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Abstract

The FCC-ee is the first stage of a two stage project which would envision a 92 km tunnel
being used for an electron-positron collider experiment starting around 2045, and a proton-
proton collider in the 2070’s. The FCC-ee offers unprecedented precision tests of the Standard
Model, owing to its clean leptonic collision environment and exquisite luminosity. The precise
identification of decay products at future colliders is instrumental to the exploitation of the full
physics potential. In this thesis two facets of this problem are explored: jet flavour tagging and
charged particle tracking.

Jet flavour tagging describes the algorithmic identification of the initiating parton from
hadronic decays. The prospect of identifying strange quark jets has emerged as a promising
avenue to study a multitude of largely unexplored processes, including Z → ss̄ production and
rare Higgs boson decays. DeepJetTransformer is a transformer-based multiclassifier neural net-
work developed by the CMS jet tagging team at the VUB, achieving state-of-the-art performance
while being relatively lightweight. This thesis combines DeepJetTransformer with secondary ver-
texing and a novel implementation of K-short reconstruction at the FCC-ee to identify strange
jets. Through the inclusion of different levels of K±/π± discrimination, strange tagging efficien-
cies ranging from 31.6% to 57.8% were obtained at a u, d jet efficiency of 10%, highlighting the
need for charged Kaon discrimination at future colliders.

Monolithic Active Pixel Sensors (MAPS) combine the sensing node and readout circuitry into
the same substrate, thus offering several advantages with respect to their hybrid counterparts.
The Circuit Exploratoire 65 nm (CE-65), and its evolution CE-65v2, are MAPS test structures
produced in the 65 nm TPSCo CMOS process to explore charge collection properties for a
variety of configurations, including variations in pixel pitch, process modification, amplification
scheme, and matrix geometry. In this thesis the lab characterisation of the CE-65v1 and CE-
65v2 chips is reported, where charge collection efficiencies of 96% were achieved for all variants.
In a subsequent beam test at CERN SPS a sub 3 µm spatial resolution was obtained for Standard
process variants, satisfying FCC-ee requirements. The characterisation of the CE-65 family of
chips has supplemented the APTS and DPTS studies in the validation of the 65 nm TPSCo
process as a candidate technology for advanced particle detection applications, directly informing
the development of future tracking detectors.
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“The limits of my language mean the limits of my world.”
– Ludwig Wittgenstein
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1 Introduction

The Standard Model (SM) provides a consistent and predictive framework describing funda-
mental particles and their interactions. It has since the 1980s become the established theory of
particle physics, and a sizeable departure from the theory is yet to be observed. In 2012 [5] its
last, and arguably one of its most central elements, was observed: the Higgs boson. While this
marked a triumph of the theory, it was also an expected one, and thus its presence alone did
not clearly chart a course forward. The Standard Model has proven robust in the face of ex-
tensive experimental scrutiny, yet it is known that it does not provide a complete description of
nature as evidenced by a variety of phenomena that remain unexplained, including the absence
of gravity in the framework, the existence of dark matter, and the observed matter-antimatter
asymmetry.

The particle physics community is thus at a crossroads, where the clear necessity for studying
the Higgs boson in detail has arisen. The most suitable experiment for such an endeavour
is an electron collider, which owing to its clean experimental conditions is often dubbed a
“precision machine”. Electrons, unlike protons which are currently collided at the Large Hadron
Collider (LHC) at CERN, are fundamental particles. Electron-positron collisions thus involve
well-defined initial states, which are additionally not subject to the strong force. As a result,
electron-positron collisions are considerably cleaner than their hadronic counterparts, with fewer
final-state particles and a sizeably reduced background from particles not associated with the
primary hard scattering. By operating near the Higgsstrahlung threshold, lepton colliders can
produce a Higgs boson in association with the well-studied Z boson and nothing else1, thus
enabling the study of one of nature’s most interesting objects. Beyond Higgs studies, lepton
colliders enable a broad physics programme encompassing electroweak and strong interactions.
This includes precision measurements of Z and W boson properties, which mediate the weak
force. Precision studies of the strong force, including a per-mille determination of the strong
coupling αs, are key to global electroweak fits and other precision measurements where it might
otherwise dominate as a parametric uncertainty.

In each of these a departure from SM predictions would imply the existence of a deeper
underlying theory, that could be entering these measurements indirectly. Such an effect has
been observed in the past, for instance with the top quark, where its loop contribution to
e+e− → ff̄ was used to estimate its mass. Currently there have been several proposals for a
future lepton collider, around which collaborations have formed. These include: the FCC-ee
at the Swiss-French border [6], the ILC in Japan [7], and the CEPC in China [8]. This thesis
focuses specifically on the FCC-ee, both in the context of the flavour tagging studies introduced
below, and the subsequent characterisation of silicon detectors.

As the partons produced in a hard scattering process decrease in energy scale, they radiate
a cascade of strongly interacting particles. The resulting collimated spray of colourless particles

1This is, of course, not quite true, as it neglects radiative effects such as ISR, which modify the final state.
Nevertheless, the process remains remarkably clean compared to hadronic collisions.
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is referred to as a jet. While a jet is an interesting physics object in and of itself, offering insight
into the dynamics of the strong force, such as the strength of its coupling αs, most physics mea-
surements ultimately target the partons produced by the hard scattering. Thus the need for a
mapping between the spray of detector stable particles back to their initiating partons emerged,
known as jet-flavour tagging. Early approaches to jet flavour tagging focused on physics-inspired,
high-level observables, such as the impact parameter significance, designed to identify jets of a
particular species. With the advent of sophisticated machine learning techniques, jet flavour
tagging has increasingly relied on lower-level information, and high-capacity models, often ex-
ceeding 105 parameters, carefully trained on MC data. Among these, transformer-based ar-
chitectures have recently emerged as computationally efficient models that are able to exploit
subtle correlations between jet constituents.

At the FCC-ee the clean environment and well-defined initial states will provide an ideal
setting for precision jet flavour tagging. In particular, the identification of strange quark initiated
jets will enable direct access to processes including Z → ss̄, W → cs, and rare Higgs boson
decays, channels that remain experimentally challenging and imprecise. Jet flavour tagging
studies at the FCC-ee relying on a transformer-based architecture are presented in Part II of
this thesis.

Charged particle tracking is a central component of modern collider experiments, and ar-
guably the most important to jet flavour tagging. As a charged particle traverses a detector
its trajectory is governed by the Lorentz force. This allows for the precise determination of
a particle’s momentum, based on its track curvature in the presence of a B field. Moreover,
measurements of energy depositions in the sensors the particle traverses allow the identification
of its species via its energy loss per unit length (dE/dx). One of the most powerful applica-
tions of charged particle tracking is the reconstruction of displaced vertices due to the longer
lifetimes of certain hadrons, typically dubbed secondary vertex reconstruction. Secondary ver-
tex reconstruction plays a central role in the jet flavour tagging described above, allowing the
identification of bottom or charmed hadrons in a jet, providing a direct handle on the flavour of
the originating parton.

At future lepton colliders high-resolution sensors will be instrumental for precise impact pa-
rameter measurements and secondary vertex reconstruction, enabling both jet flavour tagging
and a rich flavour physics programme. A primary complication as particles traverse detector
material is their small-angle deflection due to multiple coulomb scattering, significantly de-
grading the precision of track reconstruction. Monolithic Active Pixel Sensors (MAPS) offer
a compelling avenue to low-material, high-precision tracking, by combining the sensor and the
readout circuitry onto the same silicon die.

While this entails a variety of advantages with respect to having dedicated sensing and
readout chips, ranging from a lower material budget to miniaturisation, MAPS have seen limited
adoption at hadron colliders due to their lower radiation tolerance. At lepton colliders, however,
the radiation environment is foreseen to be considerably milder than at the LHC. MAPS are thus
quickly emerging as the enabling technology for vertexing systems at future lepton colliders. As
detailed later in this thesis, all four primary detector concepts proposed for the FCC-ee foresee
the use of MAPS for vertexing. The characterisation of MAPS tests structures produced in the
65nm TPSCo CMOS imaging process, targeting future vertexing systems, and in particular the
FCC-ee, is presented in Part III of this thesis.

This thesis begins with an overview of the general prerequisites for understanding the material

2



herein presented. Chapter 2 starts with a brief overview of the Standard Model, followed by
a discussion of some of its known limitations, which serve as the motivation for future collider
projects. The details of the Future Circular Collider project are given in Chapter 3, which
is primarily framed as an answer to the open questions mentioned in the previous chapter.
Particular emphasis is placed on the FCC-ee’s physics potential, and the detector concepts
that have emerged to exploit it. Chapter 4 discusses the reconstruction of physics objects by
combining different subdetector measurements, with particular emphasis on jets, serving as a
segue to Part II, which details jet flavour tagging studies at the FCC-ee.

Part II begins with a pedagogical introduction to the topic of machine learning in Chapter 5,
presenting the foundations before delving into topics particularly relevant for jet flavour tagging.
The chapter concludes with a brief survey of machine learning in jet flavour tagging, providing
context for the studies that follow. Chapter 6 subsequently presents flavour tagging studies at
the FCC-ee based on fast simulation of the IDEA detector concept. Focus is placed on strange
jet identification and its dependence on the identification of charged and neutral Kaons.

Part III encompasses the characterisation of MAPS test structures produced in the 65nm
TPSCo CMOS imaging process. Chapter 7 presents the fundamentals of semiconductor de-
tectors, beginning with the semiconductor band structure before delving into signal formation.
The chapter ends with a brief discussion of signal readout and a presentation of MAPS princi-
ples. The details of the CE-65 family of chips are presented in Chapter 8, setting the stage for
their characterisation. Chapter 9 details the lab characterisation of the CE-65v1 and CE-65v2
chips conducted at the University of Zurich, including measurements of noise, gain calibration,
charge sharing, and gain uniformity. Chapter 10 subsequently details the characterisation of
the CE-65v2 chips at an SPS and DESY testbeam, focusing on the achievable efficiency and
spatial resolution, as well as on the ramifications of a staggered matrix geometry. The thesis
concludes with Part IV, where the findings are summarised and future directions of research are
highlighted.
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Part I

Theoretical and Experimental
Foundations
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2 Standard Model

The Standard Model of particle physics represents a triumph of quantum field theory that
continues to withstand experimental scrutiny. Developed throughout the 20th century, the
Standard Model neatly classifies all known particles into three generations of spin 1/2 fermions
and integer spin bosons. Figure 2.1 depicts the Standard Model particles and their properties.
In the Standard Model picture, fermions represent the fundamental constituents of matter,
while forces are represented by the exchange of vector bosons. Comprehensive treatments of the
Standard Model can be found in Ref. [9]. This chapter presents a qualitative overview of its
central elements and known limitations.

Figure 2.1: Overview of the Standard Model of particle physics. Figure taken from Ref. [10].

Matter

Fermions are the fundamental constituents of matter. The most familiar particle of the Stan-
dard Model is arguably the electron. It interacts electromagnetically and its low mass means
it is stable. Together with its closely related, but heavier, second and third generation cousins,
the muon and the tau, electrons form what are called leptons: particles which interact both
electromagnetically and via the weak force. Theoretically, they are treated as part of an elec-
troweak SU(2)L doublet together with their charge-less counterparts, the neutrinos. Neutrinos,
by contrast, only interact via the weak force, and are thus notoriously difficult to detect.
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Most observable matter, however, appears not as fundamental particles, but in the form of
hadrons, or composite particles consisting of more than one quark. Hadrons appear overwhelm-
ingly in the form of baryons, consisting of three quarks, typically of the first generation. Quarks
are grouped into up-type (+2

3) and down-type (−1
3) according to their electric charge. As with

leptons, each subsequent generation is considerably more massive than the one preceding it, and
second and third generation quarks are orders of magnitude rarer than their first generation
cousins, as their large masses render them unstable and only produced in high-energy processes.
The peculiar ordering of fermion masses in the Standard Model remains an open question.

The fact that quarks are not observed as free particles, but as hadrons, is a direct consequence
of the strong force, whose potential rapidly increases as quarks are separated in a process called
confinement. Hadrons are fundamentally colour singlets, which in effect means that they do not
carry any charge associated with the strong force, and are thus not subject to it. Before delving
into the details of confinement, some more background is necessary, and the details are thus left
to the following passages.

Forces

The vector bosons mediate three of the four known forces: the electromagnetic, the strong,
and the weak force. Although the Standard Model fails to accommodate gravity, it in some sense
has no bearance on collider physics, as the gravitational coupling is many orders of magnitude
lower than comparable couplings of the remaining forces at 1 GeV [11]:

αs ∼ 1 > αQED ≈ 1

137
> αW ∼ 10−6 ≫ αg ∼ 10−39 (2.1)

Electromagnetism is arguably the simplest of the three Standard Model forces after symmetry
breaking, as the theory that describes it, Quantum Electrodynamics (QED), is an Abelian
gauge theory based on a U(1)EM symmetry, where the conserved quantity is the electric charge.
More tangibly, this means that while the massless photon mediates electromagnetic interactions
between charged particles, it does not couple to itself. This aligns with the intuitive picture of
electric field lines spreading across space, where Gauss’ law gives the familiar ∼ 1/r2 scaling
extending to infinity. In the infrared limit, the coupling constant of QED is given by the fine
structure constant αQED = e2/4π ≈ 1/137. Self-energy corrections to the photon propagator
modify this value depending on the momentum transfer Q, giving rise to an increase known as
the running of the coupling.

The strong force, by contrast, is described by Quantum Chromodynamics (QCD), which is a
non-Abelian gauge theory based on an SU(3)C symmetry. While the strong force also features
a massless vector boson as its mediator, the gluon, the key distinction is that the gluon carries
both a charge and an anti-charge, and thus couples to itself. Moreover, rather than a single
charge as in the case of electromagnetism’s U(1)EM symmetry, the SU(3) symmetry features
three distinct charges, collectively denoted the colour charge, which takes the values of r, g, b. A
core feature of QCD is that, in contrast to QED, the running of the strong coupling αs decreases
with increasing momentum transfer Q. More precisely, the running of the coupling is governed
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by the Beta function1 [12]

β(g) = Q
dg

dQ
= − b0

(4π)2
g3 +O(g5) (2.2)

where g =
√
4πα, b0 = 11 − (2/3) · nf with nf = 5 as the number of quark flavours that

contribute2, and the right-most term is the 1-loop result. The 1-loop differential equation is
solved by

α(Q) =
α(Q0)

1 +
b0
2π

α(Q0) ln

(
Q

Q0

) (2.3)

where Q0 is some reference momentum at which the value of the coupling is known. It is the
running of the strong coupling ultimately leads to jet formation, briefly described in Section 4.3.
An interesting feature of the Standard Model is that the couplings seem to converge to a similar
value at high energy scales, hinting at some yet-unresolved deeper symmetry.

The final force is the weak force, which is described by electroweak theory. Electroweak theory
unifies electromagnetic and weak interactions based on an SU(2)L × U(1)Y symmetry [13–15].
The SU(2)L symmetry acts on left-handed fermion doublets and introduces three massless gauge
bosons (W 1

µ ,W
2
µ ,W

3
µ), where the weak isospin is the conserved charge in interactions. The U(1)Y

symmetry acts on all fermions and introduces a single massless gauge boson Bµ, with the weak
hypercharge Y as the conserved charge. The breaking of the SU(2)L ×U(1)Y symmetry by the
introduction of a Higgs doublet with non-zero vacuum expectation value leads to the mixing of
the gauge bosons, and the generation of mass terms for three of the four resulting gauge bosons:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (2.4)

Zµ = cos θW W 3
µ − sin θW Bµ (2.5)

Aµ = sin θW W 3
µ + cos θW Bµ (2.6)

where θW is the Weinberg, or weak mixing, angle, defined by the relation tan(θW ) = gY /gW for
the couplings of the U(1)Y and SU(2)L gauge groups. The Aµ is the massless photon described
above, while the W±, Z are the resulting, physical bosons with masses of 80 GeV and 91 GeV,
respectively. It is primarily the large mass that the weak gauge bosons acquire after symmetry
breaking that gives the weak force its name. The virtuality of particles respects Heisenberg’s
uncertainty principle ∆E∆t ≳ ℏ, and thus the timescale of weak interactions is very small, or
in other words short range.

Perhaps the most peculiar feature of the weak force is that it is the only force that allows
flavour changing decays. This results from the fact that the interaction eigenstates of charged
currents do not align with the quark mass eigenstates. The change of basis matrix for quarks is

1Technically the Beta function is defined in terms of the renormalisation scale µ, not the momentum transfer.
However, a discussion on renormalisation is beyond the scope of this short introduction.

2The top quark is too massive to contribute at momentum transfers below hundreds of GeV.
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known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [16, 17] and is given by

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.7)

The small but non-zero off diagonal elements are in essence responsible for flavour changing weak
transitions between up-type and down-type quarks of different generations. These transitions
underlie the decay of heavy hadrons, and are ultimately responsible for their finite lifetimes, key
in the flavour tagging discussed in Part II of this thesis.

Higgs Boson

The final element of the Standard Model is the Higgs boson, which is uniquely situated as the
only scalar boson. The Higgs boson is not a force carrier like its vector boson counterparts, but
rather an intimate part of the mass-generating mechanism of the Standard Model. In particular,
the Higgs boson appears in the Standard Model as a complex scalar doublet

Φ =

(
ϕ+

ϕ0

)
(2.8)

The gauge symmetry of the Lagrangian is spontaneously broken by the non-zero vacuum ex-
pectation value [18, 19], with the weak vector bosons acquiring mass via the interaction terms
in the covariant derivative, while the photon remains massless. Fermion masses, on the other
hand, arise from the so-called Yukawa couplings: interaction terms between the Higgs field and
the left- and right-handed fermion fields. After symmetry breaking these terms reduce to mass
terms proportional to the Higgs vacuum expectation value

mf = yf
v√
2

(2.9)

with heavier fermions, like the top quark, exhibiting the strongest Higgs couplings. The central
role of the Higgs in the Standard Model, along with the unknown nature of its properties such
as its potential, situate it at the very focus of current research.

2.1 Beyond the Standard Model

The Standard Model of particle physics is widely regarded as one of the most successful scientific
theories ever devised. Its role in unifying three fundamental forces into a single quantum field
theory, and accurately describing all known elementary particles, position the Standard Model at
the very core of our understanding of the universe. It has been tested with unprecedented rigour
at collider experiments, and a sizeable deviation from its predictions is yet to be observed. And
yet, the present sentiment is that the Standard Model is the low-energy limit of some deeper,
underlying theory.

Despite its success, the Standard Model leaves a number of observed phenomena unexplained,
and does not accommodate gravity. A straightforward quantisation of gravity has yet to be
demonstrated, due to the apparent non-renormalisability of a gravitational quantum field the-
ory. Extensions such as String theory [20, 21] offer possible routes towards quantum gravity.
Nevertheless, the path forward is unclear since the effects of gravity are negligible at the en-
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ergy scales probed at current and foreseeable collider experiments. Dimensional analysis of the

relevant constants reveals the Planck energy scale EP =
√

ℏc5
G ∼ 1019 GeV at which quantum

corrections to classical gravity are expected to become relevant, which is many order of magni-
tude higher than even the reach of the LHC. The unification of gravity and the Standard Model
thus remains one of the primary open questions of modern physics.

A number of cosmological measurements appear to be incompatible with the Standard Model
and general relativity. The rotation curves of spiral galaxies [22, 23], for instance, appear to
deviate from expectations based on the luminous mass, which is located primarily in the centre,
displaying instead a linear M(r ≤ R) ∼ R dependence, hinting at some form of invisible matter
that does not interact electromagnetically, dubbed dark matter. Roughly 85% of matter in the
universe is thought to be dark matter, and yet the Standard Model offers no compelling dark
matter candidates. A class of models extending the Standard Model to include weakly interacting
massive particles (WIMPs) postulates dark matter candidates whose small cross sections and
subtle signatures have meant they have thus far remained undetected. Experiments at the LHC
are at the forefront of WIMP searches, revolving around experimental signatures such as missing
energy, as well as deviations in precision measurements.

A well-motivated extension of the Standard Model, supersymmetry, introduces an additional
symmetry between fermions and boson, where every Standard Model particle has an associated
superpartner whose spin differs by 1/2. While supersymmetry introduces dark matter candidates
addressing the problem stated above, the primary motivation lies in resolving the problem of
naturalness, whereby the Standard Model requires the precise cancellation of the bare Higgs
mass and its large self-energy corrections to 1 part in 1034 in order to obtain the comparatively
miniscule pole mass of mH ≈ 125 GeV. Supersymmetry instead addresses the observed Higgs
mass by introducing cancellations between loop corrections of Standard Model particles and their
superpartners. Despite its motivations, the LHC has placed stringent limits on supersymmetry,
excluding many models and placing lower bound on superpartner masses.

Beyond gravity, dark matter, and naturalness, further glaring limitations of the Standard
Model include the observed non-zero neutrino masses [24–26] and the matter-antimatter asym-
metry of the universe. However, the Standard Model does not accommodate massive neutrinos,
since the absence of right-handed neutrinos forbids a Dirac mass term. Extensions including
treating the neutrino as its own antiparticle exist, but minimally require a modification of the
Standard Model. While the Standard Model does accommodate some matter-antimatter asym-
metry via CP violation, it does not suffice for the observed baryon asymmetry. The precise
properties of the Higgs boson, including the shape of its potential, may hold clues regarding the
prerequisite conditions for baryogenesis.

Thus the particle community is rallying behind a number of proposed "Higgs factories", or
lepton colliders where Higgs bosons may be plentifully produced in a clean experimental environ-
ment. These include linear collider concepts, such as the ILC [7] and CLIC [27], which generally
feature high centre-of-mass energies, albeit with reduced luminosity, and circular colliders, such
as CEPC [8] and the FCC-ee [6]. The following chapter introduces the FCC project in detail,
outlining its design, physics goals, and proposed detector concepts.
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3 The Future Circular Collider Project

Colliders have historically served as engines of discovery, providing a way forward in tandem
with theoretical efforts, and hinting at the existence of yet-undiscovered phenomena. Today
however, the field of particle physics is at a crossroads. Following decades of success, the field
has shifted from targeted discoveries to precision tests of the Standard Model, and studying
any deviations therefrom. The discovery of the Higgs boson at the LHC marks its most recent
triumph, but does not chart a clear course forward. The Future Circular Collider (FCC) project
[28, 29] has emerged as a two-pronged answer to the open questions the field currently faces,
tackling present challenges both at the precision and energy frontiers.

This chapter begins with a brief introduction into the fundamentals of collider physics, before
presenting the Future Circular Collider in Section 3.2. The remainder of this chapter details
several aspects of the FCC-ee, including the proposed runs in Section 3.3 and physics programme
in Section 3.4, before concluding by presenting the detector concepts that have emerged to
address these challenges.

3.1 Introduction to Collider Physics

Particle colliders function by accelerating particles to high energies and colliding them in bunches.
The resulting interactions produce on-shell particles that manifest as final state objects which can
be directly studied. Additionally, the scattering process is influenced by off-shell virtual parti-
cles, offering an avenue to indirectly infer their properties, often at higher energy scales. Particle
colliders can be broadly divided into lepton colliders, which collide electrons and positrons1, and
hadron colliders, which collide protons and (anti-)protons. Additional collider types featuring
linear geometries or alternative particle combinations (e.g. eh, heavy ion, ...) exist and have
played significant roles in advancing the field, particularly in contexts like deep inelastic scat-
tering or QCD matter at high temperatures and densities, but will not be discussed for brevity.
Presently, the largest particle collider is the LHC at CERN, which collides hadrons at energies
of up to 13.6 TeV.

Hadron and lepton colliders differ greatly in their motivation. While the more massive
hadrons allow collisions at considerably higher energies, the collision environment is substantially
more challenging as hadrons are not fundamental, and their constituents carry colour charge.
Lepton colliders, on the other hand, are fundamentally precision machines.

The precise energy at which a particle collider operates is defined with respect to the Man-
delstam variable s, given as

s = (pµ1 + pµ2 )
2 = (pµ1 + pµ2 )(p1µ + p2µ) = (E1 + E2)

2 − |p⃗1 + p⃗2|2 (3.1)

where pµ1,2 are the 4-momenta of the incoming particles in a 2-body scattering process. In the
centre-of-mass frame, where the total 3-momentum vanishes, this reduces to

√
s = ECM

1 +ECM
2 ,

1Ref. [30] provides a review of recent efforts exploring the feasibility of a multi-TeV muon collider.
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and defines the centre-of-mass energy of the collision, interpreted as the total energy available for
particle production. Operating at higher centre-of-mass energies broadens the collider’s physics
reach, as it allows the on-shell production of more massive particles and access to new kinematic
regimes. However, increased energy entails notable drawbacks, including the need for stronger
bending magnets, increased synchrotron radiation, and substantially higher energy consumption.

Beyond the centre-of-mass energy, the second key parameter is the number of events that is
produced for the physics process under consideration. The number of events depends both on the
cross section σ, which characterises the probability of a process, and on the luminosity L. The
luminosity is a measure of the number of particles through a unit area per unit time, quantifying
the intensity of beam overlap. It is given in units of inverse area (e.g. cm−2) and inverse time
(e.g. s−1). In the case of the head-on collision of two Gaussian beams, the luminosity is given
by [31]

L =
N1N2fNb

4πσxσy
(3.2)

where N1,2 are the number of particles per bunch for the colliding beams, Nb is the number of
bunches per beam, f is the revolution frequency, and σx,y are the transverse beam sizes. The
number of events can be obtained by integrating the product of the luminosity and the cross
section, given as

Nev =

∫
σ · L dt = σ · Lint (3.3)

where Nev is the number of produced events for the given process and Lint is the integrated
luminosity. With the basic concepts of centre-of-mass energy and luminosity established, the
following section discusses how they inform the design of future facilities such as the FCC.

3.2 The FCC Integrated Project

The Future Circular Collider (FCC) project is an ambitious two-stage project that envisions
the construction of a 90.7 km tunnel at CERN, to successively host a high luminosity electron-
positron collider, the FCC-ee, followed by a high energy hadron-hadron collider, the FCC-hh.
It will serve as the successor to the LHC, and define the future of particle physics for the latter
half of the 21st century. Figure 3.1 depicts the proposed geometry for the FCC-ee accelerator.
Additional civil engineering constraints to host both colliders in the same tunnel are being
considered in the design phase, including an increase in the tunnel diameter, with respect to the
LHC, to 5.5 m.

The natural synergy observed between LEP and the LHC serves as a primary motivation
for the two-stage approach adopted for the FCC project. As a lepton collider, LEP operated
in a comparatively clean environment, instrumental in the precise determination of a variety of
Standard Model parameters, particularly related to the Z boson, such as the mass (mZ) and
width (ΓZ), which remain state-of-the-art. Moreover, and just as importantly, is the oft-touted
phrase that "precision is discovery". High-mass particles enter lower energy precision measure-
ments though virtual loop corrections, shifting observables away from their expected values in
the absence of such contributions, as exemplified in Section 3.4. Thus, the precise measurement
of Standard Model parameters, and potential deviations from theoretical predictions, can pro-
vide sensitivity to heavier states, helping chart the course forward for future high-energy hadron
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Figure 3.1: Schematic of the FCC-ee accelerator. The four collision points are marked in red.
Figure taken from Ref. [28].

colliders.
The FCC-hh is planned to begin operations in the 2070’s with proton-proton collisions at a

baseline energy of 85 TeV, potentially increasing to ∼ 120 TeV, depending on ongoing R&D.
Operating at nearly an order of magnitude higher centre-of-mass energy than the LHC, the
FCC-hh will enable direct searches for heavy resonances at energy regimes inaccessible to its
predecessor. Additionally, the copious Higgs boson production, expected to exceed 20 billion
[29], will constrain rare Higgs decays including H → γγ, µµ, Zγ at unprecedented precision, and
facilitate the precise measurement of the Higgs self-coupling via double-Higgs production. Many
of the proposed detector and accelerator technologies for the FCC-hh require significant R&D, a
challenge made tractable by its distant timeline. One of the most critical areas for development
are the high-field superconducting magnets required for the 100 TeV FCC-hh collisions [29].

In comparison, the preceding stage, the FCC-ee, relies on more mature and well-established
technologies. The FCC-ee is optimised for precision physics at lower centre-of-mass energies,
ranging from the Z-pole (∼ 90 GeV) to just above the tt̄ production threshold (∼ 365 GeV)
during its 15 year runtime, presumably beginning around 2045. Its rich physics programme
spans Higgs physics, precision electroweak measurements, flavour physics, precision QCD, and
even light BSM searches, as detailed in Section 3.4. Moreover, the FCC-ee features the highest
number of collisions of the proposed colliders at the production thresholds of the Z boson, W
boson pairs, and a Higgs in association with a Z. Thus it offers the most exquisite precision, and
has garnered much support in Europe and beyond.

3.3 FCC-ee Parameters

The FCC-ee will be hosted in the 90.7 km tunnel described above, and will feature four inter-
action points delivering unprecedented luminosities across a range of energies. The collider will
operate at a variety of different beam configurations depending on the targeted centre-of-mass
energy, requiring the tuning of a number of parameters including beam current, bunch multiplic-
ity and spacing, as well as transverse bunch dimensions. During the Z-pole run the FCC-ee is
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expected to achieve a luminosity of 145× 1034cm−2s−1 per interaction point, delivered as 11200
bunches per beam with a spacing of 27 ns. Detailed beam parameters for other energies can be
found in Ref. [29].

A summary of the proposed run schedule detailing the centre-of-mass energies, integrated
luminosity, and associated physics targets is depicted on Figure 3.2. It should be noted that
Figure 3.2 assumes the baseline scenario, with the precise order and duration not yet fixed [29].
The FCC-ee will explore the vicinity of the Z-pole during its initial four year run at centre-of-
mass energies of

√
s = 88, 91, 94 GeV, during which an integrated luminosity of 205 ab−1 will be

achieved. This corresponds to a production of 6×1012 Z bosons, offering unprecedented statistics
for the measurement of Z boson properties and rare flavour physics decays. Following the Z pole
run, the FCC-ee will operate at centre-of-mass energies corresponding to the WW-threshold at
√
s = 157, 163 GeV for two years. The integrated luminosity of 19.2 ab−1 corresponds to the

production of 2.4 × 108 W boson pairs, a factor ∼ 5 × 103 higher than at LEP, allowing the
precise study of W boson properties, improved determinations of CKM elements, and detailed
studies of non-perturbative QCD effects in WW decays, detailed in the following section.

Figure 3.2: The integrated luminosities to be delivered in the baseline run schedule of the
FCC-ee, shown as a function of centre-of-mass energy. A luminosity range for linear colliders is
shown above 200 GeV. Figure taken from Ref. [29].

The Higgs programme of the FCC-ee begins with the ZH run at
√
s = 240 GeV. The

three year run will result in an integrated luminosity of 10.8 ab−1, corresponding to 2.2 × 106

Higgsstrahlung and 6.5× 104 WW fusion events.
The tt̄ run is sub-divided into a 1 year run scanning the production threshold at

√
s =

340− 350 GeV, and a 4 year run slightly above the threshold at
√
s = 365 GeV. The threshold

scan will deliver an integrated luminosity of 0.42 ab−1, allowing a precise determination of the
top quark mass (mt) and decay width (Γt). The 365 GeV will deliver an integrated luminosity of
2.70 ab−1, with the primary goal of measuring top couplings, and offering indirect sensitivity to
the Higgs self coupling when combined with the ZH run. Across both tt̄ runs, a total of 2× 106

tt̄ pairs, 3.7× 105 Higgsstrahlung events, and 9.2× 104 WW fusion events will be produced.
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3.4 Physics Programme

The full physics programme of the FCC-ee is much too detailed to be explained in the space
herein alloted, so the interested reader is encouraged to consult Refs. [6, 29] for a more com-
plete discussion. As mentioned in Section 3.2, the FCC-ee physics programme spans Higgs
physics, precision electroweak measurements, flavour physics, precision QCD, and even light
BSM searches. Some aspects of these will be highlighted.

The Higgs programme at the FCC-ee is centered around the measurement of the Higgs boson
mass, constraints on its total width, as well as the precise determination of many of its couplings
to Standard Model particles. The recoil mass method exploits the well-determined kinematics of
a lepton collider to reconstruct the invariant mass of the system recoiling against the Z → l+l−

produced in Higgsstrahlung events, allowing the identification of Higgs events without reference
to a specific decay mode. The peak position of the recoil mass will allow the determination of the
Higgs mass (mH) to high precision. The recoil mass method additionally provides a measurement
of the total ZH cross section σZH , which when coupled with the H → ZZ∗ branching fraction
allows the determination of the Higgs width ΓH [29]. The FCC-ee will improve the precision
on a number of κ parameters, which quantify deviations of Higgs couplings from their Standard
Model predictions, with respect to HL-LHC projections, with κZ improving by over an order of
magnitude, and more moderate gains expected for couplings to the W , b, c, g, τ , µ, γ, Zγ [29].
Beyond this, the prospect of constraining the electron Yukawa coupling [32] with a dedicated
run at the Higgs boson pole mass is being actively considered. While not explicitly included in
the baseline run plan depicted on Figure 3.2, a dedicated e+e− → H run would allow a ∼ 1.6×
Standard Model value upper limit to be set within 2 years [32]. The s-channel Higgs production
presents one of the most formidable challenges to the FCC-ee due to the narrow Higgs boson
width. An excellent control over the beam energy spread would be required, lest the Higgs
resonance be rendered invisible.

The precision electroweak programme at the FCC-ee is complemented by the Z-pole, WW
threshold, and tt̄ run. In particular, the exquisite statistics in the vicinity of the Z-pole will
allow a precise determination of both the Z boson mass (mZ) and width (ΓZ) from the line shape
scan, improving present determinations by over 1 and 2 orders of magnitude, respectively [29].
A multitude of additional precision observables will become accessible during the tera-Z run,
including the weak mixing angle and the b-quark forward backward asymmetry (Ab

FB), likewise
improving by over two orders of magnitude. Improvements of a similar scale are expected the W
mass (mW ) and width (ΓW ) from the WW threshold scan. Rapid advances in flavour tagging
precision, such as those presented in Chapter 6, will additionally allow the direct extraction of
the |Vcs| and |Vcb| CKM matrix elements from hadronic W decays, as was done at LEP in the
case of the former [33–35]. The tt̄ threshold scan will improve present determinations of the top
quark mass (mt) by almost two orders of magnitude, instrumental for a precise determination
of a number of electroweak precision observables, where it enters as a parametric uncertainty
[29]. The top quark width (Γt) will likewise be extracted from the tt̄ threshold scan, albeit with
milder improvements in precision. The high precision measurement of the top quark’s properties
will substantially tighten the global electroweak fit, improving constraints on Standard Model
parameters and exposing any potential tensions that may arise.

The FCC-ee is seldom framed as a QCD machine, but offers a clean environment and exquisite
statistics, accommodating a rich precision QCD programme. The collision of colourless parti-
cles fixes the initial state kinematics, and allows quarks and gluons to hadronise in a relative
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"QCD vacuum", devoid of partons unrelated to the main physics process. The determination
of the strong coupling is paramount to improving the precision of virtually all cross sections
and decays at colliders, where it can enter either directly (e.g. gg → tt̄H), or via higher order
corrections (e.g. e+e− → Z(qq̄)). At the FCC-ee, the strong coupling αs is expected to be the
leading parametric uncertainty in the determination of the Z boson width described above [36].
Nevertheless, the FCC-ee is uniquely suited for a per-mille level determination of the strong
coupling at the Z-pole (αs(mZ)) through combined fits of the hadronic-to-leptonic decay ratio
(RZ(Q)), the total width (ΓZ), and the hadronic cross section (σhad.

Z ). The strong coupling
could similarly be determined at the W boson pole (αs(mW )) from hadronic W decays, offering
an improvement of around two orders of magnitude with respect to present determinations [29].
Additional determinations of the strong coupling are possible via hadronic τ decays, as well as
event shapes and jet rates [37, 38], as was done at LEP for the latter [39]. The FCC-ee also
offers a plethora of opportunities to study non-pQCD effects, such as colour reconnection in
WW events, or gluon radiation patterns from an ultra-pure gluon jet sample (ZH(→ gg)).

The flavour physics programme at the FCC-ee is centered around the exquisite statistics at
the Z-pole, and will cover a wide variety of topics ranging from searches for flavour-changing
neutral currents to the precision study of bottom and charmed hadrons. Moreover, the tera-Z
run will produce over 1011 boosted τ leptons, corresponding to an improvement of over an order
of magnitude in lepton flavour universality tests [29].

The potential of the FCC-ee as discovery machine is often understated. Besides probing
extensions of the Standard Model that feature direct signatures, such as long-lived particles, the
improvements by orders of magnitude in a number of precision observables will offer a hint at
physics beyond the Standard Model. Deviations from values predicted by the Standard Model
would offer compelling evidence of mass states that are yet to be identified. The signature of
yet-undiscovered particles in precision measurements at energies substantially lower than their
pole mass has significant historical precedent. The mass of both the top quark and the Higgs
boson were predicted prior to their discovery through their influence on the cross section of
the e+e− → ff̄ process via loop corrections, as depicted on Figure 3.3. In similar fashion, the
FCC-ee is expected to offer sensitivity to particles with masses up to 10–70 TeV [6].
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Figure 3.3: Tree-level (a) and 1-loop corrections involving the top quark (b) and the Higgs
boson (c) to the e+e− → Z → ff̄ scattering amplitude. Figure inspired by Figure 1.3 of Ref.
[6].
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3.5 Detector Concepts

The rich physics programme at the FCC-ee imposes a stringent set of performance requirements
on the rapidly evolving detector concepts. For instance, beam collimation considerations at the
Z-pole run limit the magnetic field strength to 2 T, requiring large tracking detector volumes
to compensate [29]. The detector requirements of the FCC-ee are detailed in Refs. [29, 40, 41].
The present discussion focuses on a selection of the more optimistic targets outlined in Ref.
[29], along with their motivation. Table 3.1 lists the key performance requirements on each
sub-detector in the FCC-ee detector concepts.

Subsystem Requirement Subsystem Requirement

Vertex
σ(d0) = 3⊕ 15

p sin3/2 θ
µm

X/X0 < 1%

HCAL
σE
E

=
30%√
E

,

∆x×∆y = 2× 2mm2

Tracking σp/p < 0.1% for O(50)GeV Muons µ ID for p < 1 GeV

ECAL
σE
E

=
3%√
E
,

∆x×∆y = 2× 2mm2

Particle ID
3σ K/π separation
up to p < 40GeV

Table 3.1: Selected detector requirements for the FCC-ee detector concepts. Values adapted
from "Aggressive" requirements given in Ref. [29].

The requirements on the vertex detector are centered around the transverse impact parameter
resolution and the minimisation of the material budget in order to suppress multiple coulomb
scattering, as described in Section 7.2.1. A precise reconstruction of secondary vertices is in-
strumental not only to heavy-flavour jet tagging, where the presence of secondary vertices helps
to discriminate b-, c-, and light jets, but also to flavour physics, with the reconstruction of the
thus-unseen B → K∗ττ decay placing some of the most stringent requirements on the transverse
impact parameter resolution. In particular, the impact parameter resolution itself consists of
an asymptotic term, assumed to be 3 µm in the optimistic case, which can be improved by
moving the first vertex layer as close to the beampipe as possible, and using small-pitch pixel
sensors in order to achieve the exquisite spatial resolution required per layer. Moreover, the
ambitious target of maintaining the entire material budget of the vertex detector below 1%

X/X0 is instrumental to minimising multiple scattering. Recent developments in Monolithic
Active Pixel Sensors (MAPS) have demonstrated the feasibility of combining the twin goals of
high-resolution and ultra-low material budget in vertexing systems. Some developments target-
ing vertexing at future colliders are detailed in the latter part of this thesis. All of the detector
concepts presented in this Section envision the use of MAPS for vertexing.

The requirement on the tracking detector is expressed in terms of the momentum resolu-
tion for energetic particles, and is driven primarily by the measurements of the Higgs recoil
mass (mrecoil

H ), the Z boson decay width (ΓZ), and searches for lepton flavour violating decays
(Z → τµ), all of which require exquisite momentum measurements of energetic leptons. Both
the electromagnetic calorimeter (ECAL) and the hadron calorimeter envision a high transverse
resolution, expressed as the granularity ∆x×∆y, with the requirement being primarily driven
by the reconstruction of π0 → γγ decays for the electromagnetic calorimeters, and the precise
reconstruction of neutral jet constituents for the hadron calorimeter. The additional energy reso-
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lution requirement in electromagnetic calorimeter is driven by the need to accurately reconstruct
photon final states, such as e+e− → νeν̄eγ, while in the hadron calorimeter it is driven by the
jet energy resolution, particularly for H → 2-jet decays. The primary performance metric for
the muon system is the muon identification performance, as precise momentum measurements
are already provided by the tracking detector. Particle identification (PID) has additionally
emerged as a performance requirement. As evidenced by the jet flavour tagging studies reported
in Chapter 6 and other prior studies, the discrimination of K±/π± is instrumental in the identi-
fication of strange quark initiated jets, and the promising novel physics studies thereby enabled
(e.g. H → ss̄).

From the above requirements four primary detector concepts have emerged either as adap-
tions of detectors designed for other proposed lepton colliders, or as dedicated developments
for the FCC-ee. With four interaction points, the FCC-ee will accomodate a wide variety of
detector technologies and concepts, optimising slightly different aspects of particle detection.
The IDEA and the CLD detector concepts are the most studied among the detector concepts
under consideration, and are thus listed in most detail.

3.5.1 IDEA

The Innovative Detector for e+e− Accelerator (IDEA) [42–44] detector concept emerged as
a standalone development for the FCC-ee, combining novel subdetector designs. Figure 3.4
depicts a schematic cross section of the upper-right quadrant of the IDEA detector. While
this iteration of the IDEA detector will be detailed in this section, it should be noted that
the detector concepts are rapidly evolving and being optimised, thus the precise positions and
details of individual subdetectors are subject to change. Beginning at the beampipe and moving
radially outwards, the IDEA detector concept consists of a silicon vertex detector, a low-mass
drift chamber surrounded by a silicon tracking layer, a crystal dual-readout electromagnetic
calorimeter, a superconducting magnet, a dual-readout hadronic calorimeter, and finally a muon
system [29].

