set is iterated through 65
times (65 training epochs). The loss function used is the categorical cross entropy
function. During the training, the loss function is evaluated on the validation data
set, and its value is monitored to ensure there is no overtraining. If the validation loss
stops improving during training for more than 10 epochs, the learning rate is halved.
The ADAM [130] optimizer is used with a learning rate of 0.0001. The beginning batch
normalization layer applied on the input features is only trained for the first epoch, as
the distributions of the input features of course do not change during training. The
training is performed on an Nvidia GEFORCE GTX 1080 Ti GPU, which takes three
days on the training sample of 130 million jets with a total size of ∼ 130 GB. The
model was implemented and trained using a dedicated machine learning framework
for particle physics based on KERAS+Tensorflow [131–133].
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4.2. Jet flavour identification performance

While the DeepJet network is trained to identify the b jet sub-labels (b,blept and bb)
described earlier, they are not used as separate classes for discrimination. The final
b jet discriminator is instead the sum of each of these nodes. This was done, since
the discrimination power between these groups is low, and because they are hard to
calibrate separately. It could however still be an interesting prospect to try and remove
the bb node from the b jet discriminator in the future, since it might remove gluon
splitting g→ bb̄ that is a background to most physics analyses that use b jets.

The heavy flavour identification performance of DeepJet is compared to the pre-
vious CMS heavy flavour identification algorithm, DeepCSV. In general, heavy flavour
identification performance varies a lot with the pt of the jet. At very high pt the
tracks are more collimated and are therefore more difficult to resolve and reconstruct
properly. Additional more b hadrons will be so energetic that they make it past the
innermost pixel layer before decaying. Very low pt jets can also be difficult due to
multiple scattering effects and overall lower track quality. In general, the best b tagging
performance is usually observed in the region of 90 GeV < pt < 150 GeV for jets.
To quantify the performance improvement in these different kinematic regions as
well as in different sample flavour compositions, different physics event topologies
with varying jet selections are examined. The main plot used to identify performance
gain is the receiver operating characteristic (ROC) curve. For b-tagging, for different
discriminator cut values, the efficiency of identifying a b-jet labelled jet as a b-jet is
plotted against the efficiency of identifying jets with another label as a b-jet. The latter
efficiency is called the misidentification probability. Since it is more difficult to separate
b-jets from c-jets than it is with light jets, separate ROC curves are made for b vs. c
and b vs. udsg discrimination. A comparison is made on a fully hadronic tt̄ sample
with two different pt cuts, shown in Figure 4.3. It is observed that DeepJet performs
significantly better than DeepCSV in both separating b from light jets, as well as b from
c jets. With the inclusive selection of pt > 30 GeV an absolute improvement of ∼ 13%
at 10−3 misidentification probability for b vs. light jets is observed. This corresponds
to a relative improvement of ∼ 25%. For the more high pt selection of pt > 90 GeV, the
improvement is slightly bigger with an absolute efficiency increase of almost 20% at
10−3 misidentification probability corresponding to a relative improvement of ∼ 30%.
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Figure 4.3.: A comparison of the b-jet identification performance of the DeepJet and DeepCSV
algorithms is shown for tt̄ events where the top quarks decay hadronically. A
selection criterion of pt > 30 GeV (left) and pt > 90 GeV (right) is imposed. The
performance is shown for b vs. light (solid lines) and for b vs. c classification
(dashed lines).

Since there are few jets with pt greater than 150 GeV in the fully hadronic tt̄ samples,
a QCD multijet sample is used to measure the performance in the high pt regions. In
Figure 4.4 ROC curves calculated using jet selections of 150 GeV < pt < 300 GeV,
300 GeV < pt < 600 GeV and 600 GeV < pt < 1000 GeV are shown. Large perfor-
mance gains are seen in each case with an absolute (relative) efficiency improvement
at 10−2 misidentification probability of ∼ 12% (∼ 15%), ∼ 19% (∼ 33%) and ∼ 20%
(∼ 40%) respectively. This improvement is assumed to be caused in part by the re-
moval of the track selection requirements used in the previous b tagging algorithms.
These were designed and optimised for jets in the 30 GeV to 130 GeV pt range, and this
selection remove a lot of important information in high pt jets. Since the DeepJet algo-
rithm can make a track selection itself, it gets a significant advantage over DeepCSV in
this region of the phase space. The b jet efficiency as function of the jet pt is shown for
fixed light jet misidentification rates of 10%, 1% and 0.1% in Figure 4.5, and the same
trends seen in Figure 4.4 are observed.

The DeepJet algorithm achieves state of the art performance in c jet identification
as well. It is again compared with the DeepCSV model. The c vs light jet discriminator
is constructed from the DeepJet output nodes for light quarks (P(uds)), gluons (P(g))
and c quarks (P(c)) as P(c)

P(c)+P(uds)+P(g) . A comparison of the c jet identification capa-
bilities of DeepJet and DeepCSV is shown in Figure 4.6. A fully hadronically decaying
tt̄ sample with a jet selection of pt > 30 GeV is used. An absolute (relative) increase
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Figure 4.4.: The performance of DeepJet and DeepCSV is shown for QCD multijet events using
three different jet pt selections for both b vs. c (dashed lines), and b vs. light (solid
lines).
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in performance of ∼ 6% (∼ 20%) at a light jet misidentification rate of 1% is observed.
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Figure 4.6.: The performance of DeepJet and DeepCSV is shown for c vs light jet identification
for tt̄ events where both top quarks are decaying hadronically. A jet selection of
pt > 30 GeV is applied.

The addition of quark and gluon nodes in the DeepJet network allows for separating
quark and gluon jets as well. A discriminator is constructed as P(uds)

P(uds)+P(g) . The current
CMS quark gluon discriminator is a quark/gluon likelihood [134], which is built from
the product of three variable probability density functions. These variables are picked
based on physics knowledge of differences in quark and gluon jets, and consists of the
jet constituent multiplicity, the jet minor angular opening and the jet fragmentation
distribution variable. As can be seen in Figure 4.7, the DeepJet algorithm outperforms
the quark gluon likelihood. An absolute (relative) improvement of ∼ 10% (∼ 20%)
quark efficiency at 20% gluon misidentification probability is observed.

As the DeepJet algorithm uses more jet constituents with less selection requirements,
it is important to verify that the performance is robust to varying degrees of pileup.
In Figure 4.8 the b-tagging efficiency is shown for different light-jet misidentification
rates as a function of number of reconstructed primary vertices in the event. For
comparison, the DeepCSV algorithm is shown as well. When there is more pileup, the
b jet identification performance decreases for both algorithms. The rate at which it
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Figure 4.7.: The quark vs gluon identification performance of DeepJet is compared to the
quark-gluon likelihood discriminator. A QCD multijet sample is used.
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Figure 4.8.: The b jet identification performance of DeepJet and DeepCSV as a function of
the number of reconstructed primary vertices in the event is shown. The b jet
efficiency is shown for fixed light jet misidentification probabilities (mistag rates)
of 10%, 1%, 0.1% using jets from QCD multijet events.
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decreases is very comparable between DeepCSV and DeepJet, indicating that DeepJet
is able to internally learn a track selection to some degree.

DeepCSV and DeepJet differ in both the network architecture and the number of
input variables used. It is therefore useful to identify how each of these difference
contribute to the performance improvement. To that end, some additional neural
networks were trained. One model uses a fully connected architecture as DeepCSV
but uses the same input as DeepJet. Similarly, a model was trained using the DeepCSV
inputs, but it uses a series of convolutional layers as well as an LSTM to process the
DeepCSV tracks. Their performance is shown in Figure 4.9. Comparing the perfor-
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Figure 4.9.: The performance of DeepCSV and DeepJet is shown on a fully hadronic tt̄ sample.
Two models interpolating between DeepCSV and DeepJet are also shown.

mance of these models with DeepCSV and DeepJet, it can be seen that both perform
better than DeepCSV, but neither reaches the performance of DeepJet. The DeepJet
architecture performs a bit better than DeepCSV using the same inputs, but without
removing the track selection and increasing the number of physics objects considered,
this gain is very limited. Similarly, it is clear that increasing the number of inputs used
has limited gain, if the neural networks architecture is not well designed to process
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the large sets of input features.

The DeepJet algorithm consists of roughly 200 thousand free parameters, while the
training dataset is of order ∼ 100 million jets. To understand to what extent this large
dataset is useful for the neural network, the same model was trained on training
datasets with different sizes. The performance of these trainings can be seen in Figure
4.10. A performance improvement similar to

√
N is, as the training dataset is increased,

validating the utility of the large dataset. To produce this plot separate hyperparam-
eter tunings were not done for the dataset. If the number of training epochs were
increased and the learning rate scheme was adjusted, it is possible that a slightly more
performing training could be achieved with the smaller datasets.
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Figure 4.10.: The performance of the DeepJet algorithm trained on datasets of varying size is
shown.

The DeepSet approach, described in Chapter 3, is very similar to DeepJet from a
technical point of view. The DeepJet architecture becomes a DeepSet model, if the
LSTM is replaced by a permutation invariant operation over the physics objects. An
example of such an operation would be a scalar sum. Therefore it is interesting to com-
pare the performance of the models to understand how important DeepSets imposing
of object permutation invariance is compared to the flexibility of object aggregation
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of DeepJet. If the filter sizes of the DeepJet convolutional layers are kept exactly as
is, and the LSTM is just replaced with the scalar sum, the DeepSet approach is not
competitive. However, this is to be expected as there simply is not enough information
being passed on to the fully connected layers. A natural modification to fix this infor-
mation bottleneck, is to enlarge the convolutional layers of DeepJet. Therefore the 1x1
convolutional branches are extended to contain 100 filters each, increasing the number
of free parameters. The final layer of each branch is enlarged further, with the charged
particle branch being set to 256 filters, whereas the vertex and the neutral particle
branch are set to 128 filters. The LSTM of DeepJet is then replaced with a scalar sum
over the physics objects to make a DeepSet model. For comparison a DeepJet model
with this new convolutional structure while keeping the LSTM is also trained. Figure
4.11 shows the performance of the original DeepJet model, the DeepSet model and the
DeepJet model with the new convolutional structure. The DeepSet model performs
very well highlighting the utility of imposing the permutation invariance of objects
in a jet. It does however require enlarging the convolutional layers significantly com-
pared to DeepJet. It is also seen that the DeepJet model using the same convolutional
layers outperforms DeepSet. This means that the LSTM still provides information,
and it probably indicates that the DeepSet approach of using a scalar sum to aggregate
objects is a bit too limiting.
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Figure 4.11.: The b jet identification performance is shown for the DeepJet architecture, a
DeepSet architecture and a DeepJet model that uses a larger number of convolu-
tional filters.
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4.3. Calibration of performance

Since the DeepJet algorithm is trained on simulation, it is needed to validate the per-
formance in real data. There have always been some discrepancies between jet flavour
identification in simulation and data, even using simple taggers. In the case of heavy
flavour identification at the CMS experiment, there is a significant difference between
the track impact parameter distributions in data and simulation due to modelling diffi-
culties in the CMS tracker. Since all heavy flavour identification algorithms necessarily
use this information, there will be some difference in performance. The term scale
factor indicates the efficiency in data divided by the efficiency in simulation to identify
a specific jet flavour. A scale factor of 1 therefore means similar performance in data
and simulation, below 1 means lower efficiency in data than simulation and larger
than 1 means higher efficiency in data than simulation. However, the performance
of a jet identification algorithm cannot be quantified solely by the efficiency. The
misidentification rate can also change, and it will need to be measured as well in
data. The heavy flavour identification performance changes significantly as a function
of pt and η and accordingly the scale factors are measured in bins of these jet properties.

It is important to note that the quark-gluon discrimination performance of Deep-
Jet has not been measured in data yet. As the difference between quark and gluon jets
are theoretically hard to model, it might be that the performance gain compared to the
simple quark-gluon likelihood method is smaller in data.

4.3.1. Identification of b-jets

In CMS, b-jet scale factors are calculated for fixed discriminator working points. These
working points are defined as the discriminator cut that on a QCD multijet sample
gives a light-jet misidentification rate of 10%, 1% or 0.1%. They are referred to as the
Loose (L), Medium (M) and Tight (T) working point respectively. Several different
methods exist to measure b-jet scale factors described in reference [117], but a brief
overview is made here. In general, the scale factor methods require a selection that
is enriched in b jets, and they either use tt̄ events or QCD multijet events. The tt̄
events are naturally enriched in b-jets due to the top quark decay. One of the top
quark methods, referred to as the "kin" method, uses events from the dileptonic tt̄
decay channel. In this decay channel it is expected that only b jets are produced,
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although pileup jets and jets from ISR and FSR can still occur. In order to remove
background from these additional jets, a BDT is trained to identify events with only b
jets. In order not to bias the scale factor measurement this BDT only use event level
kinematic variables. When the b-jet enriched selection has been obtained, the rates in
data and simulation are compared to obtain the scale factors. Another top quark pair
method is the tag and probe method, based on the semileptonic tt̄ decay channel. Here,
one of the b jets from either the hadronic or leptonic top quark decay is tagged, and
then the other b jet in the event is used as probe to measure the b-tagging efficiency.
The methods using QCD multijet events are not naturally enriched in b-jets. Jets are
selected from this sample by requiring a soft (low pt) muon inside the jet. This targets
the b hadrons that are decaying leptonically and enriches the sample in b-jets. To avoid
biasing these methods the DeepJet algorithm does not use information about leptons
in the jets, which otherwise could marginally improve the performance. Two of the
QCD multijet scale factor methods rely on constructing templates from simulation of
variables that are sensitive to the b jets and then fitting these distributions to data. The
lifetime secondary vertex method uses a 2D template of the probability that the jet was
produced from the primary vertex and the mass of the secondary vertex. The pt-rel
method uses the pt of the muon relative to the jet axis.

