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Abstract
More than a century after the discovery of cosmic rays, cosmic ray muons have
become a powerful tool in non-invasive imaging, with applications ranging from
ancient structures and volcanoes to nuclear casks and beyond. Their ability to pen-
etrate dense materials enables the imaging of internal structures by measuring the
muon transmission through an object, a technique better known as transmission
muography. The ScIDEP project applies this method to investigate the Pyramid of
Khafre, aiming to generate two- and three-dimensional density maps using scintilla-
tor-based detectors stationed at multiple viewpoints. A key challenge lies in the low
probability of muons traversing the detectors after passing through the pyramid,
resulting in the need for a computationally optimized simulation. Using Geant4
and EcoMug, a simulation was developed to constrain the muon generation to the
detector’s field of view, including the extrapolation of muon trajectories and ener-
gies before entering the pyramid. A custom tracking algorithm based on the Hough
transform and DBSCAN clustering was developed to reconstruct the muon trajecto-
ries from a hit collection, showing sensitivity to parameter tuning and track smear-
ing. Simulations for the free sky, the current pyramid structure, and the pyramid
with a hypothetical void enabled the creation of transmission maps, revealing the
known pyramid features and highlighting the system’s sensitivity to potential hid-
den chambers. While statistical limitations prevent definitive conclusions, results
demonstrate the value of muography for the investigation of archaeological struc-
tures. Future work involves extended simulations, dual-detector configurations for
3D reconstruction, improved modeling of the detector response, and refinement of
the tracking algorithm. The ScIDEP project illustrates the promise of muon imaging
in uncovering ancient construction techniques, through interdisciplinary and inter-
national collaboration.
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General Introduction

Cosmic rays are high-energetic particles that continuously penetrate the Earth’s atmosphere,
originating from both galactic and extragalactic sources. Their existence was first discovered in
1912 by Austrian physicist Hess, who, during a balloon flight, observed an increase in ioniza-
tion rates at higher altitudes compared to sea level. Primary cosmic rays consist predominantly
of protons, with a small portion of heavier nuclei. Upon colliding with atmospheric nuclei,
they initiate complex cascades that produce a variety of secondary particles—called secondary
cosmic rays. At sea level, muons make up approximately 63% of the secondary cosmic rays.
Due to their high velocity and the effect of time dilation predicted by special relativity, these
muons are able to reach the surface of the Earth, despite their short intrinsic lifetime. This
property, combined with their high energy, makes cosmic ray muons highly penetrative, capa-
ble of traversing dense and massive structures on Earth, rendering them ideal candidates for
an imaging technique called muography—a non-invasive technique that exploits cosmic ray
muons to investigate the internal composition of an object. As muons travel through matter,
they will lose energy through a range of interactions. The mean energy loss of a muon per
distance traveled is minimal in a certain energy range comprising the average energy of cos-
mic ray muons. As a result, the mean energy loss rate is primarily dependent on the density
of the traversed matter. Consequently, by measuring the cosmic ray muon flux traversing an
object, it is possible to acquire information about the density of this object. Various models,
ranging from approximate to highly detailed, are used to characterize this flux, and accurate
modeling is crucial for muographic applications. The imaging technique relies on either the
absorption or scattering of muons, the former known as transmission muography and the latter
as muon scattering tomography; where the focus of this thesis lies on the former. Transmission
muography is based on measurements of the opacity, defined as the integrated density along a
certain line of sight, by comparing the number of muons transmitted through a target with the
expected number in the absence of that target. This technique offers a powerful, non-invasive
way to probe the unknown, ranging from geological applications to archaeological structures.
One such application is the Pyramids of Giza in Egypt, monuments that continue to fascinate
both researchers and the public, as the construction of these pyramids is not fully understood
yet. The ScIDEP project aims to contribute to solving this puzzle by using transmission muog-
raphy to investigate the internal structure of the Pyramid of Khafre, the second-largest Pyramid
of Giza. Using scintillator-based tracking detectors placed both inside and outside the pyramid,
the trajectories of incoming muons are reconstructed from recorded hit coordinates across mul-
tiple detector planes. Through the reconstructed muon directions, a transmission map can be
generated by comparing the measured muon flux through the pyramid with that from an un-
obstructed view of the sky. Comparing this measured map with simulations based on a model
of the pyramid’s structure as known today, anomalies may be revealed that deviate from the
expected transmission, indicating the presence of hidden chambers or corridors. Such discov-
eries have the potential to offer new insights into ancient construction techniques and illustrate
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the adaptability of muography to a wide range of research fields.

Chapter 1 covers the production of cosmic ray muons, as well as their interaction with mat-
ter, and reviews several models of the cosmic ray muon flux. Additionally, the principle of
transmission muography is presented by introducing its core quantity—the muon transmis-
sion—and outlining the different types of muon telescopes. This chapter concludes by illustrat-
ing some archaeological applications that demonstrate the power and versatility of transmission
muography. Next, Chapter 2 provides an overview of the Pyramid of Khafre and highlights
some pioneering efforts in applying muography to the Egyptian pyramids. It also outlines the
objectives of the ScIDEP project, including details of the detector configuration and the general
simulation pipeline, from muon generation to image reconstruction. The optimized simulation
developed in this thesis is introduced in Chapter 3, where techniques were explored to con-
strain cosmic ray muon generation to an inverted cone comprising the detector’s field of view,
significantly improving computational efficiency. Chapter 4 dives into the development of a
novel track reconstruction algorithm, based on existing line detection techniques. The perfor-
mance of this algorithm was evaluated to determine the optimal reconstruction parameters and
to study the influence of noise. Finally, in Chapter 5, the components of the previous chapters
are integrated to reconstruct two-dimensional images of the Pyramid of Khafre. Simulations
were run for both the unobstructed sky and the pyramid model as known today. The resulting
muon tracks were reconstructed to generate a transmission map that highlights the features of
the pyramid. An additional simulation incorporating a hypothetical hidden chamber was con-
ducted to explore the detector’s sensitivity to muon excesses, indicating the presence of hidden
voids. At last, Chapter 6 summarizes the objectives and results of this thesis, and discusses
future steps for continued analysis and development.