Figure 3.4: Schematic cross section of the upper-right quadrant of the IDEA detector concept.
Adapted from Ref. [29].
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The silicon vertex detector barrel consists of 5 layers of sensors extending from r = 1.37 cm
to r = 31.5 cm, where r denotes the radial distance from the beampipe. The vertex detector
can be further sub-divided into the inner and outer subsystems, where the inner subsystem
comprises the three barrel layers closest to the beampipe at radii between r = 13.7 mm and
r = 35.6 mm, respectively, while the outer subsystem comprises the outer two layers at radii of
r = 130 mm and r = 315 mm and the three endcap layers at each detector end. The baseline
design of the inner subsystems assume 25 µm × 25 µm MAPS based on the current ARCADIA
prototype [45]. Each layer of the inner subsystem contributes 0.25% X0 radially. An alternative
ultra-light design mimicking the ALICE ITS3 upgrade [46] features fully-stitched MAPS sensors
in a self-supporting structure, allowing a reduction of ∼ 3 in the material budget per layer to
0.07% X0 [47]. The outer subsystem assumes hybrid pixel sensors featuring a pixel pitch of 50
µm × 150 µm and a similar sensor thickness to the inner subsystem MAPS of ∼ 50 µm.

The second part of the IDEA tracking system is the low-mass drift chamber. It consists of 112
layers of wires spanning 4 m along the z axis at radii between r = 0.35 m and r = 2 m in a 90%
He and 10% iC4H10 mixture. The drift chamber offers a low-material budget alternative to full-
silicon tracking detectors, with a budget of only 1.6% X0 for the entire subdetector, orthogonally
to the beampipe. Besides providing high-precision tracking measurements, the drift chamber
is expected to provide exquisite particle identification capabilities for a wide momentum range
using the cluster counting technique (dN/dx). The drift chamber is surrounded by a large
area silicon tracking system, providing an additional high-precision spatial measurement, and
potentially a time-of-arrival measurement.

The final subdetector lying within the superconducting coil 2 T magnet is the crystal elec-
tromagnetic calorimeter providing energy and position measurements for electrons and photons.
The electromagnetic calorimeter extends from r ≈ 2 m to r = 2.5 m

The penultimate subdetector is the hadronic dual-readout calorimeter spanning from r = 2.7

m to r ≈ 4.5 m. The dual-readout calorimeter consists of alternating rows of scintillating and
Cherenkov fibres in capillary tubes. An excellent energy resolution of 30%/

√
E is expected

for hadrons. While the subdetector effectively functions as the hadron calorimeter in the pre-
sented design of the IDEA detector concept, its use as a combined electromagnetic and hadron
calorimeter, distinguishing between the two via the ratio of scintillation and Cherenkov light,
was originally the baseline and is still being actively explored.

The final subdetector is the muon system consisting of layers of chambers embedded in the
iron return yoke surrounding the solenoid. The baseline technology is derived from the µ-RWELL
muon detector system [48]. While the muon system is primarily designed for muon detection,
as its name suggests, its potential for detecting LLPs is currently being explored.

It is worth highlighting two key differences between the IDEA detector concept presented in
this section and the configuration used for the flavour tagging studies in Part 6:

• First vertex detector layer was placed at a radius of 1.7 cm, rather than the current,
reduced baseline of 1.37 cm

• Absence of a dedicated dual-readout electromagnetic calorimeter

3.5.2 CLD

The CLIC-like detector (CLD) [49] is an adaptation of the most recent CLIC detector model
to the FCC-ee. A number of modifications in order to accomodate the FCC-ee conditions was
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necessary, including an increase in the tracking detector volume in order to accommodate the
weaker 2 T field strength. Figure 3.5 depicts a schematic cross section of a transverse slice and
the upper-right quadrant of the CLD detector concept. The CLD detector features a full-silicon
tracking detector, surrounded by an electromagnetic calorimeter and a hadron calorimeter, both
lying within the superconducting solenoid. Surrounding the coil is the muon system.

Figure 3.5: Schematic cross section of a transverse slice (a) and the upper-right quadrant (b)
of the CLD detector concept. Adapted from Ref. [29].

The silicon pixel vertex detector of the CLD detector concept is organised in double-layers
of ultralight MAPS sensors. The barrel consists of three double-layers located at r = 12.5-13.5
mm, r = 37-38 mm, and r = 57-58 mm, respectively. Each barrel double-layer contributes
a material budget of 0.63% X0. The three endcap double-layers are located at z = 160 mm,
z = 230 mm, and z = 300 mm, where z denotes the longitudinal distance from the interaction
point. The endcap double-layers contribute a material budget of 0.70% X0 each.

The tracking detector surrounding the vertex detector is likewise comprised of silicon detec-
tors, and is sub-divided into the inner tracker and outer tracker. The inner tracker is comprised
of three barrel layers and seven endcap layers, while the outer tracker adds three additional
barrel layers and four endcap disks. Each tracker layer contributes a material budget of ∼ 1.2%
X0.

It should be noted that at the time of writing the inclusion of a novel ring-imaging Cherenkov
detector surrounding the tracking detector is being considered. The detector would supplement
the particle identification capabilities of the CLD detector, but requires a reduction in the
tracking detector radius, deteriorating the momentum resolution [50].

The electromagnetic calorimeter and the hadron calorimeter both lie within the supercon-
ducting solenoid, enabling a precise reconstruction of particle trajectories in the particle-flow
approach. The electromagnetic calorimeter employs tungsten as the absorber material, with
silicon sensors providing a high-granularity readout. The hadron calorimeter utilises alternating
steel and scintillator tiles.

The final subdetector, located outside the coil, is the muon system comprised of seven resistive
plate muon chambers.

3.5.3 ALLEGRO

The ALLEGRO [51] detector concept, short for A Lepton-Lepton collider Experiment with
Granular Read-Out, is the most recent of the presented detector concepts. Its main innovation
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is a high-granularity electromagnetic calorimeter using a noble liquid as the active material. The
interested reader is referred to Ref. [29] for a detailed schematic of the detector layout.

The vertex detector is expected to make extensive use of the promising MAPS developments,
as for the detector concepts already presented. The baseline vertex detector design is that of the
IDEA detector concept, and will thus not be repeated. Surrounding the vertex detector is the
tracking detector, whose precise technology is still being explored. Fundamentally, two avenues
are being explored: a full-silicon tracker, as proposed for CLD, and a gaseous tracker either in
the form of a straw tracker or a drift chamber, as proposed for IDEA, with the latter serving as
the baseline. The electromagnetic calorimeter is situated within the superconducting coil, and
will consist of a combination of a noble liquid as an active medium and a metallic absorber as
the passive material. Proposed combinations include tungsten or lead as absorbers paired with
liquid argon, or tungsten with liquid krypton, with lead and liquid argon currently serving as
the baseline. The hadron calorimeter situated around the coil will adopt a design combining
steel absorber plates and scintillator tiles, much like CLD. Finally, technology options for the
muon system are still under active investigation, with drift tubes, resistive plate chambers, and
micromegas among those proposed.

3.5.4 ILD

The International Large Detector (ILD) [52] is a detector concept originally developed for the
ILC, but more recently adapted for the FCC-ee. As the CLD detector concept was developed
from the ILD [29] it shares significant overlap in design choices. In particular, both detector
concepts feature high-granularity electromagnetic and hadronic calorimeters within the super-
conducting solenoid, and envision the use of MAPS for their high-precision vertexing detectors.
The primary distinction between the two detector concepts is the adoption of a time-projection
chamber as the tracking detector for the ILD. While a time-projection chamber features a very
low material budget and allows excellent charged particle identification via ionisation clusters,
the concept still faces significant challenges for FCC-ee operation [29], particularly at the Z-pole.

Having surveyed the principal detector concepts under consideration for the FCC-ee, the
following chapter provides an overview of how measurements of subdetectors are combined into
reconstructed physics objects.
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4 Reconstruction

The raw output of detectors, such as the concepts presented in Section 3.5, is a large number
of localised signals resulting from particle interactions with different subdetectors. However, it
is not until these measurements are combined and interpreted as reconstructed particles, with
an associated charge and 4-momentum, that meaningful physics can be extracted. This chapter
provides a very brief overview of the reconstruction chain, beginning with individual hits in the
tracking system and culminating in high-level physics objects like jets.

4.1 Tracks

Charged particle tracking forms the backbone of event reconstruction at collider experiments.
The sequential measurement of charged particles as they traverse finely-segmented detectors
allows the reconstruction of their trajectories. The trajectory of a charged particle is bent into
a helix by the Lorentz force, with a curvature that is inversely proportional to the particle’s
momentum. The determination of a particle’s trajectory relies at minimum on two1 points
which can be interpolated. It can be shown that for an idealised two layer tracking detector the
impact parameter resolution σb is approximately given by [53]

σb =

(
r2

r2 − r1
σ1

)2

+

(
r1

r2 − r1
σ2

)2

+ σ2
ms (4.1)

where r1, r2 denote the radii of the detector layers from the beamline, while σ1, σ2 their resolu-
tions. The σms term is included to describe the degradation of the resolution due to the multiple
scattering of particles as they traverse the detector. It is immediately manifest that the radius
of the first detector layer r1 should be minimised in order to improve the resolution. Thus it is
customary to place the first detector layer as close to the beampipe as possible, as evidenced by
the IDEA detector concept’s reduction in the innermost layer’s position from 1.7 cm to 1.37 cm.
Subsequent detector layers provide additional measurements which are combined into a single
track.

The process begins with the formation of hits on each detector layer, consisting primarily
of identifying pixels where signals are large enough (although this often occurs internally at
hardware level) and combining measurements of adjacent pixels in a process described in Chapter
9. Track seeds, which are initial track candidates, are subsequently formed from two or more
hits, typically close to the beampipe. Trajectories are then built by iteratively adding hits
to track seeds and using techniques like the Kalman filter [54] to update track parameters at
each step to minimise goodness of fit metrics like the χ2, while accounting for uncertainties
and track curvature. The fitting procedure is considerably more involved than the straightline
fits described in Chapter 10, as the tracks must follow helical trajectories consistent with the
magnetic field strength and particle momentum hypotheses. After all hits have been included

1In the absence of a magnetic field, two points suffice to define a straight line trajectory.
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in the track candidate, the track is refit in order to refine track parameters, typically using the
same fitting method as during the track finding.

While the tracking concepts discussed here are presented through the lens of silicon tracking
detectors, the overall trajectory reconstruction procedure applies more broadly. A similar ap-
proach can be adapted for track reconstruction in a gaseous detector like IDEA’s drift chamber,
albeit with some notable differences in hit reconstruction and resolution.

4.1.1 Vertexing

Tracks are reconstructed into points from which they originate, referred to as vertices. The
most important of these is arguably the primary vertex, corresponding to the location of the
hard scattering, and thus the origin of most tracks associated with its decay products. Particles
with lifetimes of O(10−12) s can travel several mm before decaying, leaving behind two or more
tracks that are displaced from the primary vertex. These displaced vertices, dubbed secondary
vertices, are typical of bottom or charmed hadrons, as well as tau leptons, and thus instrumental
in their identification. Figure 4.1 shows a schematic of a 3-jet event, where the heavy flavour
jet contains a secondary vertex, characterising it distinctly with respect to the other two. The
inner component of the tracking detector is often optimized for vertex reconstruction and is thus
dubbed the vertexing detector.

Figure 4.1: Schematic of a heavy flavour jet containing a secondary vertex. The impact pa-
rameter of one of the displaced tracks in marked in green. Figure taken from Ref. [55].

The LCFIPlus framework [56], used for vertex reconstruction in the studies presented in
Part II of this thesis, employs a three step approach. In the first step, the primary vertex is
reconstructed from all tracks in an event, for which a global χ2 value is computed. Tracks
contributing the most to the χ2 are then iteratively removed until a threshold is reached. The
remaining tracks are then assigned to the primary vertex. Subsequently, all possible track pairs
constructed from tracks not associated with the primary vertex are considered secondary vertex
seeds. Tracks are then added to track pairs with a low χ2, provided their contribution to the
resulting χ2 remains below a predefined threshold. The procedure continues until all tracks
satisfying the criteria given in Ref. [56] have been considered. In the final step of the vertex
fitting procedure, V0 candidates are identified and removed. The studies presented in Chapter 6
deliberately added V0 candidates as reconstructed objects. In the studies presented in Chapter
6, V0 candidates were deliberately retained as separate reconstructed objects.

While secondary vertexing performance depends on the precise association of tracks to dis-
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placed decay points, the resolution of a track’s distance from the primary vertex is often used
as a proxy. This is commonly parametrised by the transverse (d0) and longitudinal (z0) impact
parameters, corresponding to the distance of closest approach in each respective dimension.
The performance of a vertexing detector can be quantified via the transverse impact parameter
resolution as

σd0 = a⊕ b

p · sin3/2θ
(4.2)

where the a and b are parameters describing the spatial resolution and multiple scattering of a
given detector, respectively, while p denotes the particle momentum and θ its angle to the beam
axis. The spatial resolution of the sensor is largely driven by its granularity, or so called pixel
pitch in the case of silicon pixel detectors. Positional reconstruction schemes making reference
to the charge deposited in each pixel can be exploited to further improve the spatial resolution
of a detector layer, as explored in detail in Chapter 10 for the chips presented in this thesis.

4.2 Particle Reconstruction

The particle flow algorithm [57] has emerged as a powerful paradigm in event reconstruction,
combining information from all subdetectors into a single coherent picture. Inputs to the parti-
cle flow algorithm include tracks reconstructed from charged particle depositions in the tracking
system, clusters in the electromagnetic and hadronic calorimeters formed from energy deposits
in neighbouring calorimeter cells, and standalone tracks in the muon system reconstructed from
hits in the muon chambers. By combining different signatures into physics objects with cor-
responding identity and 4-momenta, dubbed particle flow candidates, the algorithm achieves
a superior energy resolution for composite objects like jets, and an improved reconstruction
accuracy compared to what any individual subdetector can achieve. A particle flow approach
is foreseen for the reconstruction of physics objects at the FCC-ee. The Pandora particle flow
algorithm [58], for instance, is already well-integrated with the CLD and ILD detector concepts,
stemming from its long use in linear collider contexts. In the following, the reconstruction of
the particle flow candidates will be briefly described, without reference to a specific detector
concept.

4.2.1 Leptons and Photons

Muons are often the first physics object to be reconstructed in particle flow reconstruction chains
due to their clean experimental signature. Given that muons do not interact strongly, and are
much more massive than electrons, they traverse considerably more detector material before
suffering significant energy loss. This is exploited by situating the muon system outside of the
superconducting coil, often interweaved with the return yoke, as described for several detector
concepts in Section 3.5, such that virtually only neutrinos and muons themselves reach the
muon system. Particle flow algorithms then begin by reconstructing the muon trajectory from
individual deposits in the muon chambers. The track can be extrapolated to the interaction
point, and then matched to the tracks constructed as detailed in Section 4.1, often coupled with
additional constraints like minimal calorimeter deposits along the extrapolated track. Deposits
in the tracking system are often instrumental in increasing the track resolution of low-energy
muons, as these are more subject to multiple scattering. Once a muon particle flow candidate is
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added to the collection, all associated deposits (e.g. the track) are removed from consideration
for subsequent stages of the particle flow algorithm.

The reconstruction of electrons, by comparison, is more challenging, and makes use of both
tracking information and deposits in the electromagnetic calorimeter. Calorimeter clusters with
identifiable tracks along the extrapolated electron trajectory are identified as electrons. Due to
substantial bremsstrahlung and multiple scattering, electron tracks are often constructed in a
dedicated step with considerably more relaxed criteria than that of muons or charged hadrons.
Additional criteria are imposed, including the absence of deposits in the hadronic calorimeter to
minimise misidentification from hadrons, and isolation criteria to reject electrons from photon
conversions in the detector material. The identification of photons is of course intimately related.
Bremsstrahlung photons originating from identified electrons are typically not reconstructed as
independent objects, but are instead associated with the electron through extended calorimeter
clustering. This association ensures that ECAL deposits are correctly attributed and prevents
double counting. Clusters that remain unassociated with any track are identified as photons,
with the photon energy defined by the ECAL deposit itself.

4.2.2 Hadrons

Unlike the leptons and photons reconstructed above, the identification of hadrons hinges pri-
marily on the absence of a signature. Charged tracks that are not associated to a lepton are
considered to originate from charged hadrons, primarily pions (π±), protons (p), and Kaons
(K±). Associated deposits in the hadron calorimeter are used for consistency checks, but are
generally considered too coarse to resolve the track invariant mass. Dedicated particle identifica-
tion techniques exist in the form of ionisation energy loss measurements (dE/dx) or time-of-flight
measurements. In either case, the dependence of an uncorrelated observable is coupled with mo-
mentum measurements of the tracking system in order to determine the particle mass. These
two types of particle identification measurements are particularly effective when combined, as
foreseen in the IDEA detector concept, as they cover slightly different momentum ranges, with
time-of-flight measurements providing better sensitivity at low momenta [59].

After the subtraction of deposits in the hadronic calorimeter associated with charged hadrons,
the remaining deposits are interpreted as originating from neutral hadrons. The energy of neutral
hadron candidates is defined by the calorimeter deposit, resulting in a considerably worse energy
resolution than for other reconstructed particle flow objects. The momentum vector is then
defined by the relative position of the calorimeter cluster and a mass hypothesis. Despite the
limited precision of neutral hadron reconstruction, it plays an important role in the completeness
of the event reconstruction, particularly in observables such as the missing transverse energy.

4.3 Jets

At high energy scales partons produced in a hard scattering emit radiation in the form of gluons
as they travel outward, which may themselves branch into quark-antiquark pairs, or further
gluons. The cascade of emissions, known as a parton shower, is governed by perturbative QCD
and continues until the energy scale approaches O(1) GeV, where the strong coupling αs becomes
large, and the perturbative treatment of partons begins to break down. In a non-perturbative
process known as hadronisation, the outgoing partons recombine into colourless hadrons. The
exact dynamics of hadronisation are poorly understood, and it is customary to instead resort to
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phenomenological models, such as the Lund String model [60]. The curious reader is referred
elsewhere for the details, but it suffices to note that the model revolves around the treatment of
a linear potential between the partons V (r) ∼ k · r, where k is known as the string tension. In
this picture, colour field lines are confined to a narrow tube, analogous to a 1-d electric potential,
rather than spreading spherically. As the quarks begin to separate and their potential increases,
it becomes energetically favourable for the string to "snap" and produce a quark-antiquark pair
from the vacuum. This process repeats iteratively until all partons recombine into colourless
hadrons, and the resulting experimental signature is a collimated spray of particles.

Formally a jet is defined with respect to a jet algorithm, in other words a mapping from the
(hadronic) final state P to the jet pattern Q [61]

P = {pµ1 , ..., p
µ
n} → Q = {qµ1 , ..., q

µ
m} (4.3)

where the pµi and qµj denote the momenta of the ith particle and jth jet in the final state. A
particle in this thesis refers to a particle-flow object as defined in Section 4.2, unless stated oth-
erwise. Jet clustering algorithms are generally sub-divided into cone algorithms and sequential
recombination algorithms. Cone algorithms exploit the fact that jets appear as flows of energy
in conical shapes to define angular regions in ∆y and ∆ϕ within which particles are clustered
into jets. However, cone algorithms are generally not infrared and collinear (IRC) safe, and have
thus largely been superseded by sequential algorithms.

Sequential clustering algorithms, which can be designed to be IRC safe, use less obvious
measures often related to the momentum of particle pairs to group particles into pseudo-particles
until some minimal distance between pseudo-particles is obtained. The resulting set of pseudo-
particles define the jets. The anti-kT algorithm [62] is defined as

1. Define the clustering set C as the set of all particles in an event

2. Begin by defining the distances between all pairs of (pseudo-)particles
{dij | i, j ∈ C and i ̸= j}, and (pseudo-)particles and the beam
{diB| i ∈ C}

• dij = min(k−2
ti , k−2

tj )
∆2

ij

R2

• diB = k−2
ti

3. Find min({dij | i, j ∈ C and i ̸= j}, {diB| i ∈ C})

• if min(...) ∈ {dij | i, j ∈ C and i ̸= j}, combine (pseudo-)particles i and j into new
pseudo-particle, and remove (pseudo-)particles i and j from C

• if min(...) ∈ {diB| i ∈ C}, define (pseudo-)particle i as a jet and remove (pseudo-
)particle i from the C

4. Repeat from 2. until there are no (pseudo)particles left

where the distance measure ∆2
ij = (yi − yj)

2 + (ϕi − ϕj)
2 is defined as the (y − ϕ) separation

between (pseudo)particles i and j. The anti-kT algorithm is known to result is roughly conical-
shaped jets, as depicted on Figure 4.2 where it is shown alongside a number of other clustering
algorithms, whose size is defined by the parameter R.

Although the anti-kT algorithm is widely adopted at the LHC, it is not very well suited for
e+e− collisions where spherical coordinates provide better measures of angular distance. The
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Figure 4.2: Jets clustered from partons with the kt, Cambridge/Aachen, SISCone, and anti-kt
algorithms. Soft ghosts are used to indicate catchment areas. Figure taken from Ref. [62].

generalised e+e− kT algorithm [63] replaces the distances dij and diB by

• dij = min(E2p
i , E2p

j )
(1−cos(θij))
(1−cos(R))

• diB = E2p
i

where θij is the angle between particles i and j, and p,R are parameters of the algorithm.
In processes where a certain number of jets is expected, such as the Z → qq̄ decays studied
in Chapter 6, the clustering recipe can be modified to stop once a certain number of jets is
reached. This is the case for the e+e− kT , or Durham, algorithm [64], which only includes a
single distance metric dij

• dij = 2 min(E2p
i , E2p

j ) (1− cos(θij))

and was adopted for the results presented in Part II of this thesis.
While the jet clustering algorithm defines the mapping presented in Equation 4.3, jets are

often treated as proxies to the final state partons originating from the hard scattering. Consider-
ing the notion of jets as collimated sprays of particles resulting from the hadronisation of a given
parton, the jet flavour can loosely be defined as the flavour of the initiating parton. The notion
is ill-defined since a jet is not guaranteed to exclusively include the particles resulting from the
hadronisation of a single parton, or indeed only particles from the hard scattering. This may
at first seem salvageable by noting that the ambiguity arises from imperfect knowledge of the
event, and that if each hadron were perfectly reconstructed and mapped back to its initiating
parton, then the flavour definition given above would hold. However, the definition still depends
on the notion of a final state parton, which is inherently energy scale dependent, as gluon emis-
sions alter the final state structure. Even the notion of a parton is only well-defined at tree
level, beyond which the concept becomes increasingly ambiguous. Thus it becomes necessary
to approach the problem of jet flavour in the same way as the problem of jet clustering was
approached above: with a precise recipe.
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The physics definition2 derives its name from the intuitive picture above, and matches the
flavour of the jet to the flavour of the parton from which it was initiated. The ambiguities
discussed above are dealt with by constraining this definition to the leading order contribution
to a scattering process. The physics definition was adopted for the studies presented in Part
II of this thesis, where the Z → qq̄ and Z(→ νν)H(→ qq̄) events allow the assignment of jet
flavour without reference to a particular jet. Generalising the definition to more non-trivial
decay topologies is done by matching the parton lying within R < 0.3 of the given jet’s axis
in (η − ϕ) space. Jets for which this not is unambiguously possible are left undefined. While
generally superseded by the ghost matching definition presented below at CMS, the physics
definition is well-motivated at lepton colliders, where the parton to jet matching is considerably
more straightforward.

The ghost-matching definition [66] revolves around the inclusion of hadrons containing b or
c quarks, herein referred to as b and c hadrons, during a separate reclustering of the jets. In
particular the process begins with the rescaling of the momenta for b and c hadrons that do
not have b and c hadrons as daughter particles, as well as partons from the end of the parton
showering, by a small constant ϵ = 10−18, turning them into "ghost". Jets are then reclustered
with the inclusion of ghosts, which do not affect the jet kinematics. Flavour is then assigned
according to the presence of a ghost b or c hadron, with precedence given to b hadrons, such
that jets containing both are considered b-jets. Jet flavour for jets containing neither a b nor c

hadron is further subdivided with reference to the clustered partons. If the jet contains a b or c
parton then it is assigned the respective flavour in analogy to above. For jets containing neither,
the hardest light quark or gluon defines the jet flavour.

Having surveyed how a jet is constructed and its flavour defined, the following part of this
thesis explores how to map the spray of particles back to its assigned jet flavour. Chapter 5
begins by introducing a powerful tool that has emerged over the past few decades: Machine
Learning. Given the extensive availability of labelled datasets in the form of Monte Carlo simu-
lation, machine learning has emerged as the de facto avenue to exploiting the subtle correlations
characteristic of hadronisation.

2The jet flavour definitions presented here stem from conventions of the CMS experiment [65].
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5 Machine Learning

Machine learning (ML) broadly describes the emergence of algorithms from specified boundary
conditions and learning rules, rather than being explicitly programmed. The concept revolves
around the iterative improvement of algorithms as they acquire more experience, often with
minimal human intervention, standing in analogy to Darwinian evolution. Ref. [67] provides a
definition for ML as

"A computer program is said to learn from experience E with respect to a class of tasks
T and performance P, if its performance at tasks in T, as measured by P, improves with
experience E."

where the task T in Ref. [67] is playing checkers, while the performance P is the probability of
winning a game, and the experience E is the amount of games played.

Machine learning techniques are largely subdivided along the T/E/P into three categories:
supervised learning, unsupervised learning, and reinforcement learning. In supervised learning
the task revolves around learning a mapping from a set of inputs {x⃗} to a set of outputs {y⃗}. In
the case where the outputs {y⃗} are classes, the task is referred to as classification, while in the
case where the outputs are real-valued, the task is referred to as regression. The experience takes
the form of labelled inputs, turning the problem into a minimisation problem according to some
metric defined on the labels of the given inputs, and the prediction of the algorithm. These are
referred to as loss-functions, and are detailed in Section 5.2. In unsupervised learning no such
labels exist, and the task is more abstractly to learn latent structure in the input data. Classic
examples of unsupervised learning include clustering, dimensionality reduction, and anomaly
detection. One of the primary challenges in unsupervised learning lies in defining a meaningful
measure of performance, which is often task-dependent. For clustering, for instance, this could
be the silhouette score, which revolves around the distance of each data point to its assigned
cluster compared to other clusters. In reinforcement learning the task revolves around decision-
making in some environment. Examples include decisions in a game, robotics, and self-driving
cars. While often considered one of the most promising areas of machine learning, reinforcement
learning also presents unique challenges due to the need for exploration and delayed reward
signals. The experience is not neatly available in the form of data, but rather is acquired
through interaction with its environment. The performance is then defined according to a
reward function that reflects the desired outcome following the actions taken. The goal is to
maximise the cumulative reward through interaction with the environment.

All three types of machine learning have been gainfully applied in high-energy physics, with
early applications dating as far back as the 1980s. Supervised learning has been applied to
classification tasks including particle identification [68] and jet tagging [69]. More generally,
supervised learning has been employed in the classification of events, including BSM particles
[70]. Regression-based calibration tasks involve the use of machine learning models to predict
the values of true physical observables based on reconstructed detector data. These include
jet energy calibration [71] and detector response calibration [72]. Two tasks that have greatly
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benefitted from unsupervised learning are anomaly detection [73] and generative modelling [74],
where explicit labelling is either not possible or impractical. The identification of signals de-
viating from the Standard Model background relies on the model’s ability to detect statistical
anomalies without prior knowledge of the signal’s characteristics. In generative modelling, the
underlying distribution of the physics data is learned, allowing for fast sampling of distributions
that are numerically challenging. This manifests as learned simulations that are substantially
faster than their traditional MC counterparts. Reinforcement learning is arguably the least
explored of the three within the field of HEP, not least due to the computational challenges it
entails. A promising application is beam control at collider experiments, where precise tuning
of parameters is required in order to ensure optimal beam parameters, including luminosity and
stability. Recent attempts [75] at autonomous control of a particle accelerator have demonstrated
a better-than-human performance in beam quality in high-fidelity simulation.

Given that the work in this thesis revolves around the application of a transformer architecture
to the classification of jets at the FCC-ee, focus will be given to modern deep learning techniques
applied to supervised learning. In particular, this chapter provides the necessary foundations
to understand the results presented in Chapter 6, and the architecture of DeepJetTransformer
[2] detailed in Section 6.3. The chapter begins by delving into the foundational block of deep
learning: the fully-connected neural network. Techniques for training of neural networks are
presented, along with challenges often encountered. Subsequently, more sophisticated architec-
tures are presented, with special emphasis on those appearing in DeepJetTransformer. Finally,
the core building block of DeepJetTransformer is presented: the Self-Attention Mechanism. The
chapter concludes with a brief overview of machine learning in jet flavour tagging at the LHC.

5.1 Neural Networks

A natural starting point for any discussion on machine learning is the introduction of the percep-
tron [76] by Frank Rosenblatt. The idea was to mimick the functioning of a neuron by connecting
information encoded in a set of features {x⃗}, in order to produce a single output y = ±1, cor-
responding to whether or not the neuron had fired. The remarkably simple algorithm consisted
of a linear combination of the input features

y = sign(w0 + w1x1 + ...+ wnxn) (5.1)

where the wi are the trainable weights of the algorithm. The update rule of the perceptron
revolves around adding the input vector of any incorrect prediction yt to the weight vector as

w⃗ → w⃗ + y′t · x⃗t (5.2)

where y′t corresponds to the correct prediction for input vector xt. It was proven that the per-
ceptron converges for a finite number of passes [77]. Nevertheless, the perceptron is constrained
to linearly separable problems. Extending the perceptron to non-linear problems requires in-
troducing non-linearities into the algorithm. The first approach revolves around extending the
basis of the input vectors with non-linear feature transformations. This involves introducing
a mapping to a higher-dimensional space, where the data does become linearly separable. A
conceptually simple yet powerful approach is extending the basis to include polynomial terms,
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which for a simple 2-d vector becomes

(x1, x2) → (x1, x2, x
2
1, x

2
2, x1x2, ...) (5.3)

It quickly becomes clear that while a polynomial basis expansion is much more expressive than a
linear model, it suffers from an exponential increase in basis dimension if the data lies in a high-
dimensional space. This is commonly referred to as the curse of dimensionality. Kernel methods
provide a way to address this challenge by implicitly mapping data to high-dimensional spaces
using kernel functions, avoiding explicit feature computation. Nevertheless, kernel methods still
suffer from computational complexity, as large datasets require computing the N × N kernel
matrix, which can become prohibitively expensive.

An alternative approach to increasing the expressiveness of the perceptron revolves around
noting that multiple perceptron outputs can be concatenated into an output vector y⃗, where
each of the elements of the output vector is referred to as a neuron:

(x0, ..., xn) → (
∑
i

w0ixi, ...,
∑
i

wmixi) = (y0, ..., ym) (5.4)

where the wij are the weights connecting input j to output i. Clearly, the operation could be
repeated on the output vector y⃗, but this would not make the model more expressive, since
a linear combination of linear combinations is itself a linear combination of the input vector.
Non-linearity is introduced to the model by subjecting the output neurons of each linear layer
given in Equation 5.4 to a non-linear function f , denoted the activation function. Including this
intermediate step in the computation of y⃗ gives

(x0, ..., xn) → (f(
∑
i

w0ixi + b0), ..., f(
∑
i

wmixi + bm)) = (y0, ..., ym) (5.5)

where bias terms bi are included to shift the activation function. The above operation, consisting
of a linear combination followed by a non-linear activation function applied element-wise, is
referred to as a fully-connected layer.

Figure 5.1: Simplified schematic of a 4-layer MLP. Edges denote weighted addition. Activation
functions are not explicitly depicted. Throughout this section n = 100, i = j = 512, m = 10 are
assumed.

One of the most common examples of an activation function is the rectified linear unit (ReLU),
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defined as

f(x) =

x if x ≥ 0

0 if x < 0
(5.6)

Another widely used activation function is the softmax function, which is defined over a vector
of inputs v⃗ = {v0, ..., vn}⊺ as

f(v⃗)i =
evi∑
l e

vl
(5.7)

and is often used to map the output vector of a neural network to a vector of numbers in
the interval (0, 1), which sum to 1, allowing the interpretation of the vector as a probability
distribution. The ReLU activation function is typically favoured for hidden layers, due to its
relative simplicity and piecewise constant derivative, while the softmax function often appears
at the very end of the network, particularly during inference.

The seemingly trivial adjustment of introducing an activation function has profound impli-
cations, by stacking such layers a Multi-Layer Perceptron (MLP) is obtained:

x⃗ → h1(x⃗) → h2h1(x⃗) → hn...h1(x⃗) → y⃗ (5.8)

where x⃗, y⃗ are the input and output vectors respectively, and hi is a fully-connected layer given
by Equation 5.5. The Multi-Layer Perceptron was proven to approximate any "well-behaved"
function arbitrarily [78]. The MLP laid the foundations of Deep Neural Networks (DNNs),
with early theoretical results showing their universal approximation capability, albeit limited by
training and hardware bottlenecks.

Nevertheless, DNNs are notoriously compute-heavy. It suffices to consider the number of
multiplications in a forward pass for a 4-layer network presented in Figure 5.1:

Nmult. =

nlayers∑
i=1

Ni ·Ni−1 = 100 · 512 + 5122 + 512 · 10 = 318464 (5.9)

where Ni is the number of neurons in the ith layer with N0 being equal to the input dimension.
Even a comparatively simple MLP presents a formidable challenge for the Von Neumann CPU
architecture, which requires inputs to be processed sequentially at a high clock frequency, making
such a large number of multiplications, and their associated memory lookups, quickly intractable.
It was not until the advent of heterogeneous computing, and the Graphics Processing Unit
(GPU), that interest in DNNs resurged.

GPU Paradigm

Indeed, Equation 5.5 can be rewritten as a matrix multiplication by defining the input vector
as x⃗ = (x0, ..., xn)

T

x⃗ → W · x⃗+ b⃗ → f(W · x⃗+ b⃗) → y⃗ (5.10)

where the W is the weight matrix whose elements wij are given as in Equation 5.5, b⃗ =

(b0, ..., bm)T is the bias vector, y⃗ = (y0, ..., ym)T is the output vector, and f is the activation func-
tion. Not only is the matrix form of Equation 5.5 considerably more concise, but it highlights
that the bulk of the computation in a neural network consists of matrix multiplications. As
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ubiquitous as matrix multiplications are, one field of computing that saw a particular need for
their optimisation was computer graphics. In computer graphics, operations such as rotations,
scaling, and projecting 3d objects onto 2d space, are implemented as repeated matrix multipli-
cations. The acceleration of these tasks hinged on the development of GPUs, which unlike their
CPU counterparts feature a lower per-thread performance, but typically include thousands of
threads. The slowdown in the rate of improvement of the single-thread performance of CPUs
in the early 2000s, depicted on Figure 5.2a, motivated the adoption of parallel architectures.
The high number of threads that GPUs feature is uniquely suited for parallelisable tasks, in-
cluding matrix multiplication, where concurrent execution can effectively hide the latency of the
computation.

Thus the wider adoption of DNNs can be regarded as having been hardware-gated [79], with
the emergence of programmable consumer-grade GPUs in the 2000s effectively enabling their
training, for the first time. While shallow neural networks could be trained on CPUs, the
introduction of GPU-based training in the mid-2000’s [80, 81], and the demonstration of its
performance on large-scale tasks [82], marked the beginning of modern deep learning.

Figure 5.2: Overview of transistor count, single-thread performance1, clock frequency, power
use, and core count of flagship CPUs from major vendors since the 70s. Figure adapted from
Ref. [83] (a). Number of articles with keywords "Neural Network" or "Machine Learning" by
year in INSPIRE-HEP since 1995 (b).

Figure 5.2b depicts the number of INSPIRE-HEP articles containing the keywords "Neural
Network" or "Machine Learning". While GPU-training of neural networks had already begun
in the mid-2000’s, it was not until the advent of deep learning libraries such as Tensorflow [84]
and PyTorch [85] around 2015, that deep learning became widespread in HEP. These libraries
abstracted the often cumbersome and error-prone process that is writing GPU kernel functions,
even compared to earlier frameworks that were primitive and lacked robust GPU support.

5.2 Learning as Optimisation

The goal of training a neural network is the minimisation of the loss-function particular to the
given task with respect to the network parameters. In the case of classification, a commonly

1Based on SPEC CPU benchmark data. See https://www.spec.org/cpu/.
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used loss function is the categorical cross-entropy given by

L(⃗t, y⃗) = −
Nc∑
i

tilog(yi) (5.11)

where t⃗ refers to the truth vector, defining the class to which a given input belongs, and y⃗ is the
vector of predictions given by the neural network.

Denoting the weights of a single output neuron for a single-layer neural network as w⃗ gives

w⃗∗ = argmin
w⃗

L(w⃗) (5.12)

where w⃗∗ are the optimal weights. For a given weight wi = (w⃗)i we wish to find the roots of the
first derivative, which we can do by performing a Taylor expansion about some initial estimate
w0
i :
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(5.13)
Setting the LHS equal to 0, gives

wi = w0
i −

L′(w0
i )

L′′(w0
i )

(5.14)

which is the well-known Newton’s method for optimisation, typically expressed as an update-rule
with wn+1

i = wn
i − L′(wn

i )
L′′(wn

i )
. As a second order method, the algorithm converges quadratically,

with the L′ term giving the direction and magnitude of the function’s growth, while the L′′ term
accounts for the local curvature. Generalising the method to higher dimensions, we obtain

w⃗n+1 = w⃗n −
[
∇2L(w⃗n)

]−1∇L(w⃗n) (5.15)

where ∇2L(w⃗n) is the Hessian matrix at w⃗n, and the subscripts no longer denote the component
of the vector, but the step in the iteration. However, Equation 5.15 reveals two aspects of
Newton’s method that have prevented widespread adoption when training neural networks:
computational complexity and numerical instability. In particular, the Hessian is a N × N

matrix of the mixed partial derivatives that must be inverted, which can be computationally
expensive for large numbers of weights. Moreover, if the Hessian is singular or ill-conditioned
then the update of w⃗n+1 can either not be performed, or leads to numerical instability by
distorting the update vector.

This can be addressed by simply replacing the Hessian with a constant η−1, such that the
update rule becomes:

w⃗n+1 = w⃗n − η · ∇L(w⃗n) (5.16)

and is denoted as the gradient descent. Although gradient descent converges only linearly as it
is a first-order method, it circumvents the computational challenges that the Hessian introduces.
Gradient descent became the de facto foundation for neural network training algorithms following
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its successful application in 1986 by Rumelhart, Hinton, and Williams [86].
Computing the gradient of the loss over all examples in the dataset before updating the

weights, known as batch gradient descent, is computationally expensive for large datasets. In
stochastic gradient descent the gradient of the loss is computed for individual training examples
before updating the weights according to Equation 5.16. While the advantage is immediately ob-
vious: reduced computation, this also entails a noisier training which may not converge smoothly.
Thus mini-batch gradient descent offers a compromise, where the derivative of the loss is com-
puted over a small sample of size n before updating the weights. Typical values for the batch size
n are 32, 64, 128, ..., balancing a quick computation of the gradients with reduced noise resulting
from the averaging.

Modern Optimisers

Despite offering a simple recipe for weight optimisation, gradient descent often struggles in
regions of high curvature, leading to slow convergence or oscillatory behaviour. Momentum
methods were introduced to account for the value of previous gradients:

vn = β · vn−1 + (1− β) · ∇L(w⃗n) (5.17)

where vt is denoted as the velocity, which can be interpreted as a smoothed gradient, and
β ∈ [0, 1) is a parameter controlling the extent of the smoothing. The update rule then takes
the form

w⃗n+1 = w⃗n − η · vn (5.18)

Extensions include the Adam optimiser [87], which in addition to the velocity term that exponen-
tially averages the gradient, includes an uncentered variance term that exponentially averages
the square of the gradient. Adopting a convention where the velocity is denoted by mn and the
variance by vn, the two terms are given by

mn = β1 ·mn−1 + (1− β1) · ∇L(w⃗n) (5.19)

vn = β2 · vn−1 + (1− β2) · (∇L(w⃗n))
2 (5.20)

where the square in the computation of vn applies component-wise, and the β1,2 ∈ [0, 1) pa-
rameters control the degree of the exponential averaging for the velocity mn and variance vn,
respectively. Since the velocity and variance are initialised at 0, this can lead to excessively
small updates at early training steps. The terms are bias-corrected by scaling them as

m̂n =
mn

1− (β1)n
, v̂n =

vn
1− (β2)n

where it can be seen that the (β1)
n and (β2)

n terms scale up the velocity and variance early into
the training, but vanish at high training epochs. The term v̂n is then used to scale the velocity
in Equation 5.18, accounting for directions in which the gradients have consistently been large
and taking smaller steps, leading to the Adam optimiser update rule:

w⃗n+1 = w⃗n − η · m̂n√
v̂n + ϵ

(5.21)

where the ϵ is a small term added for numerical stability. The Adam optimiser tends to struggle
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with over-aggressive weight updates early in the training process, before the bias-corrected
velocity and variance terms stabilise. The rectified Adam optimiser (RAdam) [88] addresses
this by introducing a term ρn that serves to estimate to the reliability of the variance vn, and
reducing the Adam optimiser update rule to a simple momentum update rule early into training.
In particular, the update rule is given by Equation 5.18 if ρn < 5, as the adaptive learning rate
component is considered unreliable below this threshold. The ρn term is defined as

ρn = ρ∞ − 2n · (β2)n

1− (β2)n
, ρ∞ =

2

1− β2
− 1

For ρn > 4 a rectification term rn is introduced, which is defined as

rn =

√
(ρn − 4)(ρn − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρn

(5.22)

The rectification term is included in the Adam optimiser update rule to suppress updates early
into the training, and tends towards 1 as n → ∞:

w⃗n+1 = w⃗n − rn · η · m̂n√
v̂n + ϵ

(5.23)

Having detailed some sophisticated update rules for the weights, attention can be shifted to how
to train the full neural network.

