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Abstract

English
With every new discovery comes the quest to understand it, and this was not different for
gamma-ray bursts (GRBs). GRBs last extremely short, on cosmic times scales, but show
a wealth of time variability in their gamma-ray emission. Properties of this variability
may carry information about the process the gamma-rays emerge from. In this thesis, we
investigate the gamma-ray light curves of GRBs in Fourier space. We aim to study the
power-law behaviour of the average power-density spectrum (PDS) for different samples
of GRBs, inspired by previous studies. It was proposed that the slope of the average
PDS could be related to −5/3, the slope of the Kolmogorov energy spectrum, indicating
that the source of the gamma-rays hosts a turbulent medium. Key to probing this slope
is a robust method to characterise the power-law behaviour, to determine for example
the frequency range in which we decide to fit. Consequently, we develop two procedures
and apply these to the different samples of GRBs that we consider. Most of our results
are consistent with the Kolmogorov turbulence. We find that the slope of the average
PDS of the precursors is inconsistent with −5/3. This is additionally true for the noise
profiles and all noise-dominated spectra. This suggests that the precursor and prompt
emission are not produced by the same process, or in the same environment.

Nederlands
Bij elke nieuwe ontdekking hoort de zoektocht om deze te verklaren. Dit was niet
anders voor gammaflitsen (GFn). Gammaflitsen bestaan, astronomisch gezien, slechts
voor een hele korte tijdsspanne, maar ze herbergen een wereld aan tijdsvariaties in hun
gammastraling. Het is mogelijk dat de eigenschappen van deze variabiliteit informatie
bevatten over het proces waarin de gammastralen geproduceerd worden. In deze thesis
onderzoeken we de lichtcurves van gammaflitsen in het Fourierdomein. We beogen de
analyse van het machtsverband, aanwezig in het gemiddelde vermogendichtheidsspec-
trum (VDS), voor verschillende groepen van GFn. Het onderzoek is gëınspireerd op
eerdere studies, waarin gesuggereerd werd dat de index van het gemiddelde VDS in ver-
band kan gebracht worden met de index −5/3. Deze is ook wel gekend als de index van
het Kolmogorovspectrum, en zou aangeven dat in de bron van de gammastraling een
turbulent proces aanwezig is. We merken echter op dat aan de basis van het karakteris-
eren van het machtsverband een doortastende methode moet liggen, om bijvoorbeeld
het frequentiegebied te bepalen waarin men wil fitten. In deze thesis ontwikkelen we
twee methodes om hieraan tegemoet te komen en passen we deze toe op de verschillende
groepen van GFn. We vinden voornamelijk resultaten die consistent zijn met de Kol-
mogorovturbulentie, en kunnen concluderen dat de index van de voorloper-emissie niet
consistent is met −5/3, net zoals de indices van de ruisprofielen en alle ruisgedomineerde
spectra. Dit betekent dat de voorloper en hoofdfase van de gammaflits niet geproduceerd
worden in hetzelfde proces of in dezelfde omgeving.
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Chapter 1

General Introduction

When gamma-ray bursts (GRBs) were discovered at the end of the 1960s, it did not
shake the world like the man on the Moon did, or the death of Martin Luther King.
Their observation was not even noticed immediately, since it took more than five years
until the presence of this new, transient, unknown, and unpredictable phenomenon was
established. Nevertheless, the field exploded afterwards. From having an unknown
origin, and possibly originating from everywhere all at once, now the knowledge they
conceal about strong magnetic fields, strong gravity circumstances, the death of stars,
nuclear enrichment of the Universe, particle acceleration, cosmology, and other topics
connects to and can teach us something about all fields in (astro)physics.

Gamma-ray bursts introduce themselves. They are very short and sudden releases of
gamma-rays, which belong to the most energetic part of the electromagnetic (EM) spec-
trum. For years, they appeared as short as milliseconds or several minutes, and were
only visible in the keV to MeV energy range. They occur unpredictably, and do not
repeat themselves in the same location. The fast-fading bursts are difficult to capture
and locate. It was only in 1997, almost exactly thirty years after the first observation of
a GRB, when the first afterglow was discovered; a slowly-fading lower-energy emission
component that followed the main burst. Since then, GRBs can be observed for hours,
days, months up to years in the radio, millimetre, infrared, optical, ultraviolet, X-ray and
gamma-ray wavelengths. They are not only luminous in the EM spectrum, but are also
expected to be strong emitters of high-energy neutrinos, high-energy cosmic rays and
gravitational waves. With the coincident observation of GW 170817 and GRB 170817A
six years ago, the occurrence of gravitational waves together with a GRB was confirmed.
This was a major discovery for both fields and was the start of the multi-messenger era,
bringing hope for the coming years.

Today, it is believed that there are two large groups of GRBs, with different progenitors
and different characteristics. On the one hand, there are the short GRBs, having an
average duration of approximately one second and which are, or at least some of them,
formed by the merger of two compact objects. On the other hand, there is a group
consisting of longer bursts (∆̄t ∼ 30 seconds), which are mostly found in star-forming
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regions and galaxies. They are related to the death of massive stars, especially to a
certain class of dying stars, the supernovae (SNe) type Ic. The broad picture, supported
by the majority of the astrophysicists, is formulated as follows: both groups are believed
to form a compact object with an accretion disc and emit radiation mainly by the
formation of relativistic jets. These are long beams of out-flowing matter that extend over
light years and travel with a velocity near the speed of light. In these structures, particles
are accelerated and reach high energies, which they release in the form of radiation and
other messengers. However, the theoretical models of the physical processes in the
jets and the accretion disc are still filled with question marks. How are the particles
accelerated? Is the central object a black hole, or rather a neutron star or quark star?
Is the radiation due to synchrotron processes, or Compton processes? How is the high-
energy emission generated?

In this thesis, we hope to answer at least a very small part of these questions. GRBs
exhibit very variable gamma-ray light curves. Three main emission periods can be
distinguished: the prompt emission (the main burst), the afterglow emission, and a
short and dim flash of gamma-rays preceding the prompt emission - the precursor -
which is only observed in some GRBs. In the following pages, the time variability of the
GRB is investigated by considering it in frequency space, i.e. by performing a Fourier
transformation on the time series. In particular, we study the power-density spectrum
(PDS) of the GRBs, which is the absolute square of the amplitude spectrum of the
Fourier transform. This spectrum can be interpreted as the distribution of the power
over the frequency range - characteristic frequencies appear stronger and more distinct
- and reveals the features of the time series we want to study. By investigating the
average PDS of a sample of GRBs, we want to uncover the properties of the underlying
process that produces the gamma-ray emission. In this thesis, we will focus on the slope
of the average PDS. Previous research reported an explicit slope of −5/3, which can be
related to turbulent processes occurring in the GRBs, that imprint the light curves. We
want to investigate the evolution of the slope over different energy bands, and over the
different phases of the light curve. We want to study whether the slope is inherent to
the main burst, or can be seen in the precursor as well. We will discuss if it depends on
energy, and appears in both bright and dim bursts, long and short bursts. The presence
or absence of this slope in GRB spectra might tell us something about the processes
from which the gamma-rays originate, and as such constrain existing and new models.

In Chapter 2, we sketch the history of GRBs, from their discovery in 1967 until the
present days, and how they play an important role in the field of multi-messenger astron-
omy. We review their observational properties and how this leads to theoretical models
as the fireball or electromagnetic models, or hypotheses about their progenitors. We
end with a discussion of the Kolmogorov turbulence, to which the −5/3 slope is often
related.

Next, we briefly go over the Fourier transformation in Chapter 3. A toy model is
presented to explain the characteristics of the Fourier transform. We want to understand
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how we can relate certain features in the frequency domain back to elements in the
time domain. The Fermi Gamma-Ray Space Telescope, from which we use the data,
is introduced in Chapter 4, together with the details about the different steps we
took to calculate the average PDS of the different samples. We modified an existing
procedure to characterise the background in our light curves, corrected the light curves
on redshift and normalised them, and estimated the errors on the individual and average
spectra. This chapter contains the fully reproducible method that we applied to obtain
the results that are presented in Chapter 5. For some GRBs, the background method
was not adequate. We manually modified the background fit. Those GRBs are listed in
Appendix A.

In Chapter 5, we try to understand what happens for different samples of GRBs.
We search a way to only select qualitative light curves which are not noise dominated.
We compare observer frame (see Appendix B) against source frame, and distinguish
different samples based on peak rate, photon energy and duration. We also have the
opportunity to separate the different emission periods and study the average PDS of the
precursor and prompt emission individually, which has never been done before. At last,
we study the noise profile of the light curves. We discuss the different results in depth
and provide the reader with a conclusion in Chapter 6. We shortly summarise what we
would like to investigate further in the future, but lies beyond the scope of this thesis.

Contributions of the author. This paragraph lists the most important contributions
that I have made individually to this project. For more information, I refer the reader
to the text.

• In Chapter 3, I included a toy model to investigate the features of the Fourier
transform.

• In Chapter 4, I modified the background characterisation method that was devel-
oped by Coppin et al. (2020), since their method did not work for the data used in
this thesis. We processed the data from raw single photon counts to workable light
curves, by redshift correcting, subtracting the background level and normalising.
We computed the average PDS and included the error calculation.

• In Chapter 5, we developed the χ2-method, that we have applied in this thesis
for the first time. I constructed the different GRB samples, based on the different
parameters, myself.
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Chapter 2

Gamma-Ray Bursts

In this chapter, an overview of the state-of-the-art in the field of gamma-ray bursts is
given. Their discovery and observational history in Section 2.1 gives the onset for the
discussion of the characteristics and properties of GRBs in Section 2.2. An important
part of the GRB research is the investigation of the origin and the emission mechanisms
of GRBs. What kind of objects produce such destructive and energetic phenomena?
Which role plays the central engine? What happens to the photons before they reach
us? These have been central questions for many years and are still not entirely answered,
as outlined in Sections 2.3, 2.4 and 2.5. Furthermore, as GRBs are remarkably luminous
in the EM spectrum, it is expected that they are sources of other messengers as well. In
Section 2.6, it is explained why we scan the sky for coincident observations of neutrino
signals, cosmic rays and gravitational waves. To conclude, this chapter ends with an
interesting property of GRBs, which was the motivation for conducting the research
performed in this thesis. The average power density spectrum of GRBs follows a power-
law with slope b ∼ −5/3, alike the index of the Kolmogorov spectrum in fluid dynamics,
hinting at the fact that the observed spectra might reflect characteristics of a turbulent
environment. Therefore, the notion of the Kolmogorov turbulence is described in Section
2.7.

2.1 Historical Overview

In June 1973, a paper in the Astrophysical Journal headlined the first observations
of gamma-ray bursts [1]. It concerned 16 short photon bursts, detected between July
1969 and July 1972 by the American Vela satellites [2], which were launched in order
to monitor the compliance of the Partial Nuclear Test Ban Treaty between the United
States, the United Kingdom and the Soviet-Union. The detectors recorded photon bursts
with energies between 0.2 and 1.5 MeV, and a duration of less than a second up to several
tens of seconds. The time structure was irregular; some spectra showed no peaks, while
other spectra had a very distinct structure. Six of those measurements were confirmed
as events by another gamma-ray detector on the IMP-6 satellite (NASA) [3,4]. However,
it turned out that the first observation of a GRB already dated back to 1967, on July
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2.1. Historical Overview 6

Figure 2.1: Light curve of the first observed gamma-ray burst, detected on 2 July 1967
by the Vela IVa satellite [5].

2nd. Two asymmetric brief peaks and a rapid time structure that, existing for about 10
seconds (see Figure 2.1), did not match any known event, indicating the presence of an
unfamiliar gamma-ray source [5].

The rather late discovery of GRBs was due to the fact that the energetic rays cannot
penetrate our atmosphere. Against the background of the Cold War, the first satellites
with gamma-ray and X-ray detectors were brought into space by the U.S. Air Force
in 1963 to probe nuclear tests [6]. No evidence for those tests was observed (besides
maybe the so-called Vela incident in 1979 [7]), but the mission marks the start of the
interesting observational and theoretical search towards the origin of GRB flashes. In
the next thirty years, around 500 GRBs were detected with several gamma-ray detectors
(including detectors on the French-Soviet Venera satellite and the Japanese Ginga satel-
lite). However, the bad angular resolution made it very difficult to locate those bursts
and to search for their sources or counterparts in different wavelength bands [5,8]. For-
tunately, that did not keep theorists from thinking. This is beautifully illustrated by the
more than 100 theoretical models that were proposed in the first twenty years to explain
the origin of GRBs [9]. Malvin Ruderman, who had read and reviewed most of them,
encapsulated in 1975 the theoretical status by the following words:

“The only feature that all but one (and perhaps all) of the very many pro-
posed models have in common is that they will not be the explanation of
γ-ray bursts.” (Ruderman, 1975, p. 179) [10]

In 1991, the Compton Gamma-Ray Observatory (CGRO) was launched by NASA. The
satellite contained the famous Burst And Transient Source Experiment (BATSE) detec-
tor, sensitive to emission in the 20 keV to 2 MeV energy range. CGRO was designated
to search for GRBs and did so; during its lifetime, BATSE recorded more than 2700
bursts and established some important facts about GRBs. It confirmed the already long
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suspected isotropic distribution of GRBs, identified two categories of GRBs, long and
short bursts, and showed that GRB light curves have a non-thermal spectrum [6,8, 11].

However, the distance measurements provided by BATSE were still not accurate enough
to identify the host galaxies and had often error boxes of multiple angular degrees.
Typically, such large regions comprise many possible optical sources. That changed when
the Italian-Dutch BeppoSAX satellite, equipped with an X-ray detector, was brought
into play in 1996. The X-ray detector had a localisation resolution of the order of one
arcminute [6]. Since the X-ray sky is not that populated, it became possible to match
GRBs with their X-ray afterglows. Subsequently, follow-up spectroscopic searches in
other wavelength bands detected optical or radio counterparts [8], which opened the
possibility to infer the redshift via spectral analysis, resulting in more accurate distance
determinations.

On 28 February 1997, the first optical afterglow was observed for GRB 9702281, after
successful γ-ray and X-ray measurements by BeppoSAX, revealing an extended object,
its host galaxy [12]. The redshift could not be determined, but a second burst on 8 May
1997 was observed in X-ray, optical and radio wavelengths. Based on the shift in the
emission lines of the spectrum, a redshift of z = 0.835 was determined [13]. This formally
and quantitatively established the extragalactic and cosmological origin of GRBs [14].

Currently, several gamma-ray detectors are in operation. The Neil Gehrels Swift Obser-
vatory (Swift), launched in 2004, contains the Burst Alert Telescope (BAT), which de-
tects gamma-rays, the X-Ray Telescope (XRT) and the UV-Optical Telescope (UVOT).
When BAT is triggered by a possible GRB event, Swift rotates very fast towards the
direction of the GRB and points XRT and UVOT at the source. BAT only locates the
burst within some arcminutes, but XRT corrects the location with a precision of arcsec-
onds. Owing to the fast cooperation of the different detectors, Swift was able to improve
the detection of afterglows in the temporal window and in different energy bands. This
resulted in the first afterglow detection of a short GRB [15]. The high-quality obser-
vations of the afterglows give a better understanding of the environments of the GRBs
and allow for better redshift measurements. In 2009, the satellite detected a GRB with
a redshift z = 9.4 (GRB 090429B), the farthest ever seen [8, 16,17].

The Fermi Gamma-Ray Space Telescope (Fermi) was launched in 2008 and contains
the Gamma-Ray Burst Monitor (GBM, 8 keV - 40 MeV) and the Large Area Telescope
(LAT, 20 MeV - 300 GeV). Together, these detectors are able to record more than 7
orders of magnitude in energy. The mission focuses on the observation of the prompt
emission over the various wavelength bands and at high energies [18,19]. Fermi was the
first to detect photons with an energy of more than 100 GeV and observed a thermal
component in the further non-thermal GRB spectrum [8,20].

1The naming convention for GRBs relies on the UTC date on which they are observed. For example,
GRB 970228 is observed on February 28, 1997. When more than one GRB is detected on a single day,
the name receives the letter ‘A’, ‘B’ and so on, or ‘FFF’, denoting the fraction of the day (in universal
time), to distinguish between different events.
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Besides Fermi and Swift, some other satellites are taking data at this very moment: the
old Konus-Wind (NASA), Integral for ESA, SuperAGILE of the Italian Space Agency,
the Japanese MAXI on the International Space Station (ISS) and the Indian AstroSAT
[18]. Besides providing data for GRBs, those satellites observe gamma-rays from pulsars,
cosmic rays and supermassive black holes in the centres of galaxies [21].

2.2 Observational Properties

In the previous section, some general features of GRBs were briefly mentioned. We will
discuss them now in more detail.

2.2.1 Duration

The duration of a gamma-ray bursts is characterised by the ‘T90’ parameter: the time
period during which 90% of the burst’s photon counts above background are observed in
a certain energy band (for BATSE and Fermi: 50 - 300 keV). The first and last 5% are
disregarded, to avoid that random background fluctuations make the bursts look longer.
Similarly, the ‘T50’ parameter can be defined. Note that those parameters are described
in the observer rest frame, and are thus affected by redshift and have to be corrected by
a factor (1 + z)−1 when considering the intrinsic duration of the burst. The observed
duration is detector dependent, although it is more convenient to say that it is energy
dependent. It is shown that GRBs typically have a narrower time profile in higher energy
bands compared to the spectrum in lower energy bands [22, 23]. Generally, a detector
sensitive to lower energies will thus detect a longer burst than a detector sensitive to
higher energies [8, 18].

The BATSE experiment showed that the T90 distribution of GRBs has a bimodal struc-
ture [24]. This is confirmed by other missions, as for example illustrated in Figure 2.2a
for Fermi: two peaks appear around 1.05 s and 29.9 s with a local minimum in between
at approximately 2 s [19]. As such, the two classifications are called ‘short’ (T90 ≤ 2 s)
and ‘long’ (T90 > 2 s) bursts. This classification is supported by the observation that
long GRBs have typically “soft” photons, while short GRBs have “harder” photons, as
can be seen in Figure 2.2b. The hardness ratio (HR) is the ratio between the fluence val-
ues of two different wavelength bands. For Fermi and BATSE, the comparison is made
between the energy bands of 100-300 keV and 50-100 keV. From Figure 2.2b, it is clear
that the average energy of short bursts is higher than the average energy of long bursts.
This is why GRBs are often classified in long/soft bursts or short/hard bursts [8, 24].