The following list outlines the specific contributions of the author:

• In Chapter 3, I developed the optimized simulation framework, building upon an existing
Geant4-based simulation of the ScIDEP project. This included performing subsidiary sim-
ulations to acquire data for the energy and traversed length histograms to enable muon
extrapolation to a hemisphere covering the pyramid, implementing sensitive detectors
with associated hit classes, and data recording improvements.

• In Chapter 4, I developed a custom track reconstruction algorithm. The algorithm was
based on a line detection algorithm developed by Dalitz et al., tailored to the needs of the
ScIDEP project. I evaluated its performance and analyzed the impact of smearing and
additional noise.

• In Chapter 5, I generated the muon hit datasets for all three simulation configurations, as-
sessed the quality of the track reconstruction, produced the resulting transmission images,
and proposed a runtime-based approximation to estimate muon rates.

The generative AI tool ChatGPT was used for the installation of Geant4, and for debugging purposes
of the Geant4 simulation, the Python code, and the Latex code [1].



Chapter 1

Muon Radiography

Muography is an imaging technique based on the attenuation and scattering of cosmic ray
muons as they pass through matter. The origin of primary cosmic rays—and consequently, the
production of cosmic ray muons —is discussed in Section 1.1. This section also covers models
of the cosmic ray muon flux and their interactions with matter, both of which are fundamental
to muon radiography. The technique can be divided into two categories: transmission muog-
raphy and muon scattering tomography1. These methods are explained in Subsection 1.2.1,
where the concept of muon transmission—a key measure for transmission muography—is in-
troduced. To detect cosmic ray muons, specialized muon detectors are employed. Their types
and operating principles are detailed in Subsection 1.2.2. Finally, within the context of this the-
sis, which focuses on imaging of the Egyptian pyramids, relevant archaeological applications
of muon radiography are presented in Subsection 1.2.3.

1.1 Cosmic ray muons

1.1.1 Cosmic ray muon production

Cosmic rays (CR) were first discovered by Austrian physicist V. Hess in 1912 while noticing dur-
ing a balloon flight that the rate of ionization was almost three times higher at 5300 m than at
sea level [2]. Primary cosmic rays are highly energetic particles originating from high-energetic
sources in the Universe, ranging from the Sun to galactic and extra-galactic sources [3, 4]. Su-
pernova remnants are the most probable galactic sources, while active galactic nuclei and pul-
sars are additionally speculated to be extragalactic sources [5, 6, 7]. These primary CRs consists
mainly of protons (90%), with a smaller fraction of heavier nuclei [8]. When entering the Earth’s
atmosphere, primary CRs will interact with the atmospheric nuclei via the strong force. These
high-energy collisions will cause the nuclei to break up into their constituents, which will re-
organize into hadrons through a process called hadronization. The products of these hadronic
showers are called secondary cosmic rays. The cascade of these secondary particles resulting
from the primary CR interaction with the atmosphere is called a cosmic ray air shower. A gen-
eral overview of a cosmic ray air shower is shown in Figure 1.1. Mesons are hadrons composed
of an equal number of quarks and antiquarks. The most common mesons in secondary cosmic

1Muon scattering tomography is often abbreviated as muon tomography, although this term is sometimes used
more broadly as an umbrella term. Transmission muography is also referred to as muon radiography or absorption
muography. In this text, the general term muography refers collectively to both techniques.
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rays are charged pions (π+ and π−) and kaons (K+ and K−). Neutral pions (π0) and kaons
(K0) are also produced in cosmic ray air showers, but these have a significantly smaller lifetime
compared to their charged counterparts [9]. These secondary CRs will either interact with atmo-
spheric atoms, causing more hadronic cascades, or will decay without interaction. Secondary
cosmic rays consist mainly of electrons, positrons, muons, and protons [10]. At sea level, muons
make up most of the secondary cosmic rays, with a fraction of 63% [11].

Figure 1.1: Cosmic ray air shower. Figure taken from [12].

A muon µ is an elementary particle of the Standard Model, which is classified as a lepton
with a charge convention of −1 and spin of 1/2 [13]. The muon can be considered the heavier
“brother” of the electron: with a mass of 105.7 MeV, it is almost 208 times heavier than the
electron. It is an unstable particle with an average lifetime of 2.2 × 10−6 s for a muon at rest.
However, since cosmic ray muons travel at high speed, it is possible to observe these muons
at sea level on Earth, as a result of Einstein’s theory of special relativity. If a muon moves at a
velocity v relative to a stationary reference frame, it will perceive the passage of time t in that
reference frame as [14]:

t′ =
t√

1 − v2

c2

. (1.1)

Here the speed of light is denoted as c with a constant value of c = 3 × 108 m s−1 [15]. Due
to time dilation (Equation 1.1), cosmic ray muons are able to travel much larger distances com-
pared to muons at rest. Their high mass and velocity allow cosmic-ray muons to penetrate
hundreds of meters through matter without being significantly scattered or absorbed [10, 16].
These properties make it a highly penetrating particle capable of traversing large and dense ob-
jects along a straight-line trajectory, and therefore also the ideal probe for radiographic imaging.
Muons eventually decay into an electron, an electron antineutrino, and a muon neutrino via the
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weak interaction [8].