Back-propagation

Until now we have constrained our discussion only to the optimisation of the weights in a
single layer of a neural network. While instructive, this is clearly not the full story, and it is
evident that the weights appearing in the final layer of a neural network cannot be optimised
without considering those before it, complicating the problem. Rumelhart, Hinton, and Williams
offered the solution in their landmark 1986 paper [86]. Their landmark paper introduced the
concept of back-propagation, whereby the weights of the final fully-connected layer are related
to weights of earlier layers by the chain rule. Let x⃗n denote the output neurons of layer n, then
for the last layer we have

∂L

∂wn
ij

=
∑
l

∂L

∂yl
· ∂yl
∂wn

ij

=
∂L

∂yj
· ∂yj
∂wn

ij

(5.24)

where yj denotes the jth neuron of the output layer and wn
ij denotes the weight connecting it to

xni . Considering the partial derivative of the loss-function with respect to a weight wn−1
ki of the

previous layer gives

∂L

∂wn−1
ki

=
∂L

∂xni
· ∂xni
∂wn−1

ki

=
∑
l

∂L

∂yl
· ∂yl
∂xni

· ∂xni
∂wn−1

ki

(5.25)

This procedure generalises naturally to earlier layers, where the partial derivative of each weight
wl−1
ki can be computed by evaluating ∂L

∂xl
i

recursively. In this way, the gradients are propagated
backward through the network, allowing the computation of the updated weights at each layer
according to Equation 5.16.

Training and Performance
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The introduction of gradient descent provided a practical algorithm for training the largely
theoretical constructs that neural networks had been, while the emergence of parallel hardware
made it technically feasible. This led to an explosion in the complexity of models, and with it
exacerbated a problem familiar to curve fitting: overfitting. The ultimate goal in classification
supervised learning, in the words of the performance P introduced earlier in this Chapter, is
the correct prediction of an arbitrary element of a given class according to its label. While
minimising the loss-function according to the training dataset improves the performance of
the algorithm as distinguishing features are learned, this does not continue indefinitely, and
models often being extracting patterns that are particular to the given dataset, rather than
general properties of the labelled classes. Thus one of the most important cornerstones of
training a neural network is splitting the dataset into training, validation, and test sets, with
a typical split being 80:10:10. The training set is the data set on which the loss-function is
minimised, comprising the vast majority of the computation as gradients are back-propagated.
The validation set is kept separate, and no weight-updates are performed with reference to it.
Rather, at the end of each training epoch after the training dataset has been traversed, the loss
is evaluated on the validation set. This is instrumental for identifying if the model has overfit
the training set. Figure 5.3a depicts the loss computed on the training set and the validation
sets at the end of each epoch for a typical neural network. The training and validation losses
initially decrease very rapidly, before incrementally improving. After some epoch the training
and validation losses diverge as the model begins to overfit the training dataset. Thus it is often
prudent to include a stopping condition for when the model’s performance on the validation
set stops improving. Typically stopping conditions include early stopping, whereby training is
halted if the validation loss does not improve over a set number of epochs, or a maximum cap
is placed on the number of epochs, regardless of convergence. The test set is the final set and
does not partake in the training of the model. Rather, it is set aside until the hyperparameters
and weights of the model have been fixed, and only then is the model evaluated on it. In this
way, it is possible to obtain an unbiased estimate for the performance of the model on the task
T, and its ability to generalise what has been learned on the training dataset.
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Figure 5.3: Schematic2 training and validation loss curves as a function of training epoch.
At high epochs the training loss continues to decrease, despite the validation loss stagnating,
indicating overfitting (a). Typical ROC curve depicting the true positive rate on the x-axis
and the false positive rate on the y-axis at varying classifier thresholds. A random classifier is
included as the dashed black line for reference (b).
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While the loss serves as the arbiter of the model performance during training, it is somewhat
abstract, and additional metrics are often included when considering the performance of the
model on the test set. In the case of classification, it is useful to describe the rate at which
elements of a class are identified correctly and incorrectly. The true positive rate describes the
fraction of elements of a class c that are correctly identified as belonging to that class, i.e.

TPR =
N(yp=c|t=c)

N(yp=c|t=c) +N(yp ̸=c|t=c)
(5.26)

where yp describes the class predicted by the network, and t describes the true class the element
belongs to. The network prediction for class c can be obtained by considering the cth component
of the output vector y⃗, appearing for instance in Equation 5.8, and setting a decision threshold
τc:

yp =

c if yc > τc

¬c if yc ≤ τc
(5.27)

The true positive rate is used as a proxy for the probability of correctly identifying an element
of class c: P (yp = c|t = c). While it is clear that a high true positive rate is desirable, this
comes at the cost of incorrectly labelling elements of other classes as belonging to the class c.
The "cost" of incorrectly labelling elements of other classes is given by the false positive rate

FPR =
N(yp=c|t̸=c)

N(yp=c|t ̸=c) +N(yp ̸=c|t̸=c)
(5.28)

The tradeoff between the true positive rate and the false positive rate is given by computing a
receiver operating characteristic (ROC) curve, obtained by computing the true- and false positive
rates at a number of different decision thresholds τc, appearing in Equation 5.27. Figure 5.3b
depicts a ROC curve, where the x-axis is the true positive rate, and the y-axis is the false
positive rate. Although the more common convention flips the axes, with the true positive rate
appearing on the y-axis, Figure 5.3b adopts an axis orientation often used in jet flavour tagging.
Classifiers are considered to be more performant the closer the ROC curve is to the bottom-right
corner, suggesting a high true positive rate, and a low false negative rate. On the other hand,
a random classifier would appear along the x = y diagonal. This corresponds to guessing, with
the probability of an element assigned to a class truly belonging to that class being 50% in a
balanced binary dataset.

Though the above discussion has been deliberately general with respect to what constitutes
the background to class c, it can be subdivided into two evaluation strategies commonly referred
to as one-vs-rest and one-vs-all. In the one-vs-rest evaluation scheme the class c is taken to be
the signal, while all non-c elements are treated as the background. This entails that the entire
dataset is used in the computation of the ROC curve, but also that the ROC curve will depend
on the distribution of the classes in the dataset. If for instance a class that is particularly difficult
to resolve with respect to c, then the measured performance of the classifier will be worse. On
the other hand, in the one-vs-one evaluation scheme, the class c is considered only with respect
to one background class b at a time. In other words, the expressions yp ̸= c, t ̸= c appearing in
Equations 5.26 and 5.28 are replaced by yp = b, t = b. The one-vs-one evaluation strategy is
adopted throughout this thesis, and in particular in Section 6.5 presenting the jet flavour tagging

2These curves are illustrative and do not correspond to an actual NN training.
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results. With the foundations of fully-connected neural networks, along with their training and
evaluation, established, the following Section introduces more sophisticated architectures that
have shown strong performance in jet flavour discrimination. A key distinguishing feature of
these architectures is how jets are represented.

5.3 Beyond Fully Connected Networks

A primary consideration in the architecture of a neural network is the input representation.
While the MLPs introduced in Section 5.1 are powerful in their own right, they are not well
suited for geometric inputs, such as those arising in jet tagging. Though MLPs can be useful,
they typically require extensive pre-processing of the data. High-level features are constructed
which capture dependencies between jet constituents explicitly. For instance, in the case of quark
gluon discrimination features like the jet mass or the charge-weighted track pT are constructed
to capture the discrepancies expected from the differing colour factors and charges of quarks
and gluons [89]. Many applications in machine learning, including HEP, arise from information
measured by detectors and sensors. This information often comes coupled with spatial informa-
tion, and is thus laid out in an irregular cluster of points in space, denoted a point cloud. Each
point in a point cloud corresponds to a set of information. In the case of jet tagging each point
in the cloud might represent a particle, with its location corresponding to kinematic coordinates
(e.g. px, py, pz), and additional features including the energy, charge, and particle type being
treated as attributes of the point. The point cloud representation aligns naturally with the
particle-flow reconstruction detailed in Chapter 4, where each candidate is treated as a point
by virtue of not only the tracking information, but also the precise location of the calorimeter
deposits with respect to the interaction point. While point clouds encode geometric information
well, they are not particularly easy to deal with from a neural network perspective due to their
irregular, unordered nature. A common approach, and the first that will be discussed in this
section, is mapping the point cloud to a regular grid, and subsequently using a convolutional
neural network (CNN) to extract local features. Figure 5.4a depicts this approach for jet tagging
by representing the jet as a set of |p|-weighted images binned with respect to distance in θ − ϕ

from the jet axis. An alternative, and more direct, approach revolves around treating the point
cloud as an unordered graph and using a graph neural network (GNN) to process the input, as
depicted in Figure 5.4b.

Convolutional Neural Networks

CNNs emerged as an attempt at reducing the computational complexity of neural networks
when applied to image recognition tasks [90]. Considering, for instance, a 128× 128 pixel image
with three channels for the RGB colours gives an input dimensionality of 128 × 128 × 3 =

49152. Plugging this into the simple 4-layer MLP introduced in Section 5.1 gives a formidable
512 · (49152 + 1) + 512 · (512 + 1) + 10 · (512 + 1) = 25434122 weights. Larger pictures, and
more sophisticated models, would increase this number polynomially, again presenting a familiar
problem: the curse of dimensionality. Instead, the constraints of early hardware motivated the
exploitation of correlations between local pixels. Features appearing in images are often local.
A picture of a dog, for instance, will almost always contain two ears, but these will appear only
in small corners of the image, rather than extending across it. Thus, the network should sample
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Figure 5.4: Two-dimensional θ − ϕ distribution of KL particles in strange jets from e+e− →
Z → qq̄ events at

√
s = 91 GeV. The image consists of 29× 29 pixels and is centered at the jet

axis. Pixel intensities are weighted by the |p|/|pjet| of the corresponding jet constituents (a).
Simplified schematic of a graph representation of a jet. Nodes x⃗i represent jet constituents and
their feature vectors, while edges y⃗ij encode differences between the features of connected nodes.
Node x⃗i is connected only to its 4 nearest neighbours, highlighting some common limitations of
GNNs (b).

small neighbourhoods of the image when aiming to extract features. Moreover, although the
ears will be spatially separated, they anatomically share many similarities. A final challenge is
that the dog would not always appear in the same position or orientation, and thus the network
should be able to extract features regardless of where they appear in the image.

Convolutional neural networks address these challenges by introducing kernels (also called fil-
ters) that slide across the input and extract features by computing the cross-correlation between
the input and the kernel, as depicted on Figure 5.5.

Figure 5.5: Simplified schematic of a single output y33 of a convolutional layer consisting of a
3× 3 kernel. Stride directions are indicated by the white arrows.

The output for each kernel K that is used on an n× n image I is an m×m image S, where
padding can be used to set m = n. Formally, a 2-d convolutional layer is defined by sliding the
kernel along the input image and computing the Hadamard product between the kernel and the
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local elements of the input image and summing the output as

Si,j =

Cin∑
c=1

kH∑
m=1

kW∑
n=1

Ic,i+m,j+n ·Kc,m,n (5.29)

where Cin denotes the number of channels of the input image I, and kH , kW denote the height
and width of the kernel K, respectively. The sliding of the kernel is controlled by the so-called
stride, which describes for which elements Ii,j the cross-correlation is computed. For instance
a stride sH = 2 along the height, and a stride sW = 2 along the width, would entail the
computation of the cross-correlation of every second element of Ii,j along both dimensions, such
that

i ∈ {2k | k ∈ N, 2k ≤ NH} , j ∈ {2l | l ∈ N, 2l ≤ NW }

Computing the cross-correlation between the input and the kernels addresses several of the
aforementioned challenges, since the kernels extract features of adjacent pixels, and are agnostic
to where features appear in the image, since the kernel does not change as it is slid across the im-
age. By introducing several, distinct kernels, whose outputs are passed to further convolutional
layers, a variety of low-level features can be extracted by early filters which are combined into
more sophisticated objects in later layers. Convolutional neural networks have enabled highly
accurate image recognition, particularly following the introduction of GPU training [82, 91, 92].
In particle physics convolutional neural networks have been used to process detector images
including calorimeter deposits as energy or pT -weighted η − ϕ distributions of particles [93].
Despite the advantages with respect to the reduced number of weights that CNNs offer, they
are not very well suited for sparse representations, where a large number of the pixels are equal
to 0, such as those appearing in detector or particle images. Not only do sparse images entail
computational inefficiency, but a main bottleneck in modern compute is the memory access
speed, and thus modern jet tagging algorithms adopt more straightforward representations of
jets, including the point cloud [94–96].

Recurrent Neural Networks

Recurrent neural networks (RNNs) first emerged in the late 80’s and early 90’s [97, 98],
primarily in the context of natural language processing and time series modelling, as a way to
address input data with temporal or sequential structure. Traditional approaches like the MLPs
introduced in Section 5.1 assume independent inputs, and are thus not well suited for input
data with sequential structure like natural language. While it is in principle possible to simply
pass entire sequences to an MLP, this would entail using fixed-length sequences and increased
complexity. While CNNs used kernels to exploit correlations between spatially adjacent inputs,
RNNs preserve memory of previous inputs by introducing recurrent connections as a way to
exploit correlations between temporally adjacent inputs. In this way weights are reused, and
the symmetry of the problem is exploited as a way to reduce compute. Simple RNNs, or Elman
networks [97], resemble 2-layer MLPs, but introduce a connection to the values of the hidden
layer for the previous element of the input sequence. For the tth element of some sequence
x⃗1, ..., x⃗n, the output yt is computed as

h⃗t = g(U · h⃗t−1 +W · x⃗t) (5.30)
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y⃗t = f(V · h⃗t) (5.31)

where U, W, V are the weight matrices, and g, f are the activation functions. However,
simple RNNs often struggle in propagating forward information that is distant in the input
sequence. Moreover, the repeated multiplications that the hidden layers are subjected to in a
recursive pass during the gradient computation can lead to vanishing and exploding gradients
[99]. More sophisticated RNN architectures relying on gating mechanisms to control the flow
of information, such as Long Short-Term Memory (LSTM) [100] and Gated Recurrent Unit
(GRU) [101] networks, were introduced to address these challenges. RNNs have been used for
jet tagging by representing jet constituents as elements of a sequence sorted according to their
impact parameter or some other metric [102, 103], achieving considerably better performance
than their MLP predecessors.

Graph Neural Networks

Graph neural networks (GNNs) are a class of neural networks that operate directly on a
graph representation of the input data, consisting of nodes containing input feature vectors x⃗i

and edges e⃗ij that encode relationships between node pairs. GNNs function by aggregating
information of a node and its connected edges into an updated representation of the node in
some latent space. The node is iteratively updated to encode information not only of itself, but
also its relation to adjacent nodes, allowing for the extracted information to be processed by
later layers in the neural network, in analogy to the feature extraction performed by successive
convolutional layers in CNNs. GNNs are naturally permutation invariant unlike RNNs, making
them an attractive candidate for tasks like jet flavour tagging, where the constituents of a jet
do not display an inherent ordering.

GNNs have found a variety of applications in particle physics, including jet flavour tagging
[94, 95, 104, 105], secondary vertex finding [105, 106], and particle reconstruction [107–109].
In the context of jet flavour tagging, jets are represented as sets of nodes, corresponding to jet
constituents, and edges, corresponding to some pair-wise defined feature, often the difference in a
given variable between jet constituents. In order to lower complexity, nodes of a graph are often
only connected to a subset of its closest neighbours. Determining the k nearest neighbours,
and according to what metric, is a non-trivial operation that cannot be neatly included in
the backpropagtion given in Equation 5.25, as it is not differentiable. Moreover, long-range
correlations between nodes that are distant in the graph may be neglected by considering only
a subset of its neighbouring nodes. These limitations motivated the use of architectures which
dynamically assigned weights to the connections between a node and all other nodes in a graph.
The attention mechanism introduced in the following section addresses these challenges, and its
adoption in jet flavour tagging resulted in architectures that were not only more performant,
but also significantly faster to train [2, 110].

5.4 Transformers and the (Self-) Attention Mechanism

Attention first emerged in the context of machine translation [111], as a way to address chal-
lenges of pure RNN encoder-decoder architectures. Encoder-decoders [112, 113] function by
transforming the input sequence {x⃗1, ..., x⃗n} into some latent representation c⃗, which is then
translated into an output sequence {y⃗1, ..., y⃗n} by a decoder. While effective for short sequences,
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these architectures struggle for long inputs as the latent representation c⃗ is often taken to be
the final hidden state of the encoder, and thus may not represent early elements of the input
sequence well. Attention mechanisms were introduced as a way to dynamically assign weights
to all elements of a sequence, thereby focusing on different parts of the sequence when relevant.
In particular, rather than including only a single latent representation c⃗ of the input sequence, a
set of representations {c⃗i} could be constructed by computing similarity scores between different
elements of the sequence as:

αij =
exp(score(⃗hdi−1, h⃗

e
j))∑

l exp(score(⃗h
d
i−1, h⃗

e
l ))

(5.32)

c⃗i =
∑
j

αij h⃗
e
j (5.33)

where the score() is some similarity score, αij are the attention scores, h⃗di−1 is the decoder hidden
state of the previous output sequence element, and h⃗ej is the hidden state of the jth element of
the input sequence. More generally, attention mechanisms compute a score αij between a query
vector q⃗i and a key k⃗j vector, which determines the contribution of a value vector v⃗j to the
output. The key and the value vectors typically originate from the same set. The specific
similarity score that is used to relate the query and the key defines the type of the attention
mechanism, with variants including additive attention [114], dot-product attention [115], and
its refinement, scaled dot-product attention [116]. Self-attention denotes the special case where
the key, query, and value all originate from the same set.

Transformers are a class of neural networks that make use of a self-attention mechanism [116].
At its core, the self-attention mechanism captures the relations of an element of a sequence
to all other elements of the same sequence. In this work, we will consider the self-attention
mechanism in the form it was introduced in [116]: the scaled dot-product attention. Given an
input sequence {x⃗1, ..., x⃗n}, each element is projected into a query3 q⃗i = x⃗iW

Q, key k⃗i = x⃗iW
K ,

and value v⃗i = x⃗iW
V by the weight matrices WQ, WK , WV . The scaled dot-product attention

is given as

y⃗i =
∑
j

exp(q⃗i · k⃗j/
√
dk)∑

l exp(q⃗i · k⃗l/
√
dk)

v⃗j =
∑
j

αij v⃗j (5.34)

where αij are attention weights, y⃗i are the output vectors, and dk is the dimension of q⃗, k⃗. In
summary, the output of the self-attention mechanism is the sum of the values {v⃗1, v⃗2, . . . , v⃗n}
scaled by the attention weights αij , which reflect the importance of the jth input to the ith

output vector via the softmaxed dot product of the query q⃗i and key k⃗j .
One of the key motivations for Transformer NNs is that the computation of y⃗i in equation

5.34 does not depend on any other y⃗k ̸=i, i.e. there is no recursion. Moreover, equation 5.34 can
be rewritten in matrix form by defining Q = (q⃗⊺1 |...|q⃗

⊺
n)⊺, K = (k⃗⊺1 |...|⃗k

⊺
n)⊺, V = (v⃗⊺1 |...|v⃗

⊺
n)⊺. The

scaled dot-product attention Y = (y⃗⊺1 |...|y⃗
⊺
n)⊺ is then given as

Y = softmax(
QK⊺

√
dk

)V (5.35)

3Throughout this section a row-vector convention is adopted, in accordance with standard treatments of
transformer models. This departs from the column-vector convention adopted for previous sections in this chapter.

49



Complex dependencies between elements are not fully captured by a single attention weight.
Transformers employ multiple attention heads in parallel, by defining a set of weight matrices
for the queries {WQ

l }, keys {WK
l }, and values {WV

l }. The dimensionality of the query and
key vectors is typically set to the ratio of the input dimensionality and the number of heads,
dk = d/nh, such that each attention head operates in a dk-dimensional subspace of the input.
The scaled dot-product attention is then computed for each set l of queries, keys, and values
according to Equation 5.35, resulting in a set of output scores where hl = Yl ∈ Rn×dv , where dv

denotes the dimension of the value vectors. The output of all nh attention heads is concatenated
along the feature dimension, resulting in a matrix H ∈ Rn×(nh·dv), which is projected back into
Rn×d by a weight matrix WO ∈ R(nh·dv)×d:

hl = Attention(Ql,Kl,Vl), H = (h1|...|hnh
)

MultiHeadAttention({x⃗1, ..., x⃗n}) = H ·WO (5.36)

Multi-head attention (MHA) is the workhorse of Transformer models. Figure 5.6 depicts a
schematic representation of multi-head attention on an input set {x⃗1, ..., x⃗n}.

Figure 5.6: Simplified schematic of a 2-head MHA layer on input sequence X = (x⃗⊺1|...|x⃗
⊺
n)⊺.

The white × denotes matrix multiplication. Query, key, and value projections, as well as softmax
and 1/

√
dk scaling, are omitted for clarity. Blue matrices denote learnable parameters.

The fact that the computation of self-attention can be written as matrix multiplications,
according to Equation 5.35, highlights one of the key advantages of Transformers with respect
to previous architectures: parallelisability. In practice, this means that Transformers can often
be trained and perform inference considerably faster than competing architectures such as RNNs
or GNNs.

Given the fact that Transformers capture correlations between potentially distant neighbours
(in the case of jet tagging, these could be jet constituents) and also come with sizeable compu-
tational advantages, several applications already exist in HEP [2, 96, 110, 117].

In the context of FCC-ee feasibility studies, fast training is of utmost importance, as present
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NN architectures are being used to gauge the physics potential of different detector configu-
rations, to each of which a NN will have to be optimised. The Z boson run will be the most
challenging computationally with roughly 4.8×1012 visible decays [29]. Moreover, given the 20+

year timeline, until the FCC-ee would be in operation, it is certain that current ML approaches
will be superseded by more performant architectures.

5.5 Machine Learning in Jet Flavour Tagging

Machine learning techniques are uniquely suited to the task of discriminating jet flavours, where
training samples are abundant in the form of MC simulation, but the underlying dynamics are
poorly understood. Jet flavour tagging is often sub-divided into flavour tagging, which aims to
identify b, c, s, and light quarks, and jet substructure tagging, which targets W , H, Z, t, and
gluons. A primary distinction is how the discriminating information manifests [93]. In the case
of (heavy) flavour tagging, the long lifetime of B/D-mesons results in displaced vertices. By
contrast, gluon jets do not display such identifiable structure, and much of the distinguishing
information is encoded in the distributions of the outgoing hadrons. This section provides a
brief overview of machine learning in flavour tagging, mostly from an LHC perspective. The
interested reader is encouraged to consult the comprehensive review of jet flavour tagging at the
LHC found in Ref. [69].

Clearly, there were many ML developments in jet tagging prior to the LHC, but the LHC-
era has coincided with the shift to the GPU paradigm, and thus modern machine learning.
Early applications of ML to jet tagging revolved primarily around simple MLPs trained on
hand-engineered features and date back to LEP [118–121].

The introduction of BDTs at the MiniBooNE experiment [122, 123] and at the D0 experiment
[124, 125], shaped early ML architectures at the LHC, particularly during Run 2. The com-
putational advantages of BDTs were leveraged by providing algorithms with carefully curated
high-level variables that had been shown to be discriminating between jet flavours, as those
presented in Section 6.2. BDTs often outperformed their simple MLP counterparts [126].

Initial jet tagging algorithms at the CMS and ATLAS experiments relied on likelihood ratios
constructed from high-level physics-motivated variables [127–129] Improvements were observed
with the inclusion of MLPs, such as from the Combined Secondary Vertex (CSV) algorithm [127]
to its successor, CSVv2 [55, 130]. Simple MLP architectures were used to combine the outputs
of several individual tagging algorithms, both at CMS [55, 130] and at ATLAS [128, 131]. With
Run 2 of the LHC came the advent of BDTs in the form of cMVAv2 [55] at CMS and MV2
[132, 133] at ATLAS, leading to sizeable improvements in performance [69].

BDT-based architectures were eventually superseded by MLPs in jet tagging as the shift
to GPU-training allowed models to become deeper and include more input features. Dense
Neural Networks (DNNs), that is to say fully-connected neural networks with several hidden
layers, have been used in the context of jet tagging using a variety of inputs. Ref. [134], for
instance, uses physics motivated high-level variables as inputs for quark gluon discrimination.
The DeepCSV algorithm [55, 135] incorporated similar features to its predecessor, but with an
increased number of tracks and model complexity leading to a performance increase. The DL1
algorithm [136, 137] similarly implemented a DNN, with many of the same features as MV2.

The emergence of CNNs occurred mostly in the realm of jet substructure tagging. Contrary
to the secondary vertex variables that proved discriminating for heavy flavour jets, quark gluon
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tagging relies on variables that capture the spatial distribution and multiplicity of outgoing
partons, which hint at the colour factor of the initiating parton. Motivated by the success of
CNNs in computer vision, CNNs were applied to quark-gluon discrimination [138–140] and top
tagging [141].

RNNs allowed the processing of more complex dependencies between jet constituents. Deep-
Jet [102], in particular, is tailored to processing large input sequences, and allowed the processing
of considerably more information, including that of neutral jet constituents. DeepJet achieved
a 20% improvement with respect to DeepCSV in b tagging efficiency at a light-jet mistag rate
of 0.1% [69].

Graph representations of jets [94, 95, 104, 105] emerged as one of the most performant
representations. The ParticleNet [94] algorithm uses EdgeConvolutions [142] in order to extract
correlations between jet constituents, outperforming previous CNN architectures in quark-gluon
and top tagging [94], and RNN architectures in heavy flavour tagging [69].

With the introduction of Transformers [2, 96, 110, 117], jet tagging algorithms addressed two
shortcomings of pure GNNs: computational efficiency and full connectivity among elements of
an input sequence. ParT [110] and GN2 [117] achieve similar, or improved, performance with
respect to their pure GNN counterparts [69]. Transformers have emerged as a considerably more
efficient architecture, with ParT displaying a reduced number of FLOPs, despite including vastly
more parameters [110].

Recent developments in jet flavour tagging have been marked by a general trend to process
low-level inputs with ever more complex models. While the additional information, coupled with
the additional expressivity of the models, has resulted in demonstrable improvements in tagging
efficiencies, a concern has become amplified: the task T does not perfectly align with the dis-
crimination of actual jets. Indeed, while jet tagging algorithms are primarily trained on labelled
simulations, the ultimate goal is to perform inference on detector data. Sophisticated models
are particularly susceptible to learning unphysical artifacts of the simulation as distinguishing
features. For instance, the classification of quark and gluon jets has been observed to perform
differently with different generators such as Pythia and Herwig, with quark and gluon jets ap-
pearing more distinct in Pythia than in Herwig [138]. Moreover, classification performance is
also sensitive to the particular jet flavour definition that is adopted, including those introduced
in Section 4.3. Much emphasis is put on the Data/MC agreement and the computation of scale
factors in an effort to quantify the errors carried over from simulation. Promising avenues to
better align the task T with the discrimination of true jets, rather than merely optimising a
pure data science classification problem on simulations, include adversarial [143, 144], as well as
weakly- and unsupervised [145–149] learning techniques. Ref. [93] expands on this discussion,
and highlights some further problems that emerge from the trade-off of performance against
systematic uncertainties and interpretability.
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6 Jet Flavour Tagging at the FCC-ee with a
Transformer-based Neural Network

The identification of jets is instrumental to the exploitation of the full potential of collider
experiments. The steady evolution of the machine learning techniques presented in the previous
chapter has led to ever increasing accuracy in the task of jet flavour tagging. Nevertheless,
the relatively messy environment at hadron colliders has meant that jet flavour tagging efforts
have focused primarily on heavier b- and c-jets, whose distinctive signatures allows them to be
disentangled from the formidable QCD background. The FCC-ee, and lepton colliders in general,
offer much cleaner environments in which the initial state kinematics are known, without the
additional complications of parton distribution functions or initial state QCD radiation. The
prospect of tagging strange jets at the FCC-ee would enable studies of processes such as Z → ss̄

production, rare Higgs decays to s-jets, CKM matrix elements via W decays, and BSM physics
scenarios such as FCNCs at tree level.

DeepJetTransformer [1, 2], a multiclassifier neural network using a transformer-based ar-
chitecture, is coupled with secondary vertexing and K-short reconstruction at the FCC-ee to
discriminate strange quark initiated jets. This chapter begins by introducing the input fea-
tures and network architecture of DeepJetTransformer, followed by details of the training pro-
cedure. The classification results of DeepJetTransformer on Z → qq̄ jets at

√
s = 91.2 GeV and

Z(→ νν)H(→ qq̄) jets at
√
s = 240 GeV are presented, with a focus on strange jet discrim-

ination. Subsequently, the importance of individual features to the classification performance
is evaluated. Finally, the chapter concludes with a case study demonstrating the isolation of
Z → ss̄ jets using DeepJetTransformer, before the main findings are summarised.

The jet flavour tagging results covered in this chapter have been published in Ref. [2].
Parts of the text have been reproduced from the original publication.

6.1 Jets

Jets were clustered from Z → qq̄ events at
√
s = 91.2 GeV and Z(→ νν)H(→ qq̄) events at

√
s = 240 GeV. The events were generated using Pythia 8.303 [150], including parton showering

and hadronisation, while the detector response was simulated using Delphes [151], assuming the
IDEA [152, 153] detector concept described in Section 3.5. Charged tracks were reconstructed
with efficiencies of 99.7%, 65%, and 4% in the high (> 0.5 GeV), medium (0.5-0.3 GeV), and low
(< 0.3 GeV) momentum ranges, respectively. No fake tracks were included in the simulation.

The exclusive e+e− kT algorithm [64], implemented in FastJet 3.3.4 [63], was used for clus-
tering the particle flow style objects output by Delphes. While other algorithms, including the
anti-kT algorithm [62] and the generalised e+e− kT [63], were explored, the e+e− kT algorithm
was found to be the most suitable due to the simple event topology, and its robustness to gluon
emissions (i.e. Z → qq̄g).
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Jet flavour labels were defined as the flavour of the outgoing partons from the boson decay.
While this provides a natural and unambiguous definition in the 2-parton decays studied (e.g.
Z → qq̄), it does not generalise to multi-parton decays such at ZH → 4 jets, or allow the
sub-division into quark and antiquark jets. It is worth noting that this jet labelling approach
departs from the ghost-matching [66] technique commonly used at hadron colliders, where jet
flavour is defined by the reclustering of particles with partons from earlier stages in the Monte
Carlo history.

6.2 Input Features

The input to DeepJetTransformer consists of 5 distinct classes: jet-level variables, charged
jet constituent variables, neutral jet constituent variables, secondary vertex variables, and V0

variables. The first of these, jet-level variables, are either kinematic variables derived from the
4-vector of the jet, or properties of the entire jet derived from its constituents. These include
variables such as the number of charged constituents or the various jet angularities constructed
from the momentum-weighted spatial distributions of the jet constituents. The full set of jet-level
variables used in DeepJetTransformer is listed in Table 6.1.

Table 6.1: Summary of per-jet global input variables to DeepJetTransformer.
Input Feature Description
|p|, E, m 3-momentum magnitude, energy, and invariant mass of the jet

θ, ϕ polar and azimuthal angle of the jet axis
Ncharged charged particle (track) multiplicity in the jet
Nneutral neutral particle multiplicity in the jet

jet angularity [154] as sum of normalized jet constituent energy (zi)
λκ
β = Σi∈jetz

κ
i R

β
i and angular distance to jet axis (Ri) for (κ = 0, β = 0),

(κ = 1, β = 0.5), (κ = 1, β = 1), (κ = 1, β = 2), (κ = 0, β = 2)

Jet constituents themselves are split into charged particles and neutral particles, correspond-
ing to the sub-detectors that were used for their reconstruction in the particle flow-like algorithm
[155]. For both charged and neutral particles, a set of kinematic variables related angle and mo-
mentum with respect to the jet (axis) is defined, as listed on Table 6.2. For each jet up to 25
charged jet constituents and 25 neutral jet constituents are considered. This is enforced by trun-
cating the input feature array of a given jet if the number of charged/neutral jet constituents
is more than 25. Conversely, if the number of charged/neutral jet constituents is less than 25,
then the input feature array is zero-padded.

Charged particles additionally include track-specific variables such as the signed transverse
and longitudinal impact parameters, which describe the distance of closest approach to the pri-
mary vertex for a given track. Figure 6.1a depicts the transverse impact parameter significance,
which serves as a distinguishing feature as tracks with a large transverse impact parameter
originate overwhelmingly from heavy jets. Finally, a set of flags identifying the particle type is
included for charged and neutral particles. Many of these flags are naturally output by particle
flow-like algorithms with high precision. Thus in this implementation, they are perfectly re-
constructed from the MC truth. This includes the "isMuon" and "isElectron" flags for charged
particles, as well as the "isPhoton" flag for neutral particles, which tellingly describe the type
of a given jet constituent. The "isKaon" flag identifies a particle as a charged Kaon (K±) and
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Table 6.2: Summary of jet constituent input features, divided into charged and neutral jet
constituents.

Input Feature Description
D0(z0) signed transverse (longitudinal) impact parameter

D0/σD0(z0/σz0) signed transverse (longitudinal) impact parameter significance
θrel(ϕrel) polar (azimuthal) angle of track with respect to the jet axis

R angular distance of track and jet axis
C half-curvature of the track

mch., q track invariant mass and charge
|p|ch.

|p|jet
, ln(|p|ch.), ln

(
|p|ch.

|p|jet

)
(normalised) magnitude of track momentum and logarithms

Ech.

Ejet
, ln(Ech.), ln

(
Ech.

Ejet

)
(normalised) track energy and logarithms

isKaon if the particle is identified as a K±

isMuon if the particle is identified as a µ±

isElectron if the particle is identified as an e±

θrel(ϕrel) polar (azimuthal) angle of particle with respect to the jet axis
R angular distance of neutral particle and jet axis

|p|neut.

|p|jet
, ln(|p|neut.), ln

(
|p|neut.

|p|jet

)
(normalised) magnitude of particle momentum and logarithms

Eneut.

Ejet
, ln(Eneut.), ln

(
Eneut.

Ejet

)
(normalised) neutral particle energy and logarithms

isPhoton if the particle is identified as a Photon

is thus central to the identification of strange jets. Figure 6.2a depicts the charged Kaon multi-
plicity of s-, u-, and d-jets, where it can be seen that Kaons are more prevalent in strange jets.
This effect is amplified when particle momentum is accounted for, as discussed in Ref. [156].
The identification of charged Kaons relies on distinguishing Kaons from other charged hadrons,
primarily pions and protons. Cluster counting and time-of-flight have emerged as promising
particle identification techniques, with separations of > 3σ achievable in the momentum range
of |p| < 30 GeV with the IDEA detector concept [59]. In this work the identification of charged
Kaons is emulated by sampling a uniform distribution with a K± efficiency of ϵK

±
sig = 90%,

and a background efficiency of ϵπ
±

sig = 10%, with charged pions serving as the false positive
for the "isKaon" flag. This constitutes the baseline scenario of DeepJetTransformer, although
some additional scenarios are explored in Section 6.5.1. The deliberately conservative estimate
reflects PID studies at Belle, where an efficiency of ϵK

±
sig = 87.99 ± 0.12% with a fake rate of

ϵπ
±

sig = 8.53± 0.10% was achieved for particles below 4 GeV [157].
The final two classes of features are SVs and V0s, both of which originate from the vertexing

algorithm acting on charged particle tracks. The set of SV and V0 features is listed on Table 6.3.
The V0 and SV input feature arrays are likewise truncated/zero-padded, with an array length
of 4 being enforced. The distinguishing power of some of these variables is discussed below.

The reconstruction of SVs has long been the cornerstone of heavy jet identification, and
begins with the identification of tracks originating from the primary vertex. Figure 6.1b depicts
the number of secondary vertices reconstructed for b-, c-, and light-jets, illustrating that jets
containing at least 1 secondary vertex originate almost exclusively from heavy jets. As the
primary goal of vertexing algorithms is the reconstruction of secondary vertices associated with
the decay of b or c quarks, neutral particles decaying to a pair of charged tracks, denoted V0s, are
often reconstructed, and subsequently discarded. This is done in order to prevent the erroneous
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Table 6.3: Summary of input features characterising each reconstructed secondary vertex. Input
features are defined analogously for V0s, with the addition of the PDG ID [158].

Input Feature Description
|p|, m 3-momentum magnitude and invariant mass of the SV
Ntracks track multiplicity of the SV
χ2,NDoF χ2 and number of degrees of freedom of the SV
θrel, ϕrel polar and azimuthal angle of the SV with respect to the jet axis

p̂.̂r collinearity of SV with respect to PV
d3D,dxy 3D and transverse distance of the SV from the PV

association of these decaying neutrals with bottom or charmed hadrons. Subsequently, remaining
tracks undergo a fitting procedure to reconstruct secondary vertices, known as vertexing. In
this work, an implementation of the vertexing module of the LCFIPlus framework [56, 159] in
FCCAnalyses [160] was used, using a χ2 vertex fitter [161]. One of the key differences in this
implementation with respect to other vertexing approaches is that rather than reconstructing
V0s only for the purpose of discarding their tracks, V0s are saved as separate objects within
the jet. The finding of V0s begins with the assumption of a mass hypothesis related to the V0

decay under consideration. The decays K0
S → π+π− and Λ0 → pπ− were included in this study.

For instance, assuming a mass hypothesis of the Λ0 would entail assigning one of the tracks the
mass of a proton and the other the mass of a charged pion. Using the measured 3-momentum,
the invariant mass of the track pair is computed. Figure 6.2b depicts the invariant mass of track
pairs under the K0

S mass hypothesis. The pronounced peak at approximately the mass of the K0
S

confirms the efficacy of the V0 reconstruction algorithm. Track pairs are subsequently subjected
to a set of constraints, in order to determine whether or not they originate from a V0 decay.
These revolve around how close the reconstructed invariant mass is to the true mass of the V0

particle under consideration, and whether or not the V0 is displaced enough from the primary
vertex. Additionally, the track pair 3-momentum must be collinear with the vector linking the
primary vertex to the V0. The exact constraints that were adopted can be found in Ref. [2].

6.3 Network Architecture

The architecture of DeepJetTransformer, depicted on Figure 6.3, can largely be split into three
sections: the convolutional layers that encode the input, the Heavy-Flavour (HF) transformer
blocks, and the fully connected layers at the end of the network. The input to DeepJetTrans-
former consists of 5 classes of variables detailed in Section 6.2. All variable classes barring
jet-level variables are passed through 1-d convolutional layers with 1 × 1 filters and stride 1.
In the context of convolutional layers, introduced in Section 5.3, the 1 × 1 filters act as linear
projections of each input constituent. By using the same filters for the entire input set, weights
are shared for each of the constituents. This is desirable physically, as all constituents of a given
class (e.g. charged particles) should be subjected to the same embedding. Moreover, it is worth
noting that this is a suitable encoding for jet constituent variables, since the length of the input
(e.g. number of charged particle variables) is not constant. More specifically, and focusing only
on charged particles (though valid for all other classes), denote by v⃗ch. the m-dimensional vector
of input features for a single charged particle in a jet. Then for a jet with charged multiplicity
n, the charged particles variables will be a set {v⃗1, v⃗2, . . . , v⃗n}. The 1-d convolution operation
encodes the set {v⃗1, v⃗2, . . . , v⃗n} into a new set of equal length {u⃗1, u⃗2, . . . , u⃗n} by defining the
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components of u⃗i as

(u⃗i)k = f(v⃗i · w⃗k) (6.1)

where (u⃗i)k denotes the kth component of the encoded vector u⃗i, f is the ReLU activation
function, and the vectors w⃗k are weight vectors corresponding to the filters of the convolution.
The number of filters l determines the dimension of each output vector u⃗. Clearly, the 1-d
convolution operation could be applied again on the set {u⃗1, u⃗2, . . . , u⃗n} with a new set of l′

filters to obtain a further encoded set {u⃗′1, u⃗′2, . . . , u⃗′n}. In DeepJetTransformer the first 1-d
convolution encodes the input {v⃗} of n charged particles with 19 features (e.g. constituent |p|)
into a set of n 64-dimensional vectors {u⃗}. These are then passed to a second 1-d convolution,
which in addition introduces skip-connections s⃗i that are added to Equation 6.1, such that
(u⃗i)k → (u⃗i)k + (s⃗i)k. The skip connections are typically included in order to improve gradient
flow, but in the case of the second convolution are defined by a separate 1-d convolution acting
on {u⃗}, as in Equation 6.1, resulting in a set of n 128-dimensional vectors {u⃗s}. Effectively,
the set {u⃗} is encoded into a set of n 128-dimensional vectors {u⃗′}, by adding the output of
two separate 1-d convolutions. These are finally passed to a third 1-d convolution that encodes
{u⃗′} into a new set of n 128-dimensional vectors {u⃗′′}, again employing skip-connections, where
the components of the skip vector are now given by the input set itself: s⃗i = u⃗′i. The set {u⃗′′}
is concatenated with the sets resulting from the encoding of other variable classes: {u⃗′′neut.},
{u⃗′′SV s}, {u⃗′′V 0s}, which are constructed in the same way. It is worth noting that while the 1-d
convolution may alter the dimension of the vectors in the set it acts upon, it does not alter the
length of the set. Each 128-dimensional vector u⃗′′ corresponds to a single charged particle in
the jet. In particular, the 1-d convolution does not capture any contextual information of the
charged particle with respect to its neighbours. This instead happens in the next section of the
network: the HF transformer blocks.