Since the DeepJet algorithm uses significantly more input variables than DeepCSV,
a worry was that the performance gain in data would be smaller than in simulation.
Therefore, it is interesting to compare the scale factors of DeepCSV and DeepJet in
order to see if this really is the case. In Figure 4.12, the CMS 2018 combined b-jet scale
factors are shown for DeepCSV and DeepJet. Since the scale factors depend on the pt

and η, this inclusive scale factor value depend on the sample. A fully hadronically
decaying tt̄ sample is used with a minimal jet pt selection of 30 GeV. As can be seen
there is essentially no difference between scale factors from DeepCSV and DeepJet,
implying that despite the larger set of inputs and the more extensive architecture, the
DeepJet model is robust to simulation to data differences. However the performance
in data cannot be fully quantified without the misidentification scale factor.
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Figure 4.12.: The measured scale factors for b jets. This inclusive scale factor value (SFb) is
evaluated using the pt and η distribution from a fully hadronically decaying tt̄
sample.
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4.3.2. Negative Tagger for light jet identification

In order to measure the light jet scale factors for DeepJet, what is referred to as a
negative tagger must be constructed. The main reason why light jets are identified as
b-jets, are due to the light jet tracks being reconstructed as displaced, when they really
originated from the primary vertex. The track impact parameter resolution of the CMS
detector is roughly symmetrical around zero as can be seen from Figure 4.13.

Figure 4.13.: The 3D impact parameter value distribution for b jets, c jets and light jets. From
Ref. [117].

Since this means that the impact parameter distribution of tracks originating from
the primary vertex is invariant under sign inversion, the light-jet discriminator dis-
tribution should also be mostly invariant under this operation. Of course, the b-jets
track impact parameter distribution have mostly positive track impact parameters.
If the sign inversion is performed, it causes a large fraction of b-jets to obtain very
low discriminator values. This allows measuring the light-jet misidentification rate,
as the light-jet distribution of the discriminator is mostly unchanged, while the b-jet
distribution is shifted to low values. A negative tagger is then a variation of the b-
tagging algorithm where all impact parameters are sign inverted before being input to
the network. In general, the negative tagger method has had increasing uncertainties
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on the measured scale factors as the b-taggers started to use more input information
beyond track impact parameters. Still, it remains the only method for estimating
light-jet scale factors in CMS to date.

Different designs where explored for the DeepJet negative tagger, as it was unclear
what is the best way to treat the additional inputs. The method inverts all the charged
particle flow candidates track impact parameters. In addition, charged particle flow
candidates with a track impact parameter significance larger than 10 are removed from
the inputs. This reduced the b-jet contamination in the negative tagger, presumably as
the network was using kinematic variables to identify these tracks originating from
b jets. In order to process the vertices, it was needed to define a custom secondary
vertexing sequence. Similarly to the IVF vertexing algorithm, the secondary vertices
are clustered using the full event track collection. However, the vertices are associated
to a jet by requiring the secondary vertex momentum to be within ∆R < 0.4 of the
inverted jet direction. A vertex therefore has to be in a cone opposite to the jet direction.
Furthermore, the vertex is only saved if the direction of the sum of the vertex tracks has
an angle of cos(θ) < −0.95 with the secondary vertex flight direction. This selection
ensures that vertices with negative flight distances are included in the inputs.

Figure 4.14 shows the discriminator distribution of the DeepJet tagger and the DeepJet
negative tagger on a tt̄ sample. The distribution from -1 to 0 is the negative tagger,
whereas the normal tagger is shown from 0 to 1. The light-jet distribution is fairly
symmetrical, however the b-jet distribution is significantly changed, with the peak at 1
being completely removed in the negative tag distribution.

The negative tagger is expected to be less symmetrical for DeepJet compared to
DeepCSV due to the increase of inputs, yielding slightly larger uncertainties. The
Figure 4.15 shows the CMS 2018 udsg-jet scale factors for DeepCSV and DeepJet. As
can be seen, the nominal values are very similar for the two taggers. Together with
the observations made from the b-jet scale factors, this shows that the performance
degradation of DeepJet when using data is comparable to DeepCSV.
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Figure 4.14.: The distribution of the DeepJet negative tagger evaluated on simulated tt̄ events.
The negative tagger discriminator distribution is plotted from -1 to 0, whereas
the regular tagger is plotted from 0 to 1. The dark and light blue histograms
refer to light jets, the red histogram indicates b-jets, and the barely visible green
histogram indicates charm jets.
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Figure 4.15.: The measured scale factors for udsg-jets (SFudsg). This inclusive scale factor value
is evaluated using the pt and η distribution from a fully hadronically decaying tt̄
sample.
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4.3.3. Identification of c-jets

Scale factor measurements are done for c-jets as well [117]. In the case of a misidentifi-
cation source for the b-tagger, simply the b-jet scale factors with inflated uncertainties
are used, as c-jets rarely are a major background source for b-jets in physics analyses.
However, for analysis dedicated to c-jet identification scale factors are needed for both
c vs. b tagging and c vs. udsg tagging, as many analyses using c jets have both as
background. Fixed working points are defined by a simultaneous cut on both the c
vs. udsg and the c vs. b discriminator. The scale factors for these can be derived in
using the W + c channel as well as in semileptonic tt̄ events where the hadronic W
decays to a c quark and a down-type quark. Methods for deriving scale factors for
the full c-tagging discriminator distributions have also recently been developed in
reference [135]. Comparing DeepCSV and DeepJet for c-tagging, similar conclusions
are reached as for b-tagging.

4.4. Physics Analyses using DeepJet

Since DeepJet is the current best performing heavy flavour jet identification algorithm
in CMS, it is a useful tool for CMS physics analyses. Several published CMS analyses
use DeepJet, and many more are in the pipeline. For many top quark analyses usually
one or two b tags are imposed, so the improvement from DeepCSV increases the
selection efficiency by ∼ 10%. Some analyses in the Higgs sector that particularly
benefit from DeepJet are highlighted.

One recent analysis using the DeepJet algorithm is a search of Higgs boson pair
produced in the HH → bb̄bb̄ decay channel at the CMS experiment [136]. Since the
standard model Higgs boson pair production cross section is small and the main
background of QCD multijets are strongly suppressed by requiring b-tagged jets, a
high efficiency for heavy flavour identification is important. The analysis signal region
is defined using 4 jets that pass the DeepJet b-tagging medium working point. The
b-tagging efficiency is therefore ∼ 47% whereas with DeepCSV it would roughly have
been ∼ 30%, yielding a rough estimate of an increased signal to background ratio of
∼ 1.6. This along with many other significant improvements and a larger data sample
compared to older analyses, enabled this search to put the most stringent limits on the
Higgs boson pair production cross section to date.



Deep Neural Network for Jet Identification 89

Another recent CMS analysis [137] is a direct search of H → cc̄ in the VH chan-
nel where V is either a Z or W Boson decaying leptonically. The result is a combination
of a merged jet and a resolved jet analysis. The resolved jet analysis relies on using two
charm tagged AK4 jets and it improves on the previous CMS analysis [138] by using
the DeepJet charm identification capabilities instead of DeepCSV, which improves the
signal rate. This analysis sets the most stringent limit on the charm Yukawa coupling
modifier κc to date.

4.5. Conclusion

In this chapter a multiclass flavour tagging algorithm, DeepJet, was presented. It
exploits the full jet information, and it relies on low-level variables with loose selec-
tion criteria. The architecture is designed such that it can process these inputs in a
highly efficient manner. Compared to the previous CMS heavy flavour identification
algorithm of DeepCSV, a significant gain in performance is seen for flavour tagging.
For some high jet pt topologies the efficiency is improved by a factor 2 for the same
misidentification rate. Calibration of the tagger reveals that the performance gain
seen in simulation, is applicable to data as well for heavy flavour identification. The
model can also be used for quark-gluon discrimination, achieving state of the art
performance.



90



Chapter 5.

Deep Neural Network for Jet Energy
Regression

Machine learning has been employed in many avenues of jet physics, for instance
in terms of jet flavour identification described in the previous chapter. One of the
areas where machine learning is not the primary technique is the development of
methods to estimate jet energy corrections (JEC). These corrections try to mitigate the
difference in the reconstructed jet pt as observed in the detector and the particle level
jet pt (pt,ptcl) as given to the detector. The current CMS jet energy corrections [72],
are derived using a pileup correction based on the jet area, the diffuse offset energy
density, jet pt and η, called the level 1 jet energy correction. A second correction on
the jet energy response is also made based on the jet pt and η called level 2 and level
3 jet energy corrections. This method has performed very well even compared to
multivariate methods, which has made it favorable not to adopt more complicated
approaches. However this method of correcting the jet energy does not take into
account the jet flavour. As jets with different flavours have different kinematic jet prop-
erties, different jet multiplicities and different distributions of energy shared among
the jet constituents, they also have different jet energy responses. This means that
there is a clear connection between jet flavour identification and the task of estimating
energy corrections. A neural network that is able to perform jet flavour identification
could make a guess of the jet flavour and then propose a suitable energy correction.
There has been significant improvements in jet resolution and response when applying
b-jet energy corrections using neural networks in the past. In reference [139] a neural
network was trained to predict an additional jet correction to b jets improving their
resolution in H → bb̄. A similar approach to this analysis is developed in this chapter.

91
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The main differences are to train a network to apply a correction to all jet flavours, and
to apply an architecture similar to the DeepJet architecture, allowing the network to
estimate the jet energy correction without prior knowledge or assumptions on the jet
flavour.

One core reason for investigating this neural network based estimation of jet en-
ergy corrections is to understand, if it is possible to decrease the flavour modelling
uncertainty on the jet energy corrections [72]. The simulated jet response for the differ-
ent jet flavours depends on which matrix element generator, parton showering model
and hadronization model is used. Herwig++ [140] and Pythia8 [39] are two different
general purpose event generators that can be used for this, and they each result in
different corrections. For instance, Herwig++ heavy flavour jets have a significantly
larger jet energy response at high pt compared to those simulated by Pythia8. This
is due to the jets having different charged and neutral particle compositions and jet
shapes. A jet correction only targeting pt and η cannot take into account such effects
on the jet response, and it would most likely make them sensitive to the difference
between Herwig++ and Pythia8. However, a multivariate correction using the full
jet shape, might be less sensitive, since the detector is the same, and the jet response
should be almost fully describable by physical observables. This flavour dependent jet
energy correction uncertainty is the largest for several top quark analyses, such as the
top quark mass measurement.

5.1. Neural Network model

The DeepJet JEC model has a lot of similarities with DeepJet in terms of network
architecture, jet flavour labeling, input features and preprocessing. The same training
sample is used as for the DeepJet algorithm. The target variable is defined using
the particle level jet transverse momentum pt,ptcl, which is determined by matching
generator jets clustered using the anti-kt algorithm to the measured jets within ∆R <

0.4. The training label is then pt,ptcl/pt. Two target variables are constructed using the
transverse momentum of generator jets where neutrinos are included and excluded
respectively. The standard CMS jet definition excludes neutrinos, but the neural
network can potentially correct for neutrinos in leptonically decaying b or c jets, which
would improve the jet energy resolution. The network architecture is identical to the
enlarged DeepJet model from the previous chapter, i.e. the 1x1 convolutional branches
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contain 100 filters each, as well as enlarging the final convolutional layer of each
branch to 256 filters for charged particles, whereas the vertex and the neutral branch
are set to 128 filters. The output layer is also modified to contain 2 nodes with linear
activation functions. The training approach of reference [139] is emulated by using
the Huber loss function, making the predicted corrections less sensitive to outliers
compared to the use of the mean squared error. The input variables are identical to
DeepJet with a few additions. The azimuthal angle φ of the particle candidates and
jets are included as an input. The charges of particle flow candidates are included, and
a flag is added to indicate if a charged particle flow candidate is a muon or electron.
This was not included in flavour tagging to avoid a calibration bias, however since the
network should correct for potential neutrinos, the lepton information is essential for
this task. The jet energy and mass are included as well. The full set of input variables
can be found in Appendix A.

5.2. Performance of the Neural Network

The performance of the DeepJet JEC network is compared to the standard jet energy
corrections, which include a level 1, level 2 and level 3 correction. The DeepJet algo-
rithm has the advantage of being able to perform a jet energy correction leveraging
the information of the jet flavour. Beyond this, the network can also make a correction
leveraging more information than just the jet pt and η values. The standard JEC
uses a jet definition excluding neutrinos. Here, the jet definition includes neutrinos.
The network also includes a second output node, predicting the jet energy without
neutrinos. The performance is similar for light quark jets and gluon jets, however
including neutrinos yields better performance for b and c jets. Only the corrections
with neutrinos are therefore shown here.