Cosmic ray muons—also called atmospheric muons—are produced in the decay of charged
cosmic ray pions and kaons. For a charged pion, the decay channel with the highest branching
ratio (∼ 100%) is [10]

π+ → µ+ + νµ and π− → µ− + ν̄µ , (1.2)

with a pion mean lifetime of approximately 26.03 × 10−9 s. Charged kaons produce muons
in a similar manner as in Equation 1.2, but here the decay channels have a smaller branching
ratio (63.5%), with a kaon mean lifetime of 12 × 10−9 s. Neutrinos only interact faintly with
matter, and can in general pass through large amounts of material without being observed.
When traveling through matter, muons will lose energy through electromagnetic interactions,
as will be explained more profoundly in Subsection 1.1.3. The energy loss—more precisely,
the mean energy loss per distance travelled—of charged particles in matter is described by the
Bethe-Bloch formula [17]. For atmospheric muons, the mean energy at sea level is 4 GeV near
zenith angle 0◦ [11]. As shown on Figure 1.2, between 100 MeV and 100 GeV, the Bethe-Bloch
formula falls to a minimum, making muons in this energy range minimum ionization particles
[3, 10]. As a result, the mean energy loss rate is nearly independent of other properties besides
the density of the traversed matter. Consequently, by measuring the cosmic ray muon flux of
muons traversing an object, it is possible to acquire information about the density of this object.

Figure 1.2: Stopping power for positive muons in copper as a function of their kinetic energy T.
Figure taken from [17].

1.1.2 Cosmic ray muon flux models

Due to the production of secondary cosmic rays, as described in the previous section, the Earth’s
atmosphere can be regarded as a natural source of muons. These atmospheric muons are gen-
erated at the top of the atmosphere with different energies and inclinations. Their traveled
distance s can be calculated using their inclination θ as

s(θ) =
d

cos θ
(1.3)

for a flat atmosphere with a thickness d [14]. This means that muons with a larger inclination
will travel a longer distance, thus generally taking a longer time to reach the surface of the
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Earth. Due to the finite lifetime of the muon, a longer travel time corresponds to a lower sur-
vival probability; hence, for muons with a larger inclination, a lower arrival rate is expected.
Moreover, a muon that travels longer distances will have a higher survival rate if its energy is
higher. Thus, the horizontal muon flux is more energetic than the vertical one, but the vertical
flux has a higher average intensity [10]. This is illustrated in Figure 1.3, where the CR muon flux
is shown for different measurements for an inclination of θ = 0◦ and θ = 75◦. As a consequence
of these two relations, the muon flux measured at Earth’s surface is modeled as a function of
the inclination θ and energy E of the muon.

Figure 1.3: Cosmic ray muon spectrum at θ = 0◦ (◦, •,■,▼,×,+) and θ = 75◦ (♢). The line
plots the result from Equation 1.8 for vertical muons. Figure taken from [5].

Typically, the rate of muons at sea level is around 70 m−2 s−1 sr−1 [5]. Most muons are
generated in the atmosphere at altitudes between 26 km and 15 km above sea level with an
average muon energy of around 6 GeV, which drops to an average energy of 4 GeV at sea level
[10]. As mentioned in the previous subsection, muons are observed on Earth as a consequence
of time dilation. Suppose a muon with rest mass m0 = 105.7 MeV is produced in the atmosphere
with energy E = 6 GeV, then the relativistic gamma factor is

γ =
E

m0c2 =
6 GeV

105.7 MeV
= 56.8 , (1.4)

corresponding to a time dilation of

t′ = γ × τ = 56.8 × 2.2 µs = 125.0 µs , (1.5)

where τ is the mean lifetime of a muon at rest. Using the expression of gamma in terms of the
speed of the particle, it can be deduced that the muon has a speed of v = 0, 9998c. Thus, the
distance this muon will travel is s = vt′ = 37 km. Taking into account energy losses caused
by interactions with the atmosphere, this decay length decreases to 25 km [10]. As a result, it is
clear that atmospheric muons can reach the Earth’s surface.

The cosmic ray muon flux is usually characterized by the symbol Φ(θ, E) and expressed in
units of cm−2 s−1 sr−1 GeV−1 [11]. For various applications in fundamental physics, as well
as in muon radiography, it is important to model this muon flux thoroughly. Different models
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have been proposed and can generally be split into three categories: empirical models, analyti-
cal models, and Monte Carlo models [18].

The most popular empirical model is the cosine-power model [5]. The angular distribution
of muons at sea level in function of the zenith angle θ is proportional to cos2 θ, for muons with
an energy of E ∼ 3 GeV. The flux can thus be modeled as

Φ(θ) = Φ0 cos2 θ . (1.6)

The front term Φ0 is a scaling factor, which corresponds to the vertical muon flux, i.e. for incli-
nation θ = 0◦. The first factor cos θ can be explained by the probability rate declining when the
muon travels a longer distance, as seen in Equation 1.3. The second factor comes from the fact
that a muon traveling with inclination angle θ sees the Earth’s surface area scaled by a factor
cos θ approximately [14]. This model omits the dependence of the flux on the muon energy.
At higher energies, the angular distribution will flatten, while at lower energies it will become
steeper.