2.2.2 Isotropy

Already from early observations of gamma-ray bursts, the extragalactic origin of GRBs
was suspected. The isotropic distribution on the sky suggested no correlation with
the Galactic plane or centre, but the possibility of a halo of GRBs around the galaxy,
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(a) (b)

Figure 2.2: (a) T90 distribution, computed in the 50 - 300 keV range, of GRBs detected
by Fermi during its first ten years of operation (2008 - 2018). The sample consists of
17% short GRBs and 83% long GRBs. (b) Scatter plot of spectral hardness vs. T90
value of the GRBs detected by Fermi during its first ten years of operation (2008 - 2018).
An anti-correlation between both parameters can be observed [19].

populated by neutron stars2, could not yet be entirely excluded. This changed when
BATSE detected considerably more GRBs than its predecessors, approximately one per
day [26]. As the amount of observed GRBs grew and no anisotropy on the sky was seen,
the size of this hypothetical halo also had to grow, pushing the Galactic neutron star
model to its limits. Ultimately, it could not explain the observations any longer. Any
correlation with the Galaxy was excluded [5]. When BeppoSAX was launched and the
redshifts and distances became accessible with better precision, it turned out that GRBs
were not only extragalactic, but also cosmological [6, 27].

Another hint of the extragalactic origin came from the fluence distribution of the GRBs.
The fluence S of a radiating object at some distance r is given by the time integrated
isotropic energy Eiso in Euclidean space:

S(r) = Eiso/4πr2 ∝ r−2 (2.1)

Recalling that the number of sources in a spherical volume is constant assuming a uniform
distribution, n0 = N/(4/3)πr3, we find that the number of sources with a fluence higher
than the detector threshold St is given by:

N(> St) ∝ S−3/2. (2.2)

This behaviour was recovered in the data, but shows a deviation at low fluences. A
shallower slope is indeed expected below the threshold fluence, but the discrepancy

2In the 1980s, the Galactic neutron star models were very popular, involving high-velocity neutron
stars in the halo that could produce burst-like events [25].



2.2. Observational Properties 10

occurred at fluences significantly higher than the threshold. This can be assigned to
the effect of the expansion of the Universe, since the cosmological redshift affects the
wavelength, and consequently the observed energy of the photons. Additionally, the
assumption of Euclidean space breaks down. Only the bursts located at those high
redshifts feel the consequences of the expansion, therefore proving their extragalactic
nature [5, 8].

2.2.3 Energy and Spectra

Assuming GRBs emit their radiation isotropically, typical energy outputs of these objects
cover the range between Eiso = 4πr2S ∼ 1046 − 1047 J, where S is the fluence, the total
observed energy per unit area. This corresponds to isotropic luminosities of Liso ∼
1044 − 1046 J/s for an average GRB duration of the order of 20 s. This can be compared
to the luminosity of the Sun, L⊙ ∼ 3 · 1026 J, or the luminosity of our galaxy, LG ∼ 1037

J. GRBs even outshine the most energetic Active Galactic Nuclei (AGNs) by a factor
of 103, which makes them the most luminous and powerful transient phenomena in the
Universe since the Big Bang (in the EM spectrum)3. Note that it is generally accepted
that GRBs have jets with opening angles between 1° and 20°, beaming the energy in two
opposite directions. In this case, the total emitted energy is smaller than the isotropic
energy, of the order of 1044 J. This is similar to the energy output of a supernova, which
naturally become progenitor candidates for GRBs [8, 28,29].

Sharing their enormous energy outputs, the gamma-ray light curves, which represent
the time evolution of the photon counts or flux, differ nevertheless in a great extent.
Some are spiky, some are smooth, others have multiple peaks, others have only one.
Some examples of light curves are shown in Figure 2.3. They all agree in their rapid
variability on very small timescales, down to sub-second scales and of the order of a few
milliseconds. The trigger in the left panel (trigger 332) of Figure 2.3 shows how several
small variations are superimposed on a slower varying component [6, 8, 18].

Instead of binning the photon count in time, one can also consider the photon count per
energy bin. It is shown that this curve can be described by the empirical Band function,
which connects two power law functions at a break frequency with energy E0 [30]:

dN

dE
=

A
[

E
100keV

]α
exp

(
− E

E0

)
E < (α − β)E0

A
[

(α−β)E0
100keV

]α−β
exp(β − α)

(
E

100keV

)β
E ≥ (α − β)E0

(2.3)

Here, A is a normalisation constant and α and β are the low- and high-energetic indices
of the power-law, with typical values (α, β) = (-1, -2) [31]. The form of the Band function
indicates that the spectrum is non-thermal. A thermal spectrum, that arises from a gas

3GRBs outshine the AGNs during the short time span that they are present. An AGN emits radiation
during millions of years, resulting in a larger total energy output than a GRB. Therefore, it is important
to distinguish between ‘transient’ (GRBs) and ‘stationary’ sources (AGNs).
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Figure 2.3: Three examples of GRB light curves, recorded by the BATSE detector.
Large differences can exist between different light curves. Trigger 332 (left) shows very
clearly the sub-second variability on a slowly varying profile [8].

in thermal equilibrium, describes an exponentially decreasing number of photons with
energy, as described by Max Planck in 1901 [32]. The amount of photons in a gamma-ray
burst however falls off following a power-law, which is explained by particle acceleration
in shocks or magnetic fields [8]. The Band function describes the majority of the GRB
spectra very well, but there is not yet a theoretical model for the appearance of the
spectral function [8].

Often, the energy of the GRB photons peaks between hundreds of keV up to the MeV
scale, allowing them to be visible as gamma-rays. Sometimes the signal is so weak that
the peak of the spectrum is only seen as X-ray emission. Such GRBs are called X-ray
flashes. At the high-energy side of the energy peak, there is a long tail towards the GeV
scale, with a small amount of GRBs with energies greater than 10 GeV, as detected by
Fermi [8, 28,33].

Observationally, the GRB light curve can be divided in three episodes, as briefly outlined
below [8,28,34]. The emission mechanisms for the prompt and afterglow phases will be
discussed in more detail in Section 2.3:

• Prompt phase: This is the main part of the burst, the brief and energetic flash of
gamma-ray emission, outshining its entire host galaxy. The burst can last a few
milliseconds up to hundreds of seconds and peaks typically in the MeV range. The
emission process of the prompt emission is still a puzzle, but it is thought that the
energy is generated in the internal shocks of the collimated ejected plasma.

• Afterglow: The prompt emission is followed by so-called afterglows, which encom-
pass emission in lower-energy bands, often visible for days, weeks or even months
after the burst. It appears in all wavelength bands and decays following a power-
law. Since the temporal behaviour of the prompt and afterglow episodes is so
dissimilar, it is believed that both phases originate from two different processes in
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the GRB. It is generally accepted that the afterglow emission originates from the
external shock mechanism, where the ejecta collide with the circumburst medium.

• Precursor phase: Some GRBs have a short gamma-ray outburst before the prompt
emission. This phase is typically well separated from the main burst, but is weaker
in amplitude. Depending on the definition or criteria used to define this precursor,
precursors are detected in 3% to 20% of the cases [35]. Their origin is not yet
established, but they might be generated during the transition of the ejecta from
optically thick to optically thin.

2.3 Theoretical Models of GRBs

The processes that are responsible for the release of the GRB emission still remain
unclear. How is the energy from the central engine converted into radiation, how is the
jet launched, where is the prompt emission and afterglow emission produced? The most
popular theories to explain the characteristics of GRBs are the ultra-relativistic fireball
model, associated with shocks, and the electromagnetic model. They differentiate in the
amount of energy they dispose in the magnetic fields or matter particles [8, 29].

Compactness Problem

As explained before, the smallest variations in a GRB light curve are of the order of
δt ∼ 10 ms. Often, this scale is used to estimate the size of the source D, since variations
smaller than c · δt would be smeared out by propagation delays within the source. This
indicates that D ∼ cδt ∼ 3 · 106 m. An energy output of Eiso ∼ 1044 J, emitted
over a time span of only several seconds and in such a small volume, implies that the
photons have enough energy (E > 2mec2) and density to undergo pair production, i.e.
γγ −→ e+e−. This means that, due to the constant interactions between photons and
electron-positron pairs, the radiation cannot escape the source and photons with energy
above E = 2mec2 ∼ 1 MeV are suppressed. The source is optically thick, as shown below,
and thermal radiation is produced. However, observations show that GRBs produce
photons with E > 1 MeV and have a non-thermal spectrum, according to the Band
function of Eq. 2.3. This is called the compactness problem [6, 28,29].

We can roughly estimate the optical depth τ for pair production as τγγ ∼ σT nγD, where
σT is the Thomson cross-section, nγ is the photon number density and D is the size
of the source. The number density can be approximated by nγ ∼ Eiso/(Eγ ·D3). Not
all photons have sufficient energy to produce electron-positron pairs, so we denote the
effective number density as f ·nγ , with f < 1. If we take the isotropic energy Eiso ∼ 1044

J and the average observed photon energy Eγ ∼ 1 MeV, and assume that ∼ 20% of the
photons undergo pair production, we are left with:

τγγ ∼ 1015,
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which is much larger than 1, and thus the source is extremely optically thick [6, 18].
The problem can be solved by considering a source that is moving relativistic towards
the observer. Imagine a source that is moving towards us with a velocity v. It emits
two signals with a time difference ∆te (in the source reference frame). When the source
emits its second pulse, it has already propagated a distance v∆te towards the observer.
The observer records a time difference between the first and the second pulse:

∆tobs = c∆te − v∆te

c
= ∆te ·

(
c − v

c

)
(2.4)

One can rewrite the velocity correction factor in terms of the Lorentz factor Γ =
1/

√
1 − β2 with β = v/c, if we assume a high relativistic source Γ ≫ 1:

∆tobs = 1
2Γ2 · ∆te (2.5)

As such, the source size D in the moving frame becomes a factor 2Γ2 larger than in the
reference frame in which the source was at rest, c∆te = (2Γ2) · c∆tobs, and the energy
is reduced: Ee = Γ−1Eobs, since λobs = Γλe. In this way, the pair-production rate and
optical depth decrease significantly. It can be shown that the optical depth drops below
unity if Γ ≳ 100 [18,28,29].

Fireball Model

The generic model to explain the prompt and afterglow emission of a GRB starts with a
stellar mass object, which undergoes a very erratic, catastrophic event. A large amount
of energy is produced and released in two opposite jets in the form of several shells, which
are analogous to ‘fireballs’; large amounts of energy in a small volume in space. The
outflow consists of photons, matter (hadrons, electrons, positrons) and magnetic fields.
At first instance, the outflow is optically thick due to the high pair-production rate,
since the high temperature causes thermal equilibrium between the photons, electrons
and positrons. The internal pressure pushes the shells outwards, and thermal energy is
adiabatically transformed into kinetic energy. The outflow expands relativistically, with
the Lorentz factor Γ ∝ r, where r is the distance from the origin of the jet. It cools
down and the pair-production rate drops until no electron-positron pairs are produced
any longer. This only happens at large distances from the central engine, r ∼ 104 − 105

km. When the maximum Lorentz factor is reached, i.e. when most of the thermal
energy is converted into bulk kinetic energy, the outflow reaches a constant speed. As
it continues propagating outwards, the internal shock formation (see below) reduces the
average Lorentz factor and the outer shell starts gaining mass by gathering material
from the circumburst medium. The shell starts decelerating, typically at r ∼ 1011 −1012

km, and eventually fades away [6, 8, 18].

The various shells differ in masses and travel at different relativistic speeds, hence they
will have different Lorentz factors Γ. Faster propagating shells can catch up with slower
shells, generating internal shocks, which convert the kinetic energy into radiation, and
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forming one shell. The shocks support particle acceleration processes, in which the elec-
trons can participate, radiating synchrotron emission and inverse Compton-radiation4 or
one of the two, to discard their energy again. This process shows the right characteristics
to explain the prompt emission of GRBs [6, 18,29].

When the outflow encounters the surrounding circumburst medium, new shocks are
created, which will again be a source of particle acceleration. Forward shocks will accel-
erate electrons, of which the synchrotron emission explains the afterglow observations
very well. Some electrons might participate in inverse Compton processes or synchrotron
self-Compton processes5, scattering photons to higher energies. In some cases, a reverse
shock is launched, which re-accelerates the electrons of the shell and produces a strong
optical, infrared (IR) and/or radio burst. This is indeed observed in some GRBs as an
“optical flash” and radio flare (GRB 990123, GRB 021211). These optical and radio pho-
tons can interact with the protons, accelerated to high energies in these reverse shocks,
through photo-meson interactions (discussed in Section 2.6). It is believed that these
interactions produce high-energetic neutrinos [37, 38]. As the outflow loses more and
more energy by the synchrotron emission of the particles, it starts to slow down and the
peak of the emission shifts from the high-energy bands (soft γ-rays and X-rays) to lower
ones (visible light and radio waves). The burst fades away, as expected for afterglow
emission [5,6,18,29]. An artistic view on the shock formation is shown in Figure 2.4 [39].

Electromagnetic Model

The electromagnetic model starts from the same ingredients as the fireball model, but
states that the present magnetic fields play a more important role, whereas the fireball
model is a matter-dominated model. Again, the central engine is a compact object
with an accretion disc, but in this case, it should be rapidly spinning, such that the
magnetic field lines wrap around the rotation axis in the azimuthal direction and the
outflow is trapped within the field lines. When the central engine subsequently shuts off,
the magnetic structure is decoupled and is ejected into the interstellar medium. In the
ejecta, the electrons are accelerated and produce synchrotron radiation. This can happen
through, as opposed to the shock formation in the fireball model, current instabilities
which cause dissipation of the magnetic energy into heat, bulk motion of the plasma and
high-energy particles [6, 8, 29,40,41].

4Synchrotron emission is EM radiation, produced by relativistic electrons in a magnetic field, subject
to the Lorentz force. The inverse-Compton process includes the scattering of relativistic electrons and
low-energy photons, where the photons receive energy from the electrons [8].

5Synchrotron self-Compton interaction is the production of synchrotron photons by relativistic elec-
trons, after which the same electrons upscatter their own synchrotron photons to higher energies [8,36].
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Figure 2.4: Artistic illustration of the fireball model. On the left, the central engine (a
black hole with an accretion disc) is either formed out the collapse of a massive star or
a binary merger. On the right, the jet structure with the internal and external shocks
is shown, together with the different types of radiation that are released [39].
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2.4 Jet Mechanisms

It can be argued that the outflow is not spherical, but collimated into two jets back
to back. However, direct evidence of jets cannot be observed, since, in contrast to
phenomena such as AGNs, images of GRBs are often unresolved, not supporting a direct
study of the outflow structure [5]. Nevertheless, some indirect arguments are present:

• Energy: The isotropic energy of the gamma-ray radiation in GRBs can reach such
high values, that it approaches or even exceeds the rest mass of the Sun, M⊙c2.
This conflicts with the hypothesis that GRBs arise from stellar mass progenitors.
If the radiation is beamed in two jets, the energy output is reduced by several
orders of magnitude. This is supported by long-term radio observations. After
several months or years, the burst is visible in radio wavelengths, where it radi-
ates isotropically. Estimating the total energy at those late times, reveals energy
outputs around 1044 J, consistent with collimated emission in jets [29].

• Achromatic steepening: The afterglow emission of some GRBs shows a sudden
break in the photon flux, occurring in all wavelength bands simultaneously (=
achromatic), as is illustrated in Figure 2.5. The break can be explained by the
appearance of jets, and is a combination of two effects:

Relativistic beaming. In the rest frame of the relativistic shell, the emission
is radiated isotropically, while in the rest frame of the observer, the emission is
beamed along the direction the shell is moving in and arrives under an angle
tan θb = Γ−1(c/v), which can be approximated by θb ∼ Γ−1 [29].

Jet opening angle. When we assume that the matter is not emitted isotropically,
but in jets, an observer only receives the radiation when the jet points towards her.
Jets in the case of GRBs typically have an opening angle θj ∼ 1° − 10° [6].

During the acceleration phase of the outflow, as discussed in Section 2.3, the
Lorentz factor Γ increases with the distance r. Hence, θb becomes smaller and
θb ≪ θj . An observer cannot judge whether the outflow is collimated or isotropic.
However, in the deceleration phase, Γ decreases and θb increases. At some instance,
θb ≳ θj and the photon flux decreases suddenly faster, since light starts to fall out-
side the cone that is visible for the observer. This is observed in some GRBs, as
shown in Figure 2.5. In addition, so-called ‘orphan afterglows’ are observed; optical
and radio afterglows without the main gamma-ray prompt emission. The existence
of jets predicts such lonely afterglows, since the observer receives light from the
extending jet only when the angle of the observer w.r.t. the jet axis θobs is smaller
than θj , but the prompt emission was radiated when θobs > θj . However, the iden-
tification of the orphan afterglows is complex, since other transient phenomena can
often not be ruled out completely as the source of the emission [5, 6, 18,28].

If GRBs have beamed emission, this implies that the satellites orbiting Earth only detect
the GRBs that are directed towards us. From the present beaming angles, it can be



2.5. Progenitors 17

Figure 2.5: Observed X-ray (black) and optical (red) light curves of three different GRBs.
The dashed purple line denotes the time of the achromatic break. The dotted-dashed
lines are the best fits to the light curves, which are not relevant here [42].

estimated that there should be ∼ 100−1000 GRBs occurring each day in the Universe [6].
Two processes are likely to provide the energy for these jets: neutrino-antineutrino
annihilation and the magnetic jet model.

Neutrino-antineutrino annihilation. At a radius sufficiently close to the black hole
and a temperature sufficiently high, electron and positron capture processes take place:
e− + p −→ n + νe and e+ + n −→ p + ν̄e. These neutrinos are the only particles that can
escape the disc and take energy with them. When neutrino-antineutrino pairs annihilate
above the disc, they produce photons and electron-positron pairs, and along with some
hadrons (resulting from quark-antiquark pair production), they form a hot “fireball” [8].

Magnetic jet model. The orbiting matter around the black hole carries a magnetic
field. When open magnetic field lines are present that thread the black hole while they
are also connected to matter particles, they can wind up due to the rotation of the
central object. They get twisted and exert a torque on the black hole, causing it to
slow down. The energy of the rotation is then used to eject material along the rotation
axis [8, 43].

2.5 Progenitors

Various models exist to explain the characteristics of the emission of GRBs, but what
kind of astrophysical objects precede the GRB? According to the observations, the pro-
genitor system should have the following features:

• Energy: The progenitor should be able to cause an explosive event in which an
energy output of ∼ 1044 J is produced, but not instantaneously (over a duration
of tens of seconds).
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• Variability: The smallest variability in the light curves is of the order of millisec-
onds, which implies that the source is not larger than several 103 km, as discussed
in Section 2.3.