The ability to correct the jet energy is compared on a sample of jets gathered from
simulated Pythia8 QCD multijet events. The main metric used to quantify the perfor-
mance is the mean jet energy response, which is defined as the mean of the ratio of
the measured jet pt to the particle level jet pt, pt/pt,ptcl. A comparison of the mean
jet energy response is shown in Figure 5.1 for the four different jet flavours using the
same flavour truth labeling as in Chapter 4. In the case of each jet flavour the mean
jet energy response is closer to 1 when applying the DeepJet JEC method. The main
improvement is below pt < 100 GeV for light quark jets and gluon jets. The entire
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Figure 5.1.: The mean jet response of the DeepJet corrected jets is compared with the jets that
are corrected with standard L1L2L3 jet corrections. Shown are b-jets (top left), c
jets (top right), light quark jets (bottom left) and gluon jets (bottom right).
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spectrum improves for heavy flavour jets since the neutrino contribution is added.

The improvements in jet resolutions were studied in the context of a top quark recon-
struction analysis. Jets from tt̄ events where one W boson decays leptonically and
one W boson decays hadronically are used. The partons are matched to the jets by
requiring ∆R < 0.3. Only events where an unambiguous matching exists are used.
The resolution is estimated as the σ of a Gaussian fitted to the pt− pt,parton distribution
in bins of η and pt. Figure 5.2 shows the resolution of b-jets in different bins of η. The
DeepJet corrected jets are compared to the L1L2L3 corrected jets. For all the different η

regions, a 15− 20% improvement in resolution is observed below 100 GeV. Above this
the resolution improvement becomes smaller, perhaps indicating that a larger training
statistics is required in the high pt region. Shown in Figure 5.3 is the resolution of the
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Figure 5.2.: The σ of a Gaussian fit to the pt − pt,parton distribution is plotted as a function of
the pt of the reconstructed jet for b-jets from a top quark decay in tt̄ events. Four
different η bins are shown.
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udsc jets from the W boson decay. A ∼ 15% improvement in the resolution is observed.
This indicates that the better resolution does not solely come from including neutrinos
in the jet energy estimation. The improvement in the jet energy reconstruction can
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Figure 5.3.: The σ of a Gaussian fit to the pt − pt,parton distribution is plotted as a function of
the pt of the reconstructed jet for udsc-jets from W boson decay in tt̄ events. Four
different η bins are shown.

also be quantified by examining the reconstructed physics objects. As an example,
the W → qq̄ decay is studied in tt̄ events. The jets associated with the W boson are
identified via parton matching and the invariant mass of the jets is calculated. Figure
5.4 shows the obtained mass spectrums with and without DeepJet JEC applied. An
improvement of around ∼ 15% is obtained in the width of the distribution. The mean
of the distribution also moves closer to the generator value of W Boson mass of 80.4
GeV.
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Figure 5.4.: The invariant mass of two jets produced from a W → qq̄ decay in top quark pair
events. Left is the mass spectrum without DeepJet corrections applied to the jets,
and right is the mass spectrum with the corrections applied. Gaussian fits are
applied around the peaks to estimate the parameters of the distributions.

5.3. Jet Energy Correction Flavour uncertainties

The jet energy response depends on the jet flavour. The jet energy corrections derived
for each flavour would vary depending on whether Herwig++ or Pythia8 is used as
the general purpose event generator, due to differences in how the jet flavours are
modelled. The difference between these two event generators can be used to assign
an uncertainty on the jet energy flavour response. In Figure 5.5, the mean jet energy
response as a function of jet pt is shown for Herwig++ and Pythia8 for jets with the
DeepJet JEC applied in QCD multijet events. For comparison, Figure 5.6 shows the
mean jet energy response as function of jet pt with simply the L1L2L3 corrections
applied. Figure 5.7 shows the ratios between Herwig++ and Pythia8 for both methods.
As can be seen from the ratios, there is no significant improvement in the agreement
between the generators after applying the multivariate correction. It was also tried
to train the network on a mix of QCD Herwig++ and Pythia8 jets, but this did not
significantly improve the agreement. The lack of improvement seems to imply that the
difference in the mean jet response is caused by complicated effects that are hard for
the network to learn. Possibly a more advanced neural network is required to improve
on this. In order to estimate the DeepJet JEC flavour uncertainty, a JEC set is derived
for each flavour using both generators. This is done in 5 bins of η of the reconstructed
jet. A ratio of Herwig++ versus Pythia8 is taken between these JECs and subsequently
polynomials are fit to parameterize the tendency in pt. The obtained function of these
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ratios can then be used to apply an additional energy scale correction to the jets in pt

and η for uncertainty estimation. Figure 5.8 shows the uncertainties for each flavour
in the central η bin. The plots for the remaining η bins can be found in Appendix C.
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Figure 5.5.: The mean jet response of the DeepJet corrected jets are compared on a QCD multijet
sample generated using Pythia8 and Herwig++. Shown are b-jets (top left), c jets
(top right), light jets (bottom left) and gluon jets (bottom right).
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Figure 5.6.: The mean jet response of the L1L2L3 corrected jets are compared on a QCD multijet
sample generated using Pythia8 and Herwig++. Shown are b jets (top left), c jets
(top right), light quark jets (bottom left) and gluon jets (bottom right).
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Figure 5.7.: The ratio of the Herwig++ and Pythia8 mean jet response for DeepJet corrected
and L1L2L3 corrected jets are compared. Shown are b jets (top left), c jets (top
right), light quark jets (bottom left) and gluon jets (bottom right).
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Figure 5.8.: The ratio of DeepJet JEC derived in the central η bin using Herwig++ and Pythia8.
Shown are the ratios for b jets (top left), c jets (top right), uds jets (bottom left) and
gluon jets (bottom right).
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5.4. Conclusion

In this chapter the DeepJet model was extended to perform jet energy regression. This
allows to estimate a jet energy correction that can use the full flavour information
of the jet to propose a correction. Furthermore, the jet energy corrections can be
parameterized in more variables than the standards of pt and η of the reconstructed
jets and pileup variables. An improvement in the mean jet response was observed,
and a roughly 10-20% improvement was obtained in the jet energy resolution for
the different jet flavours. The difference in mean jet energy response for different
generators was however unchanged, indicating that the learned jet energy corrections
still is not utilizing the full jet shape information. This might indicate that a larger
network is required to learn the more subtle details of jet energy regression.



Chapter 6.

Reducing the Top Quark Mass
Systematic Uncertainty with Machine
Learning

As machine learning has been rapidly developed in the last years due to the steady rise
in computer processing power, increasingly complex techniques have been adopted
in the field of particle physics. For event selection, machine learning has mainly
been employed with the aim of improving the statistical measurement precision by
reducing background rates and increasing selection efficiencies. A common concern
when applying machine learning is increasing systematic uncertainties, as the machine
learning algorithms usually are trained on simulated collision data, and require a
high number of inputs. For example a large scale neural network has not yet been
deployed on collision data for quark/gluon tagging at the CMS experiment due to
the difficulties in modelling the difference of gluon and quark jets in simulation [141].
Some techniques have already been developed in machine learning to tackle the issues
of retaining the machine learning algorithm performance, while controlling systematic
uncertainties [142–145]. However, the avenue of using machine learning to specifically
reduce systematic uncertainties for a precision measurement, is not well explored.
In general, physics analyses resulting in a statistical estimator of a physics parame-
ter have a broad portfolio of systematic uncertainties. Accordingly finding a phase
space selection that optimally minimizes all of them is highly challenging, making
it a suitable task for a neural network. The main difficulty to address this problem
was to define a suitable metric for the machine learning algorithm to minimize. The
ReSYST method [16] defines a non observable metric, called the ReSYST quantifier Ri
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for each collision event i consider by the estimator of a physics parameter. The metric
can be used to identify and quantify the relationship between the individual events
and the systematic uncertainties. Some events in the selected event sample could have
a large impact on the systematic uncertainty, while some other events might have a
much smaller impact. Using machine learning, this metric can be predicted for each
event from observable variables. Accordingly, the machine learning estimated value
of the metric becomes an event observable that can then be used to make a further
event selection that reduces the total systematic uncertainty of the measurement. In
the original ReSYST paper, a DELPHES top quark mass study is performed to test the
concept by relating the non observable metric to a single event observable and then
to propose a further event selection based on this single observable. In this chapter,
the ReSYST method will be deployed with realistic simulations, machine learning
and an advanced top quark mass estimator. The aim is to learn the viability of the
ReSYST method in a complex and realistic analysis setting, as well as demonstrating
how machine learning can improve the method.

6.1. Top quark mass measurement

The top quark mass measurement method that will be studied follows closely Ref.
[146], which is a CMS top quark mass measurement in the lepton+jets channel pub-
lished in 2018. The main extension and the focus of this chapter is trying to add an
additional event selection cut using the method of ReSYST enhanced by machine
learning techniques. The analysis strategy is also extended by applying the machine
learning methods developed in Chapters 4 and 5 for jet flavour tagging and jet energy
estimation. The mass is measured in top quark pair events, where one of the W bosons
from the top quark decay is hadronically decaying, and the other decays leptonically
to a muon and a neutrino. In the CMS paper the electron channel is also consid-
ered, however this is not required to demonstrate the relative improvement of using
ReSYST with machine learning. The decay channel which is considered is referred to
as the muon+jets channel. The channel is chosen because it results in a dominating
systematic uncertainty relative to an almost negligible statistical uncertainty on the
top quark mass estimator. However, in principle both the all-jets channel, where
both W bosons decay hadronically, and the dilepton channel, where both W bosons
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decay leptonically, should be possible to use with the ReSYST methodology. Since
the top quark mass measurement in the muon+jets channel is extremely sensitive to
uncertainties on the jet energy scale (JES), the Ideogram methodology is applied [147].
This method exploits that since the mass of the W boson is known to high precision, it
can be used to constrain the JES in-situ on the observed W → jj decay. A 2D likelihood
function is used to infer the top quark mass and a jet energy scale factor (JSF) from the
reconstructed W boson mass (before it is constrained in a kinematic fit) and the fitted
top quark mass (after it has been constrained in a kinematic fit) in the event. Again, a
more simple top quark mass estimator, for example a 1D likelihood of the top quark
mass, could have been used, and it should work fine with ReSYST as demonstrated
in the original paper [16]. However, the extended method is used as it results in a
lower uncertainty by default, and it allows us to explore the robustness of ReSYST in a
more complex environment. Indeed, if the ReSYST method works with the Ideogram
method, then it might be an indication that it can be applied with higher dimensional
likelihood methods and profile likelihood methods, which have shown great promise
for top quark mass measurements [148].

6.1.1. The pp → tt̄ → bqq̄bµν event selection

The process in which the measurement is done is pp → tt̄ → bqq̄bµν, and an event
selection is defined accordingly. A CMS 2017 simulated sample of tt̄→ jets + leptons
events are used. The events are generated with the POWHEGv2 [121–124] matrix
element generator. PYTHIA8 [39] with the CP5 tune [149] is used for parton showering
and hadronization. Table 6.1 shows the different stages of selection, as well as the
expected total number of tt̄ → jets + µ/e/τ for the CMS 2017 dataset of 41.5 fb−1.
The event trigger used is a high level isolated muon trigger with a pt requirement
of at least 27GeV and |η| < 2.5. This removes roughly 80% of the tt̄ → jets + µ/e/τ

events, consisting of the e/τ + jets events, and events where the muon did not pass
the trigger selection or wasn’t in the detector acceptance. Some light event cleaning is
performed putting requirements on the quality of the primary vertex reconstruction
of the event as well as removing events with detector signals indicating fake MET.
These quality requirements are inspired by comparisons between real collision data
and simulated collision. An isolated signal muon with pt > 27GeV, |η| < 2.4 is also
required using offline reconstruction. Additionally tight muon ID requirements [150]
are imposed on the signal muon. To reduce backgrounds from the tt̄ dileptonic channel
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as well as from Z+jets, a veto is applied on events containing additional muons that
are reconstructed globally as well as potential electrons with pt > 15GeV that meet
the electron ID requirements. At this stage no tt̄ → jets + e events are remaining.
In order to select the four jets coming from the top quarks and the W boson at least
four AK4 jets passing tight "JetID" [151] with pt > 30GeV and |η| < 2.4 are required.
Since the top quarks almost always decay to one b quark, two of the four leading
jets are required to be b-tagged. These jets are selected with the DeepJet algorithm,
where the medium working point is used providing an efficiency of 83% to select
b quark jets with a 1% efficiency for light quark jets. Besides identifying the b-jets
for top quark reconstruction, this also removes events from the W+jets background
process. A final selection is based on the probability of the kinematic fit used for the
top quark reconstruction, which will be discussed in the following section. A number
of background channels exists for this process, such as a Z or W boson produced
with additional jets or single top quark production. However previous studies [146]
with this baseline event selection found them to be only 4% of the total event yield,
and only have a negligible impact on the systematic uncertainty on the measured top
quark mass. Therefore for simplicity background events are not included in this study,
because they do not affect our objective to demonstrate the relative improvement in
systematic uncertainty on the top quark mass estimator when using machine learning
with ReSYST.

Selection stage Fraction of total
events

Expected number of events for 41.53
fb−1 with σ = 347.4 pb−1 at 13TeV [40]

Before selection 100.0% 14420000± 420000
Muon Trigger (L1 & HLT) 20.0% 2890000± 85000
Event Cleaning 19.6% 2820000± 83000
Signal muon selection 18.2% 2620000± 77000
Muon veto 18.1% 2600000± 76000
Electron veto 17.7% 2540000± 75000
Four jet selection 8.2% 1180000± 35000
B-Tagging 4.6% 430000± 19000
HitFit probability cut 1.1% 150000± 5000

Table 6.1.: Sequential steps in the event selection starting from a pp → tt̄ → jets + lepton
sample with top quark mass 172.5 GeV.
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6.1.2. Top Quark Reconstruction

A constrained kinematic fit [152, 153] is performed on the selected pp→ tt̄→ bqq̄b̄µν

events in order to improve the resolution of the measured top quark mass and to select
events that are in agreement with the pp→ tt̄→ bqqbµν hypothesis. The momentum
of the four leading jets and the muon as well as the transverse missing momentum are
used as constraints to the fitter giving 17 constraints. Additional constraints are set for
the masses to be zero for the muon and the light quarks and 4.7 GeV for the b-quark.
The χ2 to be minimized is shown in Equation 6.1.