Figure 6.3: Schematic overview of the DeepJetTransformer architecture, illustrating the pro-
cessing of input from left to right. Convolutional layers are greatly simplified, with details like
the skip-connections described in Section 6.3 omitted for clarity.
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In the first step of the HF transformer blocks, the output of the convolutional layers above
{x⃗1, x⃗2, . . . , x⃗m} = {u⃗′′ch.} ⊕ {u⃗′′neut.} ⊕ {u⃗′′SV s} ⊕ {u⃗′′V 0s} is encoded via a 1-d convolution with
128 filters, with a skip-connection again defined as the input s⃗i = x⃗i. Next, the encoded set
{x⃗′} is used to define a set of queries Q, keys K, and values V, in order to compute the
scaled dot-product attention, as defined in equation 5.35. This is repeated n = 8 times for
different weight matrices WQ

i , WK
i , W V

i , and concatenated before being projected back to m

128-dimensional vectors {y⃗MHA}, as defined in Equation 5.36. Subsequently, the output of the
Multi-head attention step is added to the input via a skip connection such that y⃗i = y⃗MHA

i + x⃗′i,
before finally being passed to a pair of fully connected layers. The first fully connected layer
projects {y⃗} to a set of 512-dimensional vectors {y⃗′} followed by a ReLU activation function,
whereas the second serves simply to linearly project the set {y⃗′} back to m 128-dimensional
vectors {y⃗′′}. Finally, a skip-connection is employed to define the output of the HF transformer
layer as y⃗outi = y⃗′′i + y⃗i. The output set {y⃗out} serves as input to another HF transformer block.
This is stacked 3 times in DeepJetTransformer, enabling the attention mechanism to act on
progressively more abstracted features.

The final section of DeepJetTransformer are the fully connected layers, where higher level
features output by the HF transformer blocks are abstracted into class scores for each jet-flavour.
In particular, the output of the HF transformer blocks {y⃗out} is passed through an attention
pooling layer. The pooling layer begins by computing a score for each element in the sequence
as a linear combination of all 128 features of each element, via a 1-d convolution with a single
filter followed by a softmax activation function. This reduces Equation 6.1 to

αi = f(y⃗outi · w⃗) (6.2)

where αi are scalar scores for each element of {y⃗out} that will be used for the pooling, w⃗ is the
filter of the convolution, and f denotes the softmax function applied over all i. The elements of
{y⃗out} are then pooled into a single output vector

y⃗pool = f
(∑

αi · y⃗outi

)
(6.3)

where f denotes a ReLU activation function applied element-wise. The vector y⃗pool is subse-
quently concatenated with the jet-level variables, before being passed to the fully connected
layers. There are four stacked fully connected layers consisting of 140, 140, 140, and 6 nodes,
respectively, which were found to be performant hyperparameter choices. The first three layers
are followed by a ReLU activation function, and a skip connection that adds the input of the
layer to the output. The final layer simply projects the vector to a vector of dimension c, corre-
sponding to the number of jet flavours. During inference, the raw network scores are normalised
by a softmax function, given in Equation 5.7. These normalised outputs, which are constrained
to lie between 0 and 1 and sum to 1 across all jet flavours, are referred to as "softmaxed classifier
outputs" for brevity.

Throughout this discussion some details, including normalisation and dropout layers, have
been omitted for clarity. Batch normalisation is used throughout the network, particularly
following convolutional and linear layers, while layer normalisation is used in the HF Transformer
blocks to improve training stability. The full implementation, along with documentation for the
sample preparation, the training methodology described in the following section, and the relevant
code, is publicly available here: DeepJetFCC1

1https://github.com/Edler1/DeepJetFCC/tree/master/docs
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6.4 Training Details

Training and inference of the DeepJetTransformer algorithm was performed in Pytorch (v1.10.1)
[85]. As detailed in Section 5.2, the training of a neural network entails the computation of
weights that minimise the loss function, which in this case was chosen to be the categorical
cross-entropy L(⃗t, y⃗), defined in Equation 5.11. By punishing incorrect predictions of each node
separately, a multi-class classifier was trained for which each output node corresponds to a
distinct jet flavour: b, c, s, u, d, (g). Weights were optimised by combining the rectified Adam
optimiser [88], given in Equation 5.23, with the Lookahead optimiser [162]. The Lookahead
optimiser introduces a set of "slow" weights alongside a set of "fast" weights computed by the
RAdam optimiser. After k updates of the fast weights, the slow weights are updated by moving
a fraction α towards the fast weights, improving training stability, particularly for aggressive
weight updates. During training, the number of updates was set to k = 6, while the fraction
was set to α = 0.5. An initial learning rate η of 5 · 10−3 and decay rates β1, β2 of 0.95, 0.999
were chosen for the RAdam optimiser.

The training dataset is comprised of roughly 1 million jets from Z → qq̄ events at
√
s = 91.2

GeV, split roughly evenly among the different jet flavours. The dataset was divided 80/20% into
training and validation datasets. Training was conducted for 70 epochs with the learning rate
being unchanged for the first 49 epochs, but decaying exponentially thereafter. A relatively large
batch size of 4000 was used for training stability. Figure 6.4 depicts the training and validation
loss for each epoch during the training of the baseline version of the classifier. Upon inspection,
an epoch at which the training training and validation losses were similar was selected, before
the onset of overfitting and subsequent divergence of the loss. With about 106 parameters and
efficient transformer blocks as the workhorse, training DeepJetTransformer takes about 2 hours
on an NVIDIA Tesla V100s GPU. Finally, the model’s performance was evaluated on a separate
set of 1 million jets, with similar balancing of jet flavours, to which it was not exposed during
training.

The tagger was trained separately on Z(→ νν)H(→ qq̄) events at
√
s = 240 GeV for the

H(→ qq̄) results shown in Section 6.5. The focus of these studies was jet flavour tagging at the
Z resonance, with the classification of H → qq̄ events serving primarily as a comparison to the
classification performance of other jet flavour taggers for future colliders, like ParticleNetIDEA
[59, 163].

6.5 Classification Results

A binary classifier was constructed for each jet flavour q ≡ u, d, s, c, b, (g) with a signal flavour
(i) and a background flavour (j):

Sij =
Si

Si + Sj
, (6.4)

where Si are the softmaxed classifier outputs, shown in Figure 6.5 for the five quark flavours.
ROC curves were computed for each Sij combination and are depicted in Figure 6.6 for the Z

resonance and the ZH training. Predictably, the strongest discrimination is between b-jets and
s-, u-, d- jets and is roughly equivalent for all three background jets. The dominant background
is from c-jets, originating from the similarity of b- and c-jets with a single reconstructed SV.
Discriminating c-jets from u-, d- and s-jets exhibits similar performances, with relatively worse
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Figure 6.4: Training and validation loss curves as a function of epoch for the baseline Deep-
JetTranformer training on Z → qq̄ events at

√
s = 91.2 GeV.

discrimination of the s-jet background. Figure 6.6b shows that as the efficiency increases from
the right to the left side of the plot, s-, u- and d-jets are discriminated worse than b-jets in the
high-efficiency regime for c-jets until a turnover point at ϵcsig ≈ 80%, after which distinguishing
s-, u- and d-jets becomes considerably easier than b-jets. Such a turnover can also be found in
ParticleNetIDEA [59]. The sub-leading background comes from s-jets, clustered at low to mid
charm scores, as also evident in Figure 6.5b, primarily as no SVs can be reconstructed for a
significant number of c-jets, leaving few variables to distinguish c- and s-jets.

When s-jets are taken to be the signal, as shown in Figure 6.6c, c- and ud-jets present
the most challenging backgrounds, with c-jets being easier to discriminate against at all signal
purities. The c-jet background comes from jets where a charm hadron decays to a strange
hadron, and only the V0 can be reconstructed, or a strange hadron carries excess momentum.
Some discrimination against the dominant ud-jets background can be achieved at higher cuts
on the strange score, owing to the K±/π± separation and V0 reconstruction. Finally, Figures
6.5d and 6.5e show almost overlapping distributions of classifier scores for u- and d-jets. Figure
6.6d validates that classification is most challenging for u- and d-jets. When u-jets are taken to
be the signal, it can be seen that DeepJetTransformer learns to discriminate u- vs d-jets with a
ϵusig ≈ 15% at a ϵbkg = 10%, which is better than a random classifier, although not considerably.
The discrimination is likely related to a mapping to the initiating parton’s charge, such as the
jet charge [164, 165], the effect of which is diluted by the presence of antiquarks.

While considering the performance for H(→ qq̄) jets, depicted as dashed lines in Figure 6.6,
no clear trend can be observed. Slight degradation in performance can be observed in the case
of b tagging, compared to Z → qq̄ jets, particularly when c-jets are taken to be the background.
The discrimination of c-jets vs s-, u-, and d-jets is found to perform relatively the best with
respect to the Z → qq̄ jets when considering the percent-improvement in the ROC Area Under
the Curve metric.

Figure 6.6f shows that the best quark-gluon discrimination can be achieved against the
b quarks. This performance can be attributed to several discriminating variables, like jet-
constituent multiplicity, constituent momentum distribution, etc., but is dominated by the
presence or absence of reconstructed SVs. It is the most challenging to discriminate the s,
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u, and d quarks from gluons due to their similar jet composition.

Qualitative Comparison with Other Taggers

A fair quantitative comparison with other taggers developed for future colliders is not fea-
sible due to differing event samples and input features. However, the jet tagging performance
trends are very similar to those of ParticleNetIDEA [59, 163]. The strange tagging efficiency
of ParticleNetIDEA against the u-, d-jets surpasses that of DeepJetTransformer, owing to PID
techniques like cluster counting and time-of-flight used by ParticleNetIDEA and the conserva-
tive PID estimates of DeepJetTransformer. A more detailed training dataset including such PID
variables is expected to improve the tagging efficiencies of DeepJetTransformer.

DeepJetTransformer outperforms ParticleNetIDEA in bottom-gluon discrimination, espe-
cially for efficiencies lower than 90%. DeepJetTransformer also has a better discrimination
of b-jet background for all other signal quark jet flavours. This efficient discrimination can be
attributed to the inclusion of SVs.

6.5.1 Dependence on Particle Identification

Several K± classification scenarios were defined by fixing the efficiency of misidentification to π±

and varying the K± identification efficiency. In addition, the limiting cases of Kaon identification
with 0% and 100% efficiencies were considered. These are referred to henceforth as the no K±ID

and the perfect K±ID scenarios. The considered efficiencies and the misidentification rates are
the following:

Table 6.4: Set of K± and π± particle identification points used to evaluate classification
performance.

K± ID efficiency 0% 20% 40% 60% 80% 90% 95% 100%
π± misID efficiency 0% 10% 10% 10% 10% 10% 10% 0%

The no K±ID scenario is used as the reference in this section to assess the impact of adding
PID variables as input features for jet flavour tagging. The largest performance gain with
the addition of K±ID information is predictably in the classification of s vs ud jets, shown in
Figure 6.7. Relative to the reference no K±ID scenario, with a ϵsig of 31.6% at a ϵbkg of 10%,
strange tagging efficiency improvements of 11.4%, 25.9%, and 32.9% are evident as the K±ID

efficiency is increased to 60%, 90%, and 95%, respectively. The perfect K±ID scenario shows
the most sizeable performance gain in ϵsig of 82.9%. This large performance improvement over
the 95% K±ID efficiency with the efficiency of misidentification to π± of 10% scenario suggests
that minimising this misidentification is crucial to tagging strange jets, given their high π±

multiplicity [156].
The performance gain for other forms of classification was marginal, with the exception of

c vs ud and u vs d discrimination. For c vs ud, a performance gain of 1.8% from a ϵsig of 89.3%
to 90.9% at a ϵbkg of 10% is observed while comparing the no K±ID and the perfect K±ID

scenarios. In the case of u vs d, a 12.5% performance gain from a ϵsig of 13.6% to 15.3% at a
ϵbkg of 10% is observed.

These results confirm the importance and necessity of particle identification techniques, es-
pecially for strange quark studies, as was also noted by some previous studies [59, 166, 167].
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Figure 6.5: The softmaxed classifier outputs (Si) of the bottom (a), charm (b), strange (c), up
(d), and down (e) output nodes of DeepJetTransformer for Z → qq̄ events at

√
s = 91.2 GeV.

The distributions are sub-divided by MC flavour.
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Figure 6.6: ROC curves for each Sij combination, as defined in Eq. 6.4, where i is the signal
parton flavour and j is the background flavour. The solid lines correspond to the classification of
jets at the Z resonance at

√
s = 91.2 GeV, while the dashed lines correspond to the classification

of jets from Z(→ νν)H(→ qq̄) events at
√
s = 240 GeV. The tagger was trained separately for

each process.
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As noted earlier, an excess of V0s, reconstructed K0
S and Λ0, carrying the bulk of the jet

momenta is also a distinguishing feature of strange jets and these are expected to be more
significant in the scarcity of charged Kaons. The inclusion of V0 variables, as Figure 6.7 shows,
results in an improvement of signal efficiency ranging from 14.3% in case of no K±ID to 4.2%

in the case of perfect K±ID at a background efficiency of 10% for s vs ud discrimination. The
percent improvement in signal efficiency for each of the K±ID scenarios listed in Table 6.4 is
depicted separately in Figure 6.7b. This trend proves the importance of V0s to identify strange
jets with low K± multiplicities or substandard K±/π± discrimination. The performance gain
in other forms of classification was again marginal.

6.6 Feature Importance

Aiming to estimate the relative importance of a given variable class (e.g. SV variables) in the
task of classifying jets, the classifier performance was evaluated using the Permutation Feature
Importance [168, 169] method. For a jet i, let the variable classes introduced in Section 6.2 be
denoted by {J⃗i, C⃗i, N⃗i, S⃗i, V⃗i}. Then for the given variable class under investigation, for instance
S⃗, the variable class was shuffled amongst all jets in the test data set, such that the jet i becomes

{J⃗i, C⃗i, N⃗i, S⃗i, V⃗i} → {J⃗i, C⃗i, N⃗i, S⃗j , V⃗i} (6.5)

where the variable class S⃗ now corresponds to that of some randomly selected jet j. In this way,
the values for the variable class under investigation were randomly permuted across all jets in the
dataset, disrupting the relationship between the permuted variable class and jet classification.
This allows for an estimate of how much the performance of the classifier depends on the given
variable.

The resulting performance change was considered for discriminating between b- vs c-, c-
vs s-, and s- vs ud- jets, compared to the baseline where no variable classes were permuted,
with respect to the change in signal efficiency. Charged jet constituent variables, listed in
Table 6.2, were found to be the most impactful variable class for all types of discrimination
at a background efficiency of ϵbkg = 10%, as detailed in Table 6.5. This is presumably due to
more precise and discriminating information available for charged particles, arising from high-
resolution tracking and vertexing measurements. SV variables, listed in Table 6.3, primarily
benefited c vs s discrimination, with s vs ud tagging particularly insensitive. Of the remaining
three variable classes, V0 variables and neutral jet constituent variables were found to almost
exclusively impact the performance of s vs ud discrimination, with little impact on both b vs c and
c vs s discrimination, justifying the inclusion of V0s for identifying s-jets through conservation
of strangeness. Jet-level variables were found to be the least significant, marginally impacting
s vs ud discrimination, and having virtually no impact on heavy flavour discrimination. While
jet-level variables, including jet angularities, reflect differences in the initiating parton, it can
be expected that sophisticated architectures like DeepJetTransformer capture these differences
intrinsically by constructing mappings involving other variable classes. Moving to the high purity
regime at a background efficiency of ϵbkg = 0.1%, primarily the same trends were observed,
with the impact of any variable type being amplified. SV variables, in particular, became
hugely important to heavy flavour tagging, reaching almost equal in impact to the charged jet
constituent variables, proving that the presence and properties of SVs are definitive indicators
for identifying heavy flavour jets.
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Figure 6.7: The dependence of strange jet tagging performance on the inclusion of V0s and
charged Kaon identification scenarios. ROC curves for s vs ud tagging at the Z resonance at√
s = 91.2 GeV (a). Solid lines represent results with the inclusion of V0s, while dashed lines

show the results without them. Percent change in signal efficiency (ϵsig) with the inclusion of
V0s for s vs ud tagging for each of the K±ID scenarios listed in Table 6.4 (b). The axes are
swapped with respect to Figure 6.7a to present the percent change in signal efficiency (ϵsig) as
a function of 12 fixed background efficiencies (ϵbkg).
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Table 6.5: Performance decrease in signal efficiency (ϵsig) after permutation of variable classes
defined in Section 6.2 for fixed background efficiencies (ϵbkg) of 10% and 0.1%.

Variable Class Jet-level Charged Neutral SV V0

b vs c 2.4% 62.4% 2.2% 13.9% 0.1%
ϵbkg = 10% c vs s 1.2% 65.7% 2.9% 29.6% 0.2%

s vs ud 7.6% 59.4% 21.8% 5.0% 16.4%

b vs c 6.6% 97.0% 8.0% 89.9% 0.6%
ϵbkg = 0.1% c vs s 9.3% 96.1% 11.0% 77.9% 0.2%

s vs ud 35.9% 91.0% 57.3% 7.4% 43.8%

The above studies were repeated to estimate the relative importance of individual variables
(e.g. mSV), where rather than shuffling an entire variable class amongst jets, one individual
variable was shuffled amongst itself. Adopting the same notation as for Equation 6.5, the jet-level
variables of jet i can be written out, such that the variable classes become {J⃗i, C⃗i, N⃗i, S⃗i, V⃗i} =

{J⃗i, C⃗i, N⃗i, {si1, ..., si25}, V⃗i}. Then for the kth SV variable (e.g. mSV), the sk is permuted amongst
all other jets

{J⃗i, C⃗i, N⃗i, {si1, ..., sik, ..., si25}, V⃗i} → {J⃗i, C⃗i, N⃗i, {si1, ..., s
j
k, ..., s

i
25}, V⃗i} (6.6)

where the variable sjk now corresponds to that of some randomly selected jet j. The 64 variables
included in DeepJetTransformer can be loosely split into the following categories:

• Kinematic (|p|, E, |p|/|p|jet, θ, ∆θ, . . . )

• PID (isPhoton, K±ID, . . . )

• Track (D0, z0, . . . )

At a background efficiency of 10%, it was found that kinematic variables of charged particle

constituents, including
Ech.

Ejet
and

|p|ch.

|p|jet
, were generally impactful, particularly for c vs s discrim-

ination. Track variables, such as D0/σD0 and z0, were the most impactful, though less for b

vs c than other types of discrimination, possibly due to their redundant information after the
inclusion of SVs. PID variables had little impact on b vs c and c vs s discrimination, but K±ID
and photon ID were the most important for s vs ud discrimination, as was observed earlier. The
high purity regime at a background efficiency of 0.1% resulted in similar trends, though with
PID variables, including K±ID and photon ID, decreasing in importance and being somewhat
replaced by kinematic ones. It should be stated that the baseline K±ID scenario, as mentioned
in Section 6.2, is deliberately pessimistic, which could account for its decrease in importance.
Track variables remained the most impactful. The secondary vertex mass mSV became the most
impactful variable in b vs c discrimination at high purity by a sizeable margin, as SV kinematics
store essential information about the decaying hadrons. The results of this study are summarised
in Table 6.6 below.

6.7 Z Peak Extraction

The decay of the Z boson was chosen for the evaluation of DeepJetTransformer due to the rel-
ative uniformity of its hadronic branching fractions, as well as the exquisite statistics that are
expected from the FCC-ee’s 4 year run at the Z-pole. Isolating Z → ss̄ events is a challenging,
yet promising, avenue that has largely remained unexplored, in favour of leptonic or heavy-
flavour channels, with their distinct signatures [158]. In this section the extraction of Z → ss̄
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Table 6.6: Performance decrease in signal efficiency (ϵsig) after permutation of individual vari-
ables defined in Section 6.2 for fixed background efficiencies (ϵbkg) of 10% and 0.1%. A set of
seven variables, chosen among the most impactful, is presented here.

Variable ln(Ech.) isPhoton K±ID mSV |p|V0
z0 D0/σD0

b vs c 3.5% 0.3% 0.2% 3.0% 0.1% 7.8% 11.6%
ϵbkg = 10% c vs s 23.8% 0.7% 0.5% 0.3% 0.2% 20.9% 39.1%

s vs ud 12.8% 16.6% 38.8% 0.0% 9.2% 23.3% 26.7%

b vs c 13.8% 1.3% 0.9% 67.2% 0.8% 34.1% 45.0%
ϵbkg = 0.1% c vs s 57.6% 0.9% 4.8% 7.0% 0.3% 56.2% 79.5%

s vs ud 35.0% 28.0% 59.0% 0.4% 34.7% 60.5% 80.1%

events from Z → qq̄ events at the FCC-ee is reported, providing a realistic scenario for evaluat-
ing DeepJetTransformer’s performance in discriminating against b, c, u, d-jets, simultaneously.
Backgrounds beyond the hadronic jets from Z decays are not considered, but are expected to
constitute less than 1% of events at the Z-pole. The events used in this study originate from
the same Z → qq̄ at

√
s = 91.2 GeV sample introduced in Section 6.1. Events were required

to consist of exactly two jets of matching MC flavour. Jets were required to pass fiducial cuts
corresponding to a jet 3-momentum of at least |p| > 20 GeV and a polar angle in the range
14◦ < θ < 166◦, ensuring the jet axis was sufficiently distant from the beam pipe. If either jet
from an event did not satisfy the requirements, the event was rejected.

The adopted strategy for isolating s-jets consisted of first defining a s vs bc classifier according
to Equation 6.4, where the individual scores for each class Si were computed from the DeepJet-
Transformer softmaxed output nodes. It is important to note that the score for each Z → qq̄

jet was computed individually, with no knowledge of the event propagated to the network, as
in previous sections in this chapter. The s vs bc classifier was evaluated at a set of background
efficiencies ϵb,cbkg of 10%, 1%, and 0.1%. Jets passing the s vs bc cut were subsequently subjected
to a second cut by a s vs ud classifier defined similarly. The s vs ud classifier was likewise eval-
uated at a set of background efficiencies ϵu,dbkg of 10%, 1%, and 0.1%, now defined with respect
to the set of jets passing the first cut. Four working points (WP) of increasing purity were
defined by considering different combinations of background efficiencies, or mistag rates, for the
sequential classifiers. The working points, along with their respective efficiencies, are summa-
rized in Table 6.7, where it can be seen that while the first classifier removes the comparatively
"easy" background of heavy flavour jets while maintaining a high signal efficiency, even at the
1% working point. The s vs ud classifier, however, shows a sharp decrease in signal efficiency
when moving to more stringent working points, as discrimination against ud-jets relies heavily of
Kaon identification, and the baseline version of the DeepJetTransformer makes relatively modest
PID assumptions. Interestingly, the signal efficiency of the s vs ud classifier only varies from
ϵssig = 40.03 ± 0.04% to ϵssig = 39.28 ± 0.06%, demonstrating the apparent orthogonality of the
classification problem.

The Z resonance depicted on Figure 6.8a was obtained as the invariant mass of the sum of
the 4-momenta of both jets in an event pµ = (p1)

µ + (p2)
µ: m =

√
pµpµ. Events are split

by flavour, with light jets appearing roughly symmetrically about ∼ 90 GeV. Z boson decays
to heavy quarks display a pronounced tail towards lower mass corresponding to energy carried
away by neutrinos arising from semi-leptonic decays of the hadrons containing b and c quarks.
Figure 6.8b depicts the dijet invariant mass for all events passing the s vs bc cut for WP2/3.
Figure 6.9a depicts the dijet invariant mass for all events which additionally pass the s vs ud cut
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Table 6.7: Signal efficiency at the four working points defined with respect to mistag rates of
the s vs bc and s vs ud cuts. The number of signal events Nsig and background events Nbkg is
listed explicitly for an integrated luminosity of 125 ab−1. Signal efficiencies and mistag rates
are defined with respect to Z → qq̄ jets.

Mistag Rate [%] Efficiency [%] Nsig Nbkg

WP1 s vs bc 10 98.93± 0.03 7.35× 1011 1.35× 1012

s vs ud 10 40.03± 0.04 1.45× 1011 3.25× 1010

WP2 s vs bc 1 54.18± 0.04 2.38× 1011 2.06× 1011

s vs ud 10 39.28± 0.06 5.10× 1010 5.57× 109

WP3 s vs bc 1 54.18± 0.04 2.38× 1011 2.06× 1011

s vs ud 1 10.05± 0.11 1.12× 1010 4.77× 108

WP4 s vs bc 0.1 17.96± 0.06 3.23× 1010 6.98× 109

s vs ud 0.1 1.98± 0.33 3.56× 108 3.38× 106

defined sequentially for WP3 in Table 6.7. The Z peak is extremely pure, with the remaining
background consisting almost exclusively of u- and d-jets. The precise number of signal and
background events passing the WP3 cuts is listed on Table 6.7 for an integrated luminosity of
125 ab−1. While this study does not consider machine backgrounds or irreducible backgrounds
from other Standard Model processes, both expected to be at the per cent level, it is nevertheless
instructive to consider the Asimov estimate of the discovery significance [170, 171], defined as

Z =

√
2

[
(Nsig +Nbkg) log

(
1 +

Nsig

Nbkg

)
−Nsig

]
. (6.7)

Figure 6.9b depicts the discovery significance as a function of integrated luminosity for the
different working points. A discovery significance corresponding to the canonical 5 σ is reached
extremely quickly for all four of the working points. WP3, in particular, reaches 5 σ after an
integrated luminosity of only 60 nb−1, corresponding to less than a second of the Z-pole run at
the FCC-ee.
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Figure 6.8: Dijet invariant mass of Z → qq̄ events at
√
s = 91.2 GeV before any cuts (a), and

for events where both jets pass the s vs bc cut of WP2/3 of Table 6.7. An integrated luminosity
of 125 ab−1 is assumed.
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vs bc and subsequent s vs ud cut of WP3 of Table 6.7 (a). An integrated luminosity of 125 ab−1

is assumed. Discovery significance of Z → ss̄ events at 91.2 GeV as a function of integrated
luminosity for WP1-4. The dashed lines denote the luminosity required for a 5 σ significance
for each of the WPs.

6.8 Conclusions

The discrimination of strange quark jets at the Z-pole run of the FCC-ee was demonstrated
using a computationally-efficient, transformer-based neural network. This approach combines
the representational power of the attention mechanism with a novel implementation of vertexing
at the FCC-ee, achieving state-of-the-art performance. The impact of particle identification on
strange tagging was explicitly explored through the inclusion of V0 reconstruction and varying
degrees of K± discrimination.

An excellent discrimination of b-, c-, s-jets was achieved, with signal efficiencies in the ϵsig ∼
90%+ range for both b vs c and c vs s tagging, at a background efficiency of ϵbkg ∼ 10%. The
model performance showed little dependence on the events, with jets originating from Z → qq̄

and H → qq̄ decays being discriminated with similar efficacy, though a slight improvement was
observed in the Higgs sample for c-jet tagging specifically.

The u, d background proved to be the most challenging throughout these studies, particularly
for s-jets, though this was mitigated by Kaon identification. Among the considered K± scenarios,
the improvement was found to depend more on the π± misidentification than on increasing
K± identification efficiency, reflecting the high pion multiplicity in light jets. Similarly, the
reconstruction of V0 particles was found to benefit strange jet tagging sizeably, though the
improvement was reduced as the K± identification improved.

Subsequent permutation feature importance studies on b vs c, c vs s, and s vs ud tagging
performance further emphasised the importance of Kaon identification for strange jet discrim-
ination. For heavy flavour tagging, and even for s vs d at high purity, track and SV variables
proved most impactful.

Finally, a case study targetting the isolation of Z → ss̄ jets using DeepJetTransformer at the
Z-pole was performed, illustrating its use in a concrete physics scenario. It was shown that a
discovery significance of 5 σ is reached after less than a second of the Z-pole run at the FCC-ee,
albeit in a simplified scenario where non-Z backgrounds are neglected.
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DeepJetTransformer offers a lightweight architecture for efficient discrimination of jets initi-
ated by all quark flavours. The computational complexity, measured in FLOPs, is approximately
19.7 MFLOPs. Comparatively, DeepJetTransformer requires fewer FLOPs than competing ar-
chitectures [94, 110], making it an excellent choice to efficiently evaluate the impact of the
constantly evolving detector design on flavour tagging.

Future work may focus both on the optimisation of the machine learning algorithm, and
the realism of input features. The network performance could benefit from refining the input
feature set, hyperparameter tuning, and a larger training set. In parallel, more realistic K± PID
scenarios using the time-of-flight or number of primary ionisation clusters, as in Ref. [59], could
be incorporated. A detailed outlook for further developments is presented in Chapter 11 at the
end of this thesis.

Ultimately, while increasingly sophisticated architectures may be able to extract additional
discriminative power, the jet tagging performance will be gated by the quality of information
that is available. These studies emphasise the central importance of particle identification to
strange jet tagging at future colliders. The potential for further gains through precise vertexing
enabling not only increasing precision in secondary vertex reconstruction, but also V0 decays,
motivates ongoing MAPS development and optimisation, as explored in the following chapters
of this thesis.
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Part III

Monolithic Active Pixel Sensors for
Future Colliders
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7 Silicon Detectors

Silicon detectors have emerged as the enabling technology in high-precision tracking applications
since their adoption in the 1980s. Their introduction vastly improved the spatial reconstruction
of particle tracks, leading to a more precise determination of particle properties such as momen-
tum, and enabling the reconstruction of SVs for the first time. Secondary vertex reconstruction,
and tracking in general, are critical components of detector-level information for a wide variety
of measurements, and in particular the identification of jets. While novel jet tagging algorithms,
such as the one introduced in Chapter 6, will continue to incrementally improve the achievable
jet flavour tagging accuracy, the fundamental constraint will always remain the information
on the particle trajectories and properties from which the algorithm must infer the initiating
parton.

Owing to the low energy (∼ 3.6 eV) required to create an electron-hole pair, silicon detec-
tors can be regarded as extremely sensitive ionisation chambers, where energy deposited by an
impinging particle is translated to an electrical signal by the generation and subsequent motion
of charge carriers. The resulting signal, however, is a small current and must thus undergo a
sophisticated signal processing chain in order to become practically usable, balancing a variety
of design requirements including the spatial and energy resolutions, power density, material bud-
get, radiation tolerance, cost, and many others. Naturally, a variety of different technologies,
each optimal for a different environment or measurement, have emerged.

This chapter provides an introduction to silicon detectors, with a strong bias towards topics
relevant to the characterisation of the monolithic active pixel test structures presented in this
thesis. Much more comprehensive treatments of the topics covered can be found in Refs. [53,
172, 173]. The chapter begins with the fundamental properties of semiconductors, followed by an
overview of pn-junctions. Subsequently, Section 7.2.1 explores the energy deposition of charged
particles and photons in matter. The signal formation and its readout are presented in Sections
7.2.2 and 7.3.1, respectively. Noise sources and their impact on signal detection are presented
in Section 7.3.2. Finally, Section 7.4 provides a brief overview of monolithic active pixel sensors
and their applications.

7.1 Semiconductors

Solid materials can be classified according to their conductivity into insulators, conductors, and
semiconductors. The close spacing of atoms leads to overlapping of the individual wavefunctions
of atoms, leading to a splitting of the energy levels [53]. For a large number of atoms typical of a
solid, this results in an almost continuous band of allowed energies. The electrical conductivity
of a solid is determined by two of these bands: the valence band and the conduction band.
The valence band is the highest energy band that is completely filled at 0 K. The valence band
is separated from the conduction band by a finite energy gap covering a range of "forbidden"
energies, as depicted on Figure 7.1. The size of the band gap defines whether a material is
considered an insulator or a semiconductor. While this distinction is not strict, typical band
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gap values include ∼ 0.5− 3 eV for semiconductors and > 4 eV for insulators.

Figure 7.1: Schematic of the bandgap structure of an insulator and a semiconductor. The
bandgap energy is denoted by Eg. Figure taken from Ref. [173].

The Fermi energy EF , or chemical potential, describes the highest allowable energy level for
an electron at 0 K. In the case of insulators and semiconductors the Fermi energy lies near the
middle of the band gap. Thus, the valence band is completely filled, while the conduction band
is completely empty for both insulators and semiconductors at 0 K, preventing the conduction
of any current. Above 0 K, the behaviour of insulators and semiconductors begins to differ.
Electrons can be thermally excited into the conduction band of semiconductors. The probability
for an electron to occupy a higher energy state is given by [172]

fe(E) =
1

e(E−EF )/kBT + 1
(7.1)

where kB is the Boltzmann constant. While the probability of an individual electron occupying
an energy state in the conduction band is negligibly small, the high density of states leads to
a non-trivial conductivity for semiconductors. While this in principle also occurs in insulators,
the band gap of insulators is large enough that the concentration of electrons in the conduction
band is negligible.

In the case of silicon, the thermal excitation of electrons corresponds to overcoming the
energy of the valence bond with the neighbouring atom, and "freeing" the electron. This process
generates an electron which now acts a free charge carrier, and a hole in the valence bond in
which the electron once partook. The hole, as the electron, contributes to overall conductivity
of silicon, and through the collective motion of neighbouring electrons behaves as a free charge
carrier, albeit with a reduced mobility with respect to the electron. The concept of mobility
µ describes how quickly a charge carrier moves in a material under the influence of an electric
field. At low electric fields the relationship is roughly linear [173]:

ve,h = µe,h · |E⃗| (7.2)

where ve,h denotes the drift velocity of electrons and holes, respectively.
The conductivity of a semiconductor is given as

σ = e(n · µe + p · µh) (7.3)

where n, p and µn, µh denote the electron and hole densities and mobilities, respectively. The
electron and hole densities are related by the law of mass action, which states that the product
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of the charge carrier densities in a semiconductor is constant at equilibrium:

n · p = n2
i (7.4)

where ni is intrinsic carrier density. In an intrinsic semiconductor like pure silicon, the thermal
generation of charge carriers, and their potential recombination, will by construction generate
an equivalent number of electrons in the conduction band and holes. Thus, the free electron and
hole concentration will be equal, simplifying Equation 7.3 to σ = eni(µe + µh).

Doping

Extrinsic semiconductors denote semiconductors to which an impurity has been introduced.
The introduction of impurity atoms into the pure semiconductor lattice is known as doping,
and entails an increase in the conductivity of the respective semiconductor. In n-type silicon
pentavalent atoms such as phosphorus are introduced to the silicon lattice. Four of the valence
electrons form covalent bonds with neighbouring silicon atoms, while the remaining electron
remains in a quasi-free state. The remaining electron can be easily excited into the conduction
band by thermal excitations as it is not tightly bound in a covalent bond. It occupies an energy
level slightly below the conduction band in the band gap, as depicted on Figure 7.2a. While the
law of mass action still holds, the concentration of electrons in the conduction band begins to be
dominated by electrons from the impurity atoms. In addition, the sharp increase in electrons in
the conduction band leads to a recombination with remaining holes, such that n >> p. Equation
7.3 reduces to σ = e · n · µe, as the conductivity of the material begins to be dominated by the
majority charge carrier, in this case electrons.

Figure 7.2: Schematic of the modified bandgap structure of an n-doped (a) and p-doped (b)
semiconductor. Figures taken from Ref. [173].

Similar doping can be performed with trivalent atoms, such as boron, which instead of in-
troducing an excess electron into the lattice, have one too few. The doping, known as p-type
doping, entails a new energy level which appears slightly above the valence band, as depicted
on Figure 7.2b. Electrons in the conduction band preferentially recombine with the holes from
the impurity atoms, as the electrons are less tightly bound than in the Si-Si valence bonds.
Analogously to n-type doping, the holes now become the majority charge carriers, and the con-
ductivity likewise increases. Typical doping concentrations in Silicon are in the range 1012-1018

cm−3 [172]. In semiconductor detectors doping is used either for implants or for bulk material.
Implants refer to small regions of highly doped silicon which can act as ohmic contacts (e.g.
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for the collection electrode). The high doping ensures a low resistivity, and such regions are
accordingly denoted as p+, n+ depending on the type of impurity. By contrast, the active region
where electron-hole pairs are generated is often doped with at much lower concentrations, as the
higher resistivity is beneficial to charge collection, as detailed in the following section. The low
doping is denoted by p−, n−.

pn-junctions

Combining two oppositely-doped regions of silicon, typically by introducing n- and p-type
impurities to different volumes of the same silicon crystal, results in the creation of a depletion
region, which has several desirable properties for particle detection. Figure 7.3 depicts the
interface between the n- and p-type regions, referred to as a pn-junction. The formation of the
depletion region in a pn-junction begins with the majority carriers in the n-type silicon diffusing
into the p-type silicon, and vice-versa. This leads to an electron-hole pair recombination, whereby
conduction electrons from the n-type silicon form valence bonds with holes in the p-type silicon.
In this way both atoms in the n-type and p-type silicon are ionised, and the depletion region,
which is devoid of charge carriers, begins to form. While the pn-junction as a whole is electrically
neutral, the n-type impurity atoms are positively charged, while the p-type impurity atoms are
negatively charged. Accordingly, a potential difference across the depletion region resulting
from the oppositely charged ions also forms. The resulting electric field opposes the flow of
charge carriers along the diffusion gradient, with conduction electrons being swept back to the
now positively-charged n-type silicon, and vice-versa. At equilibrium, the motion of the charge
carriers due to diffusion and drift along the electric field are equal and opposite, such that the
depth of the depletion region remains constant. Although electron-hole pairs continue to be
thermally-generated within the depletion region, the electric field causes them to drift to their
corresponding n- or p-type silicon, before any meaningful build-up of charge carriers.

The depletion region is central to the functioning of semiconductor detectors, since the ab-
sence of thermally-generated charge carriers translates to greatly reduced noise. Moreover,
charge carriers resulting from the energy deposition of particles traversing the detector material
drift towards either the n- or p-type silicon generating a signal, as detailed in Section 7.2.2.
By applying a reverse bias voltage, that is to say a voltage along the built-in potential Vbi, the
depth of the depletion region can be increased, as depicted in the bottom panel of Figure 7.3.
In particular, the electric potential φ(r⃗) satisfies Poisson’s equation:

∇2φ(r⃗) = −ρ(r⃗)

ϵ
(7.5)

where ϵ is the dielectric constant and ρ(r⃗) is the charge density. Assuming the potential depends
only the direction perpendicular to the pn-junction, and noting that the charge density is given
by the respective carrier concentrations for each of the junction sides, reduces Equation 7.5 to

d2

dx2
φ(x) =

− eND
ϵ if 0 < x < xn

eNA
ϵ if − xp < x < 0

(7.6)

where −xp and xn denote the boundaries of the depletion region, and x = 0 the junction
interface. Given the constant charge density, Equation 7.6 can easily be integrated in order to
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obtain the x-component of the electric field in each respective region:

d

dx
φn,p(x) = −En,p

x (x) = −ρn,p

ϵ
· x+ Cn,p (7.7)

where the integration constant is determined from the boundary condition that the electric field
vanishes at the boundaries, yielding

d

dx
φ(x) =

− eND
ϵ (x− xn) if 0 < x < xn

eNA
ϵ (x+ xp) if − xp < x < 0

(7.8)

The above Equation can be integrated again to obtain

φ(x) =

− eND
2ϵ (x− xn)

2 + Vbias if 0 < x < xn
eNA
2ϵ (x+ xp)

2 if − xp < x < 0
(7.9)

where the integration constant is now determined from the boundary conditions of the applied
voltage: φ(xn) = Vbias and φ(−xp) = 0.

The continuity of the potential at the junction interface φ(0+) = φ(0−) allows the expression
of the bias voltage as a function of the depletion region depth of each region (xn, xp) using
Equation 7.9. Using the charge neutrality across the junction ND ·xn = NA ·xp, the relation can
easily be solved for the depth of the depletion region (d = xn + xp), making its approximately
square-root dependence on the bias voltage manifest [173]:

d · xp =
2ϵ

NAe
Vbias (7.10)

which can be written as

d ≈
√

2ϵ

NAe
Vbias ∝

√
Vbias (7.11)

by letting d ≈ xp. This holds when the doping concentration of the n-type region is much higher
than for the p-type region, as is the case for the junction between the n-well collection electrode
and the lightly-doped p-type sensitive layer of the chips explored in this thesis. Notably, the
depth of the depletion region also depends on the inverse root of the doping concentration of
the lightly-doped layer, suggesting that the extent of the depletion region can be increased by
minimising the doping concentration.

The extent of the depletion region is one of the defining characteristics in the performance of
a semiconductor detector. In addition to defining the region in which generated charges will drift
to the collection electrode, the width of the depletion region determines the junction capacitance
of the detector. Treating the pn-junction as a parallel plate capacitor, a capacitance of

C =
ϵA

d
≈ A ·

√
NA · e · ϵ
2 · Vbias

(7.12)

is obtained, where A is the area of the pn-junction interface. The capacitance should be min-
imised in order to induce a larger signal for an equivalent number of deposited charge. A
reduction in capacitance can greatly mitigate electronic noise contributions arising from later
stages of the signal processing, as described in Section 7.3.2.

The thermal generation of charge carriers can contribute to a current in the absence of a charge
deposition from an ionising particle. The leakage current is increased substantially by impurities
and radiation damage to the silicon bulk, which can introduce intermediate energy levels that
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Figure 7.3: Schematic of a pn-junction consisting of a p-doped and an n-doped region. Free
charge carriers are denoted by + and − signs, while the resulting ions are circled (top). The
width of the depletion region is increased if a reverse bias voltage is applied, denoted by V .
Figure adapted from Ref. [172].

facilitate excitations. The leakage current is a significant source of noise in semiconductor
detectors, that is not mitigated by reducing the junction capacitance.

Although the discussion has focused exclusively on pn-junctions thus far, it is worth noting
that p+p- and n+n-junctions, formed from the same type of impurity at different doping levels,
share some similar properties with pn-junctions [53]. Assuming a p+p-junction, as the interface
between the active layer and the substrate for the chips studied in this thesis, the hole con-
centration will be much higher in the p+ region leading to the diffusion of holes into the more
lightly-doped p region. This causes the build up of negative ions in the p+ region, and thus
the build-up of an electric field opposing further diffusion, in analogy with a pn-junction. This
field acts as a reflective barrier for electrons approaching the p+ region due to the negative ion
build-up [174].