• Collimation: The emission is beamed into two collimated back-to-back relativistic
jets. The progenitor system should be able to launch a jet.

Due to the size, the large energies involved and the relativistic outflow, it is natural to
invoke compact objects, such as neutron stars and black holes. To explain the prolonged
duration of the energy output and the jet formation, a model with an accretion disc,
which feeds the black hole and the jets, is proposed [8,29]. When over the years it became
clear that there are two major groups of GRBs, long/soft and short/hard GRBs, it was
suggested that they could have different progenitors. A big step forward in this search
was the detection of the afterglow emission in 1997. Not only was it possible to locate
the bursts with improved accuracy on the sky, but we were also able to investigate the
GRB environment and search for additional features and imprints that could tell us
more about the origin of the GRBs, e.g. supernova signatures in the spectra of GRBs
or spectral lines in the emission of host galaxies. A connection between long GRBs and
star-formation regions became clear, while short GRBs emerged ‘everywhere’, in galaxies
with low and high star formation rate, or not connected to any galaxy [5, 44].

In this section, the most accepted models for GRB progenitors are described: the col-
lapsar model for long GRBs and the compact binary model for short GRBs [6].

2.5.1 Long GRBs: Collapsar Model

Observationally, long GRBs are related to host galaxies with a high star-formation rate
and are found in the vicinity of star-forming regions. This suggests that long GRBs
might arise from the death of young, massive stars. This theory is strengthened by
the connection between some long GRBs and supernova Type Ic (SNe Ic). As stated
by the collapsar model, the progenitor of the long GRB is a massive star that collapses
gravitationally at the end of its lifetime, forming a neutron star (NS) or black hole (BH).
This star should be massive, M > 30M⊙, and rapidly rotating, such that a jet and an
accretion disc can be formed. Since the SNe Ic do not have any hydrogen or helium
absorption lines in their spectra, the star should have lost its outer hydrogen and helium
shells. A prime candidate is a Wolf-Rayet (WR) star, which is a hot, evolved star with
initial masses of more than 20M⊙. They have strong stellar winds, causing mass loss
rates of ∼ 10−5 M⊙ yr−1, by which the star is shedding off its outer layers [6, 8, 18].

When the core of the star becomes unstable and the degenerate electron or neutron gas
can no longer deliver enough pressure to resist the gravitational force, the star collapses
into a rapidly spinning neutron star or black hole. The material of the stellar envelope in
the equatorial plane has a high angular momentum and forms an accretion disc around
the compact object. The matter in the direction of the rotation axis does not rotate and
falls directly on the surface, where it leaves behind a low-density funnel and creates a
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Figure 2.6: Evolution of the optical af-
terglow of GRB 030329 that was de-
tected in coincidence with SN 2003dh.
The first light curve was recorded 2.64
days after the burst (April 1.13 UT),
the last light curve was taken 9.64
days after the burst (April 8.13 UT).
It is clear how the power-law spectrum
changes into a light curve which con-
sists of a bump and broader emission
lines, characteristic for a SN [29].

shock wave. This mass distribution allows for a jet to emerge along the rotation axis,
that will eventually be detected as a GRB (if collimated in the direction of Earth). This
entire process only takes about 10 seconds, while the accretion on the surface may take
tens of seconds. This implicates that the core-collapse of a WR star can only produce
long GRBs [5,28,29].

Observational Evidence

The first detection of a GRB in coincidence with an SN Ic happened in 1998, but gave
only weak proof for the connection between both phenomena. GRB 980425 was a dim
GRB and had no optical afterglow [45]. Nevertheless, five years later, GRB 030329
and SN 2003 established the link. The GRB was a luminous burst and had a very
bright afterglow. After several days, the afterglow emission started to display more and
more SN features. A bump appeared in the power-law spectrum. After subtracting the
afterglow emission, the SN spectrum could be isolated [5, 46].

Only for a small fraction of long GRBs, a coincidence with a supernova is detected.
Nevertheless, it is widely accepted that long GRBs are linked to the death of massive
stars, since they populate regions with intense star formation [6]. Alternative models to
explain long GRBs are mergers of binary systems with a helium star and neutron star
or black hole, with white dwarfs, carbon-oxygen cores, et cetera. Often they do explain
some special GRBs with anomalous features. To e.g. explain the ultra-long GRBs with
T90 > 103 s, blue supergiants are proposed as progenitor, since a system with a WR star
as progenitor is unlikely to power the central engine for more than 15 minutes [8, 18].
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2.5.2 Short GRBs: Compact Binary Merger Model

Short GRBs are believed to originate from the merger of a compact binary system.
Compact binary systems can consist of white dwarfs, neutron stars or black holes, but
only two are suspected to be possible candidates, since we need a black hole/accretion
disc system: NS-NS and BH-NS [28].

The merger starts with the in-spiral phase, during which the orbital separation between
the objects and the period decrease, caused by the emission of gravitational waves. This
phase can be of the order of several Myr up to some Gyr. This process was demonstrated
by the Hulse-Taylor pulsar (PSR 1913+16), consisting of two neutron stars [47]. When
the objects arrive within a few times their radii, they tidally distort each other and long
spiral arms are created, carrying the excess angular momentum. The objects collide and
fuse together, and collapse into one object, a black hole. The stellar debris, that is not
ejected in the interstellar medium, forms an accretion disc around the black hole and
will feed the central engine and the jet structures that arise [6, 28].

Observational Evidence

Short GRBs do not show a connection with particular regions or galaxies. They are
found in elliptical galaxies, in star-forming regions and at significant off-sets from nearby
galaxies. All those observations support the compact binary merger model. The in-spiral
phase can proceed very fast, not giving much time to the binary to propagate away from
the birthplace. Similarly, there are binaries which arise from ancient star populations.
When both compact objects result from a supernova explosion, the system might have
experienced substantial kicks due to those explosions or the mass losses, and is pushed
away from the host galaxy [6, 44]. However, the most important piece of evidence is
the simultaneous observation of gravitational waves and GRB emission. In 2017, the
LIGO/VIRGO Collaboration detected the GW 170817 event, which was associated with
the short GRB 170817A detected by Fermi and Integral, as will be discussed in Section
2.6 [8].

2.6 Multi-Messenger Astronomy

Besides being the most luminous transient objects in the Universe, GRBs are believed
to emit also non-electromagnetic signals. Three other messengers that are possibly pro-
duced by GRBs are high-energy neutrinos, ultra-high-energetic cosmic rays (UHECRs)
and gravitational waves.

Neutrinos and UHECRs

It is assumed that electrons and positrons are accelerated to high energies in the rela-
tivistic outflow of the jets. As such, they can produce the observed prompt and afterglow
radiation. At the same sites where those electrons reach high energies, protons could
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be accelerated up to energies E ≳ 1020 eV. This can take place at several stages, e.g.
during the internal and external shocks, or in the accretion disc or flow onto the central
object. High-energy protons interact with photons and produce pions through a ∆+ res-
onance, provided that the energy of the initial proton and photons is sufficiently high to
create the ∆+ baryon (uud) with mass M∆+ ≃ 1.23 GeV. The pions decay and produce
neutrinos, amongst other leptons and photons:

p + γ −→ ∆+ −→
{

n + π+ −→ n + µ+ + νµ −→ n + e+ + νe + ν̄µ + νµ,

p + π0 −→ p + γ + γ.

From the kinematic condition, Ep · Eγ ≳ 1.6 · 1017 eV2, one derives that the interaction
happens for a typical optical photon when Ep ≳ 1016 eV. Since the protons can reach
higher energies in GRBs, this is not a stringent condition. It is expected that neutri-
nos with a broad energy range are produced, up to 1019 eV, originating from different
regions in the GRB mechanism. However, no neutrino signal has yet been observed in
coincidence with a GRB observation [8, 48].

Assuming that protons are accelerated, it is expected that GRBs also produce UHECRs.
Cosmic rays are charged particles, consisting of protons and nuclei up to iron, that arrive
at Earth and interact with the atmosphere. Their energy spectrum shows a power-law
with spectral index of about −2.6 and covers more than 11 orders of magnitude in energy.
UHECRs are the cosmic rays with the highest energies, E > 1018 eV. It is suspected
that around this energy a shift happens and the observed cosmic rays start to have
extragalactic origins. They can only be produced in the most energetic phenomena, such
as AGNs and GRBs. However, the absence of any neutrino observations in coincidence
with GRBs puts strong constraints on the models that propose GRBs as dominant
UHECR sources [5, 8, 48].

Gravitational Waves

As was discussed in Section 2.5, the leading model for the origin of short GRBs is a
compact binary system, which merges and collapses into a black hole. This can be
either a NS-NS system or a NS-BH model. A BH-BH model is less likely, since a system
with a neutron star provides material to form an accretion disc around the black hole,
which is generally assumed to provide energy for the jet formation. Compact binary
systems are acknowledged as sources of gravitational waves, and thus it is legitimate to
anticipate on gravitational wave signals in coincidence with a short GRB [8,28].

The first gravitational wave signal that was detected together with a GRB signal ar-
rived on August 17, 2017 and was observed by the Advanced LIGO (Laser Interfer-
ometer Gravitational-Wave Observatory) and Virgo detectors [49, 50]. Approximately
1.7 s later, Fermi and Integral (INTErnational Gamma-Ray Astrophysics Laboratory)
reported about GRB 170817A [51–53]. It is indeed expected that the electromagnetic
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Figure 2.7: Multi-messenger detec-
tion of the binary neutron star
merger in NGC 4993, detected as
GRB 170817A by the γ-ray detec-
tors GBM (Fermi) and SPI-ACS (In-
tegral) and as GW 170817 by the
interferometers of LIGO and Virgo.
Top three panels: Light curves of
Fermi/GBM in two energy bands
(NaI detectors 1, 2 and 5) and of
INTEGRAL/SPI-ACS in the high-
est energy band of GRB 170817A.
Bottom panel: Combined time-
frequency map of LIGO-Hanford
and LIGO-Livingstone data of the
gravitational wave event GW170817.
Time zero is the trigger time of GW
170817 [49].

signal is delayed by a few seconds, since the central engine and jet launch are formed
within several seconds after the merger. GW signals and EM signals are expected to
travel at the same speeds. The signals of the different detectors are shown in Figure 2.7.
This was a short GRB with T90 ∼ 2 s [49]. The LIGO interferometers pinpointed a
region of 28 deg2 as the origin of the source. A follow-up electromagnetic search revealed
an optical signal ∼ 11 hours after the merger [54]. Signals in X-ray, radio, ultraviolet
and infrared were also detected. Neutrino and cosmic-ray observatories also searched
for an excess, but did not report on successful results [55]. The galaxy NGC 4993 was
identified as host galaxy. From the gravitational wave signal, it was derived that the sys-
tem consisted of two neutron stars, which collapsed into a compact object of ∼ 2.8 M⊙,
probably a black hole [55].

The event is one of the closest GRBs known (together with GRB 980425), at a distance
of ∼ 40 Mpc, but was extremely weak. It is believed that the jet was not pointed towards
us and we only received a fraction of the true energy output [49]. Therefore, the afterglow
emission of the GRB was not detected. The emission in all wavelength bands originated
from the kilonova explosion that followed the burst [56, 57]. During the merger, part of
the material of the neutron star is ejected into the interstellar medium. This consists of
neutrons and elements up to iron. In the ejecta, neutron capture processes (r-processes)
take place, during which neutrons are absorbed before they can decay into protons.
Unstable, heavier elements are created, which rapidly decay with a release of photons.
These photons cannot escape due to the large density and opacity of the ejecta, and
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are again absorbed until they are converted into thermal energy, which appears in all
wavelengths but peaks in the optical and infrared bands [8].

The simultaneous detection of GRB 170817A and GW 170817 was a milestone for both
messenger fields. GW 170817 was the first NS-NS binary merger, and the first GW
event for which an electromagnetic counterpart was observed. On the other hand, GRB
170817A was the first GRB event that was observed through gravitational waves, im-
mediately confirming that, at least some, short GRBs are born in the merger of two
neutron stars [49,55].

2.7 Kolmogorov Turbulence

As discussed in Section 2.2.3, the time spectra of GRBs differ a lot between each other
and show variability on scales of milliseconds up to seconds. Often, the spectra are
transformed to frequency space through Fourier transforms to extract information about
periodicity, of which the typical frequencies would appear as clear peaks in the Fourier
spectrum. A characterisation of the variability would constrain models that try to
explain the radiation mechanisms of the gamma-ray emission, of which is still little
known. Unfortunately, no periodicity is observed for GRB light curves [8].

Nonetheless, in 1998, Beloborodov, Stern and Svensson showed that their sample of long
and bright BATSE GRBs exhibited an average power density spectrum that followed a
power-law function with exponent α = −5/3 ∼ −1.67, as is shown in Figure 2.8 [58]. This
was later confirmed for other samples of GRBs and in other energy bands as well [59–62].
A power-law distribution is a spectrum that is characterised by a straight line in log-log
space and is thus of the form: p(x) = C · x−α, where α and C are constants. It is the
representation of a scale-free system, i.e. the system satisfies the following condition, for
any constant b:

p(bx) = g(b) · p(x). (2.6)

At any value for x, the spectrum only changes by a multiplicative factor [63]. Since the
slope of the power-law function is equal to −5/3, the connection with the Kolmogorov
theory or the Kolmogorov spectrum of velocity fluctuations in turbulent media was
suggested [58]. To explain this, a short introduction to fluid dynamics is necessary.

Turbulent Flows

The dynamics of a fluid are given by a set of non-linear partial differential equations,
called the Navier-Stokes equations, and describe the evolution of the parameters of the
flow (velocity, pressure, temperature and density), as a function of position and time.
There is no general solution to the equations, but typically two regimes are distinguished:
laminar flows and turbulent flows. Laminar flows (or ‘stable’ flows) are ordered and
layered. Their evolution can be predicted and they are not sensitive to small variations
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Figure 2.8: Average PDS for the sample of long (T90 > 20 s) and bright (count rates
> 250 counts per 64 ms bin) GRBs that were observed in the 50 - 300 keV energy
band by BATSE. The x axis reflects the frequency spectrum obtained from the Fourier
transformed time series. The dotted line has a slope of -5/3 for comparison. The solid
horizontal line shows the averaged normalised Poisson level of the sample, illustrating
that the Poisson fluctuations become dominant at high frequencies, f ≃ 1 Hz [58].

in the initial or boundary conditions. Turbulent flows (or ‘unstable’ flows) however are
chaotic, disordered and are susceptible to small variations. After a short while, they
start to fluctuate and become totally unpredictable [64].

Nevertheless, from the simpler Burgers equation,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 , (2.7)

the behaviour of the turbulent flow can be understood. Here, ν is the viscosity of the
fluid and u is the velocity. The second term on the left is the non-linear destabilising
advection term. The term on the right is the friction term, which will have a stabilising
role. Turbulent flows appear in vortex-like structures, which are called ‘eddies’, and
appear in different sizes. The size of an eddy is often seen as the scale over which the
velocity in a flow varies substantially, and can be as large as the region in which the
flow takes place. It is found that there are again two subregimes in the turbulent flow,
defined by the Reynolds number, which is the ratio between the non-linearity and the
friction. For small Reynolds numbers, friction dominates over the non-linearity and the
solution is found ‘stable’. This happens at very small scales, much smaller than the
dimension of the eddy. This is called the microstructure. For large Reynolds numbers,
the non-linearity is much larger than the friction. This happens at scales of the order of
the dimension of the eddy, which is considered as the macrostructure [64–66].

Kolmogorov’s relation states that the macrostates, and thus the largest eddies, contain
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Figure 2.9: The Kolmogorov energy spectrum, where the anisotropic range refers to the
large eddies, containing the bulk of the energy. The dissipation range corresponds to the
small eddies and has a more complex scaling relation. The inertial subrange displays
the ∼ κ−5/3 and represents the energy cascade [64].

most of the energy of the flow. They receive their energy from the instabilities that
are created in the flow, but become unstable and break up into smaller structures, until
the eddies are sufficiently small to become stable and dissipate their energy as heat by
friction processes. This process is called the ‘energy cascade’. It is found that this process
defines in a large extent the Kolmogorov energy spectrum. In the intermediate region,
between large eddies with large amounts of energies, and small eddies with small amounts
of energy due to their dissipative nature, the energy spectrum follows the power-law:

E(k) ∝ ϵ2/3k−5/3. (2.8)
Here, E(k) is the kinetic energy per unit mass fluid, ϵ is the dissipated energy and k
is the wave number k ∼ 1/l, where l corresponds to the length scale of the turbulent
motion. The spectrum is shown in Figure 2.9. Large k values correspond to small
eddies, while small k values correspond to large eddies. The dissipated energy ϵ denotes
the continuous energy flux between the eddies of different scales [65,66].

The wave number k is proportional to the frequency f , and we know that the energy
in function of frequency can be defined by the Fourier transform. This connects the
Kolmogorov spectrum with the (average) PDS of the GRBs. Their shared index suggests
that turbulence plays a role in the emission process of GRBs. Incorporating the power-
law puts new constraints on theoretical models. The observed PDS can for example
be obtained by the propagation of the relativistic jet through the stellar envelope of
the progenitor, or it appears for certain values of parameters involved in the internal
shock model. It can arise from turbulence in the accretion disc or can be related to the
progenitor [62]. These are only some examples and it can be concluded that a better
understanding of the power-law behaviour for different samples of GRBs and in different
energy bands may strengthen and extend these constraints. This is exactly the goal of
the research described in this thesis.
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Chapter 3

Fourier Transforms

In this thesis, we aim to deepen our understanding of the power-law behaviour of the
average power density spectrum. Therefore, we need to set up the framework to trans-
form the time spectra to frequency space. We make use of the Fourier transformation,
which is the subject of this chapter. In Section 3.1, we shortly revisit the mathematical
construction of the continuous and discrete Fourier transform, after which we set up a
toy model in Section 3.2 to systematically investigate the characteristics that we may
expect when studying the Fourier transformed time series of our GRBs.