χ2 = (x− xm)
TG(x− xm) (6.1)

Here x is the vector of the fitted variables, and xm are their measured values provided
as input. The matrix G is the inverse error matrix. To derive the inverse error matrix,
the resolutions of the kinematic quantities are utilized. These resolutions were obtained
using the methods of Reference [154] 1. The χ2 is minimized with three additional
constraints. The invariant mass of the two light jets and of the neutrino and muon are
fixed to the W boson mass assumed in the simulation, namely of 80.4 GeV. Furthermore
the two top quarks in the event topology are constrained to have the same mass. Given
that the constraints of the top quark and W boson masses are not linear in the fit
variables, it is not possible to exactly solve the system of equations with Lagrange
multipliers. Therefore an iterative technique called the HitFit [153] method is used.
A power series expansion of the constraints is developed around the starting value
given by the measured quantities, such that they can be made linear. With these
linear constraints, the system is solved. The result of the fit is used as the starting
point of the next iteration, and the process is continued until χ2 value is no longer
improved. This method requires that a starting value is specified for the momentum
of the z-component of the neutrino. This can be obtained from the quadratic equation
that the two top quarks should have the same mass resulting in two possible solutions.
Additionally, there are two possible parton to jet assignments as each of the b-jets
can either be associated with the hadronically or leptonically decaying top quark.
Therefore every event has in total four possible permutations. These permutations
can be classified in simulation as either being correct, wrong or unmatched. Correct
permutations occur in events where the four leading jets can be associated to the four

1The code used to calculate the top quark fit resolutions was updated by Hannu Siikonen, Helsinki
Institute of Physics, with additional improvements on Ref. [154]. Details can be found in his soon
published PhD thesis.
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quarks coming from the tt̄ decay within ∆R < 0.3, and the jets are then correctly
assigned to the partons, such that the correct W boson is associated with the correct
b jet to form a top quark. Wrong permutations occur in events when the correct jets
are present and selected in the event, but they are assigned to the wrong partons,
either by incorrect flavour tagging or by associating the W boson with the wrong
b-jet. Finally, unmatched permutations occur in the events where the four leading jets
cannot be associated with the partons. This can happen due to many reasons, such as
two partons being within the matching distance of the same jet, initial state radiation
producing one of the four leading jets in the event or simply because a parton develops
a jet that fails the selection criteria.

Figure 6.1.: The mass distribution of a correctly reconstructed top quark (t → bjj) is shown
before being constrained by the kinematic fit (left), after being fitted (middle)
and after being fitted with DeepJet JEC applied (right). The mean and standard
deviation of a Gaussian fit of the peak of the distribution (shown in red) is indicated
on the plots.
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The distribution of the reconstructed top quark mass for correct permutations
before and after being improved by the kinematic fit can be seen in Figure 6.1. Also
shown is the top quark mass distribution after the kinematic fit is performed using
jets where the DeepJet JEC has been applied. The fit improves the resolution of the
top quark mass by about 30%. A further ∼ 10% improvement is obtained when using
DeepJet JEC.

Each of the four permutations in the event are initially considered, and each will
have a fit probability associated with it. A plot of the fit probability distributions for
each type of permutation can be found in Figure 6.2. As can be seen, the correct per-
mutation becomes the dominant contribution for higher fit probabilities, as expected.
In order to increase the fraction of correct permutations, only permutations with a fit
probability of at least 0.2 are considered.



Reducing the Top Quark Mass Systematic Uncertainty with Machine Learning 109

Figure 6.2.: The fit probability distribution is shown for each permutation category.
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Permutation type No cut pfit > 0.2 pfit > 0.2 with DeepJet JEC
Correct 15% 44% 47%
Wrong 16% 23% 23%

Unmatched 69% 33% 30%

Table 6.2.: Fractions of the permutation types are shown with and without the fit probability
cut, and with the DeepJet jet corrections applied to the jets.

In the Table 6.2 the fraction of all permutations considered for different selections
are shown. When applying the additional pfit > 0.2 criteria there is a significant
increase in the fraction of correct permutations. Additionally it is seen that when
applying the additional jet energy corrections with the DeepJet JEC method developed
in Chapter 5, a further small improvement is obtained.

In Figure 6.3 the distribution of the fitted top quark mass is shown before and after
applying the fit probability cut. A Gaussian is fitted to the peak of the distribution, and
it can be seen that the resolution is significantly improved mainly due to the increase
of correct permutations. Additionally the distribution is shown when the DeepJet JEC
is applied as well giving a further improvement in resolution. This improvement is a
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combination of both the larger fraction of correct permutations and the better mass
resolution for correct permutations.

Figure 6.3.: The mass distribution of the fitted top quark is shown with no fit probability cut
(left), with a fit probability cut (middle) and with both a fit probability cut and
DeepJet JEC (right). The mean and standard deviation of a Gaussian fit of the peak
of the distribution (shown in red) is indicated on the plots.
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6.1.3. Ideogram Method

The Ideogram method [147] estimates the top quark mass and a jet energy scale factor
by utilizing a 2D likelihood function parameterized in two observable variables. The
first observable is the top quark mass as fitted by HitFit. The second observable is the
invariant mass of the two leading light quark jets. For correct permutations this invari-
ant mass corresponds to the hadronically decaying W boson in the pp→ tt̄→ bqqbµν

process. As the W boson mass is known with high precision from previous measure-
ments, it can be used to make an in-situ measurement of an additional jet energy scale
correction such that the invariant mass of the reconstructed jets indeed corresponds
to the best known value of the W boson mass. With this approach the experimental
uncertainty on the top quark mass from jet energy corrections is decreased significantly.
Accordingly, the Ideogram method allows for a simultaneous measurement of the top
quark mass (mt) and an additional jet energy scale factor (JSF).

In order to construct this 2D likelihood, templates are obtained of the reconstructed W
boson mass (mW,reco) and fitted top quark mass (mt,fit) distributions for various points
of an underlying true value (a generated value) of the top quark mass (mt,gen) and of
the jet scale factor (JSFgen). The set of values used for the mt,gen variable corresponds to
{166.5, 169.5, 171.5, 172.5, 173.5, 175.5, 178.5} GeV. For the JSFgen variable, the used set
of values is {0.96, 0.98, 1.00, 1.02, 1.04}. The combination of these sets of values, yield
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a total of 35 samples. These template distributions are further separated for correct,
wrong and unmatched permutations, since the template shape of the fitted top quark
mass is significantly different for these categories. An example of these templates can
be seen on Figure 6.4, where the distributions of mW,reco and mt,fit are shown for each
permutation category for the generated values (mt,gen, JSFgen) = (172.5 GeV, 1.00).

Figure 6.4.: Templates after the described selection for a generated top quark mass 172.5 GeV
and a generated JSF value of 1.00. The top row shows the fitted top quark mass
distribution for correct (left), wrong (center) and unmatched (right) permutations.
The bottom row shows this for the reconstructed W boson mass.
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Figure 6.5 shows the fitted top quark mass distribution for correct permutations
with JSFgen = 1.00, but varying values of mt,gen. As expected the mt,fit variable is seen
to be very sensitive to the generated top quark mass, and the mean of the distribution
is observed to be strongly correlated with the used value of mt,gen. On the same figure
the reconstructed W boson mass distribution is also shown for different values of
mt,gen with JSFgen = 1.00. As expected the reconstructed W boson mass distribution is
not sensitive to the variations of mt,gen.

Figure 6.6 shows both the mW,reco and mt,fit distributions for mt,gen = 172.5 GeV
but with varying values of JSFgen. As both of these variables are reconstructed from
jets, they are both seen to be very sensitive to the generated jet energy scale factor.



112 Reducing the Top Quark Mass Systematic Uncertainty with Machine Learning

Figure 6.5.: Templates for the standard top mass measurement for different top quark generator
values with JSFgen fixed to 1.00. The top row shows correct permutations for the
fitted top quark mass for generator top quark mass of 166.5 GeV (left), 172.5 GeV
(center) and 178.5 GeV (right). The bottom row shows the reconstructed W boson
mass for the same samples.
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The fitted top quark mass distributions for correct permutations are fitted with
a Voigtian, whereas for wrong and unmatched permutations they are fitted with
a Crystal Ball function. The reconstructed W boson mass distributions are fitted
with a Bifurcated Gaussian for all permutations. In order to smoothly interpolate
between the template functions of the mW,reco and mt,fit distributions at discrete sets
of generated top quark mass and true JSF points the evolution of the parameters of
the functions with mt,gen and JSFgen are fitted. The dependence of the parameters αi

is modelled as αi = ai + bi · (mt,gen − 172.5) + (ci + di · (mt,gen − 172.5)) · (JSFgen − 1.)
with ai, bi, ci, di being free parameters. The value of ai, bi, ci, di are obtained from
an unbinned likelihood fit of the template functions on the template distributions
performed with RooFit [155]. Using the template functions a permutation based 2D
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Figure 6.6.: Templates for the standard top quark mass measurement for different JSFgen values
with generator top quark mass fixed to 172.5 GeV. The top row shows the fitted
top quark mass distribution for correct permutations for JSFgen of 0.96 (left), 1.00
(center) and 1.04 (right). The bottom row shows the reconstructed W boson mass
for the same samples.
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likelihood is constructed. This function takes the form of Equation 6.2.

Lperm(mt,fit, mW,reco|mt,gen, JSFgen) =

fCP · L
CP
mt
(mt,fit, mW,reco|mt,gen, JSFgen) · L

CP
mW

(mt,fit, mW,reco|mt,gen, JSFgen)

+ fWP · L
WP
mt

(mt,fit, mW,reco|mt,gen, JSFgen) · L
WP
mW

(mt,fit, mW,reco|mt,gen, JSFgen)

+ fUN · L
UN
mt

(mt,fit, mW,reco|mt,gen, JSFgen) · L
UN
mW

(mt,fit, mW,reco|mt,gen, JSFgen) (6.2)

Here the L functions indicate the template functions parameterized in mt,gen and
JSFgen. The factors f indicate the fraction of permutations that are correct, wrong or
unmatched in the event sample. The event based likelihood is constructed with a
weighted sum of the likelihoods for each permutation. Of course only the permutations
in the event that meet the fit probability requirement of pfit > 0.2 are included. The
permutations are weighted with the HitFit fit probability of the given permutation as
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in Equation 6.3.

Levent(mt,fit, mW,reco|mt,gen, JSFgen) = (6.3)

∑
perms

pfitLperm(mt,fit, mW,reco|mt,gen, JSFgen)

Finally the full sample likelihood is constructed by taking the product of event like-
lihoods. An event weight is introduced as wevt = c ∑perms pfit in order to reduce the
impact of events without correct permutations. Here c is a normalization constant
such that ∑events wevt = Nevents.

Lsample(mt,fit, mW,reco|mt,gen, JSFgen) = (6.4)

∏
events

(Levent(mt,fit, mW,reco|mt,gen, JSFgen))
wevt

The estimator of the top quark mass and JSF is found by maximizing the likelihood. The
properties of the estimators are studied with a bootstrap procedure. The expectation
value of the top quark mass and JSF estimators are slightly biased from the generated
values. This is due to several reasons, for example the assumption that the fraction of
permutations are the same for every mass and JSF point. For each pseudo-experiment
10000 events are sampled. The probability of including a given event in the pseudo-
experiment is determined based on its simulated event weight. Roughly 1000 pseudo-
experiments are conducted for each of the 35 (mt,gen, JSFgen) samples. If biases are
present, a calibration procedure is performed to correct the estimators to account for
these. This is done by fitting the following 2D calibration functions to the biases.

mcalib
t (mt, JSF) = mt + a1 + b1 · (mt − 172.5)

+c1 · (JSF− 1.0) + d1 · (mt − 172.5) · (JSF− 1.0)
(6.5)

JSFcalib(mt, JSF) = JSF + a2 + b2 · (mt − 172.5)

+c2 · (JSF− 1.0) + d2 · (mt − 172.5) · (JSF− 1.0)

The parameters a1, b1, c1, d1, a2, b2, c2 and d2 are free in the fit. These calibration
functions are then applied to the mt and JSF estimators respectively. Figure 6.7 shows
the bias on the mass estimator before and after calibration as a function of mt,gen for



Reducing the Top Quark Mass Systematic Uncertainty with Machine Learning 115

three of the five JSFgen values. Similar trends are observed for the remaining JSFgen

values. As can be seen a mass shift of roughly−0.25 GeV is observed before calibration
for all mt,gen and JSFgen samples. After the calibration procedure, this is significantly
reduced everywhere. Potential smaller biases remaining will be accounted for with a
systematic uncertainty. Figure 6.8 shows the bias on the JSF estimator before and after
calibration. Before calibration a JSF shift of roughly −0.5% is observed for all mt,gen

and JSFgen samples. Similarly to the mass estimator, biases are significantly reduced
with the calibration procedure.