Analytical models are based on an empirical model and are usually derived from physical
phenomena [18]. These models take the energy dependence into account, resulting in a more
complete model of the cosmic ray muon flux. This class of models is usually obtained by fitting
empirical parametric curves to the measured muon flux at sea level. The parametrization can be
motivated by physics related to the production of the CR muons or can be suggested by seeking
a tight fit [11]. A famous analytical flux model is the Gaisser model, proposed by physicist T. K.
Gaisser in 1990 [8]. This model has the following form:

(Φ(θ, E))Gaisser = AGE−γ

 1
1 + E cos θ

ECR
π

+
BG

1 + 1.1E cos θ
ECR

K

 . (1.7)

The first term in the parentheses takes into account the atmospheric muon flux caused by pion
decay, the second term the muon flux caused by kaon decay. The adjustable parameters are
the scale factor AG, the power index γ, and the balance factor BG—which depends on the ratio
of muons produced by kaons with respect to pions. Parameters ECR

π and ECR
K are the critical

energies2 of pions and kaons for a vertical inclination. In theory, these parameters are physical
quantities that should be determined through quantum mechanical calculus. However, some
authors consider ECR

π and ECR
K as adjustable parameters when fitting the model to measured

data. Replacing these factors by their calculated values yields:

(Φ(θ, E))Gaisser =
0.14E−2.7

cm2 s sr GeV

(
1

1 + 1.1E cos θ
115 GeV

+
0.054

1 + 1.1E cos θ
850 GeV

)
. (1.8)

The power index γ = −2.7 relates the atmospheric muon flux to the energy spectrum of their
parents, the primary cosmic rays [5]. An important remark is that this model does not take the
curvature of the Earth into account, and moreover, it overestimates the flux for muon energies
below 10 GeV due to muon decay and energy loss becoming more prominent [8]. This overesti-
mation is taken into account in other models, like the Gaisser-Tang model [19]. Other analytical
models have been suggested as well. These are usually modifications of the Gaisser model, tak-
ing into account certain assumptions about the curvature of the Earth or muon decay. Examples

2The critical energies are the energy thresholds above which pions and kaons interact with the atmosphere before
decaying [10].
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of these are the Guan model, Bugaev model and Reyna-Hebbeker model [20, 21, 22].

The last category of flux models is based on Monte Carlo simulations. Monte Carlo (MC) al-
gorithms are computational algorithms performed to compute numerical calculations of quan-
tities that are too difficult to solve analytically. These MC algorithms are based on repeated
random sampling of quantities that follow known probability distributions. Examples of these
for the cosmic ray muon flux are CORSIKA, CRY and EcoMug [23, 24, 25]. Depending on how
thorough the model is, it starts by generating the primary cosmic rays and then simulates their
interactions with the atmospheric atoms. Next, the process of the hadronic shower is simulated,
with as a result the decay of secondary cosmic ray particles to atmospheric muons. Lastly, the
procedure of how these muons travel to and reach Earth’s surface is simulated. A downside of
the Monte Carlo method is that MC algorithms usually require a longer computational time and
more computational power. However, the approximations of empirical and analytical methods
might result in a less accurate result for the atmospheric muon flux. None of these models is
universally suitable. Thus, the choice for a certain model should be made based on the condi-
tions of the experiment, i.e., ranges of θ and E, and required accuracy.

1.1.3 Muon interactions

Muography relies on the interaction of cosmic ray muons with matter. The probability of a
muon traversing a certain volume depends not only on the muon’s decay, but also on its inter-
action with the surrounding material. Muons will lose energy through electromagnetic interac-
tions like ionization, atomic excitation, and radiative processes. There are three main radiative
processes for a muon [17]:

• Bremsstrahlung: the deflection of a muon caused by the electric field of another charged
particle, resulting in the emission of a photon,

• Pair production: the creation of an electron-positron pair,

• Photonuclear interactions: interaction of a high-energy muon with the electric field of a
nucleus, causing the emission of a virtual photon that consequently is absorbed by the
nucleus.

Each of these processes has a different energy curve, so the dominating process depends on the
energy of the muon. At energies up to E ≈ 500 GeV, the ionization and excitation processes
will dominate [26]. Bremsstrahlung is dependent on the mass m of a particle through 1/m2

[3]. Since muons are approximately 200 times heavier than electrons or positrons, they will lose
significantly less energy through Bremsstrahlung.

As mentioned before, the mean energy loss per distance traveled of charged particles in
matter is described by the Bethe-Bloch formula. The contribution of the ionization and radiative
processes to the loss of energy of a muon as it traverses matter can be represented as [17]:

−dE
dx

= a(E) + b(E)E . (1.9)

Here a(E) is the energy lost through ionization and atomic excitation, and b(E) is the fraction
of energy lost through all radiative processes together. These parameters a(E) and b(E) are a
function of the energy and will vary with the material properties. A table with standard values
for a certain material composition can be consulted from the Particle Data Group [5].
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For muons with an energy ranging from 100 MeV up to 100 GeV, the energy loss rate is
constant at first order because these muons are minimum ionization particles. The value for the
stopping power in dense materials for a muon energy of a few GeV is around [10]

−dE
dx

= 2.1 MeV g−1 cm2 (1.10)

and less than this in air. This explains the approximately 2 GeV energy loss of muons when
traveling from the atmosphere to sea level. In the energy range where the muon is minimum
ionizing, the mean energy loss rate is proportional to the density of the traversed matter and is
nearly independent of other properties [3]. As a result, the cosmic ray muon flux can be related
to the density of the traversed material. Thus, by measuring the flux of cosmic-ray muons
traversing an object, it is possible to acquire information about the density of this object. The
opacity σ of an object is defined as the density of that object integrated along a certain line of
sight and can be calculated as follows [27]:

σ(L) =
∫

L
ρ(x)dx , (1.11)

where L corresponds to the thickness of the object along the muon’s trajectory, ρ is the density of
the object and x is the length variable along the muon’s trajectory. The measurement of opacity
is at the core of muon radiography, with a schematic overview presented in Figure 1.4.

Figure 1.4: Illustration of the opacity measured through muon radiography. Figure taken from
[27].

1.2 Muography

Muon imaging relies on the detection of cosmic ray muons using a muon telescope, with the
purpose of retrieving a density image of the object of interest. There are two methods of muon
imaging: transmission muography and muon scattering tomography. The first uses the electro-
magnetic interactions causing absorption of muons through energy loss, while the latter relies
on the principle of Coulomb scattering of muons in the traversed object [3]. Figure 1.5 illustrates
the difference between transmission muography and muon scattering tomography.