3.1 Mathematical Overview

The Fourier transform is named after the French mathematician and physicist Jean Bap-
tiste Joseph Fourier. As the scientific adviser of Napoleon Bonaparte, he was interested
in heat propagation and formulated the well-known diffusion equation or heat equa-
tion [67]. This is a partial differential equation, and while he was looking for solutions
to this equation, he claimed that any continuous periodic function can be decomposed
into a well-chosen sum of sine and cosine waves. Another physicist of that time, Joseph
Louis Lagrange, stumbled upon that statement and rejected it. He declared that this
decomposition was incorrect for continuous signals with corners, i.e. square waves. As
Lagrange was the reviewer of his paper, Fourier never published it. Only many years
later, it became clear that a summation of sinusoids could indeed not reconstruct a con-
tinuous signal with a corner. However, the constructed signal approaches the original
signal very well, until they differed with ‘zero energy’, i.e. something we know today as
the Wilbraham-Gibbs phenomenon [68,69]. Thus, it seems that both were right in that
time [70,71]. Today, the Fourier analysis is an essential tool in digital signal processing
and data analysis and has applications in almost all scientific fields [72].

A piecewise continuous function f(t) can be written as the infinite sum of an orthonormal
set of basis functions Bn(t) multiplied with coefficients cn [72]:

27
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f(t) =
+∞∑
n=0

cnBn(t). (3.1)

The complex Fourier series adopts trigonometric functions as basis functions, which
can be written in an exponential form by the Euler equation: eint = cos (nt) + i sin (nt),
periodic outside the range [−π, +π]. If we assume that the function f(t) has an arbitrary
period 2T , we have:

f(t) =
+∞∑

n=−∞
cn eπint/T . (3.2)

Since the different basis functions are orthonormal, the general form for the coefficients
can be found by multiplying both sides of the equation with e−πimt/T and integrating
over one period, i.e. from −T to +T :

∫ T

−T
f(t) e−πimt/T dt =

+∞∑
n=−∞

cn

∫ T

−T
eπi(n−m)t/T dt. (3.3)

The left-hand side vanishes, except for the case m = n. Then we find for the coefficients
the following expression:

cn = 1
2T

∫ T

−T
f(t) e−πint/T dt. (3.4)

We can use this expression to derive the Fourier Transform pair from the complex Fourier
series. If we rewrite cn in Eq. 3.4 as cn = Fn/2T , where Fn is simply

Fn =
∫ T

−T
f(t) e−πint/T dt, (3.5)

then f(t) becomes:

f(t) = 1
2T

+∞∑
n=−∞

Fn eπint/T . (3.6)

If we define the ‘frequency’ ωn = nπ/T = n∆wn:

f(t) = 1
2π

+∞∑
n=−∞

Fn ∆ωn eiωnt, (3.7)

Fn =
∫ T

−T
f(t) e−iωnt dt. (3.8)

Taking the limit T −→ ∞:
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f(t) = 1
2π

∫ +∞

−∞
F (ω) eiωt dω, (3.9)

F (ω) =
∫ +∞

−∞
f(t) e−iωt dt. (3.10)

F (ω) is called the Fourier transform of the function f(t), while f(t) is the inverse Fourier
transform of F (ω). Together, they form the Fourier transform pair. The discrete Fourier
transform (DFT) pair is derived easily from Eqs. 3.5 and 3.6 by considering a uniform
sampling of the function f(t) with sampling interval ∆t. Then fm = f(tm) with m =
0, 1, ..., N − 1. Defining tm as tm = m∆t and N = T/∆T , we arrive at:

fm = 1
N

N/2∑
n=0

Fn e2πinm/N , (3.11)

Fn =
N−1∑
m=0

fm e−2πinm/N . (3.12)

Note that the normalisation factor 1/N varies in the literature. The normalisation above
is called the ‘backward’ normalisation. Instead, one can choose to add the 1/N factor to
Eq. 3.12, i.e. the ‘forward’ normalisation, or a factor 1/

√
N to both equations, which is

the called the ‘symmetric’ normalisation. In practice, numerical programmes can only
handle discrete functions [71]. Therefore, we will focus on the discrete Fourier transform
from now on. With the Euler equation, we can decompose Eq. 3.12 into sine and cosine
waves:

Fn =
N−1∑
m=0

fm

[
cos

(2πnm

N

)
− i sin

(2πnm

N

) ]
. (3.13)

The Fourier transform Fn is thus a complex function of length N , consisting of a real
even part and an odd imaginary part. The component at n = 0, F0, is called the DC
component, referring to a constant voltage (or current), since for n = 0, f = 0. In
the ‘forward’ normalisation, this is equal to the average of the time signal, while in the
‘backward’ normalisation, F0 corresponds to the area under the curve. The frequency at
FN/2 corresponds to the Nyquist frequency, which is half the sampling rate. The Fourier
transform is symmetric around zero, with the positive frequencies contained in F0 to
FN/2 and the negative frequencies between FN/2 and FN−1. The negative frequencies do
not contain extra information, and are often disregarded [70–72].

3.2 Toy model

Having considered the framework of the DFT, we want to investigate how different
features in the light curves of the GRBs are introduced in the DFT of the signal. Since
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Figure 3.1: Left: Top hat function with a duration of 1 s and an amplitude of 1 count.
Right: The DFT of the top hat function. The horizontal axis is cut off at 10 Hz for
better visualisation.

the light curve of the GRB is often binned to have a sufficient amount of counts in one
bin, we start with a simple top hat function. Subsequently, we adjust the parameters to
understand the effects on the DFT.

We first consider a top hat function with a duration of 1 s and amplitude of 1 count.
The DFT is a sinc function, as is shown in Figure 3.1. When we increase the duration of
the top hat, to 5 s and 10 s, the amplitude of the DC component of the DFT increases
with a factor 5 and 10 respectively, illustrated in Figure 3.2. The subsequent peaks in
the DFT increase in amplitude as well. We can conclude that longer signals introduce
more power in the lower frequencies. The amplitude spectrum of the DFT displays how
strong certain frequencies of the sine and cosine waves are present in the signal. When
the signal is stretched, smaller frequency waves are needed to construct the top hat,
which in the limit of “infinite stretching” (i.e. a constant signal) only leaves the DC
component.

The same exercise can be done for the amplitude. In Figure 3.3, the magnitude of the
top hat function is respectively increased with a factor 5 and 10. One can see how
the magnitude of the DFT evolves likewise. An amplitude scaling in the time domain
corresponds to an amplitude scaling in the frequency domain. Since there is no change
in the relative photon arrival times, the frequencies of the DFT stay the same. The same
argument explains why there appears to be no difference in the amplitude spectrum of
the DFT when the top hat function is shifted in time. This only introduces a phase shift
in the sine and cosine waves, but does not alter the frequency or amplitude spectrum.

Next, we can consider double top hat functions. Immediately, it is clear that this in-
creases the complexity extensively. In Figure 3.4, two identical top hats are shown. The
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Figure 3.2: Left: DFT of top hat function with a duration of 1 s. Center: DFT of top
hat function with a duration of 5 s. Right: DFT of top hat function with a duration of
10 s.

Figure 3.3: Left: DFT of top hat function with amplitude of 1 count. Center: DFT
of top hat function with amplitude of 5 counts. Right: DFT of top hat function with
amplitude of 10 s.
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Figure 3.4: Left: Double top hat function. Each pulse has a duration of 1 s and an
amplitude of 1 count. The quiescent time lasts 1 s. Right: The DFT of the signal.

time between them, called the quiescent time (QT), lasts 1 s. In the DFT, additional
peaks appear and the overall amplitude increases. The second pulse is constructed by
(co)sine waves which differ by a phase with the original waves, and their summation
may not be trivial. The complexity of the signal enhances when parameters as duration
and quiescent time are altered, as is illustrated in Figure 3.5. Generally, we find that
the power in the lower frequencies again increases, since, if the entire signal would be
fitted with one (co)sine wave, the frequency of the wave is lower.

A real GRB signal is an irregular sequence of many bins with various amplitudes. It is
not surprising that the DFT will appear very complex. An example is shown in the left
panel of Figure 3.6 with the DFT in the middle panel. A signal with an arbitrary time
evolution is generated. The resulting DFT does not provide any hints about the time
structures that lie at its origin. Since the short time variability within the precursor
and prompt emission (which could be represented in this example by the short and long
structures in Figure 3.6) is often smaller than the quiescent time, it is expected that
the low frequencies correspond to the latter and the higher frequencies might contain
features of the former. Simply looking at this example rejects this hypothesis. It is
impossible to assign certain peaks in the DFT to features in the time structure.

At last, we notice an important aspect in the calculation of the DFT. We should make
sure that the signal is not stretched out over the entire time interval. We calculated
the DFT of the theoretical light curve for the time interval [14 s, 29 s], i.e. the time
interval of the burst. One can see the result in the right panel of Figure 3.6. The curve
contains the global features, but has lost the details and is less smooth. The difference
between the middle panel and the right panel is due to the zeros at both sides of the
burst. We say that the light curve in the left panel is zeropadded. There are two reasons
why it is interesting to zeropad the signal. First, the algorithm used to calculate the
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Figure 3.5: Left: The DFT of two top hat functions with a QT of 1 s, duration of 1 s
and an amplitude of respectively 1 count and 5 counts. Center: The DFT of two top hat
functions with a QT which is twice as long as in the reference function in 3.4, durations
of 1 s and amplitudes of 1 count. Right: The DFT of two top hat functions with a QT
of 1 s, a duration of respectively 1 s and 5 s and amplitudes of 1 count. The inset panels
show the corresponding functions in time domain.

Figure 3.6: Left: Light curve of a theoretical GRB. Center: DFT of the light curve. We
transform the entire time interval, t = [0, 39] s. Right: DFT of the light curve. We only
transform the time interval t = [14, 25] s.
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DFT, the Fast Fourier Transform (FFT), is much faster for input arrays with length
equal to a power of two. Adding zeros to the signal until it is sufficiently long, will
decrease the computational time of the process in a great extent, but does not add any
information to the signal. Secondly, by extending the length of the time array N, we
decrease the bin width ∆f of the DFT, since ∆f ∼ 1/N . That means that we add extra
points between the original ones, although without any extra information, and the DFT
becomes smoother.



Chapter 4

Analysis of GRB Data

In this chapter, we apply the mathematical toolbox of Chapter 3 to arrive at the average
PDS for a certain sample of GRBs. We make use of the time-tagged event (TTE) data
of the Fermi Gamma-Ray Space Telescope, which is introduced in Section 4.1, together
with a short discussion about its observation mode and possible sources of background
photons. Next, in Section 4.2, the entire procedure we followed to calculate the PDS
for an individual GRB, is outlined. We start from the TTE data, which are single
photon counts, and describe the process of redshift correction, background subtraction
and normalisation before calculating the PDS. In Section 4.3, we build further on the
individual PDS to infer the average PDS of the entire sample of GRBs. We discuss how
we can extract properties of the power-law behaviour of the spectrum, and what the
difficulties are in our approaches.

4.1 Fermi Gamma-Ray Space Telescope

The Fermi Gamma-Ray Space Telescope, Fermi in short, is named after Enrico Fermi,
Nobel Prize winner in Physics of 1938 for his work in artificial radioactivity and known
from e.g. the Fermi acceleration principle, the Fermi-Dirac statistics and the Fermi
interaction [73]. The telescope was launched on June 11, 2008, and orbits Earth at
a height of ∼ 565 km. It contains two instruments, the Gamma-Ray Burst Monitor
(GBM) and the Large Area Telescope (LAT). They are shown in Figure 4.1 with their
subdetectors. Most of the GRBs are observed by GBM, which detects gamma-rays with
energies between 8 keV and 40 MeV within a field-of-view (FOV) of ∼ 9.5 sr (∼ 75%
of the full sky). LAT augments the performance of GBM by high-energy observations
in the range of 20 MeV to 300 GeV and has a FOV of 2.4 sr (∼ 19% of the full sky).
LAT observes approximately 18 GRBs per year, while GBM sees around 240 GRBs
in the same time span. Fermi allows for a study of the gamma-ray emission over an
unprecedented range of energy with increased sensitivity. The possibility to detect over
seven decades in energy makes Fermi pioneer in observations at high energies by LAT,
but bridges also towards observations at low energies by GBM [19,33,74,75].

35
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Figure 4.1: Illustration of the Fermi Gamma-Ray Space Telescope, with its two instru-
ments: the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM)
and their subdetectors [18].

Fermi’s primary instrument is LAT, which is a pair-production telescope, converting
high-energy gamma-rays into electron-positron pairs. The telescope is constructed as a
4x4 structure, with 16 identical towers, each containing a tracker and a calorimeter. The
entire telescope is covered in a “shield” which is the anti-coincidence detector (ACD).
This is used to identify cosmic rays, which hit the telescope continuously and are made
up of the same particles that are created by the gamma-rays in the detector. Therefore,
when the ACD detects charged particles, it produces a light flash and informs the Data
Acquisition System (DAQ) to reject the signal. Since gamma-rays do not carry any
charge, they can pass through the shield freely. The ACD removes the charged-particle
background with an efficiency of more than 99%.

When a gamma-ray falls into LAT, propagating through the ACD, it interacts with one
of the 16 tungsten sheets in the tracker. Here, the gamma-ray is triggered to produce
an electron-positron pair. The tracks of the charged particles are used to determine
the arrival direction of the gamma-ray. Additionally, their energy is measured in the
calorimeter, which can be used to estimate the energy of the original photon. Based on
the arrival direction, gamma-rays originating from Earth’s atmosphere can be removed
as well. Finally, all information is collected by the DAQ, which makes the first distinction
between background and signal and selects the signals that should be saved [33,75,76].



4.1. Fermi Gamma-Ray Space Telescope 37

The complementary GBM instrument is mainly used to detect and locate the observed
GRBs. It contains two types of scintillation detectors: 12 sodium iodide (NaI) detectors,
sensitive to hard X-rays and low-energetic gamma-rays with energies from 8 keV to 1
MeV, and 2 bismuth germanate (BGO) detectors, sensitive from 200 keV to 40 MeV.
The NaI detectors are placed in groups of three at different corners of the spacecraft,
while one BGO detector is placed at each side. As such, Fermi observes the entire sky,
not occulted by Earth. This is important to detect as much GRBs as possible, since
they occur unpredictably and everywhere in the Universe. When an X-ray or gamma-ray
enters one of the NaI detectors, it interacts with the sodium iodide material through the
photo-electric effect. The decay of excited electrons produces light, which is captured
by the connected photomultipliers. Via Pulse Height Analysis (PHA), the energy of the
photon is determined [74,77].

The various NaI and BGO detectors face different directions. The detectors oriented
towards a GRB will capture more photons than the ones at the other side of the space-
craft. The GBM monitors the counts in each of the detectors and signals a trigger
when the counts in two or more detectors exceed a certain threshold value. Requiring
that multiple detectors trigger, reduces the number of false counts by non-astrophysical
phenomena or statistical fluctuations. By combining the data of various detectors, the
location of a burst is determined. A similar process is pursued in the BGO detectors,
which will catch more energetic photons. When GBM signals a particular bright GRB,
i.e. when the flux exceeds a certain threshold value, an autonomous repoint request
(ARR) is sent to the spacecraft flight software. It can be decided to point LAT towards
the burst for a longer period of time [19, 74, 76, 78]. In the normal operation mode, the
spacecraft slowly changes direction to let LAT scan the entire sky every two orbits (∼ 3
hours). This is called the ‘sky-survey’ mode.

Background Sources

In the sky-survey mode, Fermi slowly but continuously changes direction. When an
ARR is issued, the spacecraft repoints soon after the trigger time, which is the most
important observation time (i.e. during the burst). This results in variable background
rates, which depend on the energy and the orientation of the background sources w.r.t.
the individual NaI and BGO detectors [77]. Two light curves of GRBs for which the
variability in the background is apparent, are shown in Figure 4.2 [78]. The background
in the individual detectors is composed of different sources, which are discussed below.

Cosmic rays. As mentioned before, background photons can originate from the direct
interaction between the satellite and cosmic rays, which still pass through the highly
efficient ACD cover. This gives however only a minor contribution to the background
for E > 150 keV [74]. The dominant background source in this energy range is the
indirect interaction between cosmic rays and the spacecraft. Fermi is located in a low-
Earth orbit and completes its trajectory in 96 minutes. That means that the satellite is
still shielded by the magnetic field of Earth, protecting it from low-energy cosmic rays.
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Figure 4.2: Two examples (GRB 090618353 and GRB 090828099) of light curves of GRBs
to demonstrate the variable background present in the data. The grey line illustrates
the background fit by Szécsi et al. (2013), from which the figures are taken [78].

Nonetheless, this adds a new source of background. When cosmic rays interact with the
highest layers of Earth’s atmosphere, mainly through pion decay, they produce a cascade
of secondary particles. Gamma-rays and X-rays are created, partly being emitted back
into space. A continuous diffuse signal develops within the typical energy band of GBM,
but since this signal is smoothly changing due to the movement of the satellite, it can
be modelled and the secondary gamma-rays are recognised as background [74,77].

Lightning. Lightning in Earth’s atmosphere is believed to be a source of terrestrial
gamma-ray flashes. The electric field generated in the thunderstorms can accelerate
electrons up to energies of the order of several tens of MeV. When such an energetic
electron encounters a nucleus, it is deflected and decelerated, emitting Bremsstrahlung.
The emission of one electron is insignificant, but the accumulated effect of many electrons
can produce short flashes of gamma-rays, with a duration of the order of micro- up to
milliseconds. The duration and the direction of the gamma-rays reveal that these are
false signals of GRBs and thus can be identified as background. Lighting might also
produce secondary particles which get trapped in the magnetic field lines, form a beam
and travel large distances. It is possible that the beam meets the satellite far away from
the thundercloud. They produce a signal which resembles gamma-rays from lightning,
but appear not necessarily close to a thunderstorm, making it more difficult to recognise
the false signal [18,79].

South-Atlantic Anomaly. Earth’s magnetic field contains two regions, called the Van
Allen radiation belts [80], in which the charged particles, originating from e.g. solar
flares, are trapped. The inner Van Allen belt lies at an altitude of 1000 km and thus
safely above the orbit of Fermi. However, in a region above the South Atlantic, called
the South-Atlantic Anomaly (SAA), Earth’s magnetic field is much weaker. This causes
the settling of the inner belt at an altitude of ∼ 100 km, now intersecting Fermi’s
orbit. Therefore, the detectors are turned off during the passage through the SAA to
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avoid damage, but charged particles can still interact with the spacecraft material. This
produces photons which give counts when the detectors are again activated [74,77].