Figure 6.7.: Biases are shown on the top quark mass estimator as a function of the generated
mass before and after the calibration procedure. The biases are shown for JSFgen
values of 0.96, 1.00 and 1.04.
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Figure 6.8.: Biases are shown on the JSF estimator as a function of the generated mass before
and after the calibration procedure. The biases are shown for JSFgen values of 0.96,
1.00 and 1.04.

166 168 170 172 174 176 178
 [GeV]t,genm

0.015−

0.01−

0.005−

0

0.005

0.01

0.015

 -
 J

S
F

ex
tr

JS
F

JSF 0.96 after calibration

JSF 0.96 before calibration

Work in progressCMS 

166 168 170 172 174 176 178
 [GeV]t,genm

0.015−

0.01−

0.005−

0

0.005

0.01

0.015

 -
 J

S
F

ex
tr

JS
F

JSF 1.00 after calibration

JSF 1.00 before calibration

Work in progressCMS 

166 168 170 172 174 176 178
 [GeV]t,genm

0.015−

0.01−

0.005−

0

0.005

0.01

0.015

 -
 J

S
F

ex
tr

JS
F

JSF 1.04 after calibration

JSF 1.04 before calibration

Work in progressCMS 



116 Reducing the Top Quark Mass Systematic Uncertainty with Machine Learning

6.1.4. Systematic Uncertainties

In order to study the properties of the top quark mass and JSF estimators, it is required
to use simulations of proton collision events at 13 TeV. When simulation does not agree
with the real collisions observed by the CMS experiment, systematic uncertainties
are induced. These discrepancies between data and simulation can originate from
an incomplete understanding of the modelling of the physics phenomena in proton
collisions, but they can also originate from an imperfect simulation of the CMS de-
tector. An overview of the relevant systematic uncertainties on the top quark mass
measurement is listed below. Additionally, the chosen method for estimating them are
described.

6.1.5. Experimental uncertainties

Jet Energy Corrections The jet energy is scaled up and down in correspondence to
the uncertainty on the jet energy response induced by differences between data and
simulation [72]. This is the largest uncertainty in the 1D top quark mass measurement,
but due to the in-situ calibration in the Ideogram method, it becomes quite small in
the 2D top quark mass and JSF measurement.

Mass Calibration A systematic uncertainty is assigned to this procedure by fitting
f (x) = a to the calibrated biases on the mt and JSF estimators, and then taking the fit
uncertainty of the parameter a as the systematic uncertainty.

Jet Energy Resolution The jet energy resolution is better in simulation compared
to data. To account for this a smearing of all jet energies is performed in simulated
samples to match the resolution found in data. The systematic uncertainty is evaluated
by varying the nominal smearing up and down based on the derived uncertainties
from the measured resolution in data [72].

b-tagging The b-tagging scale factors are varied up and down within their uncer-
tainties [117].

Pileup The total inelastic pp cross section is varied up and down within its mea-
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surement uncertainty. This alters the estimated number of pileup collisions in the
event, therefore affecting the mt and JSF measurement.

6.1.6. Modeling of hadronization

JEC Flavour uncertainty The largest systematic uncertainty in the top quark mass
measurement is the JEC flavour uncertainty. It is evaluated by applying an additional
flavour based jet energy correction, based on the difference in jet energy response for
the separate jet flavours using simulated event samples generated with Herwig++
and Pythia8. Since this applies an energy correction to each flavour separately the
Ideogram Method cannot reduce this uncertainty with the in-situ jet calibration to
the W boson mass. Each flavour variations is done separately. The obtained shifts on
the mt and JSF estimators from each flavour are combined by a linear sum, since the
variations built up together the total difference between the two generators.

b fragmentation The Bowler-Lund fragmentation function for B hadrons has been
tuned to match measurements in e+e− data by the ALEPH and DELPHI collabora-
tions [156, 157]. The uncertainties on this tuning are used to evaluate the systematic
uncertainties on mt and JSF from b-fragmentation.

Peterson fragmentation The alternative Peterson fragmentation function [158] is used
instead of Bowler-Lund and the difference observed on the mt and JSF estimators is
taken as a systematic uncertainty due to an incomplete understanding of the phe-
nomenon from first principles.

Semileptonic B hadron decays The branching fraction of the semileptonic B hadron
decay is varied within its experimental measurement uncertainties [17]. This increases
the rate of neutrinos in the b-jets and therefore affects the energy response and the top
quark mass measurement.

6.1.7. Modeling of pertubative QCD

Matrix element generator The alternative MadGraph5 aMC@NLO generator with the
FxFx matching [159, 160] is used instead of POWHEGv2. The difference observed on
the mt and JSF estimators is taken as the systematic uncertainty.
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Matrix element/parton shower (ME/PS) matching The matrix element/parton shower
matching is set by the hdamp parameter in POWHEGv2. This variable is varied up and
down within its uncertainties to define a systematic uncertainty on the estimators.

Initial state radiation (ISR) parton shower scale The scale value of the parton shower
for the initial state radiation in PYTHIA is varied by 4 and 0.25 using event weights
[161]. The differences it induces on the estimators relative to the nominal value are
used as systematic uncertainties.

Final state radiation (FSR) parton shower scale The scale value of the parton shower
for the final state radiation in PYTHIA is varied by 4 and 0.25 using event weights [161].
The differences it induces on the estimators relative to the nominal value are used as
systematic uncertainties.

Top quark transverse momentum modeling The top quark transverse momentum
distribution is observed to be different in data and simulation, possibly due to the
NNLO effects. The simulated distribution is reweighted to match the distribution
observed in CMS data [162, 163]. The differences this induces on the estimators when
applying these weights are taken as systematic uncertainties.

6.1.8. Modeling of soft QCD

Underlying event To account for soft QCD effects PYTHIA is tuned to measurements
of the underlying event with the CP5 tune [149]. The tune parameters are varied within
their uncertainties in order to estimate the systematic uncertainties on the estimators.

Early resonance decay Early resonance decays (ERD) can be turned on in PYTHIA to
allow color reconnection between the top quark decay particles and particles from
the underlying event. By default this is turned off. The difference between on and off
induces systematic uncertainties on the estimators.

Color reconnection models Two different color reconnection models [164, 165] are
compared with the default PYTHIA model. The first model allows string formation
beyond leading color. The second model allows gluons to be moved to another string.
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Both models have been tuned to the underlying event based on CMS data [166]. The
larger differences induced on the estimators between the nominal model and either of
these two models is assigned as a systematic uncertainty.

6.1.9. Total systematic uncertainties

In Table 6.3 the total systematic and statistical uncertainties for a top quark mass in a
simulated sample with a generator top quark mass of 172.5 GeV can be found. The
uncertainty table contains both symmetric, asymmetric and one sided uncertainties.
One sided uncertainties are represented by a single value in the "mt 1st variation"
column, and two sided asymmetric uncertainties are represented by two values in
both columns. The symmetric uncertainties are indicated in the table by a single value
in the "δmt 1st variation" column with a ± sign. The total systematic uncertainty
reported in the "δmt 1st variation" column is calculated by combining all systematic
variations yielding δmt > 0 in a square sum and taking the square root. Similarly
the total systematic uncertainty in the "δmt 1st variation" column is calculated by
combining all systematic variations yielding δmt < 0 in a square sum and taking the
square root. The JEC flavour uncertainty for single flavours are shown in italic, and the
total JEC flavour uncertainty is found by taking the linear sum of these contributions.
The b-jet modelling uncertainties are shown combined and independently. The table
also shows what is referred to as reducible and irreducible systematic uncertainties.
As will be discussed in the following section these refer to uncertainties that can and
cannot be targeted with the ReSYST method. The irreducible uncertainties consists of
the matrix element generator, ME/PS matching, underlying event, early resonance
decay and the color reconnection uncertainties. The reducible uncertainties contain
the rest. As can be seen from the table, the dominating systematic uncertainties for the
top quark mass are the JEC flavour uncertainty, the jet energy resolution uncertainty
as well as the FSR and ISR parton shower scale uncertainties. The expected statistical
uncertainty is estimated from the 2017 CMS dataset luminosity. As can be seen the total
systematic uncertainty is significantly larger than the expected statistical uncertainty.
In the case of the jet scale factor measurement the largest uncertainty is from the jet
energy correction uncertainties as expected.
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Uncertainty source δmt 1st
variation
(MeV)

δmt 2nd
variation
(MeV)

δJSF 1st
variation

δJSF 2nd
variation

Experimental uncertainties

Jet Energy Corrections -37 69 0.8% -0.8%
Mass calibration ± 54 ± 0.1%
Jet Energy Resolution -311 353 0.5% -0.5%
b-tagging 14 -22 <0.1% -<0.1%
Pileup -116 103 0.1% -0.1%

Modeling of hadronization

JEC Flavour (linear sum) ± 355 ± 0.4%
-light quarks -343 0.5%
-bottom quarks 683 -<0.1%
-gluon 69 -0.1%
-charm quarks -54 -<0.1%

b-jet modeling (squared sum) 129 -183 0.1% -0.1%
-Bowler-Lund fragmentation -170 95 0.1% -0.1%
-Peterson fragmentation -30 -<0.1%
-Semileptonic B hadron decays 88 -61 -0.1% -<0.1%

Modeling of pertubative QCD

Matrix element generator 193 0.1%
ME/PS matching -56 26 0.1% -0.1%
ISR parton shower scale 371 -19 -0.4% -<0.1%
FSR parton shower scale -241 -17 0.3% -<0.1%
Top quark pt uncertainty 72 -0.2%

Modeling of soft QCD

Underlying event -95 -<1 0.1% -<0.1%
Early resonance decay -183 0.6%
Color reconnection models -128 0.1%

Total reducible systematic unc. 652 -574 1.1% -1.2%
Total irreducible systematic unc. 202 -255 0.6% -0.1%

Total systematic unc. 683 -628 1.2% -1.2%
Expected statistical unc. ± 106 ± 0.1%

Expected total unc. 691 -637 1.2% -1.2%

Table 6.3.: Uncertainty table
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6.2. Reducing the systematic uncertainty: ReSYST

Systematic uncertainties are estimated using the effect induced on an estimator eval-
uated on an ensemble of events. For example by changing the modeling parameter
in the fragmentation of simulated tt̄ events and calculating the effect this has on the
estimator. In the case of the likelihood based estimate for the top quark mass consid-
ered in this study, the systematic effect on the ensemble of events is the sum over the
systematic effect on the likelihood of each event. These conditions allows us to employ
the ReSYST method [16] to quantify the systematic impact of individual events. In
this section the ReSYST method will be briefly reviewed, and it will then be deployed
to make an additional neural network based event selection criteria with the aim of
reducing the systematic uncertainties on the top quark mass estimator.

6.2.1. The ReSYST Method

In the ReSYST method a generator level event variable is constructed which is cor-
related with the systematic impact of each individual event in the ensemble. This is
in order to quantify the contribution each individual event has in the evaluation of
a specific systematic uncertainty of the ensemble. This is done by removing a given
event from the ensemble, and then calculating the impact on the total systematic
uncertainty. The ReSYST quantifier is shown in Equation 6.6.

Ri =

√
∑j(m

σj
t,(i) −mt,(i))

2√
∑j(m

σj
t −mt)

2
(6.6)

Here mt is the measured top quark mass of the ensemble, m
σj
t is the measured top quark

mass with systematic variation j applied, mt,(i) is the measured top quark mass after

removing event number i and m
σj
t,(i) is the measured top quark mass with systematic

variation j applied after removing event i. Therefore the denominator in Equation
6.6 is the magnitude of the total systematic uncertainty for the full event ensemble,
whereas the numerator is the magnitude of the total systematic uncertainty after
event i is removed from the event ensemble. The Ri quantity will be 1 for events that
have no impact on the systematic uncertainty when they would be removed from the
ensemble, it will be greater than 1 for events where removing the event increased the
total systematic uncertainty, and it will be smaller than 1 for events where removing
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the event decreased the total systematic uncertainty. Therefore, if an event selection
criterion can be identified that removes events with Ri value smaller than 1, the total
systematic uncertainty should decrease. Since the Ri quantity is non-observable, it is
required to find observable features of the event that are correlated with it, such that
an event selection criterion can be constructed.

Figure 6.9.: The Ri distributions are shown for the JEC flavour uncertainties for bottom quarks
(top left), light quarks (top right), gluons (bottom left) and the combined JEC
flavour uncertainty (bottom right).
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The distribution of the Ri quantifier can be seen for the JEC flavour uncertainties in
Figure 6.9. The quantifier distributions for the light quark (uds) and bottom quark JEC
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uncertainty is fairly symmetric around 1. The Ri quantifier distribution for the gluon
JEC uncertainty has a multi-peak shape, since, unlike for light quarks and bottom
quark, events can have a varying number of gluon induced jets present among the four
leading jets in the event. Therefore a peak exists for events that have no gluons among
the leading jets, a peak exists for events where the gluon jet is associated with the top
quark, and a peak exists for events where the gluon is associated with the W boson
jets. The Ri quantifier distribution for the combined JEC uncertainty is constructed
by taking a linear sum for each JEC flavour uncertainty, σJEC = ∑j m

σj
t − mt, and

then calculate the quantifier with this systematic uncertainty. The distribution for the
combined JES quantifier has elements of each flavour component distribution.

The Ri quantifier can be seen for the Bowler-Lund b fragmentation uncertainty,
the jet energy resolution uncertainty and the ISR uncertainty in Figure 6.10. As these
uncertainties have an impact on every event in the sample a single peak structure is
seen. The Ri quantifier for the full set of uncertainties is also shown in Figure 6.10,
where it is seen to be fairly symmetric around 1.