1.2.1 Operating principle

Muon radiography was first used in the last century, with the earliest known application be-
ing in 1955, when the overburden of a tunnel in Australia was measured by implementing a
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Figure 1.5: Illustration showcasing the difference between transmission muography and scat-
tering tomography. Figure taken from [28].

Geiger-Müller counter [29]. With the cosmic-ray muon flux being maximal in the vertical direc-
tion and decreasing for larger zenith angles, the muon telescope is typically placed at a lower
altitude looking at the target in an upward direction [3]. An illustration of a simplified setup
for transmission muography is shown in Figure 1.4. The telescope is used to track the trajec-
tories of the incoming muons after traversing the target. For a certain amount of time, muons
are detected and the muon absorption in the object is measured. The total time of data ac-
quisition is such that a sufficiently high number of muons is detected, to ensure a qualitative
image reconstruction. Due to the possibility to reconstruct the muon’s trajectory—and thus its
direction—the flux of the muons passing through the object is measured for each direction in
the field of view. Transmission muography relies on the same principle as X-ray imaging: a
quantity called the transmission is measured when the source particle (a photon in the case of
X-rays) passes through the matter [14]. In function of the zenith angle θ and azimuth angle ϕ,
the transmission can be defined as

T(θ, ϕ) =
N(θ, ϕ)

N0(θ, ϕ)
, (1.12)

where N0(θ, ϕ) is the number of muons that are expected without target and N(θ, ϕ) is the num-
ber of muons that are transmitted through the target [10]. The expected number of muons is
calculated with Monte Carlo simulations or can be acquired by performing free sky data mea-
surements. The latter can either be done by rotating the detector to a point without obstructed
view or—if the former is impossible—by putting the same detector in a different location to ob-
serve free sky [3]. Free sky measurements have the advantage of taking into account the detector
efficiency [10]. Including the detector efficiency and the acquisition time of the measurements,
the measured transmission, according to Equation 1.12, becomes:

Tm(θ, ϕ) =
ϵFS
ϵ

tFS
t

Nm(θ, ϕ)

NFS(θ, ϕ)
, (1.13)

where ϵFS is the detector efficiency for the free sky data acquisition with acquisition time tFS,
ϵ is the detector efficiency for the target data acquisition with acquisition time t, NFS(θ, ϕ) is
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the number of muons that were counted without target, and Nm(θ, ϕ) is the number of muons
that were transmitted through the target. As a result, the detector acquires a 2D image of the
transmission of the object. This transmission can be related to the density and thickness of the
object.

The interaction processes of a muon traveling through an object are stochastic; for an indi-
vidual muon, it cannot be predicted deterministically if this muon will escape [14]. However,
the average behavior of muons can be described. Suppose the muons have an average energy
E and traverse an object with a uniform density ρ and thickness d, then the muon transmission
is empirically described as [30]

Tµ(E, ρ) = e−µ(E,ρ)d . (1.14)

Here, µ(E, ρ) is the linear attenuation coefficient. This coefficient can be redefined as µ′ = µ
ρ ,

which is independent of the material, reforming Equation 1.14 as follows:

Tµ(E, ρ) = e−µ′(E)ρd . (1.15)

When the object has a non-uniform density, the density has to be integrated over:

Tµ(E, ρ) = e−µ′(E)
∫

L ρ(x)dx . (1.16)

Here, x is a coordinate variable moving along the trajectory of the muon. The integral in this
equation is precisely the opacity as defined in Equation 1.11, such that the non-uniform trans-
mission can be rewritten as:

Tµ(E, ρ) = e−µ(E)σ (1.17)

According to Equation 1.17, the transmission is related to the density ρ and size d of the object
through the opacity σ: for a larger opacity—corresponding to a denser material or larger vol-
ume—the transmission will be less. Thus, by measuring the muon transmission of an object, a
2D mapping of the amount of traversed matter of the object can be reconstructed. An important
remark is that this results in a map of the average density in a certain direction. This means that
a low density region without cavities can result in the same image as a high density region with
cavities.

To examine the internal structure of a target object, the measured transmission Tmeasured is
typically compared to the expected transmission Texpected, where the latter is usually predicted
through simulations. This comparison can be quantified by the relative transmission, which is
defined as

R(θ, ϕ) =
Tmeasured(θ, ϕ)

Texpected(θ, ϕ)
, (1.18)

and is equal to unity when no unknown internal structures are present, assuming that the ex-
pected transmission was accurately reproduced [10].

The second technique of muon imaging, muon scattering tomography (MST), makes use of
Coulomb scattering of muons. When a muon traverses an object and passes sufficiently close
to an atomic nucleus to feel the electromagnetic influence, it will be scattered in a different
direction [3]. The atomic nuclei have a different atomic number Z depending on the kind of
material of the object; thus, the electromagnetic interaction will differ in strength for different
materials. The larger Z, the stronger the interaction. The principle is to correlate this deflection
of the muon inside the target to the atomic number Z. Domains where this is of interest are
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nuclear waste, nuclear security, and material control, where it is essential to distinguish higher
Z materials from lower Z materials [31]. To detect the deflection of the muons, a detector should
be placed before and after the muon traverses an object. This technique was not investigated in
this thesis, so it will not be elaborated upon. From now on, the general term muography will be
used to denote transmission muography.

1.2.2 Detectors in muon telescopes

Muon detectors are devices to indirectly detect the presence of a muon: they detect the sec-
ondary particles that are created when a muon passes the detector and interacts with the detec-
tor material. The type of detector that is used for a muography experiment depends on several
factors, like the necessary resolution and the budget [3]. There are three main types of detec-
tors commonly applied in muography: plastic scintillators, gasses, and emulsion films. The
core mechanism for each of these is the same: the ionization of atoms due to a muon passing
through.