Solar System. Other sources of gamma-rays in the Solar System are the Sun and
the Moon. Similarly to Earth, cosmic rays interact with the lunar surface and produce
gamma-rays [81]. The same process happens in the Sun, although the Sun is shielded by
a magnetic field, which decreases the interaction rate. The Sun, however, is a source of
solar flares, ejecta of charged particles which carry their own magnetic field and contain
accelerated particles, producing gamma-rays. Characteristics such as the location of the
flare hint that their origin is not ‘GRB-like’ and distinguish them from GRBs [76,82].

Galactic and extragalactic sources. A diffuse Galactic gamma-ray emission ex-
ists, coming mainly from the galactic plane and centre. It originates from cosmic rays,
electrons and positrons interacting with the interstellar gas, or from local particle accel-
eration sites [83]. Besides that, individual galactic sources contribute to the background
rate, such as accreting binary systems or soft-gamma ray repeaters (SGRs), which are
highly magnetised neutrons stars (magnetars), emitting pulses of X-rays and γ-rays but
in a repeating manner [19, 84]. Extragalactic sources comprise gamma-rays originating
from active galactic nuclei or giant magnetar flares [77,78].

4.2 Individual GRBs

4.2.1 Data Format

In this thesis, we use the TTE data of the NaI detectors of Fermi-GBM. For each GRB
trigger, these files contain the observed photon counts with a time resolution of 2.6 µs
(accurate up to < 10 µs). The energy of the photons is stored in 128 bins, of which
the bin width increases pseudo-logarithmically with increasing energy. Each photon
count has thus a corresponding index between 0 and 127. Before August 2010, the TTE
data contained counts starting 30 s before the trigger time and ending 300 s afterwards.
After a software update, this time range was extended to 130 s before and 300 s after
the trigger time [74].

Apart from the TTE data, Fermi-GBM releases two other types of data files as well,
which contain temporal information about the burst from 1000 s before and until 1000
s after the burst. Continuous spectroscopy (CSPEC) files store the energy in the same
128 bins as the TTE files, but use a broader time binning of 4.096 s. Continuous time
(CTIME) data use a smaller bin width of 256 ms, but only offer 8 energy bins [74].
We choose to focus on the TTE data only, since these files contain good temporal and
spectral information about the bursts. Since we are mainly interested in the properties
of the main burst and precursor, rather than of the afterglow, this is sufficient.

As explained in Section 4.1, each burst is observed by multiple detectors simultaneously.
The first detector, in which the photon rate exceeds a certain preset threshold value,
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defines the trigger time. However, a GRB must trigger at least two of the twelve NaI
detectors to be considered as a real signal. We used the data of the two or three
subdetectors, pointing closest to GRB, as they generally contain the strongest signals.
In a previous analysis by Coppin et al. (2020) [35], the triggered detectors were identified.
In GRB analyses, it is convenient to add the photon counts of the different detectors in
order to receive a stronger signal. As such, we find the combined spectrum of the GRB,
on which the analysis is performed.

Ultimately, the photon counts are binned in time. We choose a bin width of 5 ms, since
this gives a sufficiently small time resolution, while conserving enough photon counts in
one bin. Note that the light curves of GRBs are often binned according to the Bayesian
Block (BB) procedure, developed by J. Scargle for the analysis of the BATSE light
curves [85]. This method allows for a variable time binning, based on Bayesian statistics.
A transition from one bin to the next bin signals a significant change in the rate. Hence,
the method is able to identify emission zones above background consistently. We choose
not to use this method in this thesis, since it resamples the data points, which are then no
longer independent or Poisson distributed. Having independent and Poisson distributed
data points is an important condition to use the formulas to derive the uncertainties on
the PDS, which we would like to do. Therefore, this analysis is performed on the raw
data of the GRBs with a fixed time binning.

4.2.2 Redshift Correction

After summing the contributions of the different detectors, we want to correct for the
redshift z on the observed time and energy values. In this way, we perform the analysis
in the reference frame of the source. Especially in view of the averaging process, it is
crucial to treat every GRB equally. GRBs are observed at various distances, and the
imprint of the redshift on the light curve depends on the distance the photons have
traversed. The time interval ∆to between the photons is stretched, and the energy Eo

is reduced (i.e. the light appears more ‘red’) compared to the original time interval ∆te

or photon energy Ee with a factor (1 + z) or (1 + z)−1 respectively:

λo

λe
= νe

νo
= Ee

Eo
= 1 + z

∆to

∆te
= 1 + z, (4.1)

where λ and ν are the wavelength and frequency of the photons, and the index ‘o’ denotes
the observed parameters and ‘e’ the parameters of the emitted photons at the source.
Transforming the light curves to the GRB reference frame thus results in a narrowing
of the time bins. Therefore, the redshift correction is performed before the binning of
the photon counts to ensure that the time binning is equal (5 ms) for each GRB. Note
that the current redshift distribution of observed GRBs has a maximal value of z = 9.4
(GRB 090429B) [17]. Most GRBs have redshifts between z = 0 and z = 6 [33]. Figure
4.3a shows the binned, redshift-corrected light curve of GRB 151027166.
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(a)

(b)

(c)

Figure 4.3: (a) Redshift-corrected light curve of GRB 151027166, located at redshift
z = 0.81. The horizontal axis shows the time w.r.t. the trigger time t = 0. The vertical
axis gives the photon rate per bin, i.e. the total photon count divided by the bin width.
(b) Illustration of the background characterization process, outlined in Section 4.2.3.
The light grey histogram shows the redshift-corrected light curve of Figure 4.3a and
the dark grey line is the photon rate, averaged over 0.3 s. The blue curve denotes the
photon rate r2.5 s, averaged over 2.5 s, and is compared to the predicted rate rp in yellow
to estimate the background rate (red dotted curve). (c) Background-subtracted light
curve, normalised by its highest peak.
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4.2.3 Background Estimation

The redshift-corrected light curve still contains signal and background. To arrive at a
good characterisation of the background rate, we rely on a sequence of steps described
in Coppin et al. (2020) [35]. The procedure aims at selecting the time spans in which
no increase in gamma-ray emission is seen above background. In other papers, the back-
ground rate is often identified by eye. This is however time-consuming for large samples
of GRBs and is subjective. A generalised procedure, based on well-defined conditions
and criteria, treats all light curves similarly and can be repeated. This results in a
consistent background characterisation and allows, by extension, to compare different
studies more correctly.

The procedure outlined in Coppin et al. (2020) [35] is founded on an empirical basis; the
resulting background rate is close to the one that would be identified by eye. The authors
performed their research on TTE data, extended with CTIME data, of Fermi. Since we
solely operate with the TTE data in this thesis, our light curves look different. Therefore,
we modified the procedure. This was not a trivial process, and mainly proceeded by
trial and error. While the original criteria could be interpreted in terms of uncertainty
intervals, the new conditions are empirical. In the future, a more in-depth method can
be developed. We stress that we pose very strict criteria, since we only want to select
regions as background when being 100% certain.

In this section, only our method will be outlined, but the original procedure can be
consulted in Appendix B of Coppin et al. (2020) [35]. The main challenge to tag the
background rate lies in its variability. As discussed in Section 4.1, the spacecraft contin-
uously changes direction. Background sources move in the line of sight and disappear
again. The variable nature of the background induces rises or declines in the photon
rate, which are not due to the main burst or afterglow emission. Fortunately, the orbital
motion is rather slow and of the order of hours. We can approximate the background
rate by a linear interpolation, as long as the time range is not longer than ∼ 100 s. No
complications are expected, since this is more than three times the average duration of
a long burst.

To identify stable regions with an approximate constant photon rate, we compare the
predicted rate rp with the average rate r2.5 s, which is the true rate averaged over a period
of 2.5 seconds. The average rate in a point t0 is computed by considering a symmetric
time interval centred on t0, i.e. [t0 − 1.25 s, t0 + 1.25 s]. The predicted rate at time t0
is estimated by regarding a time interval [t0 − 30 s, t0 − 20 s] and interpolating using a
straight line between the end points. The fit is then extrapolated and evaluated at t0,
giving us the value of the predicted rate rp (t0) at that moment. To decide whether a
point is identified as background or not, it is verified that the average rate and predicted
rate do not differ in a large extent, by requiring:

r2.5 s (t0) < rp (t0) + 3 ·

√
|rp| (t0)
2.5 s

. (4.2)
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Figure 4.4: Illustration of the conditions used for the background characterisation. The
grey line denotes the true rate, averaged over 0.3 s, and the blue line the true rate,
averaged over 2.5 s. The yellow line is the predicted rate rp. The black line gives the
upper limit of Eq. 4.2, while the dark green line illustrates the RMS value, which should
lie between the boundaries of Eqs. 4.3 and 4.4. See text for more information.

The average rate in a point is thus allowed to exceed the predicted rate by a limited
amount. We illustrate this in Figure 4.4 by the black line. If the condition in Eq. 4.2 is
fulfilled, the point is seen as background. We proceed 1 s in time and check this again.
When we arrive at a point ts that does not satisfy the condition in Eq. 4.2, we proceed
30 s in time to tn = ts + 30 s, to jump over the region. The time interval [ts - 3 s, tn] is
subsequently identified as ‘non-background’. The three seconds before ts are included to
improve the background fit. At tn, we check if the RMS of (rp −r2.5 s), computed over an
interval with duration ∆t = 10, symmetric around tn, satisfies the following equations:

RMS [(rp − r2.5 s)(∆t)] > (|rp − r2.5 s|)(tn) − 1.4 ·

√
(|rp − r2.5 s|)(tn)

∆t
(4.3)

and

RMS [(rp − r2.5 s)(∆t)] < (|rp − r2.5 s|)(tn) + 1.4 ·

√
(|rp − r2.5 s|)(tn)

∆t
(4.4)

Again, this condition verifies whether the RMS value is included in a small region around
(rp −r2.5 s) in the corresponding point. Note that the RMS is calculated over a time span
of 10 seconds, while the other terms are computed in one specific point. In Figure 4.4,
it can be observed that the allowed range is incredibly small, so the conditions are often
not satisfied. Nevertheless, they are crucial for the background fits of some light curves.
When the above conditions are not satisfied, the point is identified as non-background,
and we proceed four seconds, after which the conditions in Eq. 4.3 and Eq. 4.4 are again
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checked. If, however, the above conditions are true, we include one last criterium. In tn,
the predicted rate should be smaller than the averaged rate, or:

rp (tn) < r2.5 s (tn). (4.5)

If this is true, tn is identified as background, and we advance 1 s and repeat the procedure
outlined above. If Eq. 4.5 is not satisfied, tn is labelled as non-background, and we
proceed 1 s to check Eqs. 4.3 and 4.4 again. Note that we adopt the objective that
everything not identified as signal is background, meaning that everything that is not
background, might be signal, but as well can be a statistical fluctuation.

To construct the background fit, we put the background rate equal to the averaged
rate r2.5 s in the background points. In the regions between the background points, we
linearly interpolate. This is illustrated in Figure 4.3b. As such, we arrive at a stable
estimation of the background for most GRBs. The background rate is subtracted from
the true photon rate, i.e. from the grey histogram in Figure 4.3b. In Appendix A, the
GRBs are assembled for which the procedure did not produce a perfect background fit.
This can be due to a sudden drop or decline in the rate, or intermediate points that
are recognized as background while they are clearly part of the burst. When it was
undeniable that the process was mistaken, we manually adjusted the fit and determined
the background by eye.

4.2.4 Normalisation

Subsequently, the background-subtracted light curves are normalised, such that they all
contribute to the average PDS of the sample equally. If not, the features of the brightest
bursts will dominate the averaged spectrum. Two types of normalisation are prevalent in
the GRB field: normalisation by highest peak and normalisation by total photon count.
We choose the former, since that allows us to compare with other research. The result
is shown in Figure 4.3c.

4.2.5 PDS Calculation

Finally, the DFT is calculated. This is done numerically by the Fast Fourier Transform
(FFT). Since this algorithm works faster when the length of the dataset equals a power
of two, we zeropad the light curves up to the closest power of two that encompasses
all bursts (usually 233). We use the ‘backward’ normalisation, so no extra scaling is
introduced when calculating the DFT, as explained in Section 3.1. The PDS is defined
as the square of the amplitude spectrum of the DFT. We normalise the PDS according
to the Leahy normalisation [86], i.e.

Pj = 2
N

|Fj |2, (4.6)

where N is the sum of the photon counts in the bins of the time spectrum and Fj are the
Fourier amplitudes in the different frequency bins, j = 0, ..., N/2. This normalisation
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Figure 4.5: Power-density spectrum for GRB 151027166. The grey band shows the 1σ
uncertainty band, which appears asymmetric due to the log-log scale.

ensures that we can adopt the formulas for the statistical uncertainties of Guidorzi
(2011) [87]. The PDS for GRB 151027166, with uncertainties, is shown in Figure 4.5.
Note that the PDS at the lowest frequencies is dominated by the sinc-function, since our
time spectrum in temporal space can be approximated by a top hat function for large
time windows. For f ≳ 1 Hz, it is dominated by noise. In between, the features due to
the time variability of the burst appear.

Statistical uncertainties. As already mentioned before, to calculate the uncertainties
on the individual PDS, we consider the discussion of Guidorzi (2011) [87]. This paper
addresses the problem of correctly estimating the uncertainties on the PDS of single-
sampled light curves, as in the case of GRBs, for Gaussian and Poisson noise. The
general idea is that the observed time series is one sample of the true time series, which
is described by a deterministic function but affected by noise. Formulas for the variance
on the PDS are derived in the paper. However, for short and transient phenomena
as GRBs, only one observed light curve is accessible. The deterministic function is
not known a priori. In this case, the equations for the uncertainties on the PDS are
approximated by

σ(Pj) =
{

2
√

Pj + 1 (j < N/2),
2
√

2
√

Pj + 1 (j = N/2).
(4.7)

For an in-depth derivation, we refer to the paper [87]. We note that the TTE data
include systematic uncertainties on the time as well, but the transformation of these
errors to Fourier space falls outside the scope of this thesis.
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4.3 Multiple GRBs

Now, we discuss the procedure to construct the average power-density spectrum. We
apply this to the entire sample of GRBs in this section, and repeat this for different
subsamples of GRBs in Chapter 5: samples based on the brightness of the peak, photon
energy, duration and emission periods.

4.3.1 Average PDS Calculation

The averaging of different individual power-density spectra is not trivial. It includes the
strong assumption that the different time spectra of GRBs are the realisations of one,
common stochastic process. In other words, one unique process gives rise to the different
temporal characteristics that GRBs display. The average PDS exhibits the properties of
this general process. Since this is exactly our hypothesis by searching for the Kolmogorov
slope and turbulence, which may lie at the origin of the features apparent in GRBs, the
averaging process is not an issue. The average power density is calculated per frequency
bin and its uncertainties are propagated to the mean value, i.e.

⟨ PDS [f ] ⟩ =
N−1∑
j=0

PDSj [f ]
N

, (4.8)

σ(⟨ PDS [f ] ⟩) =
N−1∑
j=0

1
N

√
(σj [f ])2 , (4.9)

where the sum goes over the individual power-density spectra, and N is the total number
of GRBs in the sample. Figure 4.6 shows the individual power-density spectra of the
156 GRBs in our sample. The colour gradient refers to the duration of the bursts. The
darkest colour is connected with the longest burst. We do not see any special feature
linked to the duration of the burst. We average over the different spectra and arrive at
the average PDS in Figure 4.7, with its 1σ error band.

4.3.2 Power-Law Fit

Ultimately, we want to inspect the power-law behaviour of the average power-density
spectrum in Figure 4.7. In log-log space, it should be able to approximate the spectrum
by a straight line, as discussed in Section 2.7. The range in which the power-law features
are present, is limited by the maximal and minimal time variability of the light curve.
The maximal time variability is set by the duration of the longest burst. Looking at the
bursts with a time window longer than the longest burst, will not reveal any temporal
information about that burst, i.e. causing the spectrum to break away from the power-
law fit. One can compare it to having an instrument with too low resolution to detect
the variability of a parameter. Thus, the frequency that corresponds to the duration of
the longest burst will define the cut-off frequency at the lower-frequency end. Similarly,
the higher-frequency cut-off is set by the smallest bin width of the time spectrum. In
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Figure 4.6: The different power-density spectra of all 156 GRBs in our sample. The
colour is connected to the duration of the burst, where the darkest colour shows the
longest burst and vice versa. The error bands are not shown in this plot for clarity.

Figure 4.7: The average power-density spectrum of the power-density spectra of the 156
GRBs in our sample, shown in Figure 4.6. The grey band illustrates the 1σ error band,
which appears asymmetric due to the log-log scale of the plot.
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Table 4.1: Fitting parameters for the power-law fits, r = a · f b, in Figures 4.8 and 4.11
to the average PDS of the entire sample of 156 GRBs. N denotes the number of GRBs
involved. The parameter a corresponds to the value for the offset of the straight line,
and b to the slope. They carry their statistical uncertainties (σa, σb) and, if known,
systematic uncertainties (σa, r, σb, r). We provide the goodness-of-fit, χ2, normalised by
the number of degrees of freedom (dof), and the fitting range.

N a ± σa ± σa, r [Hz] b ± σb ± σb, r [Hz] χ2/dof [fb, low, fb, high]
156 0.7669 ± 0.0427 −1.6043 ± 0.0248 2.51 [0.05, 1.00] Hz
156 0.7673 ± 0.0462 ± 0.2270 −1.6181 ± 0.0367 ± 0.4209 1.48 [0.10, 4.50] Hz

this case, the bin width is constant and equal to 5 ms. This implies that the spectrum is
expected to break away from the power-law around 100 Hz1. However, in Figure 4.7, we
notice that the spectrum flattens for f ≳ 1 Hz, which is due to the noise. This means
that the spectrum becomes noise dominated on sub-second scales. Since this distorts the
power-law fit, as the noise spectrum stays rather constant, we choose to limit the range
at the high frequency end to 1 Hz. The longest burst of this sample has an observed
T90 value of 828.672 s or 460.3733 s, when redshift corrected. This thus causes a break
at 0.0022 Hz. We expect power-law features in the interval [0.002, 1.00] Hz.

The average PDS is modelled by a power-law function of the form

r = a · f b ⇔ log(r) = b · log(f) + log(a), (4.10)

where r corresponds to the rate of the average PDS, f to the frequency, b to the power-
law index or the slope of the straight line and log(a) to the offset value of the fit function.
We perform the power-law fit in linear space, and then transform everything to log-log
space. The power-law fit is numerically less stable than a linear fit in log-log space, but
allows for a proper treatment of the uncertainties. A linear fit in log-log space would
force us to give less weight to the lower-frequency end.