The Ri quantity can only be constructed for systematic uncertainties where it is possi-
ble to link an event in the nominal event sample with the same event in the systematic
uncertainty induced event sample. For example, it is possible to construct Ri for the jet
energy correction uncertainties because in the nominal event sample, an event can be
matched to the same event in the systematic uncertainty induced sample, where the jet
energies have been scaled by an additional factor. Similarly, it is possible to construct
Ri for the systematic uncertainties that are quantifiable using an event weight. It is not
possible for the systematic uncertainties that require an independent event sample,
where individual events cannot be matched to the nominal sample, such as the matrix
element generator uncertainty, where MadGraph is compared to POWHEG. Accord-
ingly, only those systematic uncertainties that can relate individual events between the
nominal and systematic ensemble are considered in the calculation of Ri. The system-
atic uncertainties that are included are referred to as reducible systematic uncertainties.
These are the jet energy resolution, pileup, b-tagging, JEC, JEC Flavour, b-jet modeling,
ISR, FSR and top quark pt modeling uncertainties. The systematic uncertainties where
it is not possible to calculate Ri are referred to as irreducible systematic uncertainties.
These are the matrix element generator, ME/PS matching, underlying event, early
resonance decay and the color reconnection uncertainties.
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Figure 6.10.: The Ri distributions are shown for the Bowler-Lund b fragmentation uncertainty
(top left), the jet energy resolution uncertainty (top right), the ISR uncertainty
(bottom left) and the full combination of all uncertainties (bottom right).
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6.2.2. Mono-variable approach of ReSYST

The ReSYST quantifier, Ri, is a generator level variable. Therefore it is required to corre-
late it to observable variables of the event. Such a variable can be found by inspecting
the profile histogram of the ReSYST quantifier against one observable variable of the
event. If the mean of the ReSYST quantifier in a specific observable variable bin is
lower than 1, removing the events of that bin should reduce the systematic uncertainty
on the top quark mass estimator.
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Figure 6.11.: The ReSYST quantifier, Ri, targeting the full set of systematic uncertainties is
shown against the variable Ht in the left plot. In the right plot the profile is
shown.
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Shown in Figure 6.11 is the ReSYST quantifier plotted against the scalar sum of the
transverse momenta of jets in the event with pt > 30 GeV, Ht, which has a relatively
strong correlation with the Ri quantifier, compared to other event variables. From the
profile plot a trend can be seen showing an increasing value of Ri for increasing Ht,
and the mean Ri crosses 1 at roughly Ht = 250 GeV. This indicates that an additional
event selection criteria on Ht, i.e requiring events with Ht > 250 GeV, should lower
the total systematic uncertainty on the top quark mass estimator.

Figure 6.12.: The ReSYST quantifier targeting only the JEC flavour uncertainty, RJEC
i , is shown

against the variable Ht in the left plot. In the right plot the profile is shown.
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In order to study the methodology, a ReSYST quantifier targeting a limited number
of systematic uncertainties can be constructed. Shown on Figure 6.12 is the ReSYST
quantifier targeting only the JEC flavour uncertainty, RJEC

i , plotted against the Ht

variable. From the profile plot it can be seen that the RJEC
i variable is particularly

connected with the Ht variable, as the slope of the profile plot is steeper than for the Ri

quantifier with the full set of systematic uncertainties, indicating a stronger correlation
for the JEC flavour uncertainty than for the combined set of systematic uncertainties.
Therefore, a cut on Ht should particularly affect the JEC flavour uncertainty.

Two additional event selection cuts are studied in order to demonstrate the general
ReSYST quantifier behaviour. To check the Ht dependence on the systematic uncertain-
ties an Ht > 250 GeV event selection requirement was applied as well as an Ht < 250
GeV requirement. Based on the findings from Figure 6.11, these selections should
result in a respectively smaller and larger systematic uncertainty compared to the
nominal selection. When including these additional criteria in the event selection it is
necessary to remake the templates distributions from which the event likelihoods are
calculated as well as to obtain new top quark mass calibration curves, resulting in a
top quark estimator with new statistical and systematic properties. A comparison of
the template distributions with the additional selection requirements can be seen in
Figure 6.13, and the new calibration curves can be seen in Figure 6.14 and 6.15. The
new estimators looks to be stable and robust.

In Table 6.4 the different components of the systematic uncertainty after requiring
the additional event selection criterion Ht > 250 GeV are listed. A reduction of the
total systematic uncertainty of roughly 15% is observed compared to the nominal event
selection. This arises due to some large systematic components being reduced. The JEC
flavour uncertainty is reduced from ∼ 350 MeV to ∼ 200 MeV, the ISR uncertainty is
reduced from ∼ 370 MeV to ∼ 290 MeV and the jet energy resolution is decreased from
∼ 330 MeV to ∼ 260 MeV. It is worth noting that the reduction of the total systematic
uncertainty would be slightly larger if not for the irreducible uncertainties, which by
coincidence increase with the additional selection criterion from ∼ 200 MeV to ∼ 300
MeV. Similarly, in Table 6.5 the different components of the systematic uncertainty
after requiring the additional event selection criterion Ht < 250 GeV are listed. The
total systematic uncertainty is much higher for this event selection confirming the
expectation observed in Figure 6.11. The JEC Flavour uncertainty is particularly
affected increasing to 570 MeV from its previous 350 MeV value, which is in agreement
with the expectation observed in Figure 6.12.
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Figure 6.13.: Distributions with fitted template functions for different generator top quark
mass values with JSF fixed to 1.00. The top row shows the fitted top quark
mass distribution for correct permutations for generator top quark masses of
166.5 GeV(left), 172.5 GeV (center) and 178.5 GeV (right) with an event selection
requirement of Ht < 250 GeV . The bottom row shows the fitted top quark
mass distributions for the same samples with an event selection requirement of
Ht > 250 GeV.

 [GeV]t,fitm
100 120 140 160 180 200 220 240

E
v
e

n
ts

 /
 (

 1
.5

 G
e

V
 )

0

100

200

300

400

500

 [GeV]t,fitm
100 120 140 160 180 200 220 240

E
v
e

n
ts

 /
 (

 1
.5

 G
e

V
 )

0

20

40

60

80

100

120

140

160

 [GeV]t,fitm
100 120 140 160 180 200 220 240

E
v
e

n
ts

 /
 (

 1
.5

 G
e

V
 )

0

50

100

150

200

250

 [GeV]t,fitm
100 120 140 160 180 200 220 240

E
v
e

n
ts

 /
 (

 1
.5

 G
e

V
 )

0

50

100

150

200

250

300

350

400

 [GeV]t,fitm
100 120 140 160 180 200 220 240

E
v
e

n
ts

 /
 (

 1
.5

 G
e

V
 )

0

20

40

60

80

100

120

140

 [GeV]t,fitm
100 120 140 160 180 200 220 240

E
v
e

n
ts

 /
 (

 1
.5

 G
e

V
 )

0

50

100

150

200

250

300



128 Reducing the Top Quark Mass Systematic Uncertainty with Machine Learning

Figure 6.14.: Biases are shown on the top quark mass estimator with the additional Ht > 250
GeV selection criteria as a function of the generated mass after the calibration
procedure. The biases are shown for JSFgen values of 0.96, 1.00 and 1.04. For
comparison shaded bands indicating the mass biases with the nominal event
selection are shown.
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Figure 6.15.: Biases are shown on the top quark mass estimator with the additional Ht < 250
GeV selection criteria as a function of the generated mass after the calibration
procedure. The biases are shown for JSFgen values of 0.96, 1.00 and 1.04. For
comparison shaded bands indicating the mass biases with the nominal event
selection are shown.
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Uncertainty source δmt 1st
variation
(MeV)

δmt 2nd
variation
(MeV)

δJSF 1st
variation

δJSF 2nd
variation

Experimental uncertainties

Jet Energy Corrections -3 66 0.7% -0.8%
Mass calibration ± 52 ± -<0.1%
Jet Energy Resolution -253 274 0.5% -0.5%
b-tagging 12 -7 <0.1% -<0.1%
Pileup -92 93 0.1% -0.1%

Modeling of hadronization

JEC Flavour (linear sum) ± 201 ± 0.4%
-light quarks -350 0.4%
-bottom quarks 544 -<0.1%
-gluon 46 -<0.1%
-charm quarks -39 0.1%

b-jet modeling (squared sum) 114 -171 -<0.1% -<0.1%
-Bowler-Lund fragmentation -151 84 -<0.1% -<0.1%
-Peterson fragmentation -49 -<0.1%
-Semileptonic B hadron decays 77 -63 -<0.1% -<0.1%

Modeling of pertubative QCD

Matrix element generator 175 -<0.1%
ME/PS matching -70 -5 -<0.1% -0.1%
ISR parton shower scale 290 1 -0.3% -<0.1%
FSR parton shower scale -185 -<1 0.2% -<0.1%
Top quark pt uncertainty 114 -0.1%

Modeling of soft QCD

Underlying event -116 -31 0.1% -<0.1%
Early resonance decay -225 0.5%
Color reconnection models -190 0.1%

Total reducible systematic unc. 488 -420 1.0% -1.1%
Total irreducible systematic unc. 183 -330 0.5% -0.1%

Total systematic unc. 521 -534 1.1% -1.1%
Expected statistical unc. ± 124 ± 0.1%

Expected total unc. 536 -548 1.1% -1.1%

Table 6.4.: Overview of the systematic uncertainties after imposing the ReSYST guided selec-
tion criterion of requiring Ht > 250 GeV on the events.
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Uncertainty source δmt 1st
variation
(MeV)

δmt 2nd
variation
(MeV)

δJSF 1st
variation

δJSF 2nd
variation

Experimental uncertainties

Jet Energy Corrections -15 -3 1.0% -0.9%
Mass calibration ± 59 ± 0.1%
Jet Energy Resolution -471 505 0.5% -0.6%
b-tagging 32 -30 <0.1% -<0.1%
Pileup -115 95 0.1% -0.1%

Modeling of hadronization

JEC Flavour (linear sum) ± 569 ± 0.7%
-light quarks -428 0.6%
-bottom quarks 1029 -<0.1%
-gluon 28 -<0.1%
-charm quarks -60 0.1%

b-jet modeling (squared sum) 159 -229 -<0.1% -<0.1%
-Bowler-Lund fragmentation -207 119 -<0.1% -<0.1%
-Peterson fragmentation -39 -<0.1%
-Semileptonic B hadron decays 105 -88 -<0.1% -<0.1%

Modeling of pertubative QCD

Matrix element generator 491 0.1%
ME/PS matching -48 39 0.1% -<0.1%
ISR parton shower scale 533 -5 -0.7% -<0.1%
FSR parton shower scale -306 31 0.4% -<0.1%
Top quark pt uncertainty -28 -<0.1%

Modeling of soft QCD

Underlying event -39 9 -<0.1% -0.1%
Early resonance decay -145 0.7%
Color reconnection models 115 0.1%

Total reducible systematic unc. 947 -840 1.4% -1.5%
Total irreducible systematic unc. 509 -168 0.8% -0.1%

Total systematic unc. 1075 -857 1.6% -1.5%
Expected statistical unc. ± 181 ± 0.2%

Expected total unc. 1091 -876 1.6% -1.5%

Table 6.5.: Overview of the systematic uncertainties after imposing the selection criterion of
requiring Ht < 250 GeV on the events.
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6.2.3. Caveats

Several aspects need to be monitored and controlled to successfully apply the ReSYST
method. The first important point is that an event selection can reduce the overall mag-
nitude of a systematic variation by making the estimator itself statistically less sensitive
to the generated top quark mass, i.e. increasing the statistical variance of the estimator.
There is no term in the ReSYST quantifier that ensures the estimator’s variance remains
unchanged. Therefore, it is needed to carefully monitor that a given ReSYST inspired
event selection does not simply decrease the estimator’s statistical sensitivity. When
using a neural network to predict Ri from a larger set of observable event variables,
it is useful to exclude the fitted top quark mass from this set, as a neural network
can use this variable to break the estimators sensitivity to the generator top quark mass.

Another caveat is caused by the fact that the ReSYST quantifier Ri is calculated on
an event by event basis. For a given systematic variation removing a single event
from the ensemble might reduce the systematic uncertainty making it slightly smaller,
and in order to proceed, the quantifier Ri would have to be reevaluated for all re-
maining events with new values in the denominator. Optimally, one would proceed
by identifying the single event in the ensemble with the smallest Ri value. After
removing this event from the ensemble, the systematic uncertainty of the estimator is
reduced and one would proceed by recalculating Ri for all remaining events. However,
this is computationally not feasible. When events are removed from the sample, the
magnitude of the systematic uncertainty can change, and therefore it can also change
which systematic uncertainties are the dominant contribution in the total systematic
uncertainty. For systematic uncertainties where it is possible to define a selection
that puts the systematic uncertainty to zero, you can reach a cross over point, where
removing additional events from the ensemble will increase the systematic uncertainty,
this time with the opposite sign. A solution that can address this, is to remove events
in smaller batches, before any of the uncertainties reach a "swing-over" point, and
then recalculate the ReSYST quantifier to target the new uncertainties that become
dominant. A different and perhaps more advisable approach, is that by employing a
more simple neural network, it appears that no uncertainties ever reach a swing-over
point. The downside is that significantly more statistics have to be removed in order
to achieve the same reduction of systematic uncertainties.