• Organic scintillator-based detectors rely on the principle of luminescence: when a charged
particle passes through the scintillating material, the atoms get excited, and when the
excited electron falls back to a lower energy state, light is emitted in the form of photons.
These photons are collected and converted into an electronic signal, which is proportional
to the energy deposit of the muon in the scintillator. Organic scintillator-based detectors
can be plastic, crystal, or even liquid. The plastic ones are popular as they are robust,
reliable, and simple to operate [26]. They are most optimal for situations that do not
require a high resolution and are low budget. Another advantage is their flexibility to be
produced into all kinds of shapes.

• Gaseous detectors consist of a narrow gas volume. When a muon passes through the gas,
the gas will be ionized, creating electron-ion pairs. To collect these charges, an electric
field is applied across the gas volume. Considering that some types of gaseous detectors
include an internal amplification mechanism, a gas detector generally performs at a better
resolution for a larger area compared to scintillator detectors [3]. On the downside, the
gas will age, resulting in a decrease in the efficiency, and some gases used nowadays are
flammable and/or polluting for the environment [26]. For gaseous detectors, multiple
types of detectors exist: the Multi-Wire Proportional Chamber (MWPC), drift chambers,
Migromegas detectors, Gas Electron Multipliers (GEM), and Resistive Plate Chambers
(RPC) [16].

• Emulsion films are photographic plates with grains of silver halide crystals. When a muon
traverses the plate, it ionizes the crystals along its path, resulting in a migration of elec-
trons from the valence band to the conduction band. This leads to the transformation of
some silver ions (Ag+) into silver atoms (Ag), triggering a chemical change [32]. After
recording the muons for a certain amount of time, the films are developed. The angular
resolution is defined by the grains in the film, which is typically in the order of milli-
radians, resulting in better performance compared to gaseous and scintillating detectors
[3]. Emulsion films don’t require a power supply, making them perfect for remote areas.
However, there is no information about the timing, making it impractical to study dynam-
ical systems, and the equipment necessary to develop them is specific and very complex,
resulting in a limited accessibility.

Other types of detectors are currently being developed, such as semiconductor detectors or
detectors relying on the principle of the Cherenkov effect [26, 33]. There will always be a trade-
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off between the resolution, the cost of construction, maintenance, the dependency on power
sources, accessibility, etc. Since a lot of cosmic-ray muons will never reach the detectors—either
they will be completely absorbed by the target or they will miss the detector—it generally takes
a long time to acquire enough data, ranging from hours to months [3]. This means that the
material needs to remain stable during a long period.

To be able to retrieve information about the trajectory—and thus the direction—of the cosmic-
ray muons, multiple muon detectors have to be combined together. This ensemble of stacked
detectors is also called a muon telescope or hodoscope [3]. A detector part of this ensemble is
called a tracking station if it is able to retrieve a hit coordinate. When a muon passes through a
muon telescope, each tracking station where the muon passes through will record a hit spatial
coordinate. To retrieve the trajectory of the muon, it is usually assumed that the muon follows a
straight trajectory. This assumption is plausible since cosmic-ray muons are highly penetrable,
as already stated in the previous section. Hence, with a minimum of 2 tracking stations, the
muon’s trajectory can be determined. The direction of a trajectory can be characterized by the
azimuth angle ϕ and zenith angle θ.

1.2.3 Applications

Muography can be applied in numerous fields. One particular field where it is being imple-
mented is archaeology, considering that muography is a non-invasive technique to image a
structure. This makes it an appealing method to investigate the internal structure of tombs,
tunnels, or other archaeological formations. In this subsection, a few archaeological applica-
tions of muography, ranging from ancient urban settlements in Italy to a Chinese defense wall,
will be described.

In Naples, Italy, muography has become a valuable tool to study the structure of the re-
mains of ancient urban settlements [34]. Mount Echia, an overburden of soft volcanic rock with
a maximum altitude of 60 m in the historical center of Naples, marks the location of the earliest
urban settlement in the area. Founded by the Greek colony Parthenope in 8th century BCE,
it harbors a network of tunnels and chambers, among them the Bourbon Tunnel, excavated in
1853. In 2017, a scientific team installed an upgraded version of a MU-RAY (scintillator-based)
telescope [35]. After acquiring data for 26 days, preliminary results indicated the presence of
a void. For further investigation, the MU-RAY telescope was relocated to a different location
for an additional data acquisition of 8 days. Furthermore, an additional telescope, a portable
MIMA (scintillator-based) telescope, was installed at a third location, for a total data collection
time of 50 days [36]. After 3D reconstruction of the cavity, it was deduced that the cavity is
around 4 m wide, 3-4 m high and 7 m long.

In 5th century BCE, the development of Parthenope led to the nearby foundation of Neapo-
lis, the ancient city of Naples [34]. Located 10 m below current street level, it contains remains
of buildings, streets, aqueducts and necropolis [37]. Due to the dense population in Naples,
archaeological excavations are not always safe or practical, raising the need for non-invasive
methods like muography. In 2023, two modules of nuclear emulsions were installed in an un-
derground corridor and analyzed independently in Naples and Nagoya, Japan. After com-
paring measured data with simulations, a muon flux excess was revealed that could not be
explained by the known architecture of the underground corridors, as seen in the dashed pink
circled area on Figure 1.6. One of the observed anomalies appeared to be compatible with the
existence of a currently inaccessible burial chamber, with a size of 2-3.5 m.
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Figure 1.6: Reconstructed images of the muon flux for simulations (a,d) and measurements
(b,e) from the two detector viewpoints (VP1 and VP2). Black dashed lines indicate the shapes
of some known structures. The pink dashed circle indicates a muon excess which cannot be
explained by any known structure. Figure taken from [37].