Previous studies fitted the power-law by eye [58, 59] or used a broken power-law, where
the breaking frequency was left to vary [61, 62]. Mostly, the break occurred between
0.01 Hz and 0.1 Hz. We are interested in the slope of the second part of the broken
power-law. To be able to compare with those studies and other papers, we choose to fit
our power-law function in the range from 0.05 Hz to 1.00 Hz. The upper limit should
protect the fit from being affected by the noise. This is applied to the entire sample of
156 bursts in Figure 4.8, for which the fit parameters are given in the first row of Table
4.1. We arrive at a slope of b = −1.6043 ± 0.0248 Hz.

At first instance, we evaluate the fit, which has a χ2/dof = 2.51, as decent, but the
fitting range is not physically motivated and thus difficult to advocate. In addition,

1The Nyquist theorem states that one cannot probe to a higher frequency than half the sampling
frequency, f ≤ fNyquist = fs/2 = 1/(2Ts), without loss of information [72]. Here, Ts = 5 ms.
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Figure 4.8: The average PDS of the 156 GRBs in our sample, with its 1σ error band. The
orange region illustrates the points used for the fit r = a · f b between 0.05 Hz and 1.00
Hz. The best fit is shown as black dotted line and has fit parameters a = 0.7669±0.0427
Hz and b = −1.6043 ± 0.0248 Hz. More parameters are listed in Table 4.1.

every GRB sample and corresponding average PDS is different. The power-law features
and the noise features will appear at varying frequencies. We argue that, within the
interval [0.002 Hz, 1.00 Hz], the fitting range can still be extended to lower frequencies.
However, this strongly affects the slope of the power-law. Since this is the parameter we
are interested in, we prefer robust fitting intervals which arise from physical parameters.
As a first attempt, we developed a method, based on the goodness of the fit and the
χ2-statistic, outlined below.

Optimal fit range. The optimal fit range is found by a minimal χ2-method. As
mentioned before, the longest burst and the smallest bin width define the range in
which we expect the bursts to exhibit power-law features, and thus at which we expect
the average PDS to break away from the fit. We define them as the low-frequency break
fb, low and high-frequency break fb, high respectively. Inspired by the results of the fitting
between 0.05 Hz and 1.00 Hz of all GRB subsamples, we see that the power-law appears
between 0.01 Hz and 5.00 Hz. This is a very broad range, but is meant to include most
of the power-law behaviour. Therefore, we let fb, low and fb, high take values between 0.01
Hz and 5.00 Hz, and compute for each combination the χ2-statistic, defined as:

χ2 =
n∑

i=1

(ro, i − rfit, i)2

σ2
i

, (4.11)
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where ro denotes the observed values of the rate, with uncertainties σ, and rfit the
expected values of the rate by the best fit. By varying fb, low and fb, high, we arrive at
a 2D colour map of (fb, low, fb, high) and the corresponding χ2 value, as shown in Figure
4.9a. Our goal is to arrive at the broadest fitting interval, while still retaining a good fit.
A good fit is characterised by χ2/dof ∼ 1, but we allow some scatter around this value
by considering 0.5 ≤ χ2 ≤ 1.5. We can plot these χ2-values as a function of fb, low and
fb, high, of which the plots are shown in Figure 4.9b. Then we search for the combination
of the cut-off frequencies, giving us the widest range. In this case, this happens for
[fb, low, fb, high] = [0.10 Hz, 4.50 Hz] with χ2 = 1.49. In Figure 4.11, we show the best fit
for the average PDS of the sample of 156 GRBs in this fitting range. The corresponding
values for the fit parameters are listed in Table 4.1.

(a) (b)

Figure 4.9: (a) 2D colour map of fb, low in function of fb, high, with the corresponding χ2

value denoted in colour. The red triangle pinpoints the minimal χ2 value. (b) χ2/dof
w.r.t. fb, low and fb, high respectively. The colours now illustrate the length of the fitting
interval.

The advantage of this method is that the fit searches the optimal range in which the
spectrum is best approximated by a power-law. However, as can be seen in Figure 4.11,
some noise is included, which flattens the curve. A solution for this is to lower the upper
limit to 1 Hz, as stated before. But for some GRB samples, e.g. the brightest bursts,
the noise only appears at 3 or 4 Hz. By limiting fb, high to 1 Hz, one loses important
information from higher frequencies, i.e. smaller time scales. Therefore, we continue
with an upper limit of 5 Hz. No time was left to investigate the power-law fits for lower
upper limits, but this should be persuaded in the future.

Another advantage is that we are able to derive a systematic error for the fit parameters.
Different ranges are possible within our constraint of 0.5 ≤ χ2 ≤ 1.5. Above, we chose
to continue with the broadest interval, but each range corresponds to a different set of
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Figure 4.10: Left: Distribution of the slope values for different power-law fits with
0.5 ≤ χ2 ≤ 1.5, which can be fitted with a Gaussian curve with µ = −1.29, σ = 0.42.
Right: Distribution of the offset values for different fits with 0.5 ≤ χ2 ≤ 1.5, which can
be fitted with a Gaussian curve with µ = −1.77, σ = 0.23.

fit parameters. The ultimate slope and offset value strongly depends on the fit range.
We believe that this adds to the error on the slope. To quantify this, we consider the
distribution of fit parameters and derive the mean value and standard deviation. This
is illustrated in Figure 4.10. It provides an additional uncertainty σb, r = 0.4209 on the
slope, and σa, r = 0.2270 on the offset value (where we have put the subscript ‘r’ for the
error due to the fitting range). We note that the errors are large, but this is expected
from the many ranges that are allowed for 0.5 ≤ χ2 ≤ 1.5 (94 possibilities). However,
it makes it difficult to interpret the values of the slopes and compare them to other
results. Note also the two peaks that appear in the distribution of the slopes. The peak
around b = −0.8 Hz is mainly composed of slopes originating from fitting intervals which
take a lot of noise into account, for example fitting intervals with fb, low > 0.5 Hz and
fb, high > 2.5 Hz. This is another argument to have a closer look at the upper limit of the
fitting range, since this also affects the systematic errors. We decide to not include the
systematic errors in our discussion in Chapter 5, since they are too large to interpret.
We add them, nevertheless, when stating the results in the next chapter.

The main issue of the χ2-method is that we are again conservative in our choices of the
cut-off frequencies. For each GRB sample, we let fb, low and fb, high vary between 0.01 Hz
and 5.00 Hz to be able to include the largest part of the power-law behaviour. This is a
good choice for the brightest bursts, which are less noise-dominated and where the noise
only sets in at ∼ 3 Hz, but this is too wide for e.g. the entire sample of GRBs, as discussed
above. One option to overrule this is to define, for each GRB sample individually, the
values between which fb, low and fb, high are allowed to vary. These boundaries should be
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Figure 4.11: The average power-density spectrum of the 156 GRBs in our sample, with
its 1σ error band. The orange region illustrates the frequencies between 0.10 Hz and
4.50 Hz, which is the fitting range in which we performed the fit r = a · f b. The best
fit is shown as a black dotted line and has fit parameters b = −1.6181 ± 0.0367 Hz and
a = 0.7673 ± 0.0462 Hz (see Table 4.1).

defined based on variables inherent to the specific GRB samples. A good possibility is
to consider the T90 distribution of all bursts in the sample. One can derive the average
value and the 1σ or 2σ interval. Next, the frequencies corresponding to the limits of this
interval can be used as fitting range, or as values between which fb, low and fb, high can
vary. We believe that, with this method, the systematic errors will significantly decrease
and be meaningful. Applying this T90 method would be the next step in this thesis.
We started with this analysis, but were not able to finish. Therefore, we did not include
this here.

One last feature in the average PDS is the saturation frequency, which appears around
f ∼ 0.0008 Hz. No extra power is gained by looking at the time spectra with time
windows larger than ∆t ∼ 1/0.0008 Hz ∼ 1250 s, causing saturation in the spectrum.
This is similar to the total zeropadded time array of the bursts, ∆t = 1310.72 s.



Chapter 5

Results

The method to compute the average PDS, described in Chapter 4, is now applied to
different samples of GRBs. We start with a short overview of the current developments
in the research field in Section 5.1. Subsequently, we describe our sample of GRBs in
Section 5.2 to provide some insight in the types of bursts we are investigating. In Section
5.3, we discuss the average PDS of the total sample, after which we divide this sample
into different subsamples. We will consider different bursts based on peak rate above
background (Section 5.4) and in three different energy bands (Section 5.5). We compare
long bursts with short bursts (Section 5.6) and the different episodes of the bursts against
each other (Section 5.7). At last, we compare the source frame results with the observer
frame results in Section 5.8. The latter are summarised in Appendix B.

5.1 Previous Research

Belobodorov et al. (1998) [58] were the first to notice the power-law behaviour in the
average PDS. They investigated long and bright BATSE bursts with peak count rates
Cpeak > 250 counts/bin and T90 > 20 s in the 50 - 300 keV energy band. Their sample
contained 214 bursts, for which they found a slope b = −1.67 ± 0.02 Hz ∼ −5/3 Hz in
the range 0.02 Hz < f < 1 Hz, with a break at 2 Hz. Two years later, they repeated
the analysis with a larger sample of bursts. In Belobodorov et al. (2000) [59], they
considered 527 BATSE bursts, with T90 > 2 s, Cpeak > 100 counts/bin and a fluence of
Ψ > 32Cpeak in the energy bin 20 keV - 300 keV. They found slopes similar to −5/3 Hz,
but did not provide uncertainties on their results. Nevertheless, they concluded that the
average PDS flattens with increasing energy and steepens for dimmer bursts.

Ryde et al. (2003) [60] reported a slope b = −1.60 ± 0.05 Hz for 10 Integral bursts with
T90 > 20 s and a minimal signal significance of 60σ above background. The spectrum
broke away from the power-law fit between 1 and 2 Hz. They argued that their bursts
belong to the brightest class of bursts in Belobodorov et al. (2000), and explain as such
their larger slope. Due to the small sample of bursts, they did not consider their result
as significantly deviating.

53
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More recently, Guidorzi et al. (2012) [62] did an extensive investigation of Swift GRB
light curves. They considered only long GRBs (T90 > 3 s) and removed bursts with a low
SNR by requiring Cpeak > 0.1 counts/s per fully illuminated detector for an equivalent
on-axis source. They ended up with 244 GRBs, which they divided in subclasses based
on fluence, peak rate, duration and redshift. They studied the average PDS in different
energy bands and even corrected in a small sample of bursts for redshift. Owing to
their in-depth analyses, they will be our main reference. They find no difference in slope
between the source frame and observer frame. They still find that increasing energy
corresponds to larger/harder slopes (flatter PDS), and report on slopes consistent with
the Kolmogorov turbulence in most cases, although some samples do show slopes as
small as ∼ −2 Hz. They find no evidence for a cut-off frequency at the high frequency
end of the spectrum.

Dichiara et al. (2018) [61] performed the same analysis as Guidorzi et al. (2012) on
bursts of BeppoSAX/GRBM and Fermi/GBM, but focussed on light curves in different
energy bands. They observed an increase of the slope with increasing energy, confirming
previous results, and reported on a clear break between 1 and 2 Hz. The slope of the
average PDS broadly agreed with the Kolmogorov slope of −5/3 Hz.

5.2 Description of the Sample

Fermi-GBM observed 2705 bursts between 2008 and the end of 2019. However, 21 bursts
of this sample do not have TTE data, have gaps in the observations, or have very high
background rates [18]. They were removed from the sample in the study of Coppin et al.
(2020) [35] and are also excluded from the sample in this thesis. In addition, we limit
ourselves to the data of the NaI detectors. Since we focus on the analysis in the source
rest frame, we only select GRBs for which the redshift is determined. This reduces the
sample to an amount of 156 bursts (∼ 6.6%).

Our sample contains 12 short GRBs (∼ 7.7%) and 144 long GRBs (∼ 92.3%), where
we used the conventional selection based on the GRB duration, given by T90 ≤ 2 s for
short GRBs and T90 > 2 s for long GRBs. Note that our sample contains more long
bursts, since their redshift is more often determined [88]. Nevertheless, even irrespective
of redshift, we observe less short than long GRBs. Fermi detected during its first 10
years 17% short bursts and 83% long bursts [19]. It is unclear if this is an observational
effect, or has a real, physical origin, due to other effects [89]. The T90 and redshift
distributions of our 156 bursts are shown in Figure 5.1. Of the total sample, ∼ 40% are
detected at redshifts z < 1. Two GRBs are observed at very high distances, z = 7.5
(GRB 131202633) and z = 8.0 (GRB 090423330).

Recall that we perform the analysis in the source rest frame. Theoretically, we do not
expect a large difference between source and observer frame, except for a shift in the
location of the frequency range we are interested in (i.e. the frequency range in which
we expect power-law signatures). Since time intervals are stretched when photons are
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Figure 5.1: T90 distribution (left) and redshift distribution (right) of the total sample
of 156 GRBs with known redshift, observed between 2008 and 2019 by Fermi.

redshifted, the interesting region shifts from high frequencies (in the source frame) to
lower frequencies (in the observer frame). The effect on the fit parameters is expected
to be small. Applying a redshift correction on Eq. 4.10, we find:

log (re) = b · log (fe) + log
[
a · (1 + z)(2−b)

]
. (5.1)

Here, re and fe denote the rate and frequency in the source frame. With log (z + 1) ∼
0.004 − 0.954 and b ∼ −1.7, the largest difference is expected for the offset value, which
is not very important for our analysis. We investigate the source and observer frame
differences in the following sections.

The total sample of GRBs is discussed in Section 5.3, after which we divide the 156 bursts
into different subclasses. We start with a distinction based on peak rate, and proceed
with evaluating the sample in different energy bands and for different durations. We end
with comparing the different emission periods of the GRB. When investigating source
and observer frame, and GRBs in different energy bands, we try to retain the same
samples. As such, we purely compare the different characteristics of the sample due to
the varying parameters. For subclasses of peak rate and duration, maintaining the same
samples is not possible.

5.3 All GRBs

The source frame analysis of the total sample was already briefly discussed in Section
4.3. We considered the total sample of 156 GRBs, without selecting on any parameters.
Nevertheless, we notice that some GRBs are highly dominated by noise or even entirely
identified as background. Since the detectors were triggered by an excess of photons,
there should be a burst present. In these cases, the peak is only visible in certain
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Figure 5.2: Left: SNR distribution for the total sample of 156 GRBs, illustrating the
number of GRBs that have an SNR larger than the value on the x-axis. Right: Zoom-in
of the left plot between SNR = 0 and SNR = 5.

energy bands, while it reaches the same photon rate as the background level in the other
energy bands, and is thus background dominated. Unfortunately, these bursts include
much noise without adding information about the physical features of the gamma-ray
emission. As explained in Section 4.3, the noise in the average PDS for the entire
sample of 156 GRBs started dominating around 1 Hz and obscured the power-law at
higher frequencies. Ideally, we prefer to push this noise towards the highest frequencies.
We attempt to exclude noise-dominated GRBs from the sample without losing too many
bursts. Therefore, we define the signal-to-noise ratio (SNR), which is described as the
average rate r2.5 s divided by the background level at the peak of the spectrum. We refer
to Section 4.2.3 for a visualisation and definition of these variables. We choose to work
with the average rate instead of the pure bin counts, to avoid that a fluctuation of one
bin defines the SNR of the entire burst, possibly overestimating the true SNR.

In Figure 5.2, the distribution of the GRBs w.r.t. the minimal SNR is shown, with most
GRBs enclosed by SNR = 1 and SNR = 2. In order to include as many bursts as possible,
while excluding the dimmest ones, we decide to select the bursts with SNR > 1.10.
Inspecting the light curves one by one, reveals that most of them have a clear peak,
which is not the case for SNR < 1.10. This leaves us with 125 GRBs (∼ 80%). By
ensuring that the source and observer frame samples contain the same GRBs, we arrive
at a final sample of 124 GRBs.

Fixed interval. At first instance, we perform the fit between 0.05 Hz and 1.00 Hz,
as explained in Section 4.3. The result is shown in Figure 5.3 and the fit parameters
are listed in the first row of Table 5.1. The fit has χ2/dof = 2.87 and a slope of
b = −1.6242 ± 0.0226 Hz. We conclude that we have a relatively good fit, with a
slope consistent within 2σ with the Kolmogorov turbulence, to which we assign a slope
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Figure 5.3: Average PDS for 124 GRBs with SNR > 1.10 in the source frame (SF). The
dashed line illustrates the best fit between [fb, low, fb, high] = [0.05 Hz, 1.00 Hz] (orange
region). The corresponding fit parameters are listed in Table 5.1.

of b ∼ −5/3 Hz. The noise sets in around ∼ 2 Hz and is therefore not affecting the
power-law fit in a large extent.

Minimal χ2-method. Subsequently, we search for the optimal fitting range. The χ2-
method will naturally find the best interval, so we are now able to compare the observer
and source frame results in a robust way. We indeed expect that the optimal region for
the source frame shifts to higher frequencies, compared to the optimal region for the
observer frame. We probe the broadest frequency interval for which the fit still has a
χ2/dof value within 0.50 and 1.50. In the redshift corrected case, this interval is given by
[fb, low, fb, high] = [0.10 Hz, 3.50 Hz]. The best fit has a slope b = −1.6717±0.0342±0.3920
Hz. The result is shown in Figure 5.4a with the fit parameters listed in Table 5.1. In
the observer frame, we find a slope b = −1.5902 ± 0.0418 ± 0.4077 Hz for [fb, low, fb, high]
= [0.06 Hz, 3.50 Hz], shown in Figure 5.4b. Only considering the statistical uncertainty,
we conclude that this result is consistent with the slope of the source frame within 2σ.
The source frame is in perfect agreement with the Kolmogorov slope b ∼ −5/3 Hz. As
predicted, the fitting range of the observer frame is a bit shifted to lower frequencies
w.r.t. the fitting range of the source frame. The offset value increases by a factor 2. We
note however that in both cases the χ2-method takes some noise into account to generate
the best fits. This ‘pulls’ the slopes to higher values, resulting in flatter power-laws.

Both slopes have a large error due to the fitting range, which gives us an idea about
how much the slope varies for different ranges, while 0.50 ≤ χ2/dof ≤ 1.5. Evaluating
the fitting range visually, we argue that it includes most of the power-law features. The
maximal T90 duration of the source frame sample amounts to 217.90 s, corresponding to
a cut-off frequency of 0.005 Hz. However, it feels more natural to state the average T90
duration, since only a small amount of bursts will contribute to those lower frequencies.
The average T90 duration is 28.98 Hz, or f = 0.034 Hz. In the observer frame, the
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(a) Source frame. (b) Observer frame.