A final caveat is that not all uncertainties can be targeted by the ReSYST method.
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Systematic uncertainties that are determined using separate event samples where an
event to event mapping cannot be made between the nominal sample and the alternate
sample cannot be used in the Ri quantifier, for instance matrix element uncertainties.

6.2.4. Multi-variable approach of ReSYST: Neural Network

In order to exploit the ReSYST quantifier optimally, it is needed to find an observable
that is strongly correlated with the generator level Ri quantifier. This can be done by
performing regression with a neural network. A too large and deep neural network
architecture is to be avoided. As mentioned among the caveats it can easily result in a
multi-variable observable that is strongly correlated with the fitted top quark mass
itself, despite using input variables that make it difficult to calculate the fitted top
quark mass. A powerful network would learn that by removing events that provide a
lot of discriminating power for the top quark mass itself, the systematic uncertainty
variations would become small, given that the estimator had lost its sensitivity to the
generator top quark mass. A more simple network will however just combine the
input variables that are correlated with the ReSYST quantifier in an optimal way, which
already provides opportunity for a good reduction of the systematic uncertainties.
To ensure no potential statistical bias, the training sample is kept separate from the
sample that is used to calculate the final systematic uncertainty magnitudes.

The architecture used consists of three fully connected layers with 75 nodes each,
however other machine learning methods such as BDTs or SVMs would be viable as
well. Dropout of 0.5 is used in between the layers to prevent overtraining. Addition-
ally, ReSYST scores for single events that are significant outliers are removed from the
training sample, accounting for less than 1% of the training sample. The activation
function used throughout is ReLU [128] and the loss function is the mean squared error.
In order to easier predict the ReSYST quantifier with a neural network, the Ri quantity
is re-scaled by subtracting it with its mean and dividing the result by the standard
deviation of the Ri distribution. This is done since the neural network can struggle
with predicting scores in the training process that only have very small numerical
difference. Around 35 input event variables are used, provided to the network in a flat
structure. These mainly consist of kinematic variables of the four leading jets as well as
a few event level variables. The full list can be found in Appendix B. The performance
of the network is evaluated by comparing the neural network output score with the
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ReSYST quantifier. From Figure 6.16 it can be seen that there is a correlation between
the neural network output and the ReSYST quantifier, which is much stronger than
observed in any mono-variable approach. From the profile histogram (right plot in
Figure 6.16) it can be seen that the neural network prediction is smoothly increasing
towards larger values of Ri, indicating that the event selection threshold can be made
for any given value. Larger networks with more inputs can easily get a stronger
correlation with Ri however due to the caveats described in subsection 6.2.3, it was
difficult to define a proper event selection criterion.

Figure 6.16.: A 2D histogram (left) itself of the neural network output score is showed against
the ReSYST quantifier for all reducible systematic uncertainties, and a profile
histogram (right) showing the mean of the ReSYST quantifier as a function of the
reduced neural network prediction score.
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Based on the neural network prediction, an additional event selection is to be
determined while avoiding the swing-over effect described in section 6.2.3. When
using larger neural networks it was observed to be an essential procedure to construct
the event selection by making a series of progressively more tight event selection
cuts, and then stop when the total systematic uncertainty starts to increase. However,
when limited to a smaller set of inputs and a smaller network size, this is not as
important, as the swing-over effect is not prevalent. In this case removing events with
the neural network prediction score Rpred

i < 0.01 was chosen, removing roughly 65%
of the events in the ensemble. After the event selection has been updated the template
distributions are remade to built up the likelihood estimator. As can be seen in Figure
6.17, the templates are modified compared to before applying the additional Ri cut.
For example the mean of the distributions are shifted to higher values. The overall
effect of the neural network based selection on the templates is comparable to that
observed with the mono-variable Ht > 250 GeV event selection criterion. The ReSYST
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Figure 6.17.: Distributions of mt,fit and mW,reco with the fitted template functions for different
generated top quark mass values with JSFgen fixed to 1.00. The top row shows
the fitted top quark mass distributions for correct permutations for generated top
quark masses of 166.5 GeV (left), 172.5 GeV (center) and 178.5 GeV (right) with
the additional neural network event selection cut. The bottom row shows the
reconstructed W mass distribution for the same samples.
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cut also changes the fractions of permutation types as can be seen in Table 6.6. The
fraction of correct permutations notably goes up by roughly 6%. As the Ht variable

Permutation type Nominal Ht > 250 GeV ReSYST
Correct 47% 49% 53%
Wrong 23% 22% 22%

Unmatched 30% 29% 25%

Table 6.6.: Fractions of the permutation types are shown with and without ReSYST neural
network cut. The Ht > 250 GeV is also shown for comparison.

was the most correlated single variable in the neural network inputs, it is interesting to
compare the distribution before and after the neural network ReSYST inspired event
selection criterion is imposed. Figure 6.18 shows these Ht distributions. As can be
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seen the Ht variable clearly is heavily correlated with the neural network score, which
is to be expected since it was the input variable with the strongest correlation to Ri.

Figure 6.18.: The Ht distribution of the selected events before (blue) and after (red) the ReSYST
inspired event selection criterion is applied.
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After imposing the new event selection criterion, it is also required to perform a
new calibration of the top quark mass estimator. Figure 6.19 shows the remaining
biases after calibration, and compares them to the biases obtained with the nominal
event selection. It can be clearly seen that the obtained biases on the top quark mass
estimator are similar to those after the nominal selection.

Figure 6.19.: Biases are shown on the top quark mass estimator as a function of the generated
top quark mass after the calibration procedure. Each plot shows the biases for a
different JSFgen value. The biases are shown with the additional neural network
based cut, and for comparison shaded bands indicate the mass biases with the
nominal event selection.
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After performing these secondary steps, the magnitude of the systematic uncertain-
ties can be calculated. They are highlighted in Table 6.7. A significant improvement
with respect to the Ht > 250 GeV event selection is observed. While 65% of the event
are removed, the expected statistical uncertainty is still low compared to the system-
atic uncertainty, despite here only considering the muon channel and the size of the
2017 dataset. The ISR uncertainty is particularly reduced from 371 MeV to 95 MeV
compared to the nominal event sample. Also the FSR uncertainty is reduced from -241
MeV to -67 MeV. The JEC flavour uncertainty is reduced from 355 MeV to 108 MeV, as
an event selection that cancels out the contributions from different flavour has been
found. The jet energy resolution uncertainty is lowered from 353 MeV to 184 MeV.
The pileup uncertainty, the top quark pt and the components of the b-fragmentation
uncertainty are not reduced by much. It was verified that these uncertainties are
possible to reduce using ReSYST, however since the magnitude of these uncertainties
were small in comparison to the other uncertainties after the nominal event selection,
they did not have a large impact on the ReSYST scores. If the ReSYST scores were
recalculated with the new event selection criterion applied, it should be possible to
target these as well. Compared to the Ht > 250 GeV event selection the irreducible
systematic uncertainties happen to be slightly larger.
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Uncertainty source δmt 1st
variation
(MeV)

δmt 2nd
variation
(MeV)

δJSF 1st
variation

δJSF 2nd
variation

Experimental uncertainties

Jet Energy Corrections 1 44 0.7% -0.7%
Mass calibration ± 53 ±<0.1%
Jet Energy Resolution -172 184 0.4% -0.4%
b-tagging 13 -7 -<0.1% -<0.1%
Pileup -71 90 0.1% -0.1%

Modeling of hadronization

JEC Flavour (linear sum) ± 108 ± 0.4%
-light quarks -319 0.4%
-bottom quarks 425 -0.1%
-gluon 32 -<0.1%
-charm quarks -30 -<0.1%

b-jet modeling (squared sum) 82 -154 -<0.1% -<0.1%
-Bowler-Lund fragmentation -131 70 -<0.1% -<0.1%
-Peterson fragmentation -66 -<0.1%
-Semileptonic B hadron decays 43 -46 -<0.1% -<0.1%

Modeling of pertubative QCD

Matrix element generator 72 0.1%
ME/PS matching -135 -70 0.1% -0.1%
ISR parton shower scale 95 6 -0.1% -<0.1%
FSR parton shower scale -67 6 0.1% -<0.1%
Top quark pt uncertainty 164 -0.1%

Modeling of soft QCD

Underlying event -173 -72 0.1% -0.1%
Early resonance decay -243 0.4%
Color reconnection models -202 0.2%

Total reducible systematic unc. 314 -273 0.9% -0.9%
Total irreducible systematic unc. 89 -389 0.5% -0.0%

Total systematic unc. 326 -475 1.0% -0.9%
Expected statistical unc. ± 157 ± 0.1%

Expected total unc. 362 -500 1.0% -1.0%

Table 6.7.: Uncertainties after the ReSYST inspired neural network event selection.
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In the original selection the reducible systematic uncertainty is ± 691MeV and after
applying the ReSYST inspired event selection criteria this value becomes ± 314MeV,
yielding more than a 50% reduction, while removing 65% of the total number of events,
which increases the statistical uncertainty to an acceptable level. Considering the slope
of the profile histogram shown in Figure 6.16, it should be possible to reduce the
systematic uncertainty further, but in the case of the top quark mass measurement,
the ReSYST irreducible uncertainties seems to become the dominant uncertainty
component, making further cuts pointless. Of the reducible systematic uncertainties
some are more easily reduced with ReSYST. The ISR, FSR, jet resolution uncertainty,
JEC flavour uncertainty are all significantly reduced. Presumably this is possible since
there exist a phase space for the jets in these events, where these uncertainties have a
small impact.

6.3. Conclusion and Outlook

Machine learning has not yet been used in particle physics as a tool to reduce system-
atic uncertainties of precise measurements of physical parameters. In this chapter the
ReSYST method has been studied [16] in the context of a top quark mass measurement
in the CMS experiment. It has been demonstrated that the ReSYST method is appli-
cable in the context of a complex and realistic analysis setting. A mono-variable (Ht)
event selection developed using the ReSYST quantifier, Ri, was shown to reduce the
total systematic uncertainty on the top quark mass with 15% compared to the nominal
event selection. This result was extended by predicting the ReSYST quantifier using a
neural network approach, and then developing a new event selection reducing the
contributions of systematic uncertainties targeted by ReSYST by about a factor of two,
while removing 65% of the total number of events in the ensemble. An overview of
the reduction of the largest systematic uncertainties can be seen on Figure 6.20. All
these five uncertainties are reducible with the ReSYST method, and ReSYST inspired
event selections can reduce their magnitudes. It is seen that by using a multi-variable
machine learning approach it is possible to reduce the uncertainty magnitudes even
further compared to the mono-variable approach.

One feature of the method is that certain uncertainties can swing-over with a more
stringent event selection and thereafter start to increase as you remove more events,
since the ReSYST quantifier is calculated from the full event sample based on the
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Figure 6.20.: The magnitude of five of the largest systematic uncertainty sources on the top
quark mass estimator are shown for the nominal event selection, an event se-
lection with an additional requirement of Ht > 250 GeV, as well as an event
selection based on a neural network prediction of Ri.
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nominal event selection. This easily happens when employing larger neural networks.
Alternative methods of combining the uncertainties were tried to mitigate this effect,
such as using in the definition of the Ri variable the absolute value in a linear sum,
instead of the square root of the squared sum. In the end, the squared sum approach
seemed to be the most efficient to reduce the total systematic uncertainty, as it made
the quantifier focus on the systematic uncertainties that were most important. For
some systematic uncertainties that are estimated using an alternate event sample,
referred to as irreducible systematic uncertainties, it is not possible to calculate an
event by event ReSYST quantifier, because no event mapping can be made between
the events in the nominal sample and the events in the alternate sample. An example
of such an systematic uncertainty is the matrix element generator uncertainty. This
was seen to put a limit on the ability to reduce further the total systematic uncertainty.

When applying the ReSYST method on real data collisions, it would be needed to
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perform some additional checks to validate that the behaviour seen in simulation
extends to data. The neural network prediction of Ri can be compared in simulation
and data to ensure agreement, and potential corrections can be made accordingly to
verify the impact of the mismatch on the estimation of the systematic uncertainties. A
further useful study would be to examine the relative evolution of the measured top
quark mass in bins of Rpred

i and examine if the measured top quark mass evolution is
the same in data and simulation.

To improve the ReSYST method further, it might be possible to include the ReSYST
irreducible uncertainties in the ReSYST quantifier by using a proxy weight for calcu-
lating the ReSYST quantifier Ri. Such a proxy weight could be constructed by training
a neural network to discriminate on an event by event basis between the nominal
event sample and the alternate sample. That would remove the limiting factor of the
irreducible systematic uncertainties becoming the dominant contribution allowing to
further reduce the systematic uncertainty.

A demonstration of the capabilities of the ReSYST method has been done for a top
quark mass measurement focusing on the channel pp→ tt̄→ bqqbµν. However, it is
not expected that the method is limited to this measurement. It is possible to employ
the ReSYST method in the top quark mass measurement in both the all-jets channel
and the dilepton channel. Beyond the top quark mass measurements, any analyses
that utilizes an event based likelihood with a systematic uncertainty component that
is dominant with respect to the statistical component, could profit from the ReSYST
method.



Chapter 7.