7.2 Signal Formation

Fundamentally, the signal in a semiconductor detector consists of the electron-hole pairs created
by impinging radiation. For instance, a 5.9 keV Kα photon from an 55Fe decay will create a
photoelectron as it impinges on silicon, which will in turn generate ∼ 1640 electron-hole pairs
as it deposits its energy in the detector. More generally, the energy required to generate a single
electron-hole pair in silicon is 3.6 eV, which is considerably larger than the band gap of 1.12 eV,
as large fraction of the energy goes into phonon excitations [172]. Electrons and holes then drift
along the electric field into the p and n-type region respectively, generating a signal, as described
in Section 7.2.2. Before detailing the collection of said signal, some of the fundamentals of the
energy deposition of particles as they traverse detector material will be presented.

7.2.1 Particle Interactions with Matter

The energy deposition of charged and neutral particles differs substantially due to distinct in-
teraction mechanisms, and must thus be treated separately. In what follows, the interactions of
electrons and heavier charged particles is discussed, followed by a brief overview of the photon
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interactions with matter, in line with measurements presented in Chapters 9 and 10.

Charged Particles

Charged particles traversing detector material deposit a fraction of their energy by ionising
the atoms in the detector material. The mean energy deposited by charged particles in the range
0.1 ≲ βγ ≲ 1000 per unit length is given by the Bethe-Bloch equation [158, 175]:

−
〈
dE

dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Wmax

I2

)
− β2 − δ

2

]
, (7.13)

where K = 4πNAr
2
emec

2, z is the charge of the impinging particle, Z,A are the atomic number
and mass of the absorber, I is the mean excitation energy, Wmax is the maximum possible
energy transfer to an electron, and δ is a high energy correction related to the polarisation
of the absorber [158]. The energy loss in a number of media is depicted on Figure 7.4a. The
distribution is characterised by three regions. In the low-momentum range, primarily for βγ < 1,
Equation 7.13 is dominated by the 1/β2 term. The high energy-loss can be associated with large
momentum transfers that occur due to the long interaction times [53]. At even lower energies
Equation 7.13 does not hold.

Figure 7.4: Mean energy loss in a range of media as a function of βγ (a). Straggling functions
of silicon for 500 MeV pions, shown for a range of absorber thicknesses, as a function of the
energy loss per unit length ∆/x (b). Figures adapted from Ref. [158].

Around βγ ≈ 3 the energy-loss reaches its minimum as the scaling from the 1/β2 term
becomes diminished, but the high-momentum scaling of ln

(
β2γ2

)
has yet to kick-in. Particles

in the βγ ≈ 3 range are accordingly denoted minimum ionising particles (MIPs), though in
practice, and throughout this thesis, the term is also used to include particles with higher
momenta. While the Bethe-Bloch equation given in Equation 7.13 predicts a rise at high βγ due
to the scaling of the ln

(
β2γ2

)
term, before density corrections δ begin to flatten it, a fraction of

the ionisation energy is often not measured as it is carried away from the detector by energetic
electrons. This effect can be substantial, particularly for thin silicon detectors. The so called
delta electrons arise from rare collisions where the energy deposition by the impinging charged
particle is substantially higher than the typical ionisation energy (e.g. 3.6 eV in Si). The Bethe-
Bloch equation can be modified to suppress the contribution of delta electrons, resulting in the
restricted Bethe-Bloch equation, whose scaling at high energies is considerably more mild [176].
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The energy loss is an important strategy for charged particle identification, e.g. for the
K±-π± discrimination scenarios in Section 6.5.1. The dependence of the energy loss on βγ,
evident in Figure 7.4a, enables particle identification. Given that particles with the same mo-
mentum but different masses have differing βγ, the measurement of the energy loss allows for
the determination of a particle’s species.

The distribution of the energy loss at a given βγ, typically denoted as the straggling function,
was derived by Landau [177] and Vavilov [178], and later improved by Bichsel [179] to account
for the electron binding energy and a wider range of absorber thickness [180]. Figure 7.4b depicts
the straggling functions for a range of silicon thicknesses. The distribution is characterised by
a pronounced central peak and a high-energy tail resulting from rare high-energy transfers to
atomic electrons. The most-probable value (MPV) of the straggling function is considerably
more tractable experimentally than the mean of the distribution, given by Equation 7.13. The
measurement of the mean requires capturing the entire energy range, which can be problematic
in practice, as the detector response is constrained to a specific energy range, and may become
non-linear at high energies. Thus the MPV of the straggling function is used as a practical
estimator of the energy loss in tracking detectors.

The energy loss of electrons differs substantially from that of other charged particles, due to
differences in kinematics, spin, and their identity [53]. Figure 7.5a depicts the energy loss of
electrons in lead as a function of energy. Although the energy loss of electrons is dominated by
ionisation at low energies, it is not well described by the Bethe-Bloch equation. Instead, large
energy transfers of electrons are described by Moller scattering whereby the impinging electron
is scattered by an atomic electron. At increasing energies E ∼ 10 MeV, energy losses begin
to be dominated by the Bremsstrahlung process. Bremsstrahlung describes the emissions of
photons as an electron is accelerated in an electric field, in this case that of atomic nuclei of the
medium. At energies above 1 GeV typical of particle accelerators, the energy loss of electrons
occurs overwhelmingly via Bremsstrahlung.

Figure 7.5: Fractional energy loss per radiation length of electrons and positrons in lead (a).
Photon cross sections in carbon for a variety of different processes as a function of energy (b).
Figures adapted from Ref. [158].

As charged particles traverse matter they undergo a multitude of small-angle scattering pro-
cesses. Typically, these are dominated by multiple, sequential Coulomb scatterings off of atomic
nuclei in a process denoted multiple Coulomb scattering, or multiple scattering for short. Mul-
tiple scattering can be quantified by the width of the distribution of the scattering angle in the
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plane perpendicular to the particle trajectory θplane. In the limit of a large number of scatter-
ings, the scattering angle θplane is expected to be distributed approximately Gaussian, as per
the central limit theorem. Ref. [181] provides an estimate for RMS of θplane as

θms ≈
√
⟨θ2plane⟩ ≈

Es√
2pcβ

√
x

X0
(7.14)

where Es = mec
2
√

4π
α is a constant and x/X0 is the thickness of the medium in radiation lengths.

The 1/(pβ) scaling of θms highlights that multiple scattering is minimised when particles traverse
a medium at high energies. Moreover, multiple scattering can also be reduced by minimising the
amount of material that a particle must traverse in a detector, known as the material budget.
Minimising the material budget in order to reduce the deflection of particle trajectories is a key
consideration in tracking detector design.

Photons

The primary mechanisms involved in the interaction of photons with matter are the photo-
electric effect, Compton scattering, pair production, and Rayleigh scattering. The cross sections
for each of the processes in carbon is depicted on Figure 7.5b. At low energies below ∼ 50 keV
the photoelectric effect dominates the energy loss of photons in matter. The photoelectric effect
denotes the absorption of an energetic photon by an atom, freeing a bound electron and ionising
the atom. The energy of the freed electron is given by

Ee− = Eγ − EB (7.15)

where Eγ denotes the energy of the incoming photon and EB denotes the binding energy of
the electron. In the case of silicon, the freed electron deposits its energy by creating electron-
hole pairs as it traverses the medium. A ∼ 5.9 keV electron resulting from the photoelectric
absorption of a Kα photon from an 55Fe decay will deposit its entire energy almost locally, within
O(1) µm [182]. In addition to the photoelectric effect, Rayleigh scattering also contributes to
the interaction of photons at low energies, although with a much smaller cross section. Rayleigh
scattering describes the elastic scattering of a photon off an atom. Its contribution to the cross
section falls rapidly with energy, as the photon wavelength becomes smaller than the typical
radius of an atom.

At higher energies above ∼ 50 keV Compton scattering becomes the dominant process,
whereby the impinging photon scatters inelastically off a free or shell electron. The photon
transfers a fraction of its energy to the electron, and is scattered at an angle.

At even higher energies above ∼ 10 MeV, the dominant process is increasingly pair production.
Pair production describes the conversion of an energetic photon into an electron-positron pair,
as it interacts with the electric fields of atomic nuclei, or atomic electrons, to a lesser degree.
Kinematically, the photon energy must be greater than twice the rest mass of the electron, which
is evidenced by the Eγ ≈ 2mec

2 ≈ 1.022 MeV point in Figure 7.5b, above which pair production
begins to contribute.

7.2.2 Signal: Induced Current

The formation of a signal in a semiconductor detector begins with the excitation of electron
hole pairs by impinging radiation, as described above. The collective, orchestrated motion of
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charge carriers within the depletion region induces a current at the collection electrode, whose
magnitude is given by the Shockley-Ramo theorem [183, 184]

i(t) = −q
(
v⃗ · E⃗Q

)
(7.16)

where q, v⃗ are the charge and velocity of the charge carrier, and E⃗Q is the "weighting field",
which relates the carrier motion to the induced current at a given electrode, depending only
on geometry [172]. Thus, it is worth emphasising that the formation of a signal begins with
the motion of electron hole pairs in the sensitive layer, not necessarily when they arrive at the
collection electrode or substrate.

In general, the motion of charge carriers within the depletion region consists of a drift compo-
nent and a diffusion component. The drift of charge carriers within the depletion region due to
the electric field is roughly linear according to Equation 7.2, offering a natural avenue to increas-
ing the charge collection speed. Increasing the biasing voltage not only widens the depletion
region, guaranteeing that a larger fraction of the deposited charge is collected, but also increases
the electric field, particularly after full depletion. The increased charge collection speed has the
twin benefits of reducing the likelihood of charge trapping and recombination, which can become
significant after radiation damage, thereby increasing the fraction of charge that is collected,
but also reduces the rise time of the signal. The drift velocity cannot be increased indefinitely
by increasing the electric field, as the linear relationship given in Equation 7.2 breaks down at
high electric fields as the drift velocity saturates [53].

In addition, all charge carriers diffuse randomly throughout the semiconductor medium as a
result of their thermal motion. In this way, what may start as a localised deposition of charge by
an impinging particle becomes a charge carrier cloud spread out in a roughly Gaussian profile.
The standard deviation of said profile σdiff is given as [173]

σdiff =
√
2Dt, D = µ

kBT

e

where D is the diffusion constant and t is the time during which the charge carriers have diffused.
Charges generated within the depletion region are unlikely to diffuse very far, since they quickly
drift to either the collection electrode or the substrate according to Equation 7.2, minimising
the time of their diffusion.

For charges generated outside the depletion region, however, the diffusion component of their
motion can be substantial before they reach the depletion region. Indeed, for large enough
drift times, or for charge depositions close to pixel boundaries, this could mean diffusing to
the depletion region of the neighbouring pixel, and thus inducing a signal in the collection
electrode of the neighbouring pixel in a process denoted charge sharing. While high charge
sharing implies a number of drawbacks related to slow charge collection, charge trapping and
recombination, and reduced signal-to-noise ratio (SNR), charge sharing can aid substantially
in the reconstruction of a particle hit position by leveraging positional information encoded in
the charge of its neighbours. For instance, while a hit close to the pixel boundary may only be
reconstructed with a ∼ p/2 error if the entire charge is collected by the pixel in which the particle
impinged, a sharing of half the charge would allow the centre-of-mass to be reconstructed at
the pixel boundary, leading to a much lower reconstruction error. In practice, a trade-off must
be made in the degree of charge sharing desired in a sensor, with the positional reconstruction
accuracy weighed against the radiation hardness, timing performance, occupancy, and resulting
hit rate.
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7.3 Signal Readout

The induced current introduced in Section 7.2.2 must be integrated in order to obtain a measure
of the charge deposited by an impinging particle. Moreover, the resulting signal is generally
very small and must be amplified before being processed further. As this is first step following
the collection electrode, the amplifier is referred to as a preamplifier. The preamplifier may be
either DC- or AC-coupled to the collection node, with the latter using a coupling capacitor that
allows higher bias voltages at the collection node, albeit at the cost of added input capacitance.
Additional steps to increase the SNR, readout speed, or reduce the data rate, are typically
performed in subsequent signal processing stages. Since the chips presented in this thesis feature
an analogue readout, the reader is referred to Refs. [53, 172] for details on signal processing
beyond amplification.

7.3.1 Readout Electronics

The integration of the induced current must be performed at some capacitance, often by a
dedicated feedback capacitor of the preamplifier, in which case the preamplifier is said to be
charge-sensitive. Alternatively, the current may be integrated on the capacitance of the collection
node itself, as is done for the chips in this thesis. In other words, the signal at the input of the
preamplifier is simply the voltage drop at the collection node due to charge carrier accumulation,
and the preamplifier is thus considered voltage-sensitive. The observed signal following the
preamplifier is a stable baseline defined by the preamplifier working point, which falls sharply as
charge from an impinging particle is collected. In order to restore the baseline and maintain the
dynamic range of the amplifier, its input must be discharged. The discharge of amplifier input
is performed either through some dedicated current (e.g. Ireset) or through the leakage current
itself, in which case the preamplifier is said to be self-recovering.

While an analogue readout is feasible for the test structures presented in this thesis, for larger
detector systems the readout of the full analogue signal can pose a major challenge. Instead,
the signal can be digitised to a certain precision. There is a tradeoff in the digitisation precision
and speed [172], such that for fast applications, only the hit-no hit information is saved [185].
The attainable spatial resolution using the binary method can be computed as the variance of
a uniform distribution, integrated from −p/2 to p/2 corresponding to the pixel boundaries

σ2 =

∫ p/2

−p/2
x2f(x)dx =

1

p

∫ p/2

−p/2
x2dx =

p2

12
(7.17)

where f(x) is the pdf and p is the pixel pitch. The resolution is then σ = p/
√
12, which suffices

only for small pitches.
Alternatives to the binary readout method, whereby the collected charge is encoded to higher

precision, exist. For instance, the measured pulse height may be passed to comparators, thereby
digitising the collected charge. On the other hand, if a reset current discharges the integrating
capacitor linearly, then the time required to return to baseline may be exploited to determine
the deposited charge, in what is known as the Time-Over-Threshold (ToT) method. It offers a
compromise between precision and speed, as the ToT is generally less precise than the full pulse
height, but requires fewer bits.
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7.3.2 Noise

Noise broadly describes fluctuations of a signal arising from sources unrelated to the underlying
measured phenomenon. In the context of semiconductor pixel detectors, the primary noise source
in the measurement of an energy deposition is typically the electronic noise resulting from the
readout electronics. Minimising electronic noise is one of the key considerations in semiconductor
detector design, as noise can quickly degrade the achievable SNR given the relatively low signals
generated by ionisation.

Fano Noise

Even if one were to imagine a detector with negligible electronic noise, a measurement of the
energy deposited by a particle would still be smeared by statistical fluctuations in the number
of generated electron hole pairs. The number of electron hole pairs Neh generated by an energy
deposition has the mean ⟨Neh⟩ = E/Ei, where Ei denotes the ionisation energy. Assuming a
Poisson distribution would imply a standard deviation of σNeh

=
√
E/Ei, which would give a

measurement resolution of σNeh
/Neh =

√
Ei/E. In practice, however, the observed standard

deviation is significantly smaller due to the contributions from other excitation mechanisms such
as phonons [172], though a complete understanding does not yet exist [173]. The deviation from
the expected standard deviation from statistics alone is given by the Fano factor

σNeh

Neh
=

√
F · Ei

E
(7.18)

The Fano factor for silicon is F ≈ 0.1, setting the intrinsic energy resolution that can be achieved
in a silicon detector.

Fixed Pattern Noise

Measurements that combine the signal of multiple pixels, such as reconstructing a particle
track position from the signal of neighbouring pixels, are subject to an additional type of noise
resulting from variations between them. Fixed Pattern Noise (FPN) denotes the noise resulting
from the differing response of neighbouring pixels due to gain and baseline differences introduced
by manufacturing variations. FPN is characterised by varying spatially, for instance across a
pixel matrix, but being temporally constant. Calibration measurements can be used to scale the
response of each pixel, minimising FPN, as is done in Section 9.6.3 for the chips studied in this
thesis.

Electronic Noise

Electronic noise results from statistical fluctuations in the readout electronics. The primary
noise sources in silicon detectors include thermal noise, shot noise, and 1/f noise. Thermal noise,
or Johnson noise, describes voltage fluctuations resulting from the random thermal motion of
charge carriers in a resistive circuit element. The spectral density up to high frequencies is
constant, and proportional to the temperature of the medium.

Shot noise describes fluctuations in the number of charge carriers overcoming some potential
barrier. In semiconductor detectors the primary source of shot noise is the stochasticity of
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thermal electron-hole pair generation in the pn-junction, leading to fluctuations in the leakage
current. The spectral density is likewise constant, and proportional to the leakage current.

Flicker noise, or 1/f noise, encompasses noise whose spectral density scales as 1/fα for some
α = 0.5, ..., 2 [53], and thus dominates at low frequencies. In electronics 1/f noise is associated
with the trapping of charge carriers. The correlated double sampling technique briefly introduced
in Section 8.4 can be used to mitigate 1/f noise [186].

The contribution of noise to the measured signal is often quantified by measuring the equiva-
lent noise charge (ENC). The equivalent noise charge represents the fluctuation in input charge
(i.e. Neh) that would correspond to the observed noise in the output signal (e.g. ∆V). The ENC
is obtained by scaling the measured noise by the charge-to-voltage gain of the detector

ENC =
∆V
GQ

(7.19)

where GQ is the charge-to-voltage gain of the detector1 under consideration. In this way, the
contribution of all noise sources can be compared, regardless of where in the signal processing
chain they appear. Moreover, by expressing the noise in terms of input charge, and thus as a
fraction of the signal, the observed noise can be meaningfully compared across detectors as its
magnitude no longer depends on the amplifier gain.

7.4 Monolithic Pixel Detectors

Semiconductor detectors function by converting the energy deposited by an impinging particle
into an electrical signal. Typically the charge formation and collection described in Section 7.2 is
performed on a high-resistivity piece of silicon where the depletion region can extend over a large
area of the sensor. The intricate readout electronics, on the other hand, require a low-resistivity
piece of silicon, where the signal can be amplified and digitised. In the hybrid approach the
sensor and the readout electronics are fabricated on two separate silicon dies and connected via
a micro-connection, typically a bump bond. In this way, the readout chip and the sensor can be
optimised independently.

MAPS Overview

Monolithic Active Pixel Sensors (MAPS) combine the sensor and readout chip onto the same
silicon die. Integrating sensing and readout electronics onto the same silicon die introduces
challenges, including isolation of the transistors. In order to ensure proper functioning of PMOS
transistors, they must be fabricated within an n-doped well. The n-well must, in turn, be
isolated from the active layer where electron-hole pairs are generated, since it would otherwise
compete with the n-type collection electrode for electrons. Two strategies for achieving this are
either the use of a large collection electrode into which the readout circuitry is placed [187], or
separate deep p-wells which ensure isolation from the active sensing layer, as depicted Figure 7.6.
The latter approach is adopted for the chips presented in this thesis, which entails the benefit
that the n-well collection electrode can be miniaturised, reducing the junction capacitance, and
thereby benefitting the SNR.

MAPS offer a variety of advantages with respect to their hybrid counterparts, including a

1For the CE-65 family of chips studied in this thesis, GQ corresponds to γ−1
ccf defined in Equation 9.5.
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Figure 7.6: Schematic of a MAPS pixel cross section. Adapted from Ref. [46].

lower material budget, reduced power consumption, and smaller pitch/miniaturisation, as bump
bonding is not needed. Nevertheless, the high rate and high radiation environment inherent to
hadron colliders has meant that MAPS have seen limited adoption at hadron colliders. These
conditions can prove challenging for MAPS, where the limited depletion region means charge
collection often contains a diffusive element which can lead to much slower charge collection
times, and make charge carriers more prone to charge trapping and recombination due to ra-
diation defects. Hybrid sensors, on the other hand, are more well-suited due to the ability to
apply large voltage biases to the high-resistivity sensor, and thereby lead to the depletion of
large areas of the chip. The resulting drift-dominated charge collection is considerably faster,
and more radiation tolerant.

Moreover, while the use of existing commercial CMOS technologies greatly reduces cost,
typical CMOS technologies include a very shallow O(10) µm high-resistivity layer on the silicon
substrate. This shallow layer, termed the epitaxial layer, acts as the sensing layer in MAPS
sensors, as depicted on Figure 7.6. Most of the silicon substrate thus does not partake in
charge generation and collection, acting mostly as mechanical support [172]. The thin sensing
layer entails a small charge deposition, as described in Section 7.2. The small generated signal
thus places stringent constraints on the tolerable noise level, and impacts the achievable energy
resolution.

Applications

The radiation background in future lepton colliders will be significantly lower than in hadron
colliders, removing a major limitation for MAPS-based detectors. With the push for high-
precision vertex detectors at future lepton colliders, MAPS offer a promising avenue due to
their low material budget, which reduces multiple scattering and improves spatial resolution.
A number of (proposed) future collider experiments are actively exploring MAPS for vertexing,
including the FCC-ee [47, 188], CLIC [189], ILC [190], and CEPC [191]. In particular, MAPS
have been proposed as the enabling technology for the high-precision vertex detector for all 4
detector concepts introduced in Section 3.5.

MAPS have already seen adoption at heavy-ion experiments, including ALICE at the LHC
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[192, 193] and STAR at RHIC [194], where radiation environments are considerably more mild
than in proton-proton collisions. The synergy between ongoing research efforts on MAPS de-
velopment for heavy-ion experiments and future lepton colliders is exemplified by the latest
upgrade of ALICE’s Inner Tracking System (ITS), dubbed the ITS3 [46]. The ITS3 upgrade
plans to replace the ITS2’s [192] three innermost layers with fully cylindrical, wafer-scale bent
sensors, targeting an excellent ∼ 5 µm spatial resolution and an ultra-low material budget of
0.07% X0 per layer. Refs. [195, 196] highlight that the FCC-ee vertex detector requirements are
generally comparable to those of the ALICE ITS3 upgrade, with requirements on the spatial
resolution being somewhat more stringent, while baseline material budget constraints are more
relaxed2. The details of a MAPS test structure targetting both the ALICE ITS3 upgrade and
future colliders such as the FCC-ee are presented in the following chapter, before delving into
its characterisation thereafter.

2Ref. [47] explores the benefits of a reduced material budget at the FCC-ee.
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8 CE-65 Chip

In December 2020 the first set of small-scale test structures targeting the ALICE ITS3 upgrade
[46] were produced using the TPSCo 65 nm CMOS imaging process. This Multi-Reticle Layer
Run 1 (MLR1) submission targeted the systematic exploration and validation of key aspects of
the 65 nm technology, including process parameters, in-pixel electronics, and front-end designs,
in preparation for the wafer-scale MAPS sensors of ITS3. The MLR1 submission featured a
number of distinct test-structures targeting specific challenges of the ITS3 upgrade, three of
which are listed here:

• Analogue Pixel Test Structure (APTS) [197]: A small 6×6 pixel matrix, of which the inner
4 × 4 are active, with direct analogue readout, optimized for studying charge collection
efficiency, noise performance, and collection electrode geometry variations

• Digital Pixel Test Structure (DPTS) [198]: A larger 32×32 pixel matrix with time-encoded
digital readout, developed to evaluate pixel-level digital electronics

• Circuit Exploratoire 65 nm (CE-65) [199]: A larger test structure featuring a 64×32 pixel
matrix combined with analogue readout, designed to investigate scalability, and process
properties in the 65 nm technology

The MLR1 prototypes provided critical insights into the feasibility of 65 nm MAPS for ITS3,
validating key process parameters [4, 196–204].

While the subsequent ER1 submission targeted primarily the ALICE ITS3 upgrade through
the fabrication of the MOSS and MOST sensors, significant room on the wafer was devoted to
the advancing of earlier test-structures, including the CE-65v2: the evolution of CE-65.

8.1 Chip Details

The CE-65 and its evolution, the CE-65v2, were developed to investigate the charge collection
and electrical properties of the 65 nm CMOS process, targetting not only the ITS3 upgrade,
but future applications of MAPS, including the FCC-ee. Both the CE-65v1 and the CE-65v2
feature a large matrix read out in an analogue way, as depicted on Figures 8.1a and 8.1b.

While the CE-65v1 implements three separate in-pixel amplification schemes: an AC-coupled
preamplifier (AC), a DC-coupled preamplifier (DC), and a DC-coupled source-follower (SF), the
CE-65v2 features only the AC-coupled pre-amplifier. The CE-65v1 chip is split into three
submatrices, each corresponding to one of the amplification schemes. The CE-65v2 expands on
the CE-65v1 by including a wide variety of chip variants targeting additionally the exploration
of process and pitch variations, and introduced the staggered pixel arrangement as a way to
gauge the importance of matrix geometry on the achievable single point resolution. The four
exploration axes that are targeted by the CE-65 family of test structures are listed below:

• Amplification Scheme: AC-amp., DC-amp., SF

• Process variation: Standard, Modified, Modified w/ Gap
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• Pitch variation: 15 µm, 18 µm, 22.5 µm

• Matrix geometry: square vs staggered

Figure 8.1: Photographs of the CE-65v1 chip (a), taken from Ref. [46], and CE-65v2 chip (b),
provided by IPHC Strasbourg. The chip dimensions are 1.41 mm × 1.41 mm, and 1.5 mm ×
1.5 mm, respectively.

The adopted amplification scheme has ramifications on the noise performance of the chip
and thus on the measured energy resolution. The AC-coupled preamplifier was selected as the
baseline in CE-65v2 after demonstrating superior signal-to-noise characteristics in CE-65v1, as
shown in Chapter 9.

Adopting a reduced pixel pitch allows for an improvement in the spatial resolution, but comes
with notable drawbacks in terms of power consumption, readout-rate, as well as challenges during
manufacturing. Thus it becomes necessary to explore the pitch size at which the desired spatial
resolution can be achieved, without compromising other aspects of the chip and overall system
design.

The process variations are detailed in Section 8.2. The variations are centered around the
inclusion of a a deep low-dose n-type implant between the epitaxial layer and the CMOS circuitry
[205], enabling a more uniform formation of the depletion region in the epitaxial layer. These
result in different levels of charge sharing, directly affecting the achievable resolution for each of
the sensor variants.

The final exploration axis is the inclusion of a staggered matrix geometry where every second
column is staggered by half the pixel pitch, as introduced in Section 8.5. This, in principle,
reduces the number of neighbours that a seed pixel would have in a cluster, and thus promises
an improved resolution at higher thresholds.

8.2 Process Modifications

Process variations following the lessons learned during the development of the ALPIDE [185]
chip, targeting the ITS2 upgrade, resulted in considerable improvements in radiation hardness
and charge collection speed.
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8.2.1 Standard Process

Figure 8.2a illustrates the cross section of a pixel produced in the Standard process, consisting
of an n-well collection electrode, and in-pixel CMOS circuitry that is isolated from the epitaxial
layer by a deep p-well. The deep p-well provides a charge-reflective boundary between the
epitaxial layer and the circuitry, preventing the n-wells housing the PMOS transistors from
competing with the collection electrode for the generated electrons. The depletion region begins
to develop at the n-well collection electrode and follows a balloon shape in the eptaxial layer,
as the reverse biasing voltage is increased. This proceeds until the p+ substrate is reached, at
which point the strong doping gradient inhibits further depletion. Due to the limited depth
of the epitaxial region of O(10 µm), the lateral region remains largely undepleted, resulting in
diffusion-dominated charge collection. In effect, charge collection is slow and subject to charge
trapping, whilst exhibiting substantial charge sharing between pixels.

8.2.2 Modified Process

In order to address the shortcomings of the Standard process, a planar junction spanning the
pixel width was introduced [205]. Figure 8.2b depicts the Modified process which has, in addition,
a deep low-dose n-type implant between the epitaxial layer and the CMOS circuitry. The
development of the depletion region now begins at the interface of the n-type implant and
the epitaxial layer. Even at low bias voltages, the depletion region spans the width of the
pixel and begins to extend vertically. While this ensures full depletion of the epitaxial layer,
it also entails a substantial increase in the sensor capacitance as the region around the n-well
collection electrode remains undepleted [205]. This is addressed by providing higher biasing
voltages, which then deplete the region in the n-type implant between the n-well collection
electrode and the deep p-wells. At a high biasing voltage the capacitance is defined by the
geometry of the n-well collection electrode itself. Indeed, during the laboratory characterisation
of the CE-65 family of chips detailed in Chapter 9, capacitance was found to vary little across
process variations at full depletion. While a larger biasing voltage is needed to operate chips
at low sensor capacitance than in the Standard process, the lateral depletion of the Modified
process allows for the development of the electric field. The electric field induces drift-dominated
charge collection, resulting in faster charge collection and reduced charge sharing. The resulting
improved radiation hardness was one of the primary motivations for the introduction of the
Modified process [46].

8.2.3 Modified with Gap Process

Nevertheless, the Modified process displayed considerable drops in efficiency towards the pixel
edges at mild irradiation doses of 1014 1 MeV neq cm−2. Figure 8.2c depicts the Modified with
Gap process, which adopts the same layout as the Modified process, but includes gaps at the
pixel edges [206]. The gaps enable the development of the electric field at the edges, resulting
in even less charge sharing than in the Modified process.

While the process modifications were initially developed for the 180 nm TowerJazz technology,
the adoption of the TPSCo 65 nm technology entails a reduction in the depth of the epitaxial
layer by over a factor 2 [46]. Accordingly, the incomplete lateral depletion of the Standard
process is magnified, with an even larger fraction of the epitaxial layer remaining undepleted,
for equivalent pixel pitches. Thus, the impact of the process modifications is amplified with
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respect to the 180 nm process.

Figure 8.2: Schematic of the CE-65(v2) pixel cross section for the Standard, Modified, and
Modified with Gap, process modifications. Adapted from Ref. [46].

8.3 Amplification Scheme

The adoption of in-pixel gain amplifiers is one of the key components in the processing of an
analog signal in a silicon detector. The signal amplification substantially improves the signal-
to-noise ratio. The design of the in-pixel amplifier involves a trade-off between gain, speed,
noise, and power consumption [207]. One of the key objectives of the CE-65v1 test structure
is studying the impact that in-pixel signal amplification scheme has on the achievable spatial
resolution. As mentioned in Section 8.1, the CE-65v2 adopted the AC-coupled preamplifier only,
and thus the discussion in this section pertains primarily to the CE-65v1 chip.

8.3.1 Source-Follower

The three submatrices of the CE-65v1 chip are depicted on Figure 8.3a, with an equivalent
number of rows for all four variants. Figure 8.3b depicts the in-pixel circuitry of the rightmost
submatrix of the CE-65v1 chip, consisting of a simple 3-T source-follower (SF). The circuit
acts as both a source-follower and a level-shifter to the 1.2 V domain. The current source is
implemented as a NMOS transistor, below M1. The collection node is biased by a resetting
diode at a voltage of Vreset. Since the bias is DC coupled with the gate of M1, Vreset cannot
exceed the supply voltage at the drain of M1, given by VDD33 = 3.3 V.
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Figure 8.3: Diagram of the three submatrices of the CE-65v1 chip, and its readout (a). Biases
are marked in red. Schematic of the CE-65(v2) in-pixel source-follower amplification scheme
(b). Figures taken from Ref. [208].

8.3.2 DC Preamplifier

The second amplification scheme at the centre submatrix is the DC-coupled preamplifier, de-
picted on Figure 8.4a. It implements a more sophisticated architecture consisting of a self-biased
amplifier and a pmos source-follower acting as a level shifter to the 1.2 V domain. The sensing
node is connected directly to the gate of the input transistor, meaning no resetting diode can
be implemented. Instead, the collection electrode is maintained at the operating voltage of the
pre-amplifier, typically around 1 V. In this way a gain of ∼ 5 times that of source-follower
submatrix is obtained.

Figure 8.4: Schematic of the CE-65(v2) in-pixel DC (a) and AC (b) amplification schemes.
Figures taken from Ref. [208].

8.3.3 AC Preamplifier

Figure 8.4b depicts the final amplification scheme: the AC-coupled preamplifier. The same in-
pixel electronics as for the DC-coupled preamplifier are adopted, with the important distinction
that the sensing node is separated from the input of the readout stage by a capacitance of ∼ 10

fF [199]. While this comes at the cost of a reduced gain with respect to the DC variant due to
parasitics introduced by the capacitor, this allows the application of much larger biasing voltages
at the sensing node via a resetting diode, similar to the SF amplification scheme. Throughout
this thesis, a baseline value of HVreset = 10 V was chosen, as it was found to fully deplete the
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chip. The three amplification schemes can thus be ordered with respect to gain as SF < AC <
DC, and with respect to the depletion of the epitaxial layer as DC < SF < AC.

8.4 Chip Readout

The rolling shutter readout of the CE-65 family of chips serialises the output from every pixel
into a contiguous structure consisting of the analog signals, read in a column-major fashion. It is
implemented similarly for both versions of the CE-65 chip, and thus the readout of the CE-65v1
is detailed. Figure 8.5 depicts the readout of the CE-65v1 chip.

Figure 8.5: Readout of a single frame of the CE-65v1 chip. CLK and !START signals (black) are
provided externally, while row (blue) and column (red) selector signals are generated internally.
Figure taken from Ref. [208].

Readout begins with an externally provided start signal (!START), which drives the analog
signal of pixel (0,0) at the corner of the chip to the output. A clock signal (CLK) defining the
readout period for each pixel is provided. While the CLK can be operated at a frequency of
up to 40 MHz [199], throughout this thesis the presented measurements were performed at 10
MHz. The rising edge of each CLK signal defines two sets of internal signals which select the
column and row corresponding to the pixel that is to be read out, respectively. After all pixels
of the matrix have been read out, the subsequent clock cycle again initiates the read out of pixel
(0,0), defining the new frame.

The pixel signal is shifted away from the baseline as charges generated in the epitaxial layer
generate a current at the electrode following the Shockley-Ramo theorem, introduced in Section
7.2.2. This is depicted for a pixel of the SF submatrix on Figure 8.6, where the negative polarity
of the signal can be seen, before a return to baseline. For the AC and DC submatrices the
inverting amplifier flips the polarity.

In order to minimise noise contributions arising from low-frequency sources and offsets related
to FPN, Correlated Double Sampling (CDS) is employed, whereby time-adjacent samples are
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Figure 8.6: Illustration of the pixel response to deposited charge for a source-follower pixel.
Figure taken from Ref. [208].

subtracted:

Ameas. = SN − SN−1 (8.1)

where SN is the signal measured for a given pixel during the N th iteration of the readout, and
Ameas. is the measured amplitude which is proportional to the generated charge in the pixel.

8.5 Matrix Arrangement

The FASTPIX [209] prototype chip implements hexagonal pixels with pitches ranging from 8.66
to 20 µm in the TowerJazz 180 nm process. The hexagonal geometry minimises the maximal
distance from the pixel edges to the collection electrode. While in a square pixel this is given by
p/

√
2, where p is the pixel pitch, in a hexagonal pixel with equal area this distance is reduced to

0.88 ·p/
√
2 [209]. The smaller distance between pixel edges and the collection electrode, coupled

with the decreased number of neighbours, results in considerably reduced charge sharing. The
hexagonal pixel geometry thus constrains charge to typically be shared by 3 pixels or less, offering
a variety of benefits associated with a higher charge per pixel.

In an effort to emulate the benefits of the hexagonal pixel geometry without adopting truly
hexagonal pixels, the CE-65v2 chip was implemented in a staggered matrix arrangement, in
addition to the square arrangement.

The square arrangement, depicted on Figure 8.7a, defines the baseline design of the chip, and
was adopted for all other exploration axes of the CE-65v2 test structure. In effect, this means
there 9 variants corresponding to the 3 process modifications and 3 pixel pitches.

Figure 8.7: Illustration of the square (a) and staggered (b) matrix arrangements adopted in
the CE-65v2 chip.
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The staggered arrangement, depicted on Figure 8.7b, was adopted only for the 22.5 µm and
18 µm pixel pitches, and thus for 6 variants in total. In the staggered arrangement every second
column is shifted by p/2 vertically. The shift results in a reduction in the immediate number
of neighbours from 8 in the square arrangement to 6. While the collection electrodes of the
neighbouring pixels now follow a hexagon, it is important to distinguish the arrangement of
the neighbours from the shape of the pixel boundaries, which remain squares. This entails
that unlike in the FASTPIX chip where the charge collected by the seed pixel was observed
to be substantially higher than in the square arrangement, the staggered arrangement shows
little difference with respect to the square arrangement. However, the reduction in the number
of neighbours results in an increase in the number of clusters consisting of 3 pixels or less,
as demonstrated in Section 10.2.6. This reduction, coupled with a geometry favourable for
cluster position reconstruction, resulted in sizeable improvements to the spatial resolution of the
staggered arrangement variants.

8.6 Summary of V1 and V2 Design Differences

A summary of the properties and differences between between the CE-65v1 chip and the CE-65v2
is listed below:

Table 8.1: Selected design parameters of CE-65v1 and CE-65v2. Parameters only present in
the 22.5 µm Standard process CE-65v1 variant are written in parentheses.

Parameter CE-65v1 CE-65v2
Sensor dimensions 64×32 pixels (48×32 pixels) 48×24 pixels
Process modifications Standard, Modified, Gap
Readout Rolling shutter
Pitch 15 µm (25 µm) 15, 18, 22.5 µm
Amplification scheme AC-amp., DC-amp., SF AC-amp.
Matrix geometry Square Square, Hexagonal/Staggered
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9 Laboratory Characterisation

The characterisation of novel MAPS technologies begins in a controlled laboratory setting, where
the basic functionality of the chip is verified. Fundamental properties including charge collection
and noise performance are evaluated. For the CE-65 family of sensors, this initial evaluation
focused on critical performance metrics revolving around the sensor’s response to X-rays and
noise characteristics. Using a 55Fe source, the laboratory studies detailed in this chapter probed
the charge collection properties of the CE-65v1 and CE-65v2 variants, including the depletion
of the epitaxial layer, charge sharing, collection efficiency, and gain uniformity across the pixel
matrix. Complementary noise performance studies were conducted to observe both the pixel
baseline and ENC, providing a picture of some of the sensors’ limitations.

The laboratory characterization served as a crucial first step in investigating three of the
four exploration axes introduced in Section 8.1: amplification scheme, process modification,
and pitch variation. It served as a precursor to subsequent testbeam studies, where additional
performance aspects, including the spatial resolution and detection efficiency, were evaluated to
demonstrate the full potential of sensors fabricated in the 65 nm TPSCo CMOS process. This
chapter begins by detailing the data acquisition (DAQ) setup before delving into the analysis
strategy and clusterisation procedure. The gain calibration of the CE-65v1 and CE-65v2 chips
is presented, emphasizing key performance parameters such as charge collection efficiency and
gain uniformity. Finally, key trends and results are summarized.

Parts of the 55Fe source characterisation covered in this chapter have been published
in Ref. [4]. Similar phrasing was used for relevant sections.

9.1 Lab Setup

9.1.1 Data Acquisition Setup

The DAQ setup at the University of Zurich is depicted on Figure 9.1. The custom test setup
was developed by INFN Cagliari in collaboration with CERN targeting all of the MLR1 test
structures introduced in Chapter 8. The setup consists of a DAQ board, a proximity board,
and a carrier board housing the CE-65 chip, all interconnected via PCIe connectors. Various
connectors can be seen which power the test setup, provide voltage biases, and read out data.
A brief overview of the core components is given below, but the interested reader is encouraged
to consult Ref. [210] for details.

At its core Altera Cyclone IV-based DAQ board serves to read out and format the chip data,
transferring it to the connected PC via the USB interface visible at the left edge of Figure 9.1,
where it is further processed using the DAQ software framework described in Section 9.1.2. The
DAQ board includes a configurable clock (up to 40 MHz), enabling tests of different CE-65
readout speeds. In the presented results, the clock speed was limited to 10 MHz. In addition,
reverse biasing voltages are applied to the CE-65 chip via the LEMO connectors visible on top
of the DAQ board. Power is supplied externally to the DAQ board via the green 3-pin screw
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Figure 9.1: Laboratory test setup of the CE-65v1 and CE-65v2 chips at the University of
Zurich.

terminal connector. The pins to the right of the power connector are used to control which of
the MLR1 prototypes is being tested.

Each of the proxy boards is test structure specific, and houses DACs providing voltage and
current biasing, as well as ADCs digitizing the output for transfer to the DAQ board. For CE-65,
readout is performed using a 16-bit ADC.

The test system was mounted on an Aluminium structure hosting the DAQ board, the proxy
board, and the carrier board. Temperature control was provided using the Huber Minichiller
to circulate water below the Aluminium structure. Dry air was used to prevent condensation.
A Rhode & Schwarz HMP2030 power supply was used to power the DAQ board and provide
VPWELL, VSUB, and high-voltage (HV) bias voltages to the CE-65 chip. An RC-filter was used
to mitigate high-frequency noise from the power supply.

The 55Fe source holder was slid above the chip before data taking leaving a distance of a
couple cm from the source to the chip. The activity of the source was estimated at ∼ 200 MBq
at the time of data taking.

9.1.2 Data Acquisition Code

The DAQ code consists of a C++-based Graphical User Interface (GUI) implemented using
the ROOT framework, initially developed by the IPHC Strasbourg. The framework consists of
modules serving separate functions in the data processing chain. Figure 9.2a depicts a high-level
schematic containing the core modules. The GUI, depicted on Figure 9.2b, serves as the direct
point of interaction for the user. User-chosen configurations, including the chip variant or proxy
board ID, are specified in the GUI. Data taking commands including the starting and stopping
of runs are also undertaken in the GUI.

The GUI passes user commands to the DAQManager, which serves as the core steering module
of the framework. Prior to data taking a run must be configured, whereby biasing conditions are
chosen and passed on to the DACBoardConfigurator. The DACBoardConfigurator is responsible
for direct interaction with the physical DAQ board introduced in Section 9.1.1. This includes
low-level hardware interactions such as the powering of the chip, along with setting of DAC
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Figure 9.2: Overview of the core components of the DAQ software framework (a) and a screen-
shot of the GUI (b).

values and biasing conditions.
Once data taking begins, raw data from the DAQ board is passed to the EventBuilder, which

translates the raw data in the form of 32-bit words into CE-65 frames. These are data structures
consisting of metadata, including the frame number and timestamp, as well as the pixel signal
in the form of the raw amplitude and CDS signal for every pixel in the chip matrix. The frames
are subsequently packaged into a CE-65 event, consisting of 8 consecutive frames.