Figure 5.4: Average PDS for 124 GRBs with SNR > 1.10 in (a) source frame (SF)
and (b) observer frame (OF). The dashed line illustrates the best fit between fb, low and
fb, high (orange region). See Table 5.1 for the fit parameters.

Table 5.1: Best fit parameters for the power-law fit, r = a · f b, to the average PDS of
the sample of 124 GRBs with SNR > 1.10 in source (SF) frame for the fixed interval
of [0.05, 1.00] Hz and the optimal interval determined by the χ2-method. The last row
gives the results for the observer frame (OF) with the χ2-method.

a ± σa ± σa, r [Hz] b + σb + σb, r [Hz] χ2/dof [fb, low, fb, high]
SF 0.7175 ± 0.0361 −1.6242 ± 0.0226 2.87 [0.05, 1.00] Hz
SF 0.6802 ± 0.0381 ± 0.2747 −1.6717 ± 0.0342 ± 0.3920 1.47 [0.10; 3.50] Hz
OF 0.3069 ± 0.0272 ± 0.0838 −1.5902 ± 0.0418 ± 0.4077 1.45 [0.06; 3.50] Hz

average duration is T90 = 64.19 s, or f = 0.016 Hz. The noise naturally puts the limit
at the higher frequency end.

Comparing both methods, we conclude that they provide similar results for the slope
of the power-law fit. One might argue that the χ2-method takes quite some noise into
account and underestimates the slope, but this is not visible from comparing the numbers
solely. In Figure 5.3, it can be seen that the interval [0.05 Hz, 1.00 Hz] stretches more to
the lower-frequency side and therefore flattens due to the curvature of the average PDS.
Both methods are thus not perfect.

5.4 Peak Rate

We know from Figure 5.2 that the majority of the GRBs in our sample has a relatively low
peak above background. The number of GRBs falls off rapidly with increasing SNR. In
previous studies, the Kolmogorov slope was often recognised in samples of bright GRBs,
since they are less noise affected. Multiple studies even observed a power-law behaviour
in the PDS of individual bright and long bursts [59, 90, 91]. However, this is generally
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Table 5.2: Best fit parameters for the power-law fits, r = a · f b, to the average PDS of
all samples, analysed in the source frame in the interval [0.05 Hz, 1.00 Hz]. See text
for more information. N is the number of GRBs per sample, and σa and σb denote the
statistical uncertainties on the parameters a and b respectively. The goodness-of-fit is
given by χ2/dof, where dof is the number of degrees of freedom.

Sample N a ± σa [Hz] b ± σb [Hz] χ2/dof

1.10 < SNR 124 0.7175 ± 0.0361 −1.6242 ± 0.0226 2.87
1.10 < SNR < 1.25 29 0.0480 ± 0.0097 −1.0658 ± 0.0992 1.46
1.25 < SNR < 2.00 40 0.1641 ± 0.0128 −1.3835 ± 0.0372 1.12
2.00 < SNR < 3.00 10 0.0564 ± 0.0029 −1.7437 ± 0.0234 8.69
3.00 < SNR 19 0.2200 ± 0.0066 −1.8886 ± 0.0135 7.76
E < 66 keV 60 0.1472 ± 0.0137 −1.5233 ± 0.0407 1.16
66 keV < E < 366 keV 60 0.2599 ± 0.0152 −1.6763 ± 0.0260 2.27
366 keV < E 60 0.4636 ± 0.0197 −1.6378 ± 0.0193 3.55
T90 > 2 s 124 0.7102 ± 0.0356 −1.6280 ± 0.0225 2.89
T90 ≤ 2 s 11 0.0329 ± 0.0067 −0.2337 ± 0.1544 10.66
Precursor 22 0.4889 ± 0.0622 −0.9046 ± 0.0759 2.07
Prompt emission 20 0.1597 ± 0.0177 −1.7899 ± 0.0508 5.28
Noise 147 0.1632 ± 0.3231 −0.8437 ± 1.1054 0.06

not possible, since the light curves are too noisy. A consistent picture about how the
slope varies with peak rate does not yet exist. No significant evolution is expected,
since all GRBs are assumed to hold the same physical radiation mechanism. However,
Belobodorov et al. (2000) reported on a steepening of the spectrum for dimmer bursts,
while Guidorzi et al. (2012) observed no significant differences between dim and bright
bursts. Here, we choose to divide the sample into different subsamples based on the SNR
and compare the values of the slopes. We distinguish four samples: 1.10 < SNR < 1.25
(29 bursts), 1.25 < SNR < 2.00 (40 bursts), 2.00 < SNR < 3.00 (10 bursts) and
3.00 < SNR (19 bursts). All GRBs belong to one of the categories, so the subsamples
differ in their content. The results are shown in Figure 5.5, with on the left the figures
corresponding to the fit range [0.05 Hz, 1.00 Hz], and on the right figures associated with
the optimal fit based on the χ2-method. The fit parameters are respectively included
in Tables 5.2 and 5.3. For the results of the observer frame, we redirect the reader to
Appendix B.

Fixed interval. Fitting between 0.05 Hz and 1.00 Hz for each sample, gives us a
decrease of the slope (steepening of the power-law) with increasing SNR. The dimmest
bursts are mainly noise dominated in this region and give a slope of b = −1.0658±0.0992
Hz. The second sample is only affected by the noise from f > 0.6 Hz on, and gives a
power-law with index b = −1.3835 ± 0.0372 Hz. The next sample can be said to be
noise-free between 0.05 Hz and 1.00 Hz and gives a slope of b = −1.7437 ± 0.0234 Hz.
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This is consistent with the Kolmogorov turbulence within ∼ 3σ. The brightest bursts
give a slope of b = −1.8886±0.0135 Hz. They reach smaller slopes than the Kolmogorov
turbulence, which is apparent, since that means that there is a process “beyond” the
turbulence, in which gamma-rays can originate. The spectrum is far outside the noise
region, and the fit may even be flattened by the curvature at the lower-frequency side.

Minimal χ2-method. The results for the minimal χ2-method give the same decreas-
ing behaviour of the slope with increasing SNR. For the two dimmest samples, the
method arrives at approximately the same fitting interval and thus the same slopes:
b = −1.1203 ± 0.0880 ± 0.5607 Hz for 1.10 < SNR < 1.25 and b = −1.3336 ± 0.0273 ±
0.2946 Hz for 1.25 < SNR < 2.00. However, for the brighter samples, the χ2-method
chooses smaller intervals, giving different slopes: b = −1.5686 ± 0.1379 ± 0.7143 Hz for
2.00 < SNR < 3.00 and b = 2.2128 ± 0.0892 ± 1.1360 Hz for 3.00 < SNR. Again, we find
for the third sample a slope consistent with the Kolmogorov slope, and for the brightest
bursts, a slope that goes beyond that.

Hence, we find a significant steepening of the power-law for brighter bursts, in contrary
to what is found by Belobodorov et al. (2000) and Guidorzi et al. (2012). While the
slope for the dimmest bursts still can be affected by noise, and even in a lower extent
for the sample with 1.25 < SNR < 2.00, this cannot be said for the brighter bursts.

We conclude that there might be intermediate bright bursts with slopes around −5/3 Hz,
but there are also brighter bursts which show steeper power-laws with slopes ∼ −2.00 Hz,
and weaker bursts which exhibit slopes of ∼ −1.30 Hz. The turbulence is not visible for
those bursts. Whether the large slopes of the dim bursts are purely due to the noise, is
difficult to deduce. A hypothesis for the steep power-laws of the strong bursts, might be
that those are bursts that are pointed towards us. These typically appear stronger and
can explain the absence of the turbulence features, since one cannot see the structures
of the jet when looking straight into the cone. This is similar to looking right into the
light of a torch; the observer only sees the bright light. The lamp is solely visible when
watching from the side.

Another conclusion could be that there is no Kolmogorov turbulence present, but rather
a process that produces a frequency spectrum with f−2, since the power-law seems to
steepen towards a slope of ∼ −2 Hz. Similar slopes were reported by Guidorzi et al.
(2012) for several samples (long bursts, bright and energetic bursts). However, they
find many slopes b < −1.80 Hz, e.g. even when they analyse their entire sample of
GRBs (note that they selected on bright and long bursts from the start). It is difficult
to deduce if their small slopes are not the result of a different approach (i.e. fitting a
broken power-law instead of a single power-law) or a choice of sample, rather than being
of physical origin.
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(a) 1.10 < SNR < 1.25 (fixed interval). (b) 1.10 < SNR < 1.25 (χ2-method).

(c) 1.25 < SNR < 2.00 (fixed interval). (d) 1.25 < SNR < 2.00 (χ2-method).

(e) 2.00 < SNR < 3.00 (fixed interval). (f) 2.00 < SNR < 3.00 (χ2-method).

Figure 5.5: Average PDS for GRBs with different peak rates: (a, b) 1.10 < SNR < 1.25
(29 bursts), (c, d) 1.25 < SNR < 2.00 (40 bursts), (e, f) 2.00 < SNR < 3.00 (10 bursts),
(g, h) 3.00 < SNR (19 bursts) for the fixed interval (left) and χ2-method (right). The
orange region illustrate the range for which the fit is computed (between fb, low and
fb, high). For the best fitting parameters, see Tables 5.2 and 5.3. Figure continues on the
next page.
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(g) 3.00 < SNR (fixed interval). (h) 3.00 < SNR (χ2-method).

Figure 5.5: Continuation of figure on previous page.

5.5 Energy Bands

Of all properties of the power-law, the evolution of the slope with energy has been
investigated the most. It is not easy to intuitively predict certain behaviour. In general,
the light curves of GRBs appear narrower in higher energy bands, and broader for lower
energy bands [22, 23]. Thus, the outlook of the light curves and their PDS changes
accordingly, together with the slopes. Belobodorov et al. (2000), Guidorzi et al. (2012)
and Dichiara et al. (2018) noticed all a flatter slope for increasing energy, while they
studied the behaviour for different telescopes and different energy bands. Belobodorov
et al. (2000) explains this by arguing that the power at lower frequencies decreases for
higher energies, since the average duration of the bursts decreases as well (long time
durations correspond to lower frequencies). Therefore, the power-law will exhibit a
flatter slope.

In this thesis, we distinguish three energy bands in accordance with Guidorzi et al.
(2012): E < 66 keV, 66 keV < E < 366 keV and 366 keV < E, where we also required
SNR > 1.10. Since we prefer the same bursts in all samples that we compare, and we
will do the analysis in the observer frame as well (see Appendix B), the amount of bursts
in the three energy bands equals 60 GRBs. The figures of the average spectra can be
found in Figure 5.6, while the fit parameters are listed in Tables 5.2 and 5.3.

Fixed interval. For [0.05 Hz, 1.00 Hz], we arrive at the following slopes for the different
samples. For the lowest energy band, we find a slope of b = −1.5233 ± 0.0407 Hz. For
the middle band, this decreases towards b = −1.6763 ± 0.0260 Hz, after which this again
increases for the highest energies and gives b = −1.6378 ± 0.0193 Hz. We thus have
an alternating behaviour for increasing energy, which is not trivial and not alike the
flattening behaviour of previous studies. The average PDS of the lowest energy band is
still somewhat noise affected for f ≳ 0.6 Hz, which flattens the power-law. This is not
a problem for the other energy bands.
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(a) E < 66 keV (fixed interval). (b) E < 66 keV (χ2-method).

(c) 66 keV < E < 366 keV (fixed interval). (d) 66 keV < E < 366 keV (χ2-method).

(e) E > 366 keV (fixed interval). (f) E > 366 keV (χ2-method).

Figure 5.6: Average PDS of 60 GRBs for (a, b) E < 66 keV, (c, d) 66 keV < E < 366
keV and (e, f) E > 366 keV, with on the left the results for the fixed interval of [0.05
Hz, 1.00 Hz] and on the right the results for the χ2-method. See Tables 5.2 and 5.3 for
the corresponding fitting parameters.
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Minimal χ2-method. For E < 66 keV, we find a slope b = −1.4559 ± 0.0325 ± 0.5723
Hz and for 66 keV < E < 366 keV, b = −1.4927 ± 0.0725 ± 0.5502 Hz. For the highest
energy band, we have b = −1.5512 ± 0.0516 ± 0.4603 Hz. We thus find a steepening of
the power-law towards higher energies, but this is insignificant. This is inconsistent with
previous studies.

We summarised all results in Figure 5.7. All previous studies showed an increase of the
slope, or equally a flattening of the power-law, with increasing energy. Our results of
the source frame tend to have the opposite behaviour. We note that the main difference
between us and the previous papers includes the redshift correction. For completeness,
we add our results in observer frame as well in Figure 5.7. For more details about
these average spectra and the fits, we refer to Appendix B. For the observer frame,
we arrive at a slope b = −1.6834 ± 0.0384 ± 0.4601 Hz for E < 66 keV, a slope b =
−1.3195±0.0841±0.2780 Hz for 66 keV < E < 366 keV and b = −0.8807±0.0664±0.4814
Hz for E > 366 keV. The latter result is strongly noise dominated, and as a consequence
gives such a large slope. But even when this slope would be in line with the others, we
report on a significant flattening of the power-law between the different energy bands,
more resembling the behaviour that is seen in the other studies.

It is still interesting that we observe such a large difference between the observer and
source frame. With the redshift correction, the time intervals are compressed, resulting
in higher frequencies. The energy of the photons is also shifted to higher energies (see
Eq. 4.1). That means that photons jump from a lower energy band to a higher energy
band. The middle energy band receives photons from the lowest band, and loses photons
to the highest band. However, the energy pass band of the Fermi detector only ranges
between 8 keV and 1 MeV. That means that photons with an observer frame energy
lower than < 8 keV but a source frame energy > 8 keV are not observed. We cannot
include them in our source frame analysis of E < 66 keV. In the highest energy band,
the effect is slightly different. Observed photons increase in energy after correcting for
redshift, but still remain in the same band (we only consider three energy bands). In
addition, this band receives photons from the middle band that have source frame energy
> 366 keV. That means that this band stretches over a much larger energy range than in
the observer frame (beyond 1 MeV). And again, there might be (low redshift1) photons
that were not detected by Fermi in the observer frame, since they had E > 1 MeV. But,
since the energy band of E > 366 keV now extends beyond 1 MeV in the source frame,
they should be included in the light curve that we consider in the source frame.

In conclusion, we are never able to reconstruct the source frame time spectra perfectly.
There is a loss of photons; photons that are not observed in the observer frame by Fermi,
but would be present in the same energy bands at the source. This effect is the largest

1This applies to low-redshift photons, since they only receive a small extra factor on their energy
when correcting for redshift. Photons with a high redshift can have an observer frame energy ∼ 1.5
MeV, but increase so much in energy that they still do not fall into the “new” boundaries of the source
frame energy band.
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Figure 5.7: The slope of the power-law fit in different energy bands. The orange, blue
and green curves state our results, in observer frame (OF) and source frame (SF) for the
χ2-method and in SF for the fixed interval respectively. The circles refer to the peak-
normalised (PN) results of Guidorzi et al. (2012), and the triangles to their variance
normalised (VN) results. The BATSE results come from Belobodorov et al. (2000) and
the Fermi-GBM results are found by Dichiara et al. (2018).

at the outer energy bands, but for high redshifts (and thus for photons receiving large
corrections on the energy) this also plays a role for the middle energy band. This is how
we explain the deviating results between observer and source frame.
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(a) Short bursts (fixed interval). (b) Short bursts (χ2-method).

(c) Long bursts (fixed interval). (d) Long bursts (χ2-method).

Figure 5.8: Average PDS of (a) 11 short bursts with SNR > 1.00 and T90 ≤ 2 s and (b)
124 long bursts with SNR > 1.10 and T90 > 2 s. See Tables 5.2 and 5.3 for the best
fitting parameters.

5.6 Duration

The distinction between long and short bursts happens based on their observed T90
value. It is convenient to define short bursts as GRBs with T90 ≤ 2 s, and long bursts
as GRBs with T90 > 2 s. Previous studies only considered long bursts, since they are
less noise dominated and more often observed. We see that it is very difficult to find a
qualitative sample of short bursts ourselves. Typically, we use the criterium SNR > 1.10,
but this is only satisfied for 2 short bursts. Therefore, we will state the result here for
SNR > 1.00, which gives 11 bursts in total. For long bursts, we still use SNR > 1.10
and are left with 124 bursts. The average PDS for both samples is shown in Figure 5.8.
Their fitting parameters are summarised in Tables 5.2 and 5.3.

Fixed interval. The spectrum of the short bursts is totally noise dominated for f > 0.05
Hz. This is clearly reflected in the resulting slope of the power-law fit: b = −0.2337 ±
0.1544 Hz. As can be seen in Figure 5.8a, we are only fitting noise. For the long bursts,
the spectrum is not affected by noise in the fitting range, and the fit provides us with a
slope b = −1.6280 ± 0.0225 Hz. This is consistent with the Kolmogorov slope within 2σ.
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Minimal χ2-method. Analogous to the fit in the fixed interval, the χ2-method does
not succeed in choosing a region outside the noise for the short bursts. Therefore, our
fit is again noise dominated and has a slope b = −0.8883 ± 0.1739 ± 0.6486 Hz. The long
bursts however are again fitted by a power-law consistent with the Kolmogorov slope:
b = −1.5551 ± 0.0554 ± 0.3912 Hz. The fitting region now includes some noise around 2
Hz. This explains the larger slope, compared to the method above.

Both methods give similar results. As could be expected from the fact that only two
bursts had SNR > 1.10, the power-law features for short bursts completely disappear
in the noise. Therefore, the slope is overestimated and gives no information about the
bursts themselves. Only at frequencies f < 0.1 Hz, we can recognise some power-law
features. To be able to draw a conclusion, we should extend the sample of bright, short
bursts in the future, or find a way to remove the noise from the PDS. We tried to cut
the light curve and only include the burst itself, but this was not successful. The spectra
of the long bursts give satisfying results, which point towards a confirmation of the
Kolmogorov turbulence.

5.7 Emission Periods

At last, we have a look at the different emission periods of the light curves of GRBs.
The entire burst consists of three periods: the prompt emission, the precursor emission
and the afterglow emission. The latter is most apparent in lower energy bands, and
difficult to distinguish from the background rate in the gamma-ray emission. Therefore,
we only focus on the precursor and the prompt emission, and investigate the noise profile
as well. Never before, it was investigated how the different phases of a GRB behave in
the frequency spectrum. Thanks to a previous study of the precursor emission of GRBs
in Coppin et al. (2020) [35], we have the data to perform this analysis.