Conclusions and Outlook

In Chapter 4, a multiclass flavour tagging deep learning algorithm, DeepJet, was
presented. It improves upon the traditional CMS heavy flavour tagging algorithm
by utilizing more basic variables and employing a very loose input selection crite-
ria. This contrasts previous heavy flavour identification algorithms by moving away
from relying on high-level engineered features along with stringent selection criteria.
This is made possible by using a new machine learning architecture that is capable
of exploiting and processing the larger set of inputs. The jet flavour identification
performance is improved in every part of the kinematic phase space of the jet and for
all flavours. For b jet identification, the efficiency is relatively improved with 20− 30%
for the same misidentification rate in simulation. The largest improvement is observed
in the very high pt jet region, which is the most challenging b jet identification phase
space. Significant improvements are also obtained for c-tagging identification as well
as quark-gluon discrimination, resulting in an all flavour jet identification algorithm.
The performance of the tagger has been calibrated by the CMS b-tagging group using
collision data for c-tagging and b-tagging. The results show that the performance gain
observed in simulation translates to real collision data.

In Chapter 5, a neural network was designed to perform jet energy regression. Since
different jet flavours have different jet energy responses, a similar network architecture
and set of inputs to DeepJet was used. The network is able to estimate the jet flavour
and can therefore propose a suitable energy correction. While traditional jet energy
corrections are only parameterized in the pt and η values of the reconstructed jets as
well as some pileup variables, the neural network can additionally use the full jet shape
and kinematics. The mean jet energy response improves when using the deep neural
network. The jet energy resolution was also seen to improve relatively by roughly
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10-20%. One hope of this approach would be to reduce the systematic uncertainty
on the jet flavour energy response, as ideally this algorithm would be independent
of the generator flavour labels, and instead utilize the full jet information. However,
comparing the difference in jet energy response for different event generators yields
very comparable numbers.

Many future studies can be performed to improve the DeepJet and DeepJet JEC algo-
rithms. Interesting studies have been conducted for machine learning architectures
for jet physics, highlighting promising approaches such as graphs and transformer
networks. However, while the performance might improve with still ∼ 5%, a larger
improvement will require more than an architecture switch. The IVF vertexing al-
gorithm improved on the AVR algorithm by utilizing tracks beyond the jet cone for
vertexing. Initial studies [167] have shown great promise for improving the perfor-
mance of the b-tagger by incorporating a similar approach, allowing tracks beyond
the jet cone among the inputs. Great care must however be taken not to leak event
level information to the neural network, as this can bias calibration scale factors. For
b jets at very high energy, interesting studies [168] have shown that instead of using
tracks, better performance can be achieved by using pixel hit information directly.
This could be incorporated as an additional input to DeepJet, and potentially improve
the performance further at very high pt. Both DeepJet and DeepJet JEC improved the
performance by using more basic inputs, and allowing deep neural networks to select
the important information. The approach builds on the philosophy that unnecessary
processing done by physicist removes information from the inputs, and therefore
will not perform as well compared to what can be done by a machine learning algo-
rithm fully optimizing the process. However, both algorithms are still fully reliant on
physicist-processed objects. Particle flow candidates are processed objects consisting of
tracks and calorimeter clusters. Both of these are in turn processed objects from silicon
tracker hits and energy deposits in calorimeter cells. It is clear that it would be possible
to train algorithms on an even more basic set of inputs closer to the detector itself,
which might improve performance significantly. The main challenges are simply that
the lowest level data format consisting of the raw detector readouts is very impractical
to work with directly. From a machine learning standpoint, due to the many different
geometries of the CMS detector, additional care is needed to find a proper architecture
to combine all this input information.

Beyond reconstruction, machine learning has also in recent years become a standard
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in physics analysis for designing optimal event selection for improving the statistical
measurement precision. However, the next step will be to enable it to reduce the
systematic uncertainties that are increasingly becoming the dominant uncertainty
component in several particle physics precision measurements. In Chapter 6, a neural
network that performs an event selection designed to reduce systematic uncertainties
in the context of a top quark mass measurement was presented, building on top of the
ReSYST method [16]. The study provides a demonstration of the utility of ReSYST
in a realistic and complex analysis as well as the capability of integrating machine
learning methods. By using the ReSYST quantifier, Ri, as a guide, it was possible to
design a mono-variable (Ht) event selection that was able to reduce the top quark mass
total systematic uncertainty with 15% with respect to the nominal event selection. By
utilizing a neural network to predict the ReSYST quantifier, and then using the neural
network prediction to define an additional event selection criterion, it was possible
to reduce the systematic uncertainties that were targeted by ReSYST by factor of ∼ 2.
The additional event selection criterion removes ∼ 65% of the total number of events
in the ensemble, increasing the statistical uncertainty by an acceptable level.

The ReSYST method shows great promise, however it is still in its infancy, and there is
a need to further study its many potential benefits. The bottleneck for reducing the
total systematic uncertainty even further with the ReSYST method, in the case of the
top quark mass study, are systematic uncertainties that are not calculated utilizing the
same simulated event sample, i.e. when no event to event map can be made between
events in the nominal sample and the alternate uncertainty sample. This could be
mitigated by using proxy weights that could be designed using neural networks.
Additional improvements could be found by examining new potential input variables
that are identified to be connected with a specific systematic uncertainty.

It is important to validate that the ReSYST quantifier behaves in a similar manner on
real collision data as in simulation. However, presumably this will be more dependent
on the chosen input variables to the neural network than the actual method itself.

The ReSYST method relies on scrutinizing the defined systematic uncertainties in
order to identify the event selection that minimize them. However, it is not a given that
all analyses systematic uncertainties are defined in a rigorous enough manner to allow
for this procedure to be consistent. Some systematic uncertainties might in reality be
correlated with specific observable variables, but at the analysis level it is applied as a
flat correction across the full variable space. Clearly, the ReSYST method will not be
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able to reduce such an uncertainty. However, more importantly is that the systematic
uncertainty definitions reduced by the ReSYST method, are reverified to be an accurate
estimate of the uncertainty. For instance in the case of the discussed JEC flavour un-
certainty definition, it was shown in the study that it is possible to find a phase space
where the jet energy response is similar for jets generated with Pythia and Herwig,
making the currently defined systematic uncertainty small. However, of course the real
quantity of interest, is the difference between the jet energy response of jets in real colli-
sion data and Pythia, and it is unclear if the ReSYST selection really coincides with that.

In conclusion, several new machine learning based methods were developed in this
thesis that improve upon current methods that are used today, in order to conduct
top quark physics at the CMS experiment at the LHC. These improvements were
made possible by utilizing novel machine learning methods for defining analyses
event selections as well as jet reconstruction. Significant advances were made in the
ability to identify the flavour of the quark that initiated a reconstructed jet flavours.
The ability to properly estimate the initial quark energy was also improved. Finally,
using a novel machine learning method, it was shown to be possible to construct an
optimized event selection for reducing the total systematic uncertainty in a top quark
mass measurement.
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Appendix A.

Input Variables: DeepJet and DeepJet
JEC

The input variables are shown for the DeepJet algorithm described in Chapter 4. The
DeepJet JEC algorithm described in Chapter 5 uses the same variables, except for a
few additional variables that are marked in red.

A.1. List of global variables

• Jet pt

• Jet η

• The number of charged particle flow candidates in the jet

• The number of neutral particle flow candidates in the jet

• The number of secondary vertices in the jet

• The number of primary vertices in the event

• Jet invariant mass

• Jet energy

• Jet φ
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A.2. List of charged candidate variables

• Charged track η relative to the jet axis

• Charged track pt relative to the jet axis

• Dot product of the jet and track momentum

• Dot product of the jet and track momentum divided by the magnitude of the jet
momentum

• ∆R between the jet axis and the track

• The track 2D impact parameter value

• The track 2D impact parameter significance

• The track 3D impact parameter value

• The track 3D impact parameter significance

• The track distance to the jet axis

• Fraction of the jet momentum carried by the track.

• ∆R between the track and the closest secondary vertex

• An integer flag that indicate whether the track was used in the primary vertex fit.

• The charged candidates PUPPI weight

• χ2 of the charged track fit.

• A integer flag which indicate the quality of the fitted track, based on number of
detector hits used for the reconstruction as well as the overall χ2 of the charged
track fit.

• The sign of charge of the particle flow candidate

• Charged track φ relative to the jet axis

• Integer flag indicating if the track was flagged as an electron track

• Integer flag indicating if the track was flagged as a muon track
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A.3. List of neutral candidate variables

• Fraction of the jet momentum carried by the neutral candidate

• ∆R between the jet axis and the neutral candidate

• A integer flag indicating whether the neutral candidate is a photon.

• Fraction of the neutral candidate energy deposited in the hadronic calorimeter.

• ∆R between the neutral candidate and the closest secondary vertex

• The neutral candidates PUPPI weight

• Neutral candidate η

• Neutral candidate φ

A.4. List of secondary vertex variables

• Secondary vertex pt

• ∆R between the jet axis and the secondary vertex

• Secondary vertex mass

• Number of tracks in the secondary vertex

• χ2 of the secondary vertex fit

• Reduced χ2 of the secondary vertex fit

• The secondary vertex 2D impact parameter value

• The secondary vertex 2D impact parameter significance

• The secondary vertex 3D impact parameter value

• The secondary vertex 3D impact parameter significance

• Cosine of the angle between the secondary vertex flight direction and the direction
of the secondary vertex momentum.

• Ratio of the secondary vertex energy to the jet energy
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Appendix B.

Input Variables: ReSYST

B.1. Event Variables

• Missing transverse energy

• Ht

• Sum of Et

B.2. Jet Variables

• Jet pt

• Jet η

• Number of soft electrons in the jet

• Number of soft muons in the jet

• DeepJet b jet probability

• DeepJet c jet probability

• DeepJet quark jet probability

• DeepJet gluon jet probability

• DeepJet JEC correction
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• DeepJet JEC resolution estimate



Appendix C.

DeepJEC Herwig Pythia
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Figure C.1.: The ratio of JECs as calculated with b jets using QCD multijets samples with
Herwig++ samples and QCD multijet samples.
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Figure C.2.: The ratio of JECs as calculated with c jets using QCD multijets samples with
Herwig++ samples and QCD multijet samples.
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Figure C.3.: The ratio of JECs as calculated with uds jets using QCD multijets samples with
Herwig++ samples and QCD multijet samples.
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Figure C.4.: The ratio of JECs as calculated with g jets using QCD multijets samples with
Herwig++ samples and QCD multijet samples.
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Appendix D.

Thesis cover

The thesis cover was generated using a neural network via the technique of style
transfer. The method originates from Ref. [169]. It exploits the observation that an
image recognition algorithm usually encodes the higher level concepts in early layers,
and then examines more and more specific elements of the image. An input image is
fed to a convolutional neural network, in this case the VGG-19 [170] image recognition
algorithm is used. The network activations of one of the late convolutional layers are
saved as an output that is meant to encode the content of the network. A style image
is picked, which is then input to the same CNN and the network activations of an
early convolutional layer is picked. The style representation is then made by building
the Gram matrix from the vectorized feature map. Finally a new image with both the
style and content can be synthesized by generating a new image that when input to
the VGG-19 network, yields the same style and content representation. This image can
be found via gradient descent.

In the case of the thesis, the style image used for the cover is J. M. W. Turners ’The
Burning of the Houses of Lords and Commons’, and the content image is the CMS
detector at CERN. This can be synthesized into the image seen on the left in Figure
D.2. The original image is in ∼ 400× 400 resolution, and it is then scaled using the
approach of Ref. [171]. This method is called Enhanced Super-Resolution Generative
Adversarial Networks (ESRGAN), and it is a convolutional neural network trained
with low resolution images to generate the same image in high resolution. After
applying the ESRGAN the picture for the cover is created in ∼ 2000× 2000 resolution,
as seen on the right. In the case of the back cover a illustration of the LHC was
synthesized as shown in Figure D.3. Additional images were tried with the styles of
different paintings. These can be seen in Figure D.4.
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Figure D.1.: The style image for the cover is shown on the left, and the content image is shown
on the right.

Figure D.2.: The synthesized image before and after being upscaled using the Real-ESRGAN
neural network.
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Figure D.3.: The original content image of the LHC is shown on the left. On the right a
synthesized image with the style of the Turner painting "The Fighting Temeraire
Tugged to Her Last Berth to Be Broken up" is shown.
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Figure D.4.: The CMS detector with styles of Picasso (top left), Magritte (top right), Van Gogh
(bottom left) and Delaunay (bottom right).



Author contributions

This text aims to emphasize the research in the thesis that the author directly con-
tributed to, as well as to highlight additional research that was performed, but not
included in the thesis.

The DeepJet algorithm described in Chapter 4 was published in Ref. [113] of which I
am the main contact author. In connection with my involvement in research of flavour
tagging algorithms, I served as CMS b-tagging and vertexing (BTV) software and
algorithms convener from 2019-2021. In addition I have been functioning since 2020
as reconstruction contact for BTV as well as machine learning contact for both BTV
and the CMS jet and missing ET group (JETMET).

I have performed additional work on the DeepJet algorithm not described in the
thesis. Notably a retraining was made for PUPPI jets, and the algorithm was extended
to tag pileup jets as well. Additionally, studies of feature importance ware performed
using the technique of layerwise relevance propagation, and using this information
feature pruning was performed.

I performed the work described in Chapter 5 on extending DeepJet to perform jet
energy corrections as well as the work on improving and applying the ReSYST method
described in Chapter 6.

Beyond the work shown in the thesis I participated in the assembly of new outer
tracker modules of the 2S type for the CMS upgrade towards HL-LHC. Particularly I
helped to develop and setup a metrology system for measuring the assembly precision.
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