The EventBuilder then passes CE-65 events to the OnlineMonitor, where the data is used
to create real-time visualisations for the user appearing in the GUI. These take the form of
histograms embedded in the GUI’s canvas. These are periodically updated throughout data
taking.

The EventBuilder also passes CE-65 events to the DataStorage module. The core purpose of
the DataStorage module is saving of CE-65 events in the form of .root files for offline analysis.
The DataStorage module implements thresholding of CE-65 events for output data size reduc-
tion. The thresholds are user defined and required that a given CE-65 event contain a pixel
whose signal (sij) exceeds

• sij > 800 ADUs if sij ∈ AC submatrix

• sij > 800 ADUs if sij ∈ DC submatrix

• sij > 200 ADUs if sij ∈ SF submatrix

and that simultaneously the sum of the pixel and its adjacent pixels exceeds

• Sij =
∑i+1

k=i−1

∑j+1
l=j−1 skl > 3000 (2000) ADUs if sij ∈ AC submatrix of CE-65v1 (CE-

65v2) chip

• Sij > 3000 ADUs if sij ∈ DC submatrix

• Sij > 1000 ADUs if sij ∈ SF submatrix

in order for the CE-65 event to be saved. The thresholds resulted in a data size reduction of
×12.

9.2 Noise Characterisation

The noise performance of the CE-65v1 and CE-65v2 chips was evaluated by measuring the
chip responses in the absence of a radioactive source. Specifically, the pixel baseline and the
equivalent noise charge (ENC) were analysed. The baseline represents the raw pixel response in
the absence of a source.
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Figure 9.3 depicts the pixel baseline for the 15 µm pitch CE-65v1 chip produced in the
Modified process. The three submatrices corresponding to the AC-coupled preamplifier, DC-
coupled preamplifier, and source-follower amplification schemes, introduced in Section 8.3, are
clearly visible. The right-most SF submatrix displays a positive baseline in the ∼ 2500 ADU
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Figure 9.3: Baseline pixel response of the entire matrix of the 15 µm pitch CE-65v1 chip
produced in the Modified process. Biasing information is displayed to on the right.

range, in accordance with simulations. The AC and DC submatrices display negative baselines,
owing to the inverting amplifier.

Equivalent Noise Charge Dependence on Chip Design

The ENC was computed by considering the CDS signal, introduced in Section 8.4, whereby
the raw response of time-adjacent frames is subtracted. The noise distribution for each of the
pixels was fit using a Gaussian. The standard deviation was then converted into electrons using
the charge conversion factors computed in Section 9.6.3. Figure 9.4a shows the ENC distributions
of the three submatrices of the 15 µm pitch CE-65v1 chip produced in the Modified process. The
vast majority of pixels lie in the ∼ 10 to 20 electron range, with the AC submatrix displaying
the lowest ENC, followed by the SF submatrix, as evidenced by the overlayed 2-d distribution
of the ENC. All three distributions display the characteristic shape of a decaying exponential
leading to a quickly decreasing number of noisy pixels. This is associated with rare fabrication
defects or increased leakage currents, increasing noise in a small subset of pixels.

Figure 9.4b shows the ENC distributions of the three submatrices of the 25 µm pitch CE-65v1
chip produced in the Standard process for comparison. There is a clear decrease in the ENC
of all three submatrices. The most drastic improvement is for the DC submatrix, which goes
from being the noisiest submatrix in the Modified with Gap process chip, to the least noisy in
the Standard process. A similar trend is observed when comparing the 15 µm pitch CE-65v1
chip produced in the Standard process to its Modified with Gap counterpart, suggesting that
the increase in noise observed for the Modified and Modified with Gap chips is a property of
the n-type blanket implant, that is magnified for the DC submatrix. The increase in noise can
be associated with the increased capacitance resulting from the incomplete depletion of the low
dose n-type implant around the collection electrode, as mentioned in Section 8.2. The effect is
expected to be largest for the DC-submatrix, due to the low biasing voltage.
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(a)

(b)

Figure 9.4: Equivalent Noise Charge distribution of the three submatrices of the CE-65v1 chip
in the Modified process with a 15 µm pitch (a) and Standard process with a 25 µm pitch (b).
The 2-d distribution is overlayed.
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Figures 9.5a and 9.5b show the ENC distribution of the 15 µm pitch CE-65v2 chip produced
in the Modified with Gap process and the 22.5 µm pitch CE-65v2 chip produced in the Standard
process, respectively. The AC-coupled preamplifier is adopted for all pixels. A similar distribu-
tion to the ENC distributions of the CE-65v1 chips is evident, albeit with a higher ENC. The
precise origin of this increase in noise is not known, but likely related to the different front-end.
Comparing the distributions of the two CE-65v2 chips suggests little dependence on either pitch
or process modification.

(a)

(b)

Figure 9.5: Equivalent Noise Charge distribution of the CE-65v2 chip in the Modified with
Gap process with a 15 µm pitch (a) and Standard process with a 22.5 µm pitch (b). The 2-d
distribution is overlayed.
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9.3 Methodology of Radioactive Source Characterisation

9.3.1 Fe-55 Emission Lines

55Fe is an isotope commonly used for the calibration of MAPS. The decay of 55Fe proceeds
overwhelmingly via electron capture, whereby an electron from one of the outer shells is captured
by the nucleus:

55
26Fe + e− →55

25 Mn + νe (9.1)

The resulting Mn atom remains in an excited state with one of the inner shells missing an
electron (typically the K-shell). This is compensated either through the emission of an electron,
known as an Auger electron (∼ 60%), or an electron transition from a higher shell, resulting in
the emission of an X-ray (∼ 30%)[211]:

55
25Mn∗ →55

25 Mn + γ (9.2)

Table 9.1: The 55Fe X-ray emissions and their Energies. Values adapted from Ref. [211].

Type Transition Energy (keV) Relative Probability

XK Kα2 5.88772 51
Kα1 5.89881 100
Kβ1 6.49051 20.5
Kβ′′

5 6.5354 -included above-

XL Ll 0.5576 –
Lα 0.6394 – 0.6404 –
Lη 0.5695 –
Lβ 0.64636 – 0.7694 –
Lγ 0.65826 –

The energy of the emitted X-rays is determined by the energy difference between the higher
and lower shells. Common X-ray energies are summarized in Table 9.1, where it can be seen that
the primary emission lines are determined by the transitions of electrons from the L-subshells
to the K-shell, denoted as the Kα1 and Kα2 emissions. These occur with relative probability of
2:1 at energies of 5.89881 keV and 5.88772 keV, respectively [211]. The energy difference is far
smaller than the intrinsic energy resolution of silicon detectors [212]:

R = 2.35 ·
√

Fw

E
≈ 2% (9.3)

where F is the Fano factor in silicon, w is the excitation energy of an electron-hole pair in silicon,
and E is the energy deposited by an impinging X-ray. In effect the Kα1 and Kα2 emissions result
in a single peak, denoted as the "Kα peak" throughout this thesis. In addition, Table 9.1
highlights also transitions from the M-subshells to the K-shell, denoted by Kβ1 and Kβ′′

5 . The
energy difference is once again smaller than the intrinsic energy resolution, resulting in a single
Kβ peak with ∼ 8 times less counts than its Kα counterpart.
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9.3.2 Clusterisation

The charge deposited by an impinging X-ray of the decaying 55Fe source is seldom collected by a
single pixel, but rather diffuses to neighbouring pixels where it is collected. This is particularly
the case for Standard process chips, where the lateral parts of the epitaxial region remain
undepleted resulting in the absence of an electric field to cause electrons to drift to the collection
diode. Thus it becomes necessary to consider not only the central pixel upon which the X-ray
impinges, the seed, but also its adjacent pixels, the neighbours, during the construction of the
55Fe spectrum. This reconstruction procedure is dubbed clusterisation, and is explored below.

Table 9.2: Clusterisation thresholds for different chip variants in ADUs.

Chip Type Amp. Scheme Seed Threshold Neighbour Threshold

CE-65v2 AC-PreAmp. 1000 300

CE-65v1 AC-PreAmp. 1000 300
DC-PreAmp. 800 200
Source-Follower 200 60

Seed Pixel Spectrum

Formally the seed pixel is defined as any pixel that passes a given ADU seed threshold. These
are summarized in Table 9.2 for the different chip configurations that were tested. The seed
threshold corresponds to ∼ 9 times the mean RMS noise of each pixel in the three CE-65v1
submatrices. The threshold is implemented in order to reject the large quantity of noise hits,
and hits which may originate from the charge of an X-ray impinging on one of the central pixel’s
neighbours and diffusing across pixel boundaries, rather than the pixel itself. A typical seed
pixel spectrum for the 15 µm CE-65v2 chip in the Modified with Gap process is presented in
Figure 9.6a. The main Kα peak is clearly visible at ∼ 6900 ADUs corresponding to the Kα

emission line, often referred to as the calibration peak.

Figure 9.6: The 55Fe spectrum for the seed signal of the entire matrix of the CE-65v2 chip
in the Modified with Gap process with a 15 µm pitch (a) and Standard process with a 22.5µm
pitch (b).

Figure 9.6b displays the seed pixel spectrum for the 22.5 µm CE-65v2 chip in the Standard
process. Although the main Kα peak is once again visible at ∼ 6800 ADUs, the spectrum is
dominated by another peak at ∼ 3200 ADUs, known as the charge sharing peak. The charge
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sharing peak corresponds to events where the impinging X-ray deposits less than half of the
corresponding charge in the seed pixel and the rest of the charge diffuses to neighbouring pixels.

Single-Pixel Cluster

The single-pixel cluster spectrum is defined as the subset of events where the seed pixel passed
the ADU seed threshold listed in Table 9.2, but none of the adjacent neighbours pass the ADU
neighbour threshold. The neighbour threshold corresponds to approximately 2 times the mean
RMS noise of each pixel, and is implemented in order to reject positive noise fluctuations. When
choosing the neighbour threshold a trade-off is made between noise rejection and rejection of
legitimate signal resulting from charge sharing.

The core principle of the single-pixel clusteristation procedure is to isolate events where the
overwhelming majority of the charge of impinging X-rays is collected by the seed pixel, in order
to calibrate the ADU response of the sensor to the Kα peak. This is especially important for
chips with high charge sharing, where the Kα peak may be less prominent or not visible at all
in the seed spectrum. Figure 9.7a depicts the single-pixel spectrum for the 22.5 µm Standard
process CE-65v2 chip. The Kα peak can easily be distinguished and lower ADU contributions
of seed pixels due to charge sharing have been sizeably reduced.

Figure 9.7: The 55Fe spectrum for the single-pixel clusters (a) and size-4 clusters (b) of the
entire matrix of the CE-65v2 chip in the Standard process with a 22.5 µm pitch (b).

Size-n Cluster

The clusterisation procedure introduced above can be defined to iteratively include not only
adjacent neighbours, but also neighbours of the neighbours, and so on. After a seed pixel is
identified by passing the ADU seed threshold, all adjacent pixels to the seed pixel are required
to pass the ADU neighbour threshold. For each neighbour passing the neighbour threshold, the
pixel is added to the cluster and the procedure is repeated, such that each of the pixels adjacent
to the neighbours having been defined in the previous step, are once again required to pass
the neighbour threshold. This is repeated iteratively until there are no pixels adjacent to the
defined cluster that pass the neighbour threshold. The seed of the resulting cluster is defined
as the most energetic pixel, rather than the original pixel passing the seed threshold where the
clusterisation procedure started, although in practice these are often the same. The cluster is
then defined as a size-n cluster if there n pixels in the cluster. For the purposes of this thesis,
only cluster sizes < 8 were considered.
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Figure 9.7b presents the size-4 cluster for the 22.5 µm Standard process CE-65v2 chip. The
spectrum is relatively devoid of low-ADU noise and charge sharing contributions, being dom-
inated by a prominent Kα peak. The most interesting application of the size-n spectra is the
comparison among different cluster sizes as a gauge for the charge sharing of the different chip
configurations. This is explored in Section 9.5.3.

Matrix Signal

The matrix signal is the last clusterisation strategy introduced in this thesis and simply
describes the addition of the signal in a seed pixel and all its adjacent pixels in a window. It
was introduced as Sij in Section 9.1.1 as one of the online thresholding criteria. Throughout
this thesis, window sizes of 3× 3 and 5× 5 were considered. Figure 9.8 depicts the 3× 3 matrix
signal for the 15 µm Modified with Gap process and 22.5 µm Standard process CE-65v2 chips.

Figure 9.8: The 55Fe spectrum for the matrix signal (3×3) of the entire matrix of the CE-65v2
chip in the Modified with Gap process with a 15 µm pitch (a) and Standard process with a
22.5µm pitch (b).

While the spectrum is expected to contain the complete charge deposited by an impinging
X-ray, it also introduces the noise of the n2 − 1 pixels surrounding the seed, resulting in a
smeared peak that can be seen at ∼ 7200 ADUs and ∼ 7600 ADUs, respectively. Given that the
entire charge of the impinging X-rays from the 55Fe source should be contained in the matrix
signal, the long tail to the left of the Gaussian can be identified as originating not only from
lower energy emission lines (e.g. Si-Kα), but also from conversions in the p+ substrate, where
the generated charge is not fully collected [212]. The matrix signal was used as a proxy for
estimating the complete collected signal, and comparing it to the collected signal for individual
pixels. A detailed comparison is presented in Section 9.5.2 for the different sensor variants.

9.3.3 Fitting Methodology

To model the Kα peak appearing in the different 55Fe spectra a Gaussian fit was used. In spectra
where the Kβ peak was discernible, such as in Figure 9.17a, a sum of two Gaussians was used:

I(xADU) = A · exp
(
−(xADU − µα)

2

2σ2
α

)
+B · exp

(
−
(xADU − µβ)

2

2σ2
β

)
(9.4)

where xADU represents the measured voltage in ADUs, µi is the Gaussian mean, and σ2
i is the

variance. As the Kα peaks dominate the 55Fe spectra, no terms were needed to describe the
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background. The fit range was chosen around the most-probable value (MPV) of the distribution
as MPV± 0.05 ·MPV, but was adapted where necessary if the fit did not properly describe the
underlying distribution.

A set of constraints was imposed on the fit parameters in order to ensure convergence (and
where appropriate fit the Kβ peak). The constraints for the AC submatrix are reported below.
Other submatrices differed only in the peak width owning to their differing energy resolutions.

• Kα Peak Position (µα): The Kα peak position was required to lie within MPV ±
MPV/12. In practice this constraint was purely for fit stability as the MPV lies on the
Kα peak.

• Kβ Peak Position (µβ): The Kβ peak position was required to lie within [1.05 ·µα, 1.15 ·
µα]. This constraint was imposed to center the µβ around the expected nominal Kβ peak
position of ∼ 1.10 · µα.

• Peak Widths (σi): The Kα and Kβ peak width was required to lie within [100 ADUs, 10000 ADUs].
As 10000 ADUs spans the entire spectrum this was in effect only a lower bound of >∼ 1%.

• Kβ Amplitude (B): The Kβ amplitude was required to lie within [0, 0.2·MPV] reflecting
the relative transition probability given in Section 9.3.1 (A/B ∼ 8).

In spectra where the Kβ peak could not be discerned, only the Kα contraints given above were
applied. The fitting procedure was performed using the least-squares method, with the χ2

serving as the goodness-of-fit estimate.

Charge Conversion Factor

The most prominent Kα peak, introduced in Section 9.3.2, was used to perform a mapping
from the measured ADUs to energy by matching the known peak positions of the Kα X-rays.
The energy is often expressed in terms of electrons, corresponding to the number of electron-
hole pairs produced by the impinging X-ray. In silicon the mean energy for the creation of an
electron-hole pair is 3.6 eV, meaning that an X-ray of 5.9 keV corresponding to the Kα emission
line will on average generate 1640 electron-hole pairs. The mapping is defined as the charge
conversion factor (γccf)

γccf =
dQ

dE
=

Ne · e
µα · ADU

=
1640

µα
· e

ADU
(9.5)

where Q is the generated charge in the sensing volume, E is the energy of the impinging X-ray,
and e is the electron charge. This computation assumes a complete charge collection, which was
found to hold reasonably for most sensor variants, as detailed in Section 9.5.2.

9.4 Gain Calibration

An extensive characterisation of the CE-65v1 and CE-65v2 chips was performed using X-rays
from an 55Fe source. Each of the different flavours of the CE-65v2 chip were measured at
constant 20oC using a chiller for temperature control. CE-65v1 chips were measured at room
temperature (i.e. without cooling). The single-pixel cluster spectrum, introduced in Section
9.3.2, was used for calibration under the assumption that the vast majority of the charge was
collected by a single pixel. As shown below, this is the case for the Modified and Modified with
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Gap process chips, but breaks down for the DC-coupled preamplifier of the Standard process
CE-65v1 chip. Thus for the DC submatrix of the Standard process CE-65v1 chip the matrix
signal was used instead, albeit at the cost of smearing the individual pixel calibrations due to
the increased noise.

Dependence on Process Modification and Pixel Pitch

Figure 9.9a depicts the measured 55Fe spectrum for single-pixel clusters for the CE-65v2 chip
in the Modified with Gap process with a 15 µm pitch. The main Kα peak is centered around
∼ 6900 ADUs. The neighbouring Kβ peak, which would be expected at ∼ 7480 ADUs, cannot be
resolved due to pixel-to-pixel gain variations detailed in Section 9.6. The procedure was repeated
for the 22.5 µm pitch Modified with Gap CE-65v2 chip, as well as the 15 µm and 22.5 µm chips
in the Standard process, yielding similar spectra. The Kα peaks were centered around ∼ 7040

ADUs, ∼ 6800 ADUs, and ∼ 6980 ADUs, respectively. Figure 9.9b depicts the 55Fe spectrum
for single-pixel clusters for the CE-65v2 chip in the Standard process with a 22.5 µm pitch for
comparison. The peaks lie within 3.4% of each other, suggesting only a weak dependence on
both process modification and pixel pitch.

Figure 9.9: The 55Fe spectrum for single-pixel clusters of the entire matrix of the CE-65v2 chip
in the Modified with Gap process with a 15 µm pitch (a) and Standard process with a 22.5µm
pitch (b). The Gaussian fit is marked in red.

This outcome is anticipated, as the capacitance should not vary significantly when the chips
are fully depleted. Nevertheless, it should be noted that a slight increase in peak position is
observed both when moving from the 15 µm to the 22.5 µm pitch, and from the Standard Process
to the Modified with Gap process.

Dependence on Amplification Scheme

Significant differences are observed in the Kα peak positions across the three submatrices of
the 15 µm pitch CE-65v1 chip in the Modified process. The AC submatrix registers the highest
peak at 7120 ADUs, while the DC submatrix follows with a slightly lower value of 6120 ADUs.
The SF submatrix, depicted on Figure 9.10a, has the lowest peak at 1910 ADUs, owing to its
source-follower architecture, which does not amplify the signal.

The 25 µm pitch CE-65v1 chip in the Standard process shows largely similar trends, with
the AC submatrix Kα peak position again at a similar position at µ ≈ 7290 ADUs. The biggest
difference can be seen for the DC submatrix, depicted on Figure 9.10b, where the peak position

110



is now the highest at µ ≈ 7530 ADUs. The increase with respect to its AC counterpart is
explained by the parasitic capacitance introduced by the AC coupling. The SF submatrix again
displays the smallest peak position at µ ≈ 2360 ADUs, although considerably higher than in the
Modified process chip. The increase in the peak position for both the SF and DC submatrices
with respect to their counterparts in the 15 µm pitch Modified process chip can be explained
by the faster depletion of the Standard process, leading to a lower capacitance. The effect is
not observed for the AC submatrix, since in for both chips depletion voltage of 10V ensures the
chips are fully depleted. This is explored in detail in Section 9.4.

Figure 9.10: The 55Fe spectrum for single-pixel clusters of the SF submatrix of the CE-65v1
chip in the Modified process with a 15 µm pitch (a) and the DC submatrix in the Standard
process with a 25 µm pitch (b). The Gaussian fit is marked in red.

Dependence on Depletion

The depletion of the sensor volume was studied by applying different biasing voltages to the
collection node, as introduced in Section 8.3. Figure 9.11 depicts the evolution of the charge
conversion factor (γccf) as a function of biasing voltage. As the biasing voltage is increased
the capacitance quickly decreases resulting in a larger voltage response to the impinging Kα

X-rays. In turn, this results in a quickly decreasing charge conversion factor until a biasing
voltage of ∼ 4V, after which saturation is reached and the depletion region stops developing.
This corresponds to the voltage at which the depletion region develops vertically until the p+
substrate is reached, and the high doping gradient prevents further depletion.

The chips produced in the Standard process achieve depletion considerably more quickly,
evidenced by the relatively low charge conversion factor already achieved with no reverse biasing
voltage applied. This contrasts heavily with the Modified with Gap process chips which require
a biasing voltage of at least 2V to achieve a similar capacitance. This can be attributed to the
incomplete depletion of the low dose n-type implant, requiring a higher biasing voltage to achieve
a similar depletion around the collection electrode. At a biasing voltage of 4V and above, the
four CE-65v2 chips display a similar charge conversion factor, as expected.

The equivalent result for the CE-65v1 chips, depicted on Figure 9.12, tells a similar story. The
AC submatrix of the 25 µm pitch CE-65v1 chip in the Standard process depletes very similarly to
the Standard process CE-65v2 chips, with the chips achieving virtually full depletion already at
a depletion voltage of 2V. The AC submatrix of the 15 µm pitch CE-65v1 in the Modified process
depletes slightly more slowly than its its Modified with Gap process CE-65v2 counterpart. In
particular, the chip does not achieve full depletion until about 10 V.
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Figure 9.11: Charge conversion factor (γccf ) as a function of biasing voltage for the four tested
variants of the CE-65v2 chip.
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Figure 9.12: Charge conversion factor (γccf ) as a function of biasing voltage for the two tested
variants of the CE-65v1 chip.
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9.5 Charge Sharing

Charge sharing positively impacts the achievable spatial resolution of sensors, but also makes
sensor less robust with respect to radiation defects and noise. It was found to depend strongly
on process modification and amplification scheme. This section explores the charge sharing
of different CE-65v1 variants through the fractional charge carried by neighbours, the charge
collection efficiency, and the cluster size composition of the 55Fe spectrum.

9.5.1 Seed vs Neighbours

The distribution of the energy carried by the seed and by the neighbours in a given event passing
the seed thresholds listed in Table 9.2 is shown in Figures 9.13a and 9.13b for the AC submatrix
of the 15 µm Modified process and the DC submatrix of the 25 µm Standard process CE-65v1
chips, respectively. Each histogram visualizes the charge distribution within clusters resulting
from 55Fe X-rays, where the x-axis corresponds to the charge carried by the seed pixel, and the
y-axis to the combined charge of neighbouring pixels. The total cluster charge in a given event
is thus given by x+ y.

Figure 9.13: Distribution of seed energy vs. neighbour energy in the 55Fe spectrum of the
AC submatrix of the CE-65v1 chip in the Modified process with a 15 µm pitch (a) and the DC
submatrix in the Standard process with a 25 µm pitch (b). Red lines are overlaid at x+y = 7000
and x+ y ≈ 8850 for visual reference. The colour bar is capped; some bins exceed the displayed
maximum.

Figure 9.13a shows a clear diagonal along the x+ y = 7000 line corresponding to signal hits
resulting from the Kα peak. The vast majority of signal hits lie in the low charge sharing regime,
with the cluster seed typically carrying more than 6000 ADUs. The x = y line that is faintly
visible corresponds to the "decision boundary" of 2-pixel events, where the most energetic pixel
is considered the seed, leading to an abruptly higher density of events below the x = y line.

By comparison, the distribution of the DC submatrix of the 25 µm Standard process CE-65v1
chip in Figure 9.13b exhibits a considerably higher signal region, with most events lying along
the x+ y =∼ 8850 line. The vast majority of events now lies in the high charge sharing regime,
with the seed pixel carrying a small fraction of the signal. Typically this is less than 4000 ADUs.
Interestingly, the low charge sharing events do not lie on the x + y =∼ 8850 line, but tend to
lower ADU counts. The events with little or no cluster energy carried by neighbours peaks at
∼ 7500 ADUs, which is reflected in Figure 9.10b.
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The large discrepancy in the peak position between the high and low charge sharing events
in the case of the DC submatrix of the 25 µm Standard process CE-65v1 chip meant that the
DC submatrix was exceptionally calibrated using the 5 × 5 matrix signal distribution in order
to include the full contribution of neighbouring pixels. In effect, this means that the nominal
calibration values presented in Section 9.4 are likely significant underestimates. Nevertheless,
they still allow for the pixel-to-pixel gain variations to be studied.

For all other measured CE-65v1 chip configurations the discrepancy between the peak posi-
tions was considerably smaller (< 5%).

9.5.2 Charge Collection Efficiency

The charge collection efficiency is introduced in Ref. [212] as the ratio between the Kα peak
position determined from the 3 × 3 matrix signal 55Fe distribution, and the peak position de-
termined from the single-pixel spectrum. Under the assumption that the single-pixel spectrum
is dominated by events where the charge conversion from impinging X-rays takes place entirely
within the depletion region of the sensing volume, it is expected that the measured ADU count
corresponds to the full 1640 electrons generated. The assumption was found to hold best for
the AC submatrix of the CE-65v1 chips, as the large biasing voltage allows for a full depletion
of the sensing volume (vertically).

The matrix signal, on the other hand, contains contributions from events where the charge is
split between more than 1 pixel, either because the charge conversion took place in an undepleted
part of the epitaxial layer, or because a part of the charge conversion took place in the p+

substrate. In either case, the charge will not drift directly to the collection electrode of the pixel
in which it was generated. In the latter case, the electrons may not diffuse into the epitaxial
layer, leading to an incomplete charge collection. This results in a shifting of the Kα peak
position towards lower ADU counts. This effect is reproduced in Refs. [213] and [212]. Thus,
the charge collection efficiency gives an estimate of the fraction of generated charge that is
actually collected.

Figure 9.14 depicts the charge collection efficiency as a function of biasing voltage for the
AC submatrices of the 15 µm Modified process and 25 µm Standard process CE-65v1 chips. In
order to disentangle the influence of charge sharing between the epitaxial layers of neighbouring
pixels, the charge collection efficiency for both the 3× 3 and 5× 5 matrix signal was included.

The charge collection efficiency increases monotonously for the Standard process chip as
higher biasing voltages are applied and the depletion region develops. Comparing the 3 × 3 to
the 5 × 5 charge collection efficiency reveals that the majority of this effect is due to charge
diffusing beyond the immediate neighbours of the seed pixel. Nevertheless, even the 5×5 charge
collection efficiency is found to gradually increase with the depletion voltage. At a depletion
voltage of 10V a charge collection efficiency of ∼ 96% is achieved.

The charge collection efficiency of the Modified process chip is above 100% at 0V, suggesting
that the assumption that the single-pixel spectrum is dominated by events where the full 1640
electrons are collected does not hold at low biasing voltages. This is in agreement with the
considerably slower depletion of the Modified process chip discussed in Section 9.4. At biasing
voltages of 2V and above, the charge collection efficiency is relatively stable at above 97%. The
charge collection efficiency shows virtually no dependence on the size of the matrix window,
suggesting that the effect is primarily due to incomplete charge conversion in the epitaxial layer.
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9.5.3 Contributions of Varying Cluster Sizes

The clusterisation procedure described in Section 9.3.2 results in a variety of clusters corre-
sponding to different cluster sizes. For the majority of this discussion the single-pixel cluster
spectrum was considered, as this offers the most obvious proxy for the characterisation of the
pixel response to the 55Fe source. Nevertheless, considering the spectra of varying cluster sizes
can be instructive as it offers insight into the charge collection of a given chip for a typical 55Fe
X-ray.

Figure 9.15a depicts the n-pixel cluster spectra of the 15 µm pitch CE-65v1 chip produced in
the Modified process for cluster sizes n = {1, 2, 3, 4, 5, 6, 7}, as well as the overlap of all cluster
sizes. The 55Fe distribution is dominated by contributions from low cluster sizes, with single-pixel
clusters being the largest contribution, and the contribution with respect to increasing cluster
sizes quickly decreasing. As the cluster sizes are increased, a slight shift downward towards the
measured matrix signal at ∼ 6970 occurs. For a cluster size of 4 the signal is found to lie below
the matrix signal, suggesting that the noise cuts imposed in the clusterisation procedure exclude
a small fraction of the signal.

Figure 9.15b depicts the n-pixel cluster spectra of the 25 µm pitch CE-65v1 chip produced in
the Standard process. By comparison, cluster sizes below 4 do not contribute significantly to the
55Fe spectrum, which is dominated by size 4 clusters, and size 5 clusters to a lesser degree. The
Kα peak position varies greatly for the different cluster sizes. The single-pixel clusters have the
highest Kα peak position at ∼ 7300 ADUs, which quickly falls to ∼ 6800 for cluster sizes 2 and
3. Cluster sizes of 3 and below, however, contribute very little to overall spectrum. There is a
large drop in the Kα peak position for cluster sizes of 4 to ∼ 6400 ADUs, which gradually begins
to increase as the cluster size is increased. This is well below the measured matrix signal Kα

peak position of ∼ 7050 ADUs, suggesting that a large fraction of the signal is being excluded by
the clusterisation procedure. Though this was also observed for the Modified variant, the effect
is considerably more pronounced in the Standard process chip due to increased charge sharing.
The distributions for cluster sizes of 4 and above no longer follow a pure Gaussian, but rather
include an exponential tail towards higher ADU events.
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Figure 9.15: The 55Fe spectrum for size-n clusters of the AC submatrix of the CE-65v1 chip
in the Modified process with a 15 µm pitch (a) and Standard process with a 25 µm pitch (b).
The blue distributions corresponds to the summation of all other distributions.

9.6 Gain Uniformity

The gain uniformity of CMOS imaging sensors can vary widely, and is one of the main disad-
vantages with respect to CCD sensors [214]. The large matrix size of the CE-65 family of chips
enables a detailed, evaluation of the uniformity of the sensor response. This section presents
gain calibration and energy resolution studies, highlighting both variations across the matrix
and differences between chip variants.

9.6.1 Individual Pixel Spectra

The fitting procedure introduced in Section 9.3.3 was repeated for the single-pixel clusters of
individual pixels, yielding much cleaner spectra, at the cost of limited statistics. Figure 9.16a
depicts the single-pixel spectrum for an individual pixel (x=5, y=2) of the 15 µm pitch CE-65v2
chip produced in the Modified with Gap process. The energy resolution of 4.8%, obtained as
the ratio of the Full Width at Half Maximum and mean peak position, is considerably better
than that of the global spectrum in Figure 9.9a, where it is 11.5%. The Kβ peak can be clearly
resolved, which would be expected to appear at ∼ 7480 ADUs, assuming linearity. Figure 9.16b
depicts the single-pixel spectrum for an individual pixel (x=19, y=20) of the 22.5 µm pitch
CE-65v2 chip produced in the Standard process. While the energy resolution remains low in
accordance with Figure 9.9b, the high charge sharing means the statistics are extremely limited
due to the rare occurrence of single-pixel clusters.

The procedure was also repeated for the single-pixel clusters of the individual pixels of the
CE-65v1 submatrices. All three submatrices of the 15 µm CE-65v1 chip in the Modified process
displayed narrow spectra with a good energy resolution. Figure 9.17a depicts the single-pixel
spectrum for an individual pixel (x=59, y=28) of the SF submatrix, where an energy resolution
of 5.7% can be observed. The Kβ peak was able to be fit only for a fraction of the SF submatrix
pixels, as often the energy resolution was too poor.

Due to the high charge sharing of the SF and DC submatrices of the Standard process variant,
a dedicated high-statistics run was conducted consisting of a week of data taking using the 55Fe
source introduced in Section 9.1.1. A shift in the single-pixel spectrum peak of approximately
3-4% to lower ADU counts was observed over long runs, attributable to gradual heating of
the chip, which increased the noise level. Figure 9.17b depicts the single-pixel spectrum for
an individual pixel (x=20, y=20) of the DC submatrix of the 25 µm pitch CE-65v1 chip in
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Figure 9.16: The 55Fe spectrum for single-pixel clusters for an individual pixel (x = 5, y = 2)
of the CE-65v2 chip in the Modified with Gap process with a 15 µm pitch (a). 55Fe spectrum for
single-pixel clusters for an individual pixel (x = 19, y = 20) of the CE-65v2 chip in the Standard
process with a 22.5 µm pitch (b). The Gaussian fit is marked in red.

the Standard process. The spectrum not only displays very low statistics, but also an energy
resolution of 22.1%, which is much worse than its Modified process counterpart.

Figure 9.17: The 55Fe spectrum for single-pixel clusters for an individual pixel (x = 59, y = 28)
of the SF submatrix of the CE-65v1 chip in the Modified process with a 15 µm pitch (a) and for
an individual pixel (x = 20, y = 20) of the DC submatrix in the Standard process with a 25 µm
pitch (b). The Gaussian fit is marked in red.

9.6.2 Energy Resolution

A quantitative study of the energy resolution of each CE-65 chip variant was performed by
considering the distribution of the energy resolution obtained from the Gaussian fit of each
individual pixel.

Dependence on Process Modification and Pixel Pitch

Figure 9.18a depicts the normalized distribution of the energy resolution of each pixel in the 15
µm pitch CE-65v2 chip produced in the Modified with Gap process. The mean of the distribution
corresponds to an energy resolution of 5.85%, with a relatively low standard deviation of 1.46%,
suggesting that the vast majority of pixels achieve a good energy resolution. To the right of the
distribution there is a distinct tail resembling the behaviour of a decaying exponential related to
a quickly decreasing number of high-noise pixels that are smearing the energy resolution. The
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decaying exponential is also evident in the noise distribution of the pixels, detailed in Section
9.2.

Figure 9.18: (Normalized) Energy resolution (FWHM/µ) distribution of CE-65v2 chip pixels
in the Modified with Gap process with a 15 µm pitch (a) and Standard process with a 22.5µm
pitch (b). The unnormalized energy resolution and standard deviation of the distributions are
displayed on the top left.

For comparison, Figure 9.18b depicts the equivalent distribution for the 22.5 µm pitch CE-
65v2 chip produced in the Standard process. The mean of the distribution is considerably higher
at 7.67% and in addition has a higher standard deviation at 2.32%. The decaying exponential is
again evident, though it displays a more pronounced tail. As shown in Section 9.2, the 22.5 µm
pitch CE-65v2 chip produced in the Standard process does not inherently show a higher ENC
noise than its 15 µm pitch Standard process counterpart. The degradation in the measured
energy resolution of the Standard process variants is related to the high charge sharing and
correspondingly low statistics of the single-pixel cluster spectra. This degradation is also evident
in the 15 µm pitch CE-65v2 chip produced in the Standard process.

Dependence on Amplification Scheme

The dependence of the energy resolution on the amplification scheme was also studied by
considering the distributions for each of the submatrices in the two CE-65v1 chips. Figure
9.19a depicts the energy resolution distribution of each pixel of the 15 µm pitch CE-65v1 chip
produced in the Modified Process. The energy resolution degrades slightly when moving from
the AC to the DC submatrix from 7.15% to 8.58%, with both distributions showing a Gaussian
with a decaying exponential. The AC distribution has a slightly lower standard deviation at
1.46%, compared to the DC submatrix’ 2.14%. The SF submatrix, on the other hand, displays
a considerably more smeared distribution with a standard deviation of 2.54% and the worst
energy resolution at 9.60%. It is unclear why the SF distribution deviates from its AC and DC
counterparts, since the noise distributions from Section 9.2 clearly show the DC submatrix to
be the noisiest.

Figure 9.19b depicts the energy resolution of the 25 µm pitch CE-65v1 chip produced in the
Standard process. Despite displaying the characteristic Gaussian with the exponential tail, the
energy resolution for all three submatrices is worse compared to its Modified counterpart. The
AC submatrix shows a mild degradation to 7.82% with a standard deviation of 1.83%. The SF
submatrix shows a degradation to 12.84% with a standard deviation of 2.10%, which is around
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a third higher than its Modified counterpart. The DC submatrix shows the largest degradation
to 24.07% with a very large standard deviation at 5.05%. Such a large energy resolution results
due to the extreme charge sharing, and associated low charge collection efficiency, evidenced in
the DC submatrix of the Standard process CE-65v1, and should be taken with caution.

Figure 9.19: (Normalized) Energy resolution (FWHM/µ) distribution of CE-65v1 chip pixels
in the Modified process with a 15 µm pitch (a) and Standard process with a 25 µm pitch (b). The
unnormalized energy resolution and standard deviation of the three distributions are displayed
on the top left.

9.6.3 Pixel-by-Pixel Calibration

The individual pixels of the CE-65v1 and CE-65v2 chips were calibrated by repeating the charge
conversion factor computation introduced in Equation 9.5 using the Kα peak positions obtained
from the spectra in Figures 9.16a and 9.16b.

Calibration Maps (2-d)

Figure 9.20 summarizes the gain uniformity of the 15 µm CE-65v2 chip in the Modified with
Gap process by depicting the Kα peak position for each individual pixel, normalized by the
mean Kα peak position for all pixels.

No clear spatial pattern can be discerned, and indeed the standard deviation of the gain
between pixels is of O(4%). Similar trends hold for the other three chips, with the variation
being of O(4%) in all cases. Figure 9.21 includes for comparison the 2-d distribution of the
normalized Kα peak position for the 22.5 µm CE-65v2 chip in the Standard process, where
similar conclusions can be drawn.

The gain uniformity of the 15 µm CE-65v1 chip in the Modified process is depicted on Figure
9.22. As for the CE-65v2 chips, no clear spatial pattern can be discerned, although it is evident
that the SF submatrix shows a larger variation in the gain. The same is evident for the SF
submatrix of the 25 µm CE-65v1 chip in the Standard process, which is depicted on Figure 9.23.
The mean Kα peak position across the matrix along with the standard deviation for each of the
CE-65v1 and CE-65v2 chips is summarized in Table 9.3.

Gain Variation Distribution (1-d)
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Figure 9.20: Gain distribution of the CE-65v2 chip in the Modified with Gap process with a
15 µm pitch obtained by considering the normalized Kα peak position (Figure 9.16a) for each
pixel.
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Figure 9.21: Gain distribution of the CE-65v2 chip in the Standard process with a 22.5 µm
pitch obtained by considering the normalized Kα peak position (Figure 9.16b) for each pixel.
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Figure 9.22: Gain distribution of the CE-65v1 chip in the Modified process with a 15 µm pitch
obtained by considering the normalized Kα peak position (Figure 9.17a) for each pixel.
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Figure 9.23: Gain distribution of the CE-65v1 chip in the Standard process with a 25 µm pitch
obtained by considering the normalized Kα peak position (Figure 9.17b) for each pixel.
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Table 9.3: Summary of CE-65v2 and CE-65v1 Kα peak position means in ADUs.

Chip Type Pitch Process Mod. AC-PreAmp. DC-PreAmp. Source-Follower

CE-65v2 15 µm Modified w/ Gap 6863 ± 274 – –
22.5 µm Modified w/ Gap 6990 ± 264 – –
15 µm Standard 6800 ± 274 – –
22.5 µm Standard 6953 ± 277 – –

CE-65v1 15 µm Modified 7099 ± 221 5918 ± 196 1840 ± 74
25 µm Standard 7292 ± 203 7278 ± 245 2250 ± 114

The 1-d distributions of the normalized Kα peak positions for the 15 µm CE-65v2 Modified
with Gap process chip and 22.5 µm CE-65v2 Standard process chip, depicted on Figures 9.24a
and 9.24b, respectively, both display a similar mean at µ =∼ 6900 ADUs and standard deviation
σ =∼ 270 ADUs.

Figure 9.24: (Normalized) Kα peak position (µ) distribution of CE-65v2 chip pixels in the
Modified with Gap process with a 15 µm pitch (a) and Standard process with a 22.5 µm pitch
(b). The unnormalized mean (µα) and standard deviation (σα) of the distributions are displayed
on the top left.

A priori a symmetric Gaussian is expected corresponding to some central gain value, and
smeared by fabrication defects. The precise origin of the one sided tail toward lower Kα peak
positions is not known. It could stem from a fabrication defect resulting only in a raising of
the sensor capacitance. Although saturation was observed during testbeam studies, it seems an
unlikely culprit as the high-mean side of the distribution does not show an abrupt drop, but
rather a Gaussian decay. Despite the similarity of the distribution with the ENC distributions
given in Section 9.2 when reflected horizontally, no clear correlation between high noise and low
gain pixels could be established.

Considering the 1-d distributions of the normalized Kα peak positions for the 15 µm CE-65v1
Modified process chip and its 25 µm Standard process chip counterpart, depicted on Figures 9.25a
and 9.25b, respectively, reveals a small dependence of the gain uniformity on the amplification
scheme. The AC and DC submatrices display similar Gaussian distributions with a slight tail
towards lower gain values. The observed standard deviation is low at O(3%) for the AC and DC
submatrices of both the Modified and Standard process chips. By contrast, the SF submatrix
shows a less pronounced distribution for the Modified chip, with a larger standard deviation of
∼ 4%, in parity with the CE-65v2 chips. The SF submatrix of the Standard process chip, on
the other hand, no longer peaks around a central value, although it still displays a tail towards
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lower gain. It has the highest standard deviation at ∼ 5%.

Figure 9.25: (Normalized) Kα peak position (µ) distribution of CE-65v1 chip pixels in the
Modified process with a 15 µm pitch (a) and Standard process with a 25 µm pitch (b). The
unnormalized mean (µα) and standard deviation (σα) of the three distributions are displayed
on the top left.

Calibrated Fe-55 Spectrum

The signal spectrum for each pixel was considered without imposing any seed or neighbour
threshold cuts. The spectra of individual pixels was then added for all pixels. The resulting
spectrum, the pixel spectrum, is depicted on Figure 9.26a for the 15 µm Modified with Gap
process CE-65v2 chip. The calibrated pixel spectrum, shown in Figure 9.26b, was obtained by
using the calibration maps presented in Section 9.6.3 to scale the contributions of each pixel
such that

sij → s′ij = sij/gij (9.6)

where sij is the raw signal measured by pixel (x = i, y = j), and gij is its normalized gain. In
this way, the pixel-to-pixel gain variations can be minimized, and a comparatively clean pixel
spectrum can be obtained without suffering from low statistics in the way the single-pixel cluster
spectra for individual pixels do.