Another notable application of muography in archaeology is a study done on the defen-
sive wall in Xi’an, China [38]. This wall is one of the best-preserved ancient city walls in the
country, stretching roughly 13.74 km. Built more than 600 years ago during the Ming Dynasty,
it holds significant cultural and historical value. However, the structure has suffered damage
over time due to adverse weather conditions, such as heavy rainfall in 2006 and a monsoon in
2020. Research identified 214 cracks over 1 cm, as well as other damage like spalling and holes.
Documentation of past repairs of the wall is scarce, meaning that current conservation mostly
relies on external observations, which is insufficient to understand the internal damage. Muog-
raphy offers a non-destructive approach to explore the wall’s internal structure, by analyzing
the density distributions. A study focused on a 12 meter high rampart of the defensive wall.
A portable muon imaging system, CORMIS, was developed, and data was collected over three
months total, from six different detector positions. Using this data from multiple viewpoints
to reconstruct a 3D image, the system achieved a spatial resolution of 1 × 1 × 1 m3. This un-
precedented level of precision demonstrates the research’s ability to address several limitations
of earlier muography techniques, highlighting its potential for future conservation projects for
archeological structures.
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These examples illustrate how muography enriches our understanding of ancient structures
while showcasing the precision and adaptable nature of transmission muography in uncovering
otherwise possibly inaccessible archeological features. The technique has considerably evolved,
both from instrumental point of view and data analysis methodologies, and is likely to become
a widely used method in the future, providing further insight in the field of archeology, as well
as volcanology, civil engineering, geology, etc. [39]. In the case of muon scattering tomography,
this technique is predominantly used to monitor nuclear waste or nuclear reactors, although
recent studies have suggested a promising potential for applications related to the conservation
of cultural heritage [31, 40].



Chapter 2

The ScIDEP Project

The construction of the pyramids on the Giza Plateau in Egypt remains a subject of fascination
and mystery. The ScIDEP project is an international collaboration that aims to reveal the internal
structure of the Pyramid of Khafre using transmission muography. Despite only being slightly
smaller, the known internal layout of the Pyramid of Khafre is simpler than that of the Great
Pyramid of Giza. Details about the Pyramid of Khafre and the ScIDEP project are provided
in Section 2.1, which also touches upon several pioneering studies previously conducted on
the Pyramids of Giza. The collaboration intends to install muon telescopes both inside and
outside the pyramid to search for hidden cavities, with the ultimate goal of deepening our
understanding of the pyramid construction techniques. The muon telescope system designed
for this purpose is described in Section 2.2. Finally, the overall simulation pipeline—from muon
generation to image reconstruction—is outlined in Section 2.3.

2.1 Pyramid of Khafre

The pyramids at the Giza pyramid complex in Egypt are among the oldest monuments on Earth,
being built during the Fourth Dynasty of the Old Kingdom of ancient Egypt, around 2560− 2510
BCE [41]. Despite their historical and architectural significance, no documents about the con-
struction process written during the Fourth Dynasty have been discovered so far, such that
there is no definite consensus on how they were built [42]. King Khafre was the son of Khufu,
who ordered the construction of the Great Pyramid of Khufu, the largest pyramid of Giza [43].
The grandiosity of the Great Pyramid set a high standard for King Khafre to follow. The pyra-
mid of Khafre is built on higher ground, giving the illusion that it is taller than Khufu’s, and
has a pink granite bottom. Today, the Pyramid of Khafre stands as the second tallest pyramid
on the Giza Plateau, with a height of 136.4 m and a base length of 215.3 m [44]. It has a slope
of 53◦10’ and is constructed out of limestone blocks, each weighing over 2 tons. The majority
of the outer limestone casing was stripped over time. Despite only being slightly smaller than
the Great Pyramid of Khufu, the presently known internal structure of the Pyramid of Khafre
appears considerably simpler. As seen in Figure 2.1, its interior contains two entrance corridors
leading to a small chamber and a larger—slightly off-center w.r.t. the vertical axis—chamber.
The central chamber, the King’s burial chamber (also called Belzoni chamber), has dimensions
of 14 × 5 × 6.8 m3, while the subsidiary chamber has dimensions of 10 × 3 × 2.6 m3. The sim-
plicity of the interior might have been influenced by the experience of the builders completing
the Great Pyramid, but also raises the suggestion that the pyramid might contain chambers or

16
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Figure 2.1: Interior layout of the Pyramid of Khafre. Figure adapted from [44].

corridors that have yet to be revealed [45].

A pioneering example of muography applied to the pyramids is a study conducted by
Physics Nobel Laureate L.W. Alvarez et al. in 1970, who investigated the internal structure of
the Pyramid of Khafre, in search of hidden chambers [46]. Two 1.8-meter spark chambers, sep-
arated by a distance of 0.3 m, were placed in the King’s chamber at the bottom of the pyramid,
with scintillation counters to trigger the spark chambers upon the passage of a muon through
all three counters. Data was acquired over several months to construct a two-dimensional map
of 19 % of the volume of the pyramid. While their research successfully visualized the known
features of the pyramid—the diagonal ridges and the cap—as shown in Figure 2.2, the presence
of a hidden room or corridor could not be confirmed.