In Coppin et al. (2020), they incorporated a Bayesian Block (BB) method to recognise
significant increases in the rate of the light curves. As such, it was possible to distinguish
between different emission periods. In the entire sample, 24 precursors were identified
for 22 GRBs with known redshift. Two GRBs had two precursors. However, one of
those bursts could not be used for our analysis, since both precursors fell outside the
TTE data (but are present in the CTIME data). One prompt phase had SNR < 1.10
and was therefore excluded. Our final sample consists of 22 precursors and 20 prompt
phases. The results are shown in Figure 5.9, with the corresponding fit parameters listed
in Tables 5.2 and 5.3.

Precursor. In the range [0.10 Hz, 1.00 Hz], the average precursor PDS exhibits a very
beautiful power-law, entirely noise-free. The fixed interval [0.05 Hz, 1.00 Hz] extends a
bit more to the lower frequency side, but still grabs the power-law very well. It attributes
a slope of b = −0.9046 ± 0.0759 Hz to it. The χ2-method chooses the range [0.20 Hz,
1.00 Hz], and perfectly probes the associated slope b = −1.0067 ± 0.1878 ± 0.1855 Hz.
There is almost no variation of the spectrum around the straight line. Both slopes are
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(a) Precursor (fixed interval). (b) Precursor (χ2-method).

(c) Prompt emission (fixed interval). (d) Prompt emission (χ2-method).

(e) Noise (fixed interval) (f) Noise (χ2-method).

Figure 5.9: Average PDS of (a, b) 22 precursors and (c, d) 20 main bursts, identified
by P. Coppin in [35], and (e, f) 148 noise profiles. On the left, the results are displayed
of the fit in the fixed interval [0.05 Hz, 1.00 Hz], and on the right, the results of the
χ2-method are included. See Table 5.2 and Table 5.3 for the fit parameters.
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inconsistent with the Kolmogorov slope. For the fixed interval, this is with ∼ 10σ, but
the χ2-method has a larger uncertainty and has a deviating result of > 3σ.

Prompt emission. The average PDS of the prompt emission is in the range [0.05 Hz,
1.00 Hz] fitted by the power-law with slope b = −1.7899 ± 0.0508 Hz. In the range [0.20
Hz, 1.00 Hz], the best fit has an index b = −1.4270 ± 0.1618 ± 0.6471 Hz. Both slopes
are consistent with the Kolmogorov slope within 2σ and with each other.

Noise. The noise profile of the bursts is investigated by taking the last 30 seconds of
each burst, requiring that no statistical significant increase of the photon rate occurs.
We assume that in these time windows, only noise is present. The average PDS exhibits
sinc-behaviour, as is expected for a zeropadded tophat function (see Chapter 3). The
power-law fits in both methods the curvature of the sinc function, rather than the features
due to the noise. Those are expected at the highest frequencies, since the noise dominates
at the smallest time scales. For [0.05 Hz, 1.00 Hz], we find a slope b = −0.8437 ± 1.1054
Hz. The χ2-method considers [0.05 Hz, 4.50 Hz] and finds b = −0.4404±0.5117±1.1607
Hz. Nevertheless, the slope is underestimated for both methods. We believe that a
realistic fit region would include f > 3.00 Hz. We conclude that the noise profiles do not
hold any power-law features consistent with −5/3 Hz. Note that the average PDS of the
short bursts is consistent with the slope of the noise, and was indeed noise dominated.

We conclude that the observations hold the very strong indication that the precursor
emission is not produced by the Kolmogorov turbulence, which can still be the case
for the prompt emission. An even stronger argument is that the precursor and prompt
emission are then produced by a different mechanism, or the same mechanism but in
a different environment (e.g. denser). It is not yet established where the precursor
finds its origin. Leading models are the transition from optically thick to optically thin
phase [92], or a pre-burst of the main burst [93]. The latter would already be excluded
by this observation. Further investigations in this power-law behaviour of the precursor
and prompt emission might reveal the answer of one of the biggest mysteries of GRBs.

5.8 Source vs. Observer Frame

In Table 5.4, we list the resulting slopes for all source and observer frame samples next
to each other. The fits of the observer frame are displayed in Appendix B. We conclude
that most observer and source frame results are consistent with each other within one
or two standard deviations. This is indeed what is expected, as discussed in Section
5.2. We report on two samples that show deviating results. For E < 66 keV, we have
a difference of > 3σ, and the source frame result of the E > 366 keV sample differs
with more than 5σ interval with the observer frame result. Not surprisingly, these are
the different energy band samples. In Section 5.5, we explained that the light spectra
of the GRBs change when considering different energy bands, and that we have a loss
of photons, falling outside the energy pass band of the detectors. That means that we
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Sample Source frame b [Hz] Observer frame b [Hz]
1.10 < SNR −1.6717 ± 0.0342 ± 0.3920 −1.5902 ± 0.0418 ± 0.4077
1.10 < SNR < 1.25 −1.1203 ± 0.0880 ± 0.5607 −1.1800 ± 0.1053 ± 0.5613
1.25 < SNR < 2.00 −1.3336 ± 0.0273 ± 0.2946 −1.2879 ± 0.0382 ± 0.4332
2.00 < SNR < 3.00 −1.5686 ± 0.1379 ± 0.7143 −1.6981 ± 0.0989 ± 0.2724
3.00 < SNR −2.2128 ± 0.0892 ± 1.1360 −1.9559 ± 0.0895 ± 1.1975
E < 66 keV −1.4559 ± 0.0325 ± 0.5723 −1.6834 ± 0.0384 ± 0.4601
66 keV < E < 366 keV −1.4927 ± 0.0725 ± 0.5502 −1.3195 ± 0.0841 ± 0.2780
366 keV < E −1.5512 ± 0.0516 ± 0.4603 −0.8807 ± 0.0664 ± 0.4814
T90 > 2 s −1.5551 ± 0.0554 ± 0.3912 −1.5998 ± 0.0418 ± 0.4124
T90 < 2 s −0.8883 ± 0.1739 ± 0.0104 −0.8336 ± 0.1401 ± 0.5455
Precursor −1.0067 ± 0.1878 ± 0.1855 −1.1326 ± 0.1494 ± 0.3026
Prompt emission −1.4270 ± 0.1618 ± 0.6471 −1.2657 ± 0.1749 ± 0.4231
Noise −0.4404 ± 0.5117 ± 1.1607 −0.7816 ± 0.4429 ± 1.2708

Table 5.4: Slopes for the observer frame and source frame samples next to each other.

have “incomplete” light curves in the outer bands in the source frame, which is not the
case for the observer frame. We see the largest effect for the outer energy bands.



5.8. Source vs. Observer Frame 72



Chapter 6

Conclusion and Outlook

Gamma-ray bursts are the most energetic and luminous transient phenomena in our
Universe. We detect approximately 1 GRB, from the 100 up to 1000 events that are
estimated to happen every day. Many questions about the processes in GRBs remain
unanswered, since they do not last longer than a couple of minutes, happen unexpectedly
and do not repeat themselves. The general accepted model is that, from the core-collapse
of a massive star or the merger of two compact objects, a black hole forms. It is fed by
an accretion disc and pumps out two collimated jets back to back, with material that
travels close to the speed of light. We believe that the energetic radiation we receive
originates from the jets, where shock formation and particle acceleration processes take
place, producing photons with energies spanning the entire EM spectrum, and possibly
neutrinos and cosmic rays as well, although they are not (yet) confirmed.

To obtain information about GRBs, we attempt to extract properties from the gamma-
ray emission we observe. In this thesis, we aimed at investigating the slope of the average
power-density spectrum of a sample of GRBs. Previous studies reported a peculiar
slope of −5/3 Hz, which is the characteristic slope of the Kolmogorov spectrum. This
spectrum describes the energy distribution over “eddies” with different scales in fully
turbulent media. Recognising this slope in the light spectra of GRBs, might indicate
that a turbulent process is present in the GRB, producing gamma-rays. This turbulence
manifests itself in the gamma-rays that we observe, millions of light years away from
their birthplace. Our goal was to study this power-law behaviour in different samples of
GRBs and search for this Kolmogorov slope.

We considered GRBs detected by Fermi-GBM in the years between 2008 and 2019. We
used TTE data, which are single photon counts. We generated the light curves, corrected
for redshift, and developed a method to characterise the background in the different
time spectra. We normalised them, such that each GRB contributes equally to the
average PDS. Next, we calculated the individual power-density spectra with statistical
uncertainties. We averaged over the entire sample of GRBs, and arrived at the average
PDS.
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The next step was to characterise the power-law behaviour. We recognised that the
power-law was only apparent in a certain range of frequencies, and should be fitted
within this interval. As a first attempt, we chose a fixed fitting range between 0.05
Hz and 1.00 Hz. This region was inspired by previous studies, but did not rely on
physical parameters and was difficult to justify. In addition, each sample of GRBs is
characterised by a different time variability, and thus the power-law does not appear at
the same frequencies. Consequently, we preferred a more robust method to derive the
fitting range. We developed a minimal χ2-method. Here, the broadest interval between
0.01 Hz and 5.00 Hz was selected, while 0.50 < χ2/dof < 1.50. The boundaries of 0.01 Hz
and 5.00 Hz were chosen to include the power-law behaviour maximally for all samples.
This method has the advantage that it allows to derive a systematic error on the fit
parameters, from the distribution of the slopes and offsets that result from the various
ranges with 0.50 < χ2/dof < 1.50. This makes it possible to account for the choice of fit
interval, since the slope strongly depends on the region in which is fitted.

But, this method has its own shortcomings. The upper limit of 5 Hz often allowed to
include much noise at f > 1.00 Hz, resulting in an overestimation of the slope of the
power-law. This was not easy to solve; the frequency at which the noise sets in, varies
for different GRB samples. It is not possible to regard one range that works for all.
Therefore, we already reflected on another, more consistent method to define the fitting
range. One could analyse the GRB duration of the sample, and derive the 1σ or 2σ
interval. This interval can be used as a fixed interval or as an interval in which the
χ2-method can find the optimal range. This should be opted in the future.

We divided the total sample of 156 GRBs in different subsamples. To distinguish between
bright and weak bursts, we considered four samples with increasing SNR. We investigated
bursts in three energy bands, and compared short bursts with long bursts. At last, for
the first time, the different emission periods of the GRB - precursor, prompt emission and
noise - were discussed. We investigated all source frame samples within the fixed fitting
range [0.05 Hz, 1.00 Hz] and within the optimal fitting range, found by the χ2-method.
We extended our analysis by also applying the χ2-method to the observer frame samples
as well. We find that the observer and source frame results do not differ significantly, as
expected. Some samples gave deviating results, but this was due to other effects. The
differences between the fixed interval and χ2-method are also not significant, except for
the sample SNR > 3.00. Here, the power-law was fitted in different ranges for both
methods, resulting in different slopes.

Although both methods give consistent results, the slopes of the fixed fitting range appear
to be more consistent with the Kolmogorov slope. For most samples, we find a slope con-
sistent with b ∼ −5/3 Hz. This is e.g. the case for bright GRBs with 2.00 < SNR < 3.00,
and GRBs with E > 66 keV, long GRBs and the prompt emission. The precursor, the
noise and all noise-dominated bursts are not consistent with the Kolmogorov turbulence.
We find that the power-law steepens for increasing SNR, even towards slopes of ∼ −2 Hz.
A significant steepening or flattening with energy is not found, in contrary to previous
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studies and our results in the observer frame. We assign this to a loss of photons in the
outer energy bands. An important result is that the precursor emission is not consistent
with the Kolmogorov turbulence, while this could still be the case for the prompt emis-
sion. This indicates that the precursor and prompt emission do not originate from the
same process, or do not occur in the same environment, modifying their time variability.
This is a very strong statement, recalling that the origin of the precursors is still un-
known. Further investigations with more precursors should strengthen this observation.
It would as well be interesting to extend the sample of short and bright bursts. Since
those time spectra are almost always noise dominated, no results are available for this
sample yet in any study. Spectra of short GRBs, however, hold important information
about the production of gamma-rays in compact binary mergers. At last, we find that
the noise profile does not hold a power-law spectrum with index −5/3. That means that
the noise cannot be responsible for the observed power-law behaviour, and the latter is
thus inherent to the burst itself.

In general, we find a consistency with the Kolmogorov turbulence in most cases, but we
are careful with this conclusion. The slope of the average PDS depends strongly on the
fitting range. Before drawing any conclusions, one should thoroughly think about the
optimal fitting range and where to expect the power-law features. This is what we tried
to quantify in this thesis, in more detail than in previous papers, although our analysis
is not yet finished. Further, especially the samples of short GRBs and precursors should
be extended. Those are often noise dominated, so parallel to that, one should think
about a good method to exclude the noise from the PDS. The BB method of Coppin
et al. (2020) can play an important role here, since it is able to recognise significant
increases in the rate. The emission zones can be cut out of the further noise-dominated
light spectrum and be analysed separately.

In addition, we see a broad range of slopes, which exceed or do not reach the slope of
b ∼ −5/3 Hz. We believe that not all features can be assigned to the noise. And why
do some samples show steeper power-laws? A hypothesis might be that the strongest
GRBs are pointing towards us, which means that we are looking right into the cone of
the jet, being unable to observe the turbulence features. To decide whether this is an
option, the first step should be to check if this is indeed the case for the GRBs that we
consider in this thesis.
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Appendix A

Modified GRBs

For some bursts, the general method for the characterisation of the background (see Sec-
tion 4.2.3) was not adequate. In those cases, we had to manually modify the background
estimation. The final result is determined by eye, but is always inspired by the fit that
was proposed by the procedure.

The sample of modified GRBs is in all cases smaller than 10% of the total sample. In
Table A.1, all GRBs with a divergent background estimation are listed. Since the outlook
of the light curves changes with energy, we made a distinction between the samples of
GRBs in different energy bands. The same argument applies to the difference between
observer frame (OF) and source frame (SF). To give some examples of bad background
characterisations, the OF light curves of the GRBs with energies between 8 keV and 1
MeV are shown in Figure A.1.
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Table A.1: All GRBs for which the background fit was manually modified. The first
column denotes the reference frame of the GRB, observer frame (OF, not redshift cor-
rected) or source frame (SF, redshift corrected), and the second column provides the
energy band in which the background estimation was necessary.

Frame Energy band GRB name
SF 8 keV - 1 MeV GRB 090516353
OF, SF 8 keV - 1 MeV GRB 101213451
OF 8 keV - 1 MeV GRB 120907017
OF 8 keV - 1 MeV GRB 140423356
OF 8 keV - 1 MeV GRB 140808038
OF, SF 8 keV - 1 MeV GRB 141118678
OF, SF 8 keV - 1 MeV GRB 141221338
OF 8 keV - 1 MeV GRB 150727793
OF 8 keV - 1 MeV GRB 160804065
OF, SF 8 keV - 1 MeV GRB 180205184
OF, SF 8 keV - 1 MeV GRB 180314030
OF < 66 keV GRB 101213451
OF, SF < 66 keV GRB 120907017
OF < 66 keV GRB 140808038
OF, SF < 66 keV GRB 141118678
SF < 66 keV GRB 141221338
OF < 66 keV GRB 150403913
SF < 66 keV GRB 150727793
OF < 66 keV GRB 160804065
OF < 66 keV GRB 161129300
OF, SF < 66 keV GRB 180314030
SF 66 - 366 keV GRB 101213451
OF, SF 66 - 366 keV GRB 140423356
OF, SF 66 - 366 keV GRB 141118678
SF 66 - 366 keV GRB 141221338
OF 66 - 366 keV GRB 150727793
OF 66 - 366 keV GRB 160804065
SF 66 - 366 keV GRB 170405777
OF, SF 66 - 366 keV GRB 180314030
SF 66 - 366 keV GRB 190719624
SF > 366 keV GRB 090516353
SF > 366 keV GRB 131202633
OF > 366 keV GRB 170214649
OF, SF > 366 keV GRB 180314030
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Figure A.1: Figures of GRBs (in source frame and including photons with all energies)
with bad background characterisations, performed by the process outlined in Section
4.2.3. The light grey histogram shows the redshift-corrected light curve and the dark
grey is the photon rate, averaged over 0.3 s. The blue curve denotes the photon rate
r2.5 s, averaged over 2.5 s, and is compared to the predicted rate rp in yellow to estimate
the background rate (red dotted curve).



Appendix B

Observer Frame Results

In Chapter 5, we briefly mentioned the results of the observer frame. As stated there, no
large differences are expected between the observer and source frame, since the redshift
correction does not affect the index of the power-law fit. To be complete, all figures
and results are summarised in this chapter. The fitting parameters are listed in Table
B.1, while the fits are grouped in the figures below. The same criteria and samples are
used to arrive at those results. Note that we use the χ2-method to find the optimal fit
range, such that we can compare to the source frame results consistently. If we used the
[0.05; 1.00] Hz interval to probe the power-law in source and reference frame, we would
not probe the same features, since the interesting region shifts from lower frequencies to
higher frequencies when redshift correcting.
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(a) 1.10 < SNR < 1.25. (b) 1.25 < SNR < 2.00.

(c) 2.00 < SNR < 3.00. (d) 3.00 < SNR.

Figure B.1: Average PDS for GRBs with different peak rates: (a) 1.10 < SNR < 1.25
(29 bursts), (b) 1.25 < SNR < 2.00 (40 bursts), (c) 2.00 < SNR < 3.00 (10 bursts),
(d) 3.00 < SNR (19 bursts). The orange region illustrate the range for which the fit is
computed (between fb, low and fb, high). For the best fitting parameters, see Table B.1.

(a) T90 ≤ 2 s. (b) T90 > 2 s.

Figure B.2: Average PDS of (a) 11 short bursts with SNR > 1.00 and T90 ≤ 2 s and
(b) 124 long bursts with SNR > 1.10 and T90 > 2 s. See Table B.1 for the best fitting
parameters.
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(a) E < 66 keV (b) Precursor.

(c) 66 keV < E < 366 keV. (d) Prompt emission

(e) E > 366 keV (f) Noise.

Figure B.3: Left: Average PDS of 60 GRBs for (a) E < 66 keV, (c) 66 keV < E < 366
keV and (e) E > 366 keV. Right: Average PDS of (b) 22 precursors and (d) 20 main
bursts, identified by P. Coppin in [35], and (f) 148 noise profiles. See Table B.1 for the
fit parameters.
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