Figure 9.26: The 55Fe spectrum of the pixel signal after CDS of the entire matrix of the CE-
65v2 chip in the Modified with Gap process with a 15 µm pitch. The pixel spectrum is shown
before (a) and after (b) gain normalisation. The Gaussian fit is marked in red.
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Figure 9.27: The 55Fe spectrum of the pixel signal after CDS of the entire matrix of the CE-
65v2 chip in the Standard process with a 22.5µm pitch. The pixel spectrum is shown before (a)
and after (b) gain normalisation. The Gaussian fit is marked in red.

Although the Kβ peak is not discernible, the calibration leads to a sizeable reduction in the
energy resolution from 12.4% to 6.2%. Figure 9.27a depicts the uncalibrated pixel spectrum
for the 22.5 µm Standard process chip, while Figure 10.27b shows the corresponding calibrated
result. Here, an even larger improvement in the energy resolution from 17.0% to 7.1% is evident.

9.7 Conclusions

The laboratory characterisation of the CE-65 family of chips confirmed their successful operation
in a controlled setting. The study of the sensor response to X-rays shed light on the interplay
between amplification scheme, process modification, and pixel pitch: the three exploration axes
introduced in Section 8.1. The results not only assessed the baseline performance of the CE-
65 MAPS prototypes, but also highlighted design-specific strengths and limitations, offering
valuable guidance for the development of future chip prototypes using the 65 nm TPSCo CMOS
process.

The CE-65v1 and CE-65v2 variants exhibit low-noise performance across different pixel
pitches and process modifications. A small dependence on the amplification scheme was de-
termined for the noise performance. However, the majority of the pixels across all chip variants
displayed an ENC in the 15 e− - 25 e− range.

Gain calibration studies demonstrated a high gain uniformity of O(4%) for all considered
chips. Nominal gain values showed little dependence on pixel pitch and process modification.
The relative gain of the three amplification schemes (SF:DC:AC) was roughly 1:4:3 for the 25
µm Standard process CE-65v1 chip and 1:3:4 for its 15 µm Modified process counterpart. This
is in good agreement with simulation where an increased gain of O(4) is expected due to the
amplification.

The Standard process chips displayed significant charge sharing, with 55Fe spectra being
dominated by cluster sizes of 4 or more. This correspondingly resulted in a decreased energy
resolution. In contrast, the Modified and Modified with Gap variants exhibited lower charge
sharing, with 55Fe spectra dominated by single- and two-pixel clusters.

Among the amplification schemes, the AC-coupled preamplifier achieved the highest charge
collection efficiency (∼ 97%) and best energy resolution (∼ 7%). The application of a large
biasing voltage (10 V) allowed for the full depletion of the epitaxial layer. Initial laboratory
studies of the CE-65v1 chip were instrumental in identifying the AC submatrix as the most
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performant, and motivating its selection as the sole amplification scheme in the CE-65v2 chip.
The validation and characterisation of the CE-65 family of chips in a laboratory setting served

as a critical stepping stone to the testbeam studies of the CE-65v2 chip, which explored all four
exploration axes from Section 8.1: amplification scheme, process modification, pitch variation
and matrix geometry to optimize spatial resolution and detection efficiency.
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10 Testbeam Analysis

The characterisation of novel sensor technologies typically rests on three pillars: simulation
studies, laboratory tests, and testbeams. Following the initial study of sensor properties in
a controlled lab setting, where basic functionality of the chip is verified, testbeam campaigns
represent a critical next step in assessing real-world performance. Testbeam campaigns offer
the opportunity to study the response of a sensor to MIPs, providing realistic performance
benchmarks for metrics crucial to the applications of the sensors in HEP, including the hit-
detection efficiency and spatial resolution. In contrast to lab tests, where one typically relies on
a radioactive source with essentially no tracking information, testbeams leverage beam telescopes
to precisely reconstruct particle trajectories, allowing the determination of the these key metrics.
These metrics underline the suitability of the 65 nm TPSCo CMOS process in high-resolution
vertexing applications, with the detection efficiency and spatial resolution serving as the primary
arbiters for the design choices.

While Chapter 9 presents the lab characterisation of both the CE-65v1 and CE-65v2 chips,
this chapter focuses solely on the testbeam campaigns of the CE-65v2 chip. This chip adopts
the best-performing amplification scheme from CE-65v1, and introduces additional design vari-
ations, notably the staggered matrix geometry. The chapter begins with a brief introduction
to testbeam analysis and the adopted analysis framework. The CE-65v2 testbeam at the Su-
per Proton Synchrotron (SPS) [215] at CERN is detailed, with the main results including the
obtainable hit-detection efficiency, spatial resolution, and the cluster properties as a function
of process modifications and pitch. Subsequently, the CE-65v2 testbeam at DESY [216] is pre-
sented, where the cluster properties with respect to biasing voltage were explored. Finally, the
chapter concludes with a summary of the main findings and their implications for future sensor
development.

Parts of the SPS testbeam results covered in this chapter have been published in Refs.
[4, 196]. Similar phrasing was used for relevant sections.

10.1 Methodology

The core task during a testbeam is the characterisation of the performance of a given sensor
by studying its response to MIPs at a beam facility. Testbeam campaigns offer the opportunity
to evaluate a sensor under real-world operating conditions, unlike the laboratory measurements
presented in Chapter 9. This is typically done by arranging the device under testing (DUT)
into a beam telescope consisting of several reference detectors whose properties have been well
established. Figure 10.4 depicts the adopted setup during the CE-65v2 testbeam campaign at the
SPS. The reference detectors are arranged so that the trajectories of the particles passing through
the DUT can be determined with utmost precision. By combining multiple measurements of
the same particle as it traverses the reference detectors, a track can be reconstructed with
a resolution that is significantly better than the spatial resolution of the individual reference

127



detectors. The interpolated track position on the DUT can be compared with the measured
sensor response in order to determine a number of core metrics.

10.1.1 Performance Metrics

The first of these is the hit-detection efficiency. It can be understood as the probability with
which a given particle track elicits a discernible response in the DUT. Formally, it is defined as
the ratio between the number of tracks with an associated cluster k, and the total number of
tracks N :

ϵ =
k

N
(10.1)

The details of how tracks are associated to clusters are given in Section 10.1.2.
The second metric, the residual, is intimately related to the hit-detection efficiency. For a

track with an associated cluster, the residual in the x, y dimension is defined as the distance be-
tween the track intercept on the DUT plane, and cluster centre, as determined by a clusterisation
method:

∆x = x∗ − xcl. (10.2)

∆y = y∗ − ycl. (10.3)

where the x∗ denotes the interpolated position, and the xcl. the cluster centre. Throughout the
testbeam campaigns detailed in this chapter the mean of the residuals in the x and y dimensions,
∆d, was used to estimate the intrinsic spatial resolution as

σDUT =
√
(∆d)2 − σ2

tel. (10.4)

where the σtel. denotes the telescope resolution, which depends on both particle momentum and
type.

Many of the design levers of the CE-65v2 chip revolve around the tuning of cluster properties,
including the cluster size and shape, in order to optimize the aforementioned metrics. It is thus
worthwhile to introduce a third metric, the accumulated charge ratio, which was used to quantify
the observed charge sharing in Sections 10.2.5 and 10.3.2. The accumulated ratio is defined by
summing the charge of individual pixels in a cluster successively, until a cluster size of 9 is
reached. The accumulated ratio is then normalized by the total cluster charge, calculated as the
sum of the charge of all pixels in a 3× 3 window around the seed pixel:

f i
acc. =

∑i
j=1Qj∑9
j=1Qj

(10.5)

where f i
acc. denotes the accumulated charge ratio for the ith pixel and Qi denotes its charge.

The indices in the computation of the accumulated charge ratio are assigned by charge ordering,
with the first pixel being the most energetic.

10.1.2 Corryvreckan

The Corryvreckan software framework [3, 217] provides a toolset for the reconstruction and anal-
ysis of testbeam data. The framework spans the entire pipeline of a typical testbeam analysis,
from the reading of the raw detector data to the final observables in the form of efficiencies and
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residuals. The framework is organised in individual user-configured modules, allowing extend-
ability, which is crucial for the framework to support the wide variety of sensors, geometries,
and analyses that can be associated with a generic testbeam campaign. The modular nature
of the framework allows additions and modifications of the analysis chain without necessitating
large rewrites of the source code. In the case of the CE-65v2 chip, this allowed the extension
of the current analysis module, and the implementation of the staggered matrix geometry. The
adopted analysis chain for the CE-65v2 testbeam at SPS is depicted on Figure 10.1, where each
individual module in the DUT analysis step can be seen.

Figure 10.1: Overview of the Corryvreckan analysis pipeline for the CE-65v2 testbeam cam-
paigns. Individual modules are illustrated as purple boxes, while the flow of data is indicated
by black arrows. Figure adapted from Ref. [3].

Figure 10.2: Schematic of the testbeam analysis steps. Each step consists of reconstructing
the testbeam data, and applying the appropriate modules to process the data, as depicted for
the final Analysis step in Figure 10.1. The (pre-)alignment steps produce updated geometry
files detailing the telescope, which are sequentially propagated though the chain until the final
Analysis step.

Telescope (Pre-)Alignment

The first step in the Corryvreckan reconstruction chain, depicted on Figure 10.2, is the
alignment of the telescope. A precise alignment of the beam telescope is crucial, as minor
offsets of a fraction of a millimetre can be enough to shift the computed position by several
pixels, significantly impacting subsequent analysis. The physical offset in the z-axis along the
beam direction must be measured physically and provided to the Corryvreckan framework.
The alignment procedure is segmented in two separate steps, whereby the detector planes are
first pre-aligned with respect to a reference detector, and subsequently precisely aligned by a
dedicated alignment module. In order to avoid biasing the analysis, the DUT is excluded from
all steps during the pre-alignment and alignment of the beam telescope.

The goal of the pre-alignment step is to provide a coarse description of the telescope geometry
for later fine-tuning. Pre-alignment begins with the computation of the spatial correlations
between detector planes, defined as the distance any cluster on the given detector plane and any
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cluster on the reference detector. During the analysis of the CE-65v2 data, the first ALPIDE
[185] from the downstream arm was chosen as the reference detector. The other telescope planes
are then translated in the x-y plane with the goal of centring the correlation peaks for each of
the planes. Rotations are not performed during the pre-alignment step, and instead only take
place during alignment.

Once a coarse estimate of the telescope geometry has been performed by the prealignment
module, the description is passed to the alignment module where an iterative minimisation
procedure is performed on the computed tracks. In particular, while pre-alignment step did not
require an explicit reconstruction of the tracks, as shown in Figure 10.1, track reconstruction is
a prerequisite step of the precise alignment of the beam telescope.

Track reconstruction begins with the identification of clusters on all detector planes during a
given event. Track candidates are then built by considering a straight line interpolation between
two given clusters on the first and last detector planes of the beam telescope. Clusters on all
remaining detector planes along the track candidates are looked for in a user-defined elliptical
search window of 100 µm × 100 µm. If a cluster is found on a subsequent detector plane within
the search window, then the cluster is added to the track candidate, and the track is refitted.
For the SPS testbeam the high beam energy ensured minimal multiple scattering, and thus a
straight-line model sufficed for track construction. At the DESY testbeam the considerably
higher multiple scattering motivated the use of the General Broken Lines (GBL) algorithm
[218, 219], whereby tracks are allowed a kink angle at every detector plane to scattering effects.
If a cluster can be associated on every detector plane for the given track model, then the track
candidate becomes a reconstructed track.

The precise goal of the alignment procedure is the minimisation of the χ2 of all computed
tracks, via the iterative translation and rotation of the detector planes with respect to the
reference detector. Once the minimisation algorithm converges, the telescope is considered to
be aligned and its geometry is frozen for subsequent steps1.

DUT (Pre-)Alignment

Following the alignment of the telescope the precise position of the DUT with respect to the
reference plane must be determined. This proceeds similarly to the alignment of the telescope,
with an initial coarse pre-alignment, an a subsequent fine-tuning by the AlignmentDUTResidual
module. During the pre-alignment the correlations of the DUT with the reference plane are
minimised by translations on the x-y plane. This is followed by the alignment step, where
rather than minimising the track χ2 as was done for the telescope alignment, the DUT plane is
iteratively translated and rotated to minimise the unbiased residuals between the interpolated
track position on the DUT and its associated cluster. The tracks are constructed as described
during the telescope alignment step, with an additional track quality cut of χ2/ndof < 2 to
prevent misalignment due to poor quality tracks. The DUT clusters are associated similarly
to in the track fitting step, by considering an initial elliptical search window of 100 µm × 100
µm. In the case where multiple clusters are found, the combined contribution of all residuals is
considered for that track during the minimisation of the residuals.

1While the telescope geometry is frozen for analysis steps, it is generally good practice to repeat the alignment
if there have been appreciable changes to the telescope geometry, e.g. thermal expansion during long runs.

130



DUT Analysis

The final step in the Corryvreckan analysis pipeline is the computation of the performance
metrics. In the case of the CE-65v2 chip this entails primarily the hit-detection efficiency and the
x,y-residuals. In the Corryvreckan framework this is performed by the AnalysisEfficiency and
AnalysisCE65 modules. The efficiency was computed as the number of tracks with associated
clusters divided by the total number of tracks, as defined in Equation 10.1. The uncertainty is
given by the Clopper-Pearson [220] confidence interval of 1 σ. The residuals were extracted via
the AnalysisCE65 module, which is a derived class of the AnalysisDUT module, where the x, y
residuals are defined by Equation 10.2.

Coordinate Systems

The Corryvreckan framework relies on three basic coordinate systems for the internal rep-
resentation of a given testbeam telescope. These can be sub-divided into two local coordinate
systems, and one global. The first local coordinate system represents the actual detector chan-
nels, and thus for the square and staggered geometries adopted in this work, represents the
row and column of a given hit. It corresponds closely to the raw position of where the hit was
recorded. By definition, this coordinate system is centered at the centre of the lower left pixel
of the given detector. For the square matrix arrangement, this coordinate systems already de-
fines a cartesian coordinate space supporting vector addition. This, in principle, allows for the
computation of the cluster centre, and other distance metrics relevant to the analysis pipeline.
However, for more non-trivial geometries, including the staggered matrix arrangement, depicted
on the left of Figure 10.3, this is no longer the case. Instead, the second local coordinate sys-
tem is introduced, which is explicitly a right-handed cartesian coordinate system centred at the
geometric centre of the given detector plane. It is typically referred to as the local coordinate
system, and appears in the centre of Figure 10.3. A set of helper functions are defined to trans-
late the position in the first local coordinate system to the local cartesian coordinate system,
which for the square matrix take the trivial form of

xlocal = px ·
(
xcol. −

Ncol. − 1

2

)
ylocal = py ·

(
yrow − Nrow − 1

2

) (10.6)

where the px, py denote the pixel pitches in their respective dimensions and Ncol., Nrow denotes
the number of columns and rows, respectively. The translation of the y coordinate has to be
modified for the staggered matrix arrangement, yielding

ylocal = py ·
(
yrow. −

Nrow − 1

2
± fstag.

2

)
(10.7)

where fstag. represents the pixel fraction by which the matrix is staggered, which in the case of the
CE-65v2 chip is fstag. =

1
2 . The addition or subtraction of the additional pixel fraction follows

the opposite parity of the staggering for the given column, i.e. if column xi is staggered positively
with respect to the geometric centre, then the minus sign is taken during the computation of
ylocal.

While the local coordinate systems allows for highly simplified calculations on each given
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detector plane, it is necessary to introduce a third coordinate system, the global coordinate
system, which relates all detector planes to each other. In particular, the global coordinate
system is defined with respect to the beam axis, with the beam direction defining the z-axis,
as depicted on the right of Figure 10.3. The origin of the z-axis is defined by the user-specified
measurements of the detector planes. In the case of the CE-65v2 analyses, this was chosen to
be the first telescope plane from the beam direction.

Figure 10.3: Illustrations of the three coordinate systems in the Corryvreckan framework. The
first local coordinate system (a) describes positions on the given detector plane with respect to
the detector channels, and is not necessarily Cartesian. It is typically centered at the corner of the
given detector. The second local coordinate system (b) is a Cartesian coordinate system centered
at the geometric center of the detector plane, depicted in pink. The global coordinate system
(c) relates the local Cartesian coordinate systems to each other by defining the z-axis along the
beam direction. The DUT and trigger planes are marked in pink and orange, respectively.

10.2 CERN SPS 2024 Testbeam

In April 2024 a testbeam campaign for the CE-65v2 chip was conducted at CERN SPS [215].
The testbeam focused primarily on evaluating the achievable spatial resolution and hit-detection
efficiency of the different sensor variants using high energy beams. This section presents the
testbeam setup, followed by a detailed description of measured efficiencies, spatial resolution,
and charge sharing results.

10.2.1 Setup

Testbeam Facility

Test beam measurements were conducted at CERN SPS’s H6 beamline, part of CERN’s
North Area which houses a number of smaller experiments and beamlines dedicated to detector
development. The area is fed by a slowly extracted proton beam from the SPS at momenta of
up to 400 GeV/c. The extracted proton beam is steered into a transfer line where a number of
targets sit: T2, T4, and T6. Splitter magnets divide the beam among the different targets, with
the T4 target feeding the H8 and H6 beamlines, where the CE-65v2 testbeam was conducted.
The T4 target consists of Beryllium, which when struck produces a broad spectrum of secondary
particles, including pions, kaons, protons, and electrons. A system of dipole magnets, denoted
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the wobbling station, allows for control over the production angle and charge sign for each
beamline. In the case of H6, the beam is always produced at zero angle, limiting the flexibility
in tuning but simplifying operation. After production, the beam is collimated and transported
to the H6 beamline, where it serves a versatile facility for detector characterisation, offering a
broad range of particle types and momenta of up to 200 GeV/c. For all results presented in this
thesis, a 120 GeV/c mixed hadron beam was used.

Beam Telescope

A telescope consisting of six ALPIDE [185] planes, serving as reference detectors, and a DPTS
[198] chip acting as the trigger, was used during the testbeam measurements. The ALPIDE
reference detectors comprise 1024 × 512 pixels with a pitch of 29.24 µm × 26.88 µm. With its
binary readout, each ALPIDE chip achieves a spatial resolution of 5 µm. The ALPIDE chips
were mounted on metallic holders fixed to a perforated breadboard, as shown in Figure 10.4.
Three of the telescope planes were positioned upstream of the DUT, while the remaining three
were placed downstream, with 25 mm spacing between them. The DPTS chip was mounted on
a movable stage, to allow alignment of its sensitive area with that of the DUT. The telescope
resolution was estimated to be 2.2µm using a telescope optimizer tool [221] based on the adopted
geometry. Cooling pipes connected the DUT holder to a water chiller in order to maintain the
DUT at a constant temperature of 20°C throughout the measurements reported in this chapter.

Figure 10.4: Photograph (top) and schematic (bottom) of the CE-65v2 telescope at the SPS
testbeam. The DUT can be identified by the blue marking on the unlabelled metallic holder.
During data taking the setup was covered to prevent light exposure of the detector planes.
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10.2.2 Analysis Strategy for SPS

Data analysis was carried out using the Corryvreckan framework introduced in Section 10.1.2.
Figure 10.5 depicts the hitmaps for each of the ALPIDE planes, where the outline of the trigger
shadow, corresponding to a higher number of hits, can clearly be discerned.

Figure 10.5: Fig 11.5 Hitmaps of the six ALPIDE planes during an SPS testbeam run. The
DPTS trigger shadow can be discerned as the small yellow square. Plane labelling follows the
convention used in Figure 10.4.

Cluster Position Reconstruction

Clusterisation was performed using two methods: window and cluster. The window method
is equivalent to the matrix method introduced in Section 9.3.2, but is referred to as window
throughout this chapter in accordance with Corryvreckan terminology. Clusters on the CE-65v2
chip were built by summing all pixels in a 3 × 3 window around a seed pixel passing an 100
e− threshold. The maximum cluster size is thus by definition 9. The window method was
selected as the default clusterisation method as it allows the evaluation of the full potential
of the process technology, without making assumptions about a given readout. Additionally,
as it makes no reference to neighbouring thresholds, the window method is ideal for the study
of cluster properties, including the accumulated charge ratio computed in Sections 10.2.5 and
10.3.2.

The cluster method, on the other hand, corresponds to the size-n cluster method also in-
troduced in Section 9.3.2, whereby neighbours are added to a cluster by recursively checking if
adjacent neighbours pass a given threshold. The cluster method allowed a more realistic eval-
uation of sensor performance. Threshold scans, expressed in units of electrons and hereafter
referred to as electron threshold scans, were performed mimicking noise reduction procedures as
implemented in chips used in active detector systems. For the electron threshold scans, identical
seed and neighbour threshold cuts were applied for the pixels in the cluster.

For both clusterisation methods, the cluster centre was defined as the centre-of-mass position
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of all pixels in a cluster

(xcl., ycl.) =

∑
i∈cl.(xi, yi) · qi∑

i∈cl. qi
(10.8)

where (xi, yi) denotes the position vector of pixel i in the cluster, and qi denotes its charge. For
the digitisation tests performed in Section 10.2.4, the charge qi was digitised to different levels
of precision. For all other sections in this chapter, the full analog information was used.

In order to prevent the formation of clusters due to noise fluctuations, particularly at low
electron thresholds, a signal-to-noise ratio greater than 3 was required for all seed pixels. The
noise was computed as the standard deviation of the Gaussian fit to the CDS distribution for
each pixel, as detailed in Section 9.2. Multiple cluster candidates were considered corresponding
to each pixel passing the required seed e− threshold and signal-to-noise ratio. Clusters within
a 75 µm radius were associated with a given track as described in Section 10.1.2, corresponding
to just over 3-4 times the pixel pitch. The nearest associated cluster was selected in cases of
multiple candidates.

Charge Spectra

The charge deposited in the epitaxial layer of a silicon sensor is governed largely by its
thickness, since the energy loss per unit length is comparable across different thicknesses, as
illustrated by Figure 7.4b introduced in Section 7.2. At low silicon thickness of order O(100) µm
or less, the combined effect of the detector noise and resolution along with the non-negligible
electron binding energy broadens the distribution considerably. The observed straggling function
can be pragmatically described by the convolution of a Landau and a Gaussian [180]:

f(x) =
A

ξσ
√
2π

∫ ∞

−∞
fL(τ ;xMPV , ξ) · e−

(x−τ)2

2σ2 dτ (10.9)

where the four fit parameters are the area under the curve (A), the MPV (xMPV ) and the scale
(ξ) of the Landau distribution, and finally the width (σ) of the Gaussian function. Figure 10.6
depicts the normalized distributions of the cluster charge in electrons for the 15 µm and 22.5 µm
Modified with Gap and Standard process CE-65v2 prototypes measured at the SPS testbeam.
All four distributions were fit with a Landau-Gaussian convolution, which describes the observed
energy loss well. As expected, the cluster charge is virtually identical for all four chip variants,
as these all share the same sensor thickness. Although the charge collected by a typical seed
pixel differs greatly between the different variants, across the entirety of the cluster the charge
is very similar for all variants.

Figure 10.7 depicts the normalized distributions of the seed charge in electrons for all four CE-
65v2 variants. The MPV of the seed energy of all four chips lies considerably below the MPV of
the cluster charge, which is explicitly marked by the narrow grey band. A clear trend emerges of
a high energy fraction being carried by the seed pixel in the case of the Modified with Gap chips,
and a small fraction being carried by the seed pixel in the case of the Standard variants. This
diverging behaviour manifests as a design trade-off, where the large energy fraction carried in the
Modified with Gap chips enables operation at higher electron thresholds, increasing robustness
and lowering front-end complexity and data read-out challenges. On the other hand the large
charge sharing of the Standard process enables a more precise reconstruction of the track position
if information encoded in the charge carried by neighbouring pixels is used. The extent to which

135



Figure 10.6: Normalised distribution of total cluster charge at a seed threshold of 100 e− for the
4 considered CE-65v2 chips. All four distributions were fit by a Landau-Gaussian convolution,
as defined in Equation 10.9. The window method was used for reconstruction.

Figure 10.7: Normalised distribution of seed charge at a seed threshold of 100 e− for the 4
considered CE-65v2 chips. All four distributions were fit by a Landau-Gaussian convolution,
as defined in Equation 10.9. The MPV of the cluster charge from Figure 10.6 is overlaid for
reference. The window method was used for reconstruction.
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this is possible with different levels of digitisation, and thus complexity, is explored in Section
10.2.4.

The Modified with Gap chips, in particular, both have a seed energy MPV of ∼ 600 e−,
which is ∼ 14% lower than that of the cluster charge. There is little dependence on the pitch
for the MPV of the seed energy, which reflects the charge sharing studies detailed in Section
10.2.5. This effect, however, is much more pronounced for the Standard process, where the 22.5
µm shows a seed energy MPV that is ∼ 55% lower than that of the cluster charge, highlighting
the large sharing of the Standard process. The 15 µm variant shows a seed energy MPV that is
∼ 43% lower than that of the cluster charge, which although lower than its 22.5 µm counterpart,
still shows substantial charge sharing.

At around ∼ 1700 e−, the seed energy distributions of the Modified with Gap chips exhibit a
localized excess inconsistent with the expected Landau-Gaussian fit. The corresponding cluster
energy distributions show a similar mild excess in this range, followed by a sharp drop at
approximately ∼ 1900 e−. This behaviour suggests pixel saturation above a certain signal
threshold, with the transition smeared by pixel capacitance. As a result, the saturation manifests
as a bump in the seed energy distribution rather than a sharp cutoff. While this bump is much
less pronounced in the Standard process variants, it is still evident. Investigations into the origin
of this bump, and the abrupt drop in signal, are ongoing at the time of writing.

10.2.3 Hit Detection Efficiency

The hit-detection efficiency of the four chip variants was studied as a function of electron thresh-
old using the cluster method to quantify the trade-off between detection performance and noise
robustness at higher operating thresholds. Figure 10.8 depicts the efficiency as a function of
electron threshold for the Modified with Gap process chip variants. An efficiency of over 99%
is achieved up to ∼ 180 e− for both the 22.5 µm and 15 µm chips. The efficiency declines as
the electron threshold is increased. Given the relatively large association window of 75 µm, this
trend is expected irrespective of the cluster size, as even a single-pixel cluster is sufficient to
detect a track impinging upon any point of the pixel. In practical terms, the efficiency begins to
decrease as the threshold excludes clusters associated with low charge depositions, correspond-
ing to the lower end of the distribution shown in Figure 10.6. The difference in the measured
detection efficiency with respect to pitch size is marginal, with the 22.5 µm pitch maintaining a
slightly higher efficiency.

Figure 10.9 depicts the efficiency as a function of electron threshold for the Standard process
chips. By comparison, these chips achieve an efficiency of over 99% up to ∼ 130 e− and ∼ 150 e−

for the 22.5 µm and 15 µm chips, respectively. The decrease in efficiency is considerably faster
than for the Modified with Gap chips, with the Standard process 22.5 µm pitch chip exhibiting a
steeper drop than its 15 µm counterpart. This behaviour results from the much smaller fraction
of cluster charge carried by the seed pixel. The disparity is clearly visible in Figure 10.7, where
a threshold of 200 e− excludes a much larger fraction of events in the Standard process chips.

In-pixel Efficiency

The large matrix of the CE-65v2 chip allowed dedicated high-statistics runs to be performed
in order to study the in-pixel distributions of the efficiency, and the resolution, for each of the
four chip variants presented. A threshold of ∼ 170 e− was chosen in order to demonstrate the
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Figure 10.8: Efficiency as a function of seed threshold (e−) for the CE-65v2 chip with a 15 µm
(blue) and a 22.5 µm pitch (pink) in the Modified with Gap process. The 99% efficiency line
(dotted) is marked explicitly.
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Figure 10.9: Efficiency as a function of seed threshold (e−) for the CE-65v2 chip with a 15 µm
(blue) and a 22.5 µm pitch (pink) in the Standard process. The 99% efficiency line (dotted) is
marked explicitly.
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degradation in efficiency, while still maintaining a high resolution throughout, as detailed earlier
in this Section.

Figure 10.10 depicts the in-pixel distribution of the efficiency in the 15 µm Modified with
Gap chip. The efficiency is uniform throughout the chip, remaining above 98% at all locations
along the ABC paths, save for at the far corner. The uniform collection efficiency up to the
pixel edges of the Modified with Gap process chips can be associated with the increased lateral
electric field. The large fraction of charge that drifts towards the collection electrode makes
the chip robust with respect to increasing thresholds, as shown on Figure 10.8. The 22.5 µm
Modified with Gap chip shows similar trends, with the efficiency likewise rarely dropping below
98% throughout the pixel.
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Figure 10.10: a) In-pixel efficiency distribution at a seed threshold of 170 e− for the CE-65v2
chip with a 15 µm pitch in the Modified with Gap process. b) Efficiencies extracted along three
representative paths: A - towards the pixel edges, B - along the edge towards the pixel corner,
and C - diagonally towards the pixel centre. The cluster method was used for reconstruction.
Figure adapted from Ref. [196].
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Figure 10.11: a) In-pixel efficiency distribution at a seed threshold of 170 e− for the CE-
65v2 chip with a 22.5 µm pitch in the Standard process. b) Efficiencies extracted along three
representative paths: A - towards the pixel edges, B - along the edge towards the pixel corner,
and C - diagonally towards the pixel centre. The cluster method was used for reconstruction.

Figure 10.11 depicts the in-pixel distribution of the efficiency in the 22.5 µm Standard process
chip. The efficiency distribution contrasts heavily with the Modified with Gap chips, with a clear
drop towards the edges. The A path shows a gradual decrease in efficiency from ∼ 99% to ∼ 98%
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as one moves towards the pixel boundary. The B path, however, accounts for the majority of
the drop in efficiency to ∼ 87% at the pixel corners. The diffusion-dominated charge collection
at the pixel edges leads to significant charge sharing, and a corresponding drop in detection
efficiency. While the same trend can be observed for the 15 µm Standard process variant, the
drop in efficiency is considerably more mild to ∼ 94% at the pixel edge.

10.2.4 Spatial Resolution

The spatial resolution of the CE-65v2 chip variants was studied using the window and cluster
clusterisation methods. For the window method a seed threshold of ∼ 100 e− was applied. For all
spatial resolution results presented in this chapter, the telescope resolution is subtracted accord-
ing to Equation 10.4. Figure 10.12 depicts the distribution of the x-residuals for the 4 considered
chips. While the Standard process chips display true Gaussians that are well-described by the
Gaussian fit, it can be seen that the Modified with Gap chips display a convolution between a
Gaussian and a uniform distribution, resulting in a poor fit, particularly for the 22.5 µm chip.
Nevertheless, the spatial resolution computed using the 99% sample standard deviation and the
Gaussian σ varies only from 4.92 ± 0.02 µm to 4.97 ± 0.01 µm for the 22.5 µm Modified with
Gap chip, and thus the Gaussian σ was used for consistency with all chips.

Figure 10.12: Distribution of x-residuals at a seed threshold of 100 e− for the 4 considered
CE-65v2 chips. Gaussians were fit to each of the chips to extract the corresponding σ. The
window method was used for reconstruction.

The Modified with Gap chips display a spatial resolution of 3.09 ± 0.02 µm and 4.97 ± 0.01

µm for the 15 µm and 22.5 µm chips, respectively. The large improvement with respect to pitch
is expected due to the lack of charge sharing. In the limit of no charge sharing the improvement
would be linear as expected from σ = p/

√
12 for a uniform distribution.

The Standard process chips display an excellent spatial resolution of 1.43 ± 0.02 µm and
2.02± 0.02 µm for the 15 µm and 22.5 µm chips, respectively. The improvement observed as a
function of pitch is considerably milder in comparison to the Modified with Gap variants.

Following the hit-detection efficiency studies of Section 10.2.3, the spatial resolution was
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evaluated as a function of the electron threshold using the cluster method. For each threshold
the analogue information passing the given threshold for the seed and its neighbours was used
to construct the centre-of-mass position for the cluster. Figure 10.13 depicts the resolution as
a function of electron threshold for the Modified with Gap chips. The resolution of both chips
is relatively stable with increasing thresholds, increasing slightly in the 70-170 e− range, before
plateauing. The 22.5 µm chip achieves a resolution slightly above 5 µm, while the 15 µm achieves
a resolution in the ∼ 3.5 µm range. For both chips a resolution considerably better than the
binary resolution of p/

√
12 is achieved.
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Figure 10.13: Resolution as a function of seed threshold (e−) for the CE-65v2 chip with a
15 µm (blue) and a 22.5 µm pitch (pink) in the Modified with Gap process.

Figure 10.14 depicts the resolution as a function of electron threshold for the Standard process
chips. The resolution of both chips shows a sizeable improvement with respect to their Modified
with Gap counterparts. At a seed threshold of 70 e− an excellent resolution of ∼ 1.4 µm and
∼ 1.8 µm is achieved. The resolution of both pitch chips degrades quickly in the 70-250 e− range
as the cluster size decreases, before plateauing at slightly above 5 µm and ∼ 3.5 µm for the 22.5
µm and 15 µm pitch chips, in parity with the Modified with Gap process chips.
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Figure 10.14: Resolution as a function of seed threshold (e−) for the CE-65v2 chip with a
15 µm (blue) and a 22.5 µm pitch (pink) in the Standard process.
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Importance of Digitisation

The precise determination of the measured track position requires the full exploitation of
the sensor’s signal. In the CE-65 family of chips, this entails the readout of the full analog
signal, which, while referred to as "analog" throughout this thesis, is not "analog" in the formal
sense, as it is digitised2 to high precision by the 16-bit ADC introduced in Section 9.1.1. The
readout of the "analog" signal presents a data rate challenge. Typically this is addressed by
setting a threshold (much like the electron thresholds explored in Section 10.2.3 and earlier in
this Section), above which a binary or time over threshold signal corresponding to a hit is read
out.

In this section the importance of digitising the signal was explored by performing the clus-
ter reconstruction using a variety of methods. Firstly, a lower bound on the performance of a
clusterisation method was set by considering the spatial resolution achievable if only the seed
position is used for reconstruction. This is referred to as the seed method. Next, in the bi-
nary method, a cluster was built using the cluster method. However, instead of the analogue
information, the hit or no-hit information was used for computing the centre of the cluster.

The cluster and window clusterisation methods were used to set an upper bound on the
achievable spatial resolution. The ADC range from [0, 10000] was digitised to n = 1, 2, 4, 6, 8, 16

bits for the window method in order to observe the degradation in the achievable spatial res-
olution when a coarser reconstruction is performed. Digitisation was emulated during analysis
by performing a trivial bit-shift, and considering only the n leading bits. The ADC range from
[threshold, 10000] was similarly digitised to n = 0, 1, 2, 4, 6, 8, 16 bits for the cluster method in
order to perform the same comparison. Where relevant for each clusterisation procedure, the
seed and neighbour thresholds were set to 100 e−.

Figure 10.15 depicts the achievable resolution for each of the clusterisation methods for the
15 µm Modified with Gap and 22.5 µm Standard process chips.

For the 15 µm Modified with Gap process chip a resolution of just above 3 µm is achieved
with the binary method. Such a low resolution can be associated with tracks close to the pixel
boundaries where considerable charge is shared with the neighbours, even in the Modified with
Gap process, aiding in the cluster reconstruction. Remarkably, additional information during
clusterisation has a marginal improvement in the precision of the reconstruction. As more bits
are included in the cluster method, and even in the analog limit, the achievable resolution hardly
changes. The window method performs poorly for n < 4 bits. Presumably, the most important
information is encoded at low ADC counts given that low amounts of charge are generated
by MIPs traversing the epitaxial layer, as shown in Figure 10.6. This information is neglected
during digitisation, due to the linear spread in digitisation bins. For n = 6, 8, 16 bits, the window
method outperforms the analog window method. This was observed for both the 15 µm and
22.5 µm Modified with Gap chips. While the n = 16 bit window method might be expected
to be equivalent to the analog window method, the digitised window method does not include
negative signals resulting from the CDS, which are set to 0 during the digitisation procedure.
This results in a reduction in noise during the cluster reconstruction.

The 22.5 µm Standard process chip shows a much larger improvement in the spatial resolution
when moving from the seed clusterisation method to the binary method, in accordance with the

2“Digitisation” is used throughout this section to refer exclusively to the signal quantisation step, and should
not be confused with the broader signal processing chain.
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Figure 10.15: Resolution as a function of clusterisation method at a seed threshold of 100
e− for the CE-65v2 chip with a 15 µm pitch in the Modified with Gap process (blue) and a
22.5µm pitch in the Standard process (pink). Variants of the window method with different
digitisation granularities are connected by dashed lines. Moving from left to right corresponds
to an increased number of digitiation bits, until the full analog resolution is reached. The
corresponding resolutions for the cluster method are connected by the solid lines.

high charge sharing evident in the Standard process. The effect is particularly pronounced
until n = 6 bits, where a spatial resolution of 2.35 µm is achieved. This contrasts heavily with
the Modified with Gap process chips, where additional bits lead to a negligible benefit. The
window method, by comparison, initially shows poor performance for n = 1, 2, before rapidly
improving for n = 4, 6. At n = 6 a resolution 1.78 µm is achieved. For n > 6 no further
gain in the spatial resolution is observed, which begins to degrade slightly, potentially due to
unfortunate bin boundaries for these n. The 15 µm Standard process chip likewise shows this
rapid improvement in the n = 2− 6 bit range, but does not show the slight degradation above
n = 6.

In-pixel Spatial Resolution

Similarly to Section 10.2.3, a threshold of ∼ 170 e− was chosen in order to study the in-pixel
distribution of the mean absolute deviation, as a proxy for the spatial resolution. In order to
maximally exploit the capabilities of the chip, the window method was used for clusterisation.

The mean absolute deviation ∆r is defined by summing the residuals in the x and y dimensions
in quadrature:

∆r =
√

(∆x)2 + (∆y)2 (10.10)

and subtracting the telescope resolution, as in Equation 10.4. Assuming Gaussian distributions
for the residuals of x and y with equal standard deviations σ∆x = σ∆y := σ, and zero mean, as
in Figure 10.12 for all variants save for the 22.5 µm Modified with Gap chip, the distribution
of ∆r is given by the Rayleigh density [222]. The expectation value of the Rayleigh density has
the well-known value of E[∆r] =

√
π
2 · σ. Thus, the mean absolute deviation can be interpreted

as a scaled estimate of the spatial resolution.
Figure 10.16 depicts the in-pixel distribution of the mean absolute deviation in the 15 µm

Modified with Gap chip. The mean absolute deviation achieves its lowest values in the central
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bins, where tracks are likely to deposit their full charge in a single pixel, leading to a trivial
reconstruction of the position. Moving away from the centre of the pixel along the A path leads
to a rapid deterioration in the achievable mean absolute deviation to ∼ 5 µm at the boundary
of the pixel. The B path, towards the edge of the pixel, leads to a further decline to ∼ 6 µm.
The large variance in the achievable mean absolute deviation suggests that only central tracks
are identified with a high precision. The fast deterioration of the mean absolute deviation is
also observed for the 22.5 µm chip, where a mean absolute deviation of above ∼ 6 µm is reached
towards the corners of the chip. Hits towards the corner of the chips lie the furthest from
the collection electrode, leading to the larger residuals for single-pixel events, common in the
Modified with Gap process.
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Figure 10.16: a) In-pixel mean absolute deviation distribution at a seed threshold of 170 e−

for the CE-65v2 chip with a 15 µm pitch in the Modified with Gap process. b) Mean absolute
deviation extracted along three representative paths: A - towards the pixel edges, B - along the
edge towards the pixel corner, and C - diagonally towards the pixel centre. The window method
was used for reconstruction. Figure adapted from Ref. [196].
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Figure 10.17: a) In-pixel mean absolute deviation distribution at a seed threshold of 170 e−

for the CE-65v2 chip with a 22.5 µm pitch in the Standard process. b) Mean absolute deviation
extracted along three representative paths: A - towards the pixel edges, B - along the edge
towards the pixel corner, and C - diagonally towards the pixel centre. The window method was
used for reconstruction.

Figure 10.17 depicts the in-pixel distribution of the mean absolute deviation in the 22.5 µm
Standard process chip. The mean absolute deviation is considerably more uniform than for the
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Modified with Gap process chips. In particular, the mean absolute deviation begins to degrade
when moving along the A path away from the centre to ∼ 3.5 µm. Beyond ∼ p/4 from the
centre, the mean absolute deviation hardly varies, including at the pixel edges, suggesting an
accurate position reconstruction for high charge sharing events. The same trend can be observed
for the 15 µm Standard process variant, with the mean absolute deviation stabilizing around
∼ 3 µm outside the pixel centre, and decreasing below the telescope resolution therein.

10.2.5 Charge Sharing

Charge sharing behaviour significantly impacts the hit-detection efficiency and the spatial res-
olution, making it a key metric when comparing different pixel configurations. To study the
extent of charge sharing for the different CE-65v2 variants, the accumulated charge ratio, intro-
duced in Section 10.1.1, was used. It is defined as the fraction of charge carried by the n first
pixels in a cluster.

Figure 10.18a and 10.18b depict the accumulated charge ratio as a function of the number
of pixels in the cluster for the 15 µm and 22.5 µm pitch Modified with Gap process CE-65v2
chips. The average charge fraction collected by the central pixel of the two chips is 83.9%
and 86.8%, respectively, demonstrating the low charge sharing characteristic of the Modified
with Gap process. When considering the two most energetic pixels, both the average and most
probable value of the accumulated charge are around unity for both chips, indicating that the
vast majority of events consist of single-pixel or two-pixel clusters. Indeed, if a hit occurs close
to the pixel boundary, then significant charge may diffuse a neighbouring pixel, otherwise the
charge is almost entirely collected in the central pixel due to the strong drift current of the
Modified with Gap process. Due to the Gap modification at the pixel boundaries, the electric
field propagates well. Coupled with a larger pitch, the 22.5 µm pitch Modified with Gap chip
exhibits the lowest charge sharing of all considered chip variants.

Figure 10.19a and 10.19b show the accumulated charge ratio for the 15 µm and 22.5 µm
Standard process chips. The average charge fraction collected by the central pixel in the 15
µm Standard process chip is 66.1%, indicating substantial charge sharing. The 22.5 µm pitch
chip exhibits the most extreme charge sharing of all considered variants, with an average charge
fraction of less than 60%, and the most probable value being even lower at ∼ 45%. This results
from the competing effects of a larger pitch, whereby more charge is collected due to the larger
area, and the electric field not propagating well at the pixel edges, resulting in considerably
less charge drift. It should be noted that due to charge ordering, negative noise contributions
resulting from the CDS can appear in the larger cluster size bins towards the right side of
Figures 10.18 and 10.19. These negative noise contributions can result in the accumulated
charge exceeding 100%.

Considering the two exploration axes of process modification and pixel pitch, the SPS test-
beam quantitatively substantiated that the Standard process results in considerably more charge
sharing than its Modified with Gap counterpart. The dependence on the pixel pitch is inverted
for the processes, with a larger pitch resulting in less charge sharing for the Modified with Gap
process, but a larger pitch resulting in more charge sharing for the Standard process. The effect
of biasing on charge sharing was explored at the DESY testbeam, detailed in Section 10.3.2.
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(a)

(b)

Figure 10.18: Accumulated charge ratio as a function of number of pixels in a cluster for the
CE-65v2 chip with a 15 µm pitch (a) and a 22.5 µm pitch (b) in the Modified with Gap process.

146



(a)

(b)

Figure 10.19: Accumulated charge ratio as a function of number of pixels in a cluster for the
CE-65v2 chip with a 15 µm pitch (a) and a 22.5µm pitch (b) in the Standard process.
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10.2.6 Ramifications of a Staggered Matrix Geometry

The staggered matrix geometry reduces the number of immediate neighbours from 8 to 6. Nev-
ertheless, in the staggered matrix geometry, the detector channels no longer define a Cartesian
coordinate system. In order to perform the vector addition necessary for determining the cluster
centre, the detector channels were first transformed to the local Cartesian coordinate system,
introduced in Section 10.1.2, as depicted on Figure 10.3. The analysis strategy employed for the
staggered matrix geometry chips mirrored the strategy employed for the square chips. Both the
window and the cluster methods were used for the determination of the spatial resolution and,
for the latter, efficiency. For the window method, the cluster centre was defined as the centre-
of-mass position of the seed pixel and its 6 immediate neighbours. For the cluster method, the
size-n clusterisation procedure detailed in Section 9.3.2 was used, with the immediate neighbours
also defined by the 6 pixels around the seed pixel.

The window clusterisation method with a seed threshold3 of ∼ 100 e− was used for the
analysis of 22.5 µm and 18 µm Modified with Gap and Standard process staggered matrix chips.
Table 10.1 summarizes the obtained spatial resolution for the eight chips analysed in this thesis.

Table 10.1: Measured spatial resolution for the squared and staggered CE-65v2 variants at
the SPS testbeam at a seed threshold of 100 e− using the window clusterisation method. The
improvement of the staggered variants is mainly driven by the y-residuals. Uncertainties reflect
the statistical error from the fit.

Matrix Process Pitch (µm) Spatial Resolution (µm)

Square Mod. w/ Gap 22.5 4.97± 0.1
Mod. w/ Gap 15 3.09± 0.2
Standard 22.5 2.02± 0.2
Standard 15 1.43± 0.2

Staggered Mod. w/ Gap 22.5 4.62± 0.1
Mod. w/ Gap 18 3.50± 0.2
Standard 22.5 1.94± 0.2
Standard 18 1.49± 0.2

Comparing the 22.5 µm staggered matrix chips to their square matrix counterparts reveals
an improvement in the spatial resolution. The improvement is pronounced for the Modified with
Gap chip, which improves from 4.97± 0.1 µm to 4.62± 0.1 µm.

Figure 10.20 depicts the x-residuals for each of the four staggered matrix chips. Similar
trends to the square matrix chips can be observed, with the Standard process chips achieving a
significantly better resolution than the Modified with Gap variants. Smaller pitches lead to an
improved resolution, with the 18 µm Standard process chip now achieving the best x-residuals
at 1.49± 0.2 µm.

Figure 10.21 depicts the y-residuals for each of the staggered matrix chips. The residual
distributions for all four chips are narrow. For the Standard process chips this entails a decrease
of 0.3 µm for both the 22.5 µm and 18 µm chips, with respect to their x-residual distribution.
For the Modified with Gap chips the decrease is of 0.4 µm and entails a change in the shape
of the distribution. While the x-residuals of the Modified with Gap process chips retain their

3As the gain calibration for the staggered chips was not completed at the time of writing, the γccf values from
the square chips were used. Given that γccf does not depend on matrix geometry, the resulting error is expected
to be negligible.
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Figure 10.20: Distribution of x-residuals at a seed threshold of 100 e− for the 4 considered
staggered matrix CE-65v2 chips. Gaussians were fit to each of the chips to extract the corre-
sponding σ. The window method was used for reconstruction.

Figure 10.21: Distribution of y-residuals at a seed threshold of 100 e− for the 4 considered
staggered matrix CE-65v2 chips. Gaussians were fit to each of the chips to extract the corre-
sponding σ. The window method was used for reconstruction.
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characteristic shape of the convolution between a Gaussian and a step function, the y-residuals
have higher central values about the origin, returning to a slightly more Gaussian shape.

Hit-Detection Efficiency

Electron threshold scans were performed for all four of the staggered matrix chips in order
to study the ramifications of the staggered matrix geometry on the development of both the
hit-detection efficiency and the spatial resolution. As in Section 10.2.4, the cluster method was
used with the seed and neighbour thresholds being equal.

Figure 10.22 depicts the efficiency as a function of threshold for the 22.5 µm and 18 µm
Modified with Gap staggered matrix chips. In addition, the 22.5 µm Modified with Gap square
matrix chip is included for comparison. Comparing the square and staggered matrix 22.5 µm
chips reveals a marginal increase in efficiency towards higher thresholds. In accordance with the
trends observed in Section 10.2.3 for the square matrix chips, the 18 µm staggered matrix chip
shows a slightly lower efficiency than its larger pitch counterpart.
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ALICE ITS3-WP3 beam test work in progress
@CERN-SPS April 2024, 120 GeV/c hadrons

Chip: CE-65v2 (ER1)
Process: Modified w/ Gap
Pitch: 18, 22.5 m
Vsub = Vpwell = 0 V        T = 20 oC
Imat = 3 mA, Icol = 200 A, Voffset = 1 V
AC amp.: HV = 10 V, Ipmos = 100 A
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Figure 10.22: Efficiency as a function of seed threshold (e−) for the staggered matrix CE-65v2
chip with a 18 µm (orange) and a 22.5µm pitch (pink) in the Modified with Gap process. For
reference, the 22.5 µm squared matrix arrangement CE-65v2 chip is included as a solid line. The
99% efficiency line (dotted) is marked explicitly.

A similar trend can be observed for the Standard process staggered matrix chips, as depicted
on Figure 10.23. The 22.5 µm staggered matrix chip once again shows a slight increase in
efficiency. The increase can be observed even at low thresholds, offering a marginally increased
operating range. The 18 µm pitch chip, with its correspondingly lower charge sharing, retains a
considerably higher efficiency at higher thresholds.

Spatial Resolution

The spatial resolution as a function of electron threshold is depicted for the 22.5 µm and
18 µm Modified with Gap staggered matrix chips, and the 22.5 µm square matrix counterpart.
As for previous threshold scan sections, the cluster method is used for reconstruction. The
staggered matrix 22.5 µm chip shows virtually no gain with respect to the square arrangement.
At low thresholds, a mild improvement in the y-residuals manifests as a slightly better spatial

150



0 50 100 150 200 250 300 350 400
Seed Threshold (e )

65

70

75

80

85

90

95

99100

Ef
fic

ie
nc

y 
(%

)

ALICE ITS3-WP3 beam test work in progress
@CERN-SPS April 2024, 120 GeV/c hadrons

Chip: CE-65v2 (ER1)
Process: Standard
Pitch: 18, 22.5 m
Vsub = Vpwell = 0 V        T = 20 oC
Imat = 3 mA, Icol = 200 A, Voffset = 1 V
AC amp.: HV = 10 V, Ipmos = 100 A
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Figure 10.23: Efficiency as a function of seed threshold (e−) for the staggered matrix CE-65v2
chip with a 18 µm (orange) and a 22.5µm pitch (pink) in the Standard process. For reference,
the 22.5 µm squared matrix arrangement CE-65v2 chip is included as a solid line. The 99%
efficiency line (dotted) is marked explicitly.

resolution, but this effect is not as pronounced as for the window method, summarized on Table
10.1. The 18 µm staggered matrix chip achieves a fairly stable resolution of ∼ 4 µm, which
would place it between the resolutions achieved by the 15 µm and 22.5 µm Modified with Gap
process square matrix chips, depicted on Figure 10.24.
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ALICE ITS3-WP3 beam test preliminary
@CERN-SPS April 2024, 120 GeV/c hadrons

Plotted on 01 May 2025

Chip: CE-65v2 (ER1)
Process: Modified w/ Gap
Pitch: 18, 22.5 m
Vsub = Vpwell = 0 V        T = 20 oC
Imat = 3 mA, Icol = 200 A, Voffset = 1 V
AC amp.: HV = 10 V, Ipmos = 100 A
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Staggered Matrix (18 m)

Figure 10.24: Resolution as a function of seed threshold (e−) for the staggered matrix CE-65v2
chip with a 18 µm (orange) and a 22.5µm pitch (pink) in the Modified with Gap process. For
reference, the 22.5 µm squared matrix arrangement CE-65v2 chip is included as a solid line.

The spatial resolution obtained by the Standard process chips benefits sizeably more from
the staggered arrangement, as depicted on Figure 10.25. In particular, the 22.5 µm staggered
matrix chips achieves a lower spatial resolution than its square counterpart. While the obtained
spatial resolution converges for very low thresholds of < 100 e− or > 300 e− for both matrix
arrangements, the staggered matrix achieves a considerably lower spatial resolution between
the extremes. The measured improvement is maximal at a threshold of 210 e−, where the
staggered matrix arrangement achieves a spatial resolution that is 16% better than the square
arrangement.
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ALICE ITS3-WP3 beam test work in progress
@CERN-SPS April 2024, 120 GeV/c hadrons

Chip: CE-65v2 (ER1)
Process: Standard
Pitch: 18, 22.5 m
Vsub = Vpwell = 0 V        T = 20 oC
Imat = 3 mA, Icol = 200 A, Voffset = 1 V
AC amp.: HV = 10 V, Ipmos = 100 A
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Figure 10.25: Resolution as a function of seed threshold (e−) for the staggered matrix CE-65v2
chip with a 18 µm (orange) and a 22.5µm pitch (pink) in the Standard process. For reference,
the 22.5 µm squared matrix arrangement CE-65v2 chip is included as a solid line.

Effect of Matrix Geometry on Cluster Size and Reconstruction Error

The superior resolution observed for the staggered matrix layout can be attributed to both
reduced charge sharing among neighbours and the inherent geometric advantages of the ar-
rangement. In particular, the seed pixel of a given cluster for the square and staggered matrix
arrangements was found to carry a similar fraction of the cluster signal at ∼ 60% for the Stan-
dard process. However, the remaining fraction of the cluster signal is spread among only 6
neighbours in the staggered arrangement, as opposed to the 8 of the square arrangement. This
results in an improved position reconstruction owing to the typical cluster size distribution.
Figure 10.26 depicts the cluster sizes of the Standard process chips at the lowest measured
threshold in the cluster method of 70 e− for both the square and staggered arrangements. In
the square arrangement the most common cluster sizes are n = 4 and n = 2, as observed for
initial studies of the ALPIDE chip [212]. Geometrically, the n = 2 cluster corresponds to the
seed pixel and one of its immediately adjacent neighbours, which does not necessarily entail a
poor position reconstruction if the hit is towards the centre of the boundary of the seed pixel
and its neighbour. The n = 4 cluster distribution is dominated by the "square" cluster whereby
a 2× 2 window containing the seed defines the cluster [223].This is associated with hits toward
the seed edges, where the charge diffuses to the three neighbours. While this enables a precise
position reconstruction, as observed by the excellent resolution the square matrix arrangement
achieves at low thresholds, it is not robust with respect to increasing thresholds, as the shared
charge is diluted among three pixels.

This can be observed in Figure 10.26 where at 210 e− the size-4 clusters already form a
sizeably smaller fraction of the cluster size distribution. The 22.5 µm Standard process staggered
arrangement chip, on the other hand, contains almost double the fraction of size-3 cluster events
as its square arrangement counterpart at a threshold of 70 e−. Indeed, the size-3 clusters now
constitute the most common type of cluster. While this entails a smaller cluster, and thus
potentially reduced reconstruction precision, than the size-4 clusters which commonly appear
for the square matrix at low thresholds, the 2 neighbours of the size-3 clusters of the staggered
arrangement will contain more charge than the 3 neighbours of the size-4 clusters, and thus
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Figure 10.26: Cluster size distributions at seed thresholds of 70 e− (a), 210 e− (b), 370 e−

(c), for the square and staggered matrix CE-65v2 chips with a 22.5 µm pitch in the Standard
process.

be more robust towards higher thresholds. This is observed in the cluster size distribution
at a threshold of 210 e−, depicted on Figure 10.26. The size-3 clusters constitute 12.2% of
the threshold for the staggered arrangement, whereas for the square chip the size-3 clusters
constitute only 5.1% of the cluster distribution. Accounting for clusters of size-n>3 increases
this figure to 10.7% for the square arrangement, which is still below the observed fraction of
size-3 clusters for the staggered arrangement.

The increase in n>3 size clusters does not account for the improvement in resolution alone.
A geometric argument for the observed improvement in the resolution of the staggered matrix
can be made even for size-2 clusters. Considering still the cluster size distribution at a threshold
of 210 e−, it can be seen that after single-pixel clusters, clusters of size-2 are the most common.
In the square arrangement this corresponds to clusters consisting of the seed pixel and its imme-
diately adjacent neighbour in the ±x or ±y directions, where the y dimension is slightly more
common [223]. The size-2 clusters extending in the y dimension in the staggered arrangement
are identical, as the staggering is performed in the vertical direction, and thus no difference is
expected for these. However, the remaining size-2 clusters consist of the seed pixel, and one of
the 2 neighbours in either the +x or −x direction. Without loss of generality, consider a hit at
(x∗, y∗) towards the right boundary of upper-half of a seed pixel, as depicted by the red cross
on the left of Figure 10.3. The resulting size-2 cluster will consist of the seed pixel at (x, y) and
its neighbour at (x+ p, y+ p/2). Projecting the measured positions of the cluster on the x-axis
results in two distinct positions. The same is true for the projection of the cluster positions on
the y-axis. In the square arrangement, however, the projection of the cluster positions on the
y-axis reveals that there there is only one position, resulting in a poorer reconstruction of the y

position.
This argument can be formalized somewhat by considering the expected error in the y di-

mension for each of the arrangements. It follows trivially that the reconstructed position in a
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size-2 cluster where a fraction A of the cluster charge is shared, is given by

(xcl., ycl.) = A · (x2, y2) + (1−A) · (x1, y1) = (x1, y1) +A · (x2 − x1, y2 − y1) (10.11)

and thus lies a fraction A along the diagonal connecting the two pixels. In the limit of perfect
charge sharing the reconstructed position is given by the projection of the hit position (x∗, y∗)
onto the linking vector v⃗.

For the staggered matrix the linking vector v becomes

v⃗ = (x2 − x1, y2 − y1) = (p, p/2) (10.12)

Setting the origin of the coordinate system at (x1, y1) means the reconstructed position is given
by

(xcl., ycl.) =
(x∗, y∗) · (p, p/2)

|(p, p/2)|2
(p, p/2) =

x∗p+ y∗p/2

p2 + p2/4
(p, p/2) =

4x∗ + 2y∗

5
(1, 1/2)

=

(
4x∗ + 2y∗

5
,
2x∗ + y∗

5

) (10.13)

Thus giving a reconstruction error of

d⃗ = (|∆x|, |∆y|) =
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)
− (x∗, y∗)

∣∣∣∣ = (∣∣∣∣2y∗ − x∗

5
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5

∣∣∣∣) (10.14)

where the absolute value in the second expression is to be understood component-wise.
In order to compute the expected error for each of the dimension, we need only integrate the

uniform distribution from [0, p/2] for both dimensions. For the y dimension this becomes
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For the square matrix the linking vector always lies on the x-axis since both the seed pixel
and its neighbour share the same y coordinate. This simplifies the calculation considerably,
since the error in the y dimension will be given by the true position of the hit with respect to
the cluster y coordinate, or following convention above, |∆y| = y∗. The expected error is then

E[|∆y|] = 4
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(10.16)

The obtained expected error of p
4 is almost double that of the staggered matrix arrange-

ment. Though the equivalent estimate for the error is the x dimension is not included here, it is
marginally better in square arrangement than in the staggered arrangement, which follows the
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intuition that in the squared arrangement only the x-residual is minimized. Indeed, these esti-
mates line up well with the observed trend, where the staggered matrix was found to outperform
the square arrangement primarily through the the improved reconstruction of the y position of
the cluster. This was observed even at very low thresholds of the cluster method, and separately
for the window method, explicitly depicted on Figure 10.21.

The staggered matrix arrangement offers an improved spatial resolution by minimizing the
loss of information due to charge sharing among neighbours, and optimizing the geometry for hit
localization. This effect is especially pronounced along the y-axis, where the pixel arrangement
provides more distinct spatial projections, facilitating finer discrimination. The excellent reso-
lution performance, especially under high-threshold operation, highlights the value of geometric
optimization as a design lever in future pixel architectures.

10.3 DESY 2023 Testbeam

In addition to SPS, testbeam measurements of different CE-65v2 variants were conducted at the
T24 beamline of the DESY II testbeam facility [216] in November 2023. Although this testbeam
campaign preceded the SPS testbeam, the observed large residuals limited the usefulness in
determining the sensor’s intrinsic resolution. This section presents the DESY testbeam setup
and results, with particular focus on the influence of biasing voltage on charge sharing.

10.3.1 Setup

Testbeam Facility

The 293 m DESY II synchrotron serves as an injector for PETRA III [224], providing electrons
and positrons with beam energies of up to 7 GeV. Beam generation for the testbeam facilities
proceeds parasitically by inserting a carbon fibre target into the primary DESY II beam, causing
the emission of energetic photons via bremsstrahlung. The photons are subsequently converted
to electron-positron pairs by striking a secondary target consisting of Cu or Al. The resulting
beam passes through a set of dipole magnets located 60 cm downstream of the secondary target,
allowing for the selection of particle parity and momentum through adjustment of the magnetic
field. The selected particles, either electrons or positrons, are then collimated and served to the
testbeam areas at user-selected energies ranging from 1-6 GeV. For all results presented in this
thesis, a 4 GeV/c electron beam was used.

Beam Telescope

The same ALPIDE-based telescope was used for the DESY II testbeam. A similar arrange-
ment was adopted, with three reference planes positioned upstream and downstream of the DUT
and the trigger, respectively. However, the distance between the upstream and downstream tele-
scope arms was increased to 100 mm, increasing the separation by 25 mm with respect to the
SPS setup. The telescope used at the DESY testbeam is depicted on Figure 10.27. The telescope
resolution was estimated to be 3.2µm using the telescope optimizer tool [221], which is likely a
significant underestimate based on the observed residuals, as detailed in the following Section.
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Figure 10.27: Photograph of the CE-65v2 telescope at the DESY testbeam. The DUT can be
identified by the blue marking on the unlabelled metallic holder. The beam direction is indicated
by the red arrow. During data taking the setup was covered to prevent light exposure of the
detector planes.

10.3.2 Results

The measurements conducted at the DESY testbeam were analogous to those conducted at
the SPS testbeam. The same analysis strategy was adopted, and thus the reader is referred
to Section 10.2.2. The primary difference was the adoption of the GBL track reconstruction
algorithm, in order to account for multiple scattering.

The normalized distributions of the cluster and seed charges for the window clusterisation
method at a seed threshold of 100 e− are shown in Figures 10.28 and 10.29, respectively. The
distributions behave as expected, with the collected cluster signal being virtually identical for
all four of the chips. The seed charge distribution reveals a higher MPV for the two Modified
with Gap chips, corresponding to the lower charge sharing with respect to the Standard process.
The measured distributions match those of the SPS testbeam, depicted on Figure 10.7, very
well, which is expected as the deposited charge by MIPs is defined by the sensor properties, and
in particular the thickness of the epitaxial layer [212]. Indeed, the apparent saturation of the
sensors is once again evident at ∼ 1700 e− in the seed distribution for all four chips.

Large Residuals

The measured spatial resolutions, however, show little agreement with those measured at the
SPS testbeam. Figure 10.30 presents the x-residuals for the 15 µm and 22.5 µm Standard and
Modified with Gap CE-65v2 chips. The distributions for all four chips show large Gaussians
about a central value, even for the Modified with Gap chips, where the convolution with a box
function is expected. When comparing the measured residuals with those of Figure 10.12, a
clear trend emerges that the standard deviation is around two times larger for each of the chips.
Indeed, even when accounting for the worse telescope resolution expected with the lower energy
electrons, the spatial resolution is still substantially higher for all four of the chips.

Telescope Resolution Estimate
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Figure 10.28: Normalised distribution of total cluster charge at a seed threshold of 100 e−

for the 4 considered CE-65v2 chips at the DESY testbeam. All four distributions were fit by a
Landau-Gaussian convolution, as defined in Equation 10.9. The window method was used for
reconstruction.

Figure 10.29: Normalised distribution of seed charge at a seed threshold of 100 e− for the 4
considered CE-65v2 chips at the DESY testbeam. All four distributions were fit by a Landau-
Gaussian convolution, as defined in Equation 10.9. The MPV of the cluster charge from Figure
10.6 is overlaid for reference. The window method was used for reconstruction.

157



Figure 10.30: Distribution of x-residuals at a seed threshold of 100 e− for the 4 considered
CE-65v2 chips at the DESY testbeam. Gaussians were fit to each of the chips to extract the
corresponding σ. The window method was used for reconstruction.

An attempt at estimating the telescope resolution of the beam telescope at the DESY test-
beam was made by noting that

σspatial =

√
(
σDESY
∆x + σDESY

∆y

2
)2 + (σDESY

tel. )2 (10.17)

can be solved for the telescope resolution at DESY, while using the measured spatial resolution
at the SPS testbeam
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2

)2

−
(
σSPS
spatial

)2
(10.18)

In this way, the DESY telesope resolution was estimated at σDESY
tel. = 7.27± 0.16 µm. While

such a large telescope resolution limits the usefulness of the DESY testbeam measurements for
the computation of the spatial resolution of the CE-65v2 variants, the large statistics obtained
at the DESY testbeam allowed the study of the evolution of the charge sharing properties of
the CE-65v2 variants with respect to biasing voltage. These measurements, coupled with those
presented in Section 10.2.5, enabled the study of charge sharing with respect to all design choices
of the CE-65v2 chip.

Multiple Scattering

The estimated telescope resolution is over three times that observed at the SPS testbeam.
While some degradation in the telescope resolution is expected due to the lower energy electron
beam resulting in considerably more multiple scattering, the observed effect is expected to be
smaller. A key difference between the SPS and DESY testbeam campaigns is that the distance
between the DUT and the last reference plane of the upstream arm is doubled, as described
in Section 10.3.1. The increased distance between DUT and the upstream arm is known to
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significantly degrade the telescope resolution [225]. Although the telescope optimiser in principle
accounts for such geometry, additional material (e.g. the cloth covering the telescope) may have
enhanced scattering effects more strongly during the DESY testbeam than at SPS, where the
high energy hadron beam is less sensitive to such perturbations.

Charge Sharing

The accumulated charge ratios, as defined in Section 10.1.1, were measured for the four CE-
65v2 chips at biasing voltages of [10, 4, 2, 0] V. Unsurprisingly, the accumulated charge ratio
for the four chips almost exactly mirrored the accumulated charge ratio measured at the SPS
testbeam at a biasing voltage of 10 V, depicted on Figures 10.18 and 10.19 for the Modified
with Gap and Standard process chips, respectively. The average charge fraction collected by
the central pixel is virtually the same as for the SPS testbeam for all four of the chips. For
the Standard process chips this corresponds to 66.0% and 58.6% for the 15 µm and 22.5 µm
pitch chips, respectively. For the Modified with Gap process chips this corresponds to 84.2%
and 86.7% for the 15 µm and 22.5 µm pitch chips, respectively.

Figure 10.31a depicts the measured accumulated charge ratio for the 22.5 µm Standard pro-
cess chip at a biasing voltage of 4V. A sizeable decrease in the accumulated charge in the first
couple bins can be observed, which diminishes in magnitude as the cluster size increases. In
particular, the average charge fraction collected by the central pixel is now 53.4%, marking a 9%
decrease in the collected charge. This can be associated with the development of the depletion
region as the biasing voltage is increased, evident also in Figure 9.11 from the lab tests.

Figure 10.31b depicts the equivalent result at 4 V for the 15 µm Modified with Gap chip. For
the Modified with Gap process chip a considerably milder decrease in the average charge fraction
can be observed to 83.2%. For cluster sizes of 2 and above the decrease in the accumulated charge
ratio is negligible, showing that, despite the larger capacitance change observed when moving
from 4 V to 10 V in Figure 9.11, the charge sharing behaviour of the Modified with Gap process
shows little sensitivity to the biasing voltage at this range. This lines up with the expectation
that this capacitance change does not result from the vertical depletion of the epitaxial layer,
but rather with the depletion of the low dose n-type implant around the collection electrode.

Figure 10.32a depicts the measured accumulated charge ratio for the 22.5 µm Standard pro-
cess chip at a lower biasing voltage of 2 V. A continuation of the trend observed for the biasing
voltage of 4 V can be observed, with the charge ratio again decreasing considerably for all low
cluster size bins. Indeed, the decrease in the charge ratio is noticeable until a cluster size of 5.
The average charge fraction collected in the central pixel decreases to 49.7%, which is smaller
than the decrease observed for a biasing voltage of 10 V, although still comparable.

The equivalent result for the 15 µm Modified with Gap chip, depicted on Figure 10.32b, again
shows a considerably milder decrease than its Standard process counterparts. Indeed, above a
cluster size of 2, the change in the accumulated charge fraction is hardly perceptible. The average
charge fraction collected by the central pixel decreases to 81.7%, which although perceptible,
does not compare to the biasing voltage dependence observed for the Standard process.

Despite the challenges posed by multiple scattering and limited telescope resolution, the
DESY testbeam confirmed key trends also observed at the SPS and provided further insight
into the charge sharing behaviour of the CE-65v2 chips. The results illustrate that the biasing
voltage can serve as an effective handle to tune charge sharing in the Standard process chips,

159



(a)

(b)

Figure 10.31: Accumulated charge ratio as a function of number of pixels in a cluster at a
biasing voltage of 4 V for the CE-65v2 chip with a 22.5µm pitch in the Standard process (a)
and a 15 µm pitch in the Modified with Gap process (b).
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(a)

(b)

Figure 10.32: Accumulated charge ratio as a function of number of pixels in a cluster at a
biasing voltage of 2 V for the CE-65v2 chip with a 22.5µm pitch in the Standard process (a)
and a 15 µm pitch in the Modified with Gap process (b).
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where the seed pixel collects between ∼ 43% at 0 V and ∼ 60% at full depletion. On the
other hand, the Modified with Gap process exhibits a much weaker dependence on bias voltage,
limiting its tunability. In particular, it was observed that even at 2 V, an average of 95+% of
the signal is carried by the first two pixels in a cluster. Although increased charge sharing can
be achieved at even lower voltages, this comes at the cost of rapidly rising sensor capacitance
as the n-type implant around the collection electrode is still undepleted in this biasing regime.
Nevertheless, the measurements confirm that the Modified with Gap chips can be operated
at high biasing voltages with minimal loss of charge sharing, offering the advantage of low
capacitance and improved noise performance.

10.4 Conclusions

A comprehensive comparison of the Standard and Modified with Gap process variations, pixel
pitch (15 µm, 22.5 µm), and matrix geometry (square vs staggered), was performed during two
testbeam campaigns using the CE-65v2 chip. Particular emphasis was placed on the charge
sharing properties, and their ramifications on the hit-detection efficiency and spatial resolution,
across the different design variants.

An excellent resolution was obtained in large-matrix 65 nm CMOS test structures during a
test beam campaign at the CERN SPS. In-pixel studies demonstrated a uniform spatial resolu-
tion across the Standard process CE-65v2 pixel, highlighting the accurate position reconstruction
for events far from the pixel centre. The sub 3 µm spatial resolution obtained in the Standard
process for both the 15 µm and 22.5 µm pitch satisfies FCC-ee requirements [226], and allows
tradeoffs in-pixel pitch with respect to power consumption, readout-rate, and manufacturing-
ease. The 15 µm Modified with Gap process, while not quite reaching sub 3 µm spatial resolution,
is likely to meet the requirement with a modest reduction in pixel pitch, retaining all benefits
associated with the process modification. This enables a wide range of applications for 65 nm
TPSCo MAPS for both current, and next-generation detector systems.

However, the spatial resolution was observed to quickly degrade when Standard process chips
are operated outside the low electron threshold regime, making the process particularly sensitive
to noise and radiation defects, including charge trapping. The Modified with Gap process, on
the other hand, displays a wide operating range, with an efficiency of over 99% being achievable
up to ∼ 180 e− for both the 15 µm and 22.5 µm chips. While the wider operating margin and
faster charge collection make the process more suited for high radation environments, in pixel
studies demonstrated a considerable degradation in the spatial resolution when moving away
from the pixel centre, with the observed spatial resolution being as high as 6 µm at the pixel
corners.

Adopting a staggered matrix arrangement resulted in an improved reconstruction of the y

position, particularly for the Standard process chips. While gains in efficiency were marginal,
the spatial resolution in the range 150-250 e− improved considerably for the 22.5 µm Standard
process chip, with a 16% improvement with respect to the square arrangement at 210 e−.

The consistently superior spatial resolution of the Standard process can be directly attributed
to enhanced charge sharing, which was further investigated across process modifications and pixel
pitches. The 22.5 µm Standard process chips exhibited an average charge fraction collected by
the seed pixel of 58.6%, which is substantially lower than its Modified with Gap counterpart at
86.8%. An inverse relationship between pixel pitch and charge sharing was observed between
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both process modifications, with a larger pitch leading to more charge sharing for the Standard
process. While the biasing voltage was successfully used as a lever to tune charge sharing in the
Standard process chips, it was of limited effect for their Modified with Gap counterparts.

Digitisation studies demonstrated that the spatial resolution in Modified with Gap process
only marginally benefits from more sophisticated reconstruction methods, with the resolution
obtained using the binary method 3.22 ± 0.02 µm improving only to 3.09 ± 0.02 µm when the
window method is used. In contrast, the Standard process variants, with their high charge shar-
ing, benefitted considerably more, with the spatial resolution improving from 3.74± 0.02 µm to
2.02±0.02 µm under the same change in clusterisation approach. However, the full improvement
in the reconstruction of the cluster was already observed at a 6-bit encoding, suggesting that a
significant reduction in data rate is possible, without compromising reconstruction quality.

In summary, the characterisation of the CE-65v2 chip has supplemented the APTS [197] and
DPTS [198] studies in the validation of the 65 nm TPSCo process as a candidate technology for
advanced particle detection applications, including the ALICE ITS3 upgrade. The demonstrated
spatial resolution, and its dependence on process modifications, pixel pitch, and matrix geometry,
provides valuable input for guiding future design choices in next-generation tracking detectors for
high-energy physics. Ongoing investigations into radiation tolerance and the Modified process
variants will extend these findings and help assess the applicability of the adopted technologies
under diverse radiation conditions.
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Part IV

Conclusion and Outlook
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11 Conclusion

Future lepton colliders such as the FCC-ee promise a rich physics programme in a clean envi-
ronment at unparalleled statistics. From electroweak measurements at the Z-pole to precision
studies of the Higgs boson, the physics programme at the FCC-ee will probe the Standard Model
with unprecedented scrutiny, offering a unique window into potential new physics. Maximally
exploiting the physics potential of future colliders hinges on the precise reconstruction of fi-
nal states, and in particular of the partons from which it originates. This thesis reports on
two complementary pillars of final state reconstruction at future colliders: jet flavour tagging
and charged particle tracking. Together they exemplify how advances in both algorithms and
hardware domains will be instrumental for achieving the ambitious goals set out for the FCC-ee.

Jet Flavour Tagging at the FCC-ee

Part II revolves around exploring the prospects of flavour tagging at the FCC-ee, with par-
ticular focus on the identification of strange quark initiated jets, a task that has long remained
elusive due the absence of long-lived hadrons. To this end a multiclassifier neural network using
a transformer-based architecture, dubbed DeepJetTransformer, was used to discriminate jets
using Delphes fast simulation to simulate the IDEA detector concept. By combining the repre-
sentational power of the self-attention mechanism, able to capture subtle correlations between
jet constituents, with novel vertexing strategies at the FCC-ee, the tagger achieved state-of-the-
art performance in a wide variety of classification tasks. Across both Z → qq̄ and ZH(→ qq̄)

decays, the model consistently achieved high performance, with efficiencies above ϵsig ∼ 87%

at a ϵbkg ∼ 10% background efficiency for b vs c and c vs s discrimination. Kaon identification
proved to be instrumental for s-jet discrimination, where u- and d-jets were found to domi-
nate the background. Charged kaon identification was emulated through the inclusion of a K±

ID flag sampled from a uniform distribution at varying efficiencies. By contrast, neutral kaon
identification was treated more realistically, with K0

S candidates included explicitly through the
reconstruction of V0 vertices during vertexing. Following the evaluation of tagging performance,
and its dependence on varying levels of particle identification, subsequent permutation feature
importance studies demonstrated the dominant impact of track and secondary vertex variables
to heavy flavour tagging, while further highlighting the importance of particle identification for
s-jet discrimination.

DeepJetTransformer is part of a wider shift towards transformer architectures in the context of
jet flavour tagging. Their rapid adoption is motivated by their improved representational power
and computational efficiency. The detector concept landscape at the FCC-ee is rapidly evolving,
with optimisations ranging from adjustments in the subdetector geometry to improvements in the
performance of individual detector modules, such as the silicon pixel detectors presented in Part
III of this thesis. With a computational complexity of just 19.7 MFLOPs, DeepJetTransformer
offers a compelling avenue for the iterative studies necessary to quantify the ramifications of
detector design choices. The observed necessity of kaon identification in isolating strange jets
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reinforces a growing body of evidence highlighting its critical role at the FCC-ee. These findings
align with the increasing emphasis on the inclusion of particle identification in the detector
concepts presented in Chapter 3, including for instance the potential adoption of a RICH detector
in the CLD design.

Future work on the DeepJetTransformer algorithm may be centered around improvements to
the input feature set. While there is significant room for optimisation of the architecture and
hyperparameter tuning, including adjustments to layer parameters and the network structure,
the most impactful gains would stem from enhancing the realism and relevance of the input fea-
ture set. The current feature set is likely far from optimal, partially due to degraded vertexing
performance under the assumed innermost vertex layer radius of 1.7 mm, relative to the present
baseline of 1.37 mm. A natural starting point would be to incorporate an updated description
of the IDEA detector concept, as well as a substantially larger input dataset. With ∼ 106 jets,
comparable to the number of trainable parameters, the current input dataset effectively consti-
tutes a rough lower bound for model training. Further gains could be achieved by extending the
input feature set to include additional features, including the full covariance matrix. Moreover,
the permutation feature importance studies highlighted overlap in the current input feature set,
which could be exploited to reduce computational complexity. The baseline K±/π± discrimina-
tion is overly conservative with respect to the particle identification performance forseen at the
FCC-ee. The inclusion of more realistic PID variables, such as the time-of-flight mass mt.o.f. and
the number of ionisation clusters dN/dx, would not only add realism, but significantly improve
the s-jet tagging performance achievable with DeepJetTransformer. Finally, the subdivision of
jet flavours into categories with distinct signatures, such as hadronic and semi-leptonic B hadron
decays, or g → bb̄ splittings that may not resemble the typical radiation pattern of a gluon jet,
is likely to offer further improvements in performance. Nevertheless, the optimisation of present
algorithms is only of limited interest given the FCC-ee’s distant timeline. The primary motiva-
tion lies in assessing the physics potential based on specific design choices for detector systems
and the FCC-ee accelerator as a whole.

Monolithic Active Pixel Sensors for Future Colliders

Monolithic Active Pixel Sensors have emerged as the enabling technology for vertexing sys-
tems at the FCC-ee. By combining the sensing layer and the readout circuitry onto the same
silicon die, MAPS offer a reduced material budget, increased spatial resolution, and decreased
power consumption, albeit at the cost of a reduced radiation tolerance. MAPS are thus uniquely
suited to environments where high granularity is the primary constraint, such as in heavy-ion
collisions, or future lepton colliders such as the FCC-ee. Part III reports on the characterisation
of a test structure produced in the 65nm TPSCo CMOS imaging process: the CE-65. The CE-
65v1 and CE-65v2 chips were produced in a wide variety of variants targetting four exploration
axes: amplification scheme, process modification, pitch variation, and matrix geometry. During
the initial lab characterisation of the CE-65 family of chips at the University of Zurich, the chips
exhibited low noise performance in the range of 15 - 25 e− across a variety of different pixel
pitches and process modifications. Subsequent gain calibration and uniformity studies using an
55Fe source demonstrated a high-gain uniformity of O(4%) for all considered chips, and a rela-
tive gain of 1:4:3 for the 25 µm Standard process CE-65v1 chip and 1:3:4 for its 15 µm Modified
process counterpart, in agreement with simulation. The AC-coupled preamplifier displayed the
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highest charge collection efficiency (∼ 97%) and best energy resolution (∼ 7%), vindicating its
adoption as the sole preamplifier architecture in the CE-65v2 chip.

The subsequent characterisation of the CE-65v2 at testbeams at CERN SPS and DESY
provided a comprehensive comparison of the Standard and Modified with Gap process variations,
pixel pitch (15 µm, 22.5 µm), and matrix geometry (square vs staggered). Substantially higher
charge sharing was observed for the Standard process chips, allowing a precise reconstruction
of impinging particles. A sub 3 µm spatial resolution was achieved for the both 15 µm and
22.5 µm pitch CE-65v2 chips, satisfying FCC-ee requirements. Reducing the precision of the
collected charge to a 6-bit encoding preserved the reconstruction precision, offering potential
gains in data volume. By contrast, the Modified with Gap process chips display much less
charge sharing, and thus only marginally benefit from sophisticated position reconstruction
methods. Despite displaying a consistently worse spatial resolution than the Standard process
chips, the 15 µm Modified with Gap process chip still achieves a ∼ 3 µm spatial resolution, and
a considerably wider operational margin, maintaining an efficiency of over 99% up to ∼ 180

e−. The spatial resolution was further improved through the adoption of a staggered matrix
geometry for all considered chip variants, with improvements particularly pronounced for the
Standard process chips at moderate thresholds of 150-250 e−. The improvement in the spatial
resolution is primarily attributed to the reduced charge sharing among neighbours, and the
beneficial geometry of the staggered arrangement. The adoption of a staggered matrix geometry
only marginally impacted the hit-detection efficiency of the CE-65v2 chip.

The CE-65 characterisation presented in this thesis complements existing APTS [197] and
DPTS [198] studies, and further consolidates the 65nm TPSCo imaging process as a candidate
technology for high-resolution silicon tracking. The systematic study of the aforementioned ex-
ploration axes provides valuable input for future MAPS detectors development. The recently
formed Optimized CMOS Technology fOr Precision in Ultra-thin Silicon (OCTOPUS) project
[227] aims to develop a full-size sensor demonstrator satisfying the stringent requirements of
future lepton collider vertex detectors. In line with the presented results, two promising avenues
have emerged to satisfy the multifaceted requirements of future vertex detectors, and in partic-
ular the sub 3 µm spatial resolution. The first is a small-pitch sensor produced in the Modified
with Gap process with a binary readout. While the 15 µm CE-65v2 chip does not quite satisfy
the spatial resolution requirement, a modest reduction in pixel pitch is likely to achieve a sub
3 µm spatial resolution with a binary readout. Such an approach would entail a fast charge
collection and a high hit-detection efficiency at moderate electron thresholds, thereby enhancing
radiation hardness. The small pixel pitch would, however, introduce challenges regarding the
miniaturisation of the in-pixel electronics, and would limit the achievable spatial resolution due
to the binary readout scheme. The second avenue would be a considerably larger pitch Stan-
dard process chip with a charge-sensitive readout. As demonstrated in this thesis, a 22.5 µm
Standard process chip achieves a ∼ 2 µm resolution when operated at low thresholds through
the exploitation of significant charge sharing during the position reconstruction. Novel readout
strategies are prerequisite to unlocking combinations of design parameters explored with the
CE-65(v2) chips, enabling a maximal single point resolution whilst not compromising readout
speed or power efficiency. The newly developed SPARC chip [228], for instance, implements
an asynchronous matrix readout architecture based on Fixed-Priority Arbiters (FPAs), allowing
large groups of pixels to be readout in a fast and power-efficient way. While the larger pitch and
improved spatial resolution with respect to the Modified with Gap approach are compelling, it

169



remains unclear if the Standard process can simultaneously satisfy the remaining requirements,
and in particular the radiation tolerance, due to its slow, diffusion-dominated charge collection,
and rapid decrease in hit-detection efficiency when operated at higher thresholds. Investigations
into the radiation tolerance of the CE-65v2 chip variants are ongoing at the time of writing,
aiming to extend the presented findings, and to clarify whether the Standard process remains a
viable candidate under the conditions expected at future lepton colliders.
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