Figure 2.2: Scatter plots illustrating the muographic image reconstruction of the Pyramid of
Khafre for the (a) uncorrected data, (b) data corrected for the geometrical acceptance of the
detector, (c) data additionally corrected for the features of the pyramid, and (d) corrected data
including a simulated hidden chamber. Figure taken from [46].
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Half a century later, in 2017, the ScanPyramids collaboration claimed to have discovered
a large new void above the Grand Gallery in the Great Pyramid of Khufu [42]. This effort
was part of a broader project to scan four Old Kingdom Egyptian Pyramids. A combination
of scintillators and nuclear emulsions placed inside the pyramid, along with gaseous detectors
outside the pyramid, was employed. As seen in Figure 2.3, an excess of muons with over 5σ sta-
tistical evidence was observed, corresponding to a void dubbed ScanPyramids Big Void. This
void was estimated to be at least 30 m long, comparable to the length of the Grand Gallery. In
2023, the collaboration provided a detailed analysis of another discovered void [47], called the
ScanPyramid North Face Corridor (NFC). Using high-resolution multipoint observations, the
inclination, location, and dimensions could be revealed. Combining two independent analyses
from CEA and Nagoya University, the void was found to be more or less horizontally oriented
with a cross-section of approximately 2 × 2 m and a length around 9 m. Furthermore, a study
was done combining three non-destructive testing techniques (ground penetrating radar, ultra-
sonic testing, and electrical resistivity tomography) to support these findings and enable a more
detailed examination [48].

Figure 2.3: Detected (a) and simulated (c) muon flux from within the Pyramid of Khufu, viewed
from one of the nuclear emulsion detectors. Region A denotes the King’s chamber, B the Grand
Gallery and “New void” the region of unexpected muon excess. Figure taken from [42].

These studies highlight the potential of muography as a powerful tool for analysing the
structure of the Pyramids of Giza and other archaeological sites.

The ScIDEP (Scintillator Imaging Detector for the Egyptian Pyramids) project is an inter-
national scientific collaboration using transmission muography to reveal the internal structure
of the Pyramid of Khafre at the Giza Plateau [49]. It is a collaboration between institutes from
Belgium (VUB), Egypt (E-JUST), the USA (U. New Mexico and PNLL) and Romania (IFIN-HH).
By positioning muon telescopes at multiple viewpoints in and around the pyramid, the project
aims to reconstruct a three-dimensional image of its interior and search for hidden cavities. The
potential discovery of hidden internal features could provide valuable insight into the construc-
tion techniques of the pyramids. Beyond its scientific goals, the ScIDEP project emphasizes the
value of interdisciplinary and international collaboration to enrich our knowledge about the
pyramids and other historical monuments.
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2.2 Detector setup

The ScIDEP project aspires to install muon telescopes, with improved technology over Alvarez’s
experiment, in the Pyramid of Khafre to continue the search for hidden structures using the
principle of transmission muography. The objective is to install muon telescopes at various
viewpoints in and outside the pyramid, with the intention of reconstructing a three-dimensional
image of the pyramid. Two kinds of plastic scintillator-based muon telescopes are being devel-
oped, one made from plain polyvinyl toluene (PVT) plates, the other from polystyrene bars [45].
For both detectors, the scintillation photons which pass a wavelength shifting (WLS) fiber will
be absorbed by these fibers and re-emitted at a longer wavelength, after which they are guided
through the fibers via internal reflection to silicon photomultipliers (SiPM), from where the sig-
nal will be acquired using a readout system. The plan is to install at least one detector looking
upward inside the King’s burial chamber at the bottom of the pyramid. The other detector could
be positioned outside of the pyramid, looking at the upper part of the pyramid and a portion of
the free sky at an angle. The exact location and configuration for this outside detector still has
to be decided based on investigations of the expected muon flux via simulation.

2.2.1 Detector 1: Polyvinyl toluene plates

The first muon telescope consists of 61 × 61 × 2 cm3 plastic scintillator plates, made out of
EJ-200 (Eljen Technology) PVT, stacked vertically along the Z-axis [50, 51, 45]. To reconstruct
the muon hit coordinate, BCF-92 (Luxium Solutions, previously Saint-Gobain Crystals) WLS
fibers with a diameter of 2 mm are installed in grooves [52]. These grooves are 3 mm deep
and 1 cm apart, placed orthogonally at each surface side of the PVT plates. Hence, each PVT
plane contains two times 60 WLS fibers. A detector plane with the embedded WLS fibers is
shown in Figure 2.4. The orthogonal placement allows for data acquisition of the X- and Y-

Figure 2.4: A detector PVT plate with the embedded WLS fibers and PCB boards. Figure taken
from [49].

coordinate. These coordinates are later on used to reconstruct the trajectory of the muons. The
scintillation light collected in these fibers is read out by S14160 (Hamamatsu) SiPMs, with a
bias voltage of 41 V, which are being held by printed circuit boards (PCB) [49, 53, 54]. The
original version of the muon detector consists of two PVT plates. Their surfaces are coated
in a black paint, to limit the internal reflection of the scintillation light. The effective position
resolution of the current detector configuration is still being confirmed via lab measurements,
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but preliminary simulation studies imply that a position resolution better than 1 cm should be
feasible [45]. The distance between the two plates is variable between 20 and 200 cm, allowing
for the configuration of different angular resolutions and field of view [51]. The readout system
of the detector is currently based on CAEN PETIROC2A-ASIC programmable data-acquisition
boards, supported by DT5550W modules [55]. However, a custom-made readout electronics is
currently under development to replace the CAEN system, as it has been difficult to operate
[45]. This will be based on Weeroc ASICs in combination with field-programmable gate arrays
(FPGA). The data will be stored in an ASCII file for further analysis. At present, the detector is
located at the Egypt-Japan-University of Science and Technology (E-JUST) in Alexandria, Egypt.
Here, the characterization of the system is in process.

2.2.2 Detector 2: Polystyrene bars

The second detector is built out of polystyrene scintillator bars, each measuring 2.5 × 1 × 100
cm3, manufactered by Amcrys in Ukraine [56]. The detector is composed of four layers, where
each layer contains 36 bars [45]. A setup of the detector in the laboratory is shown in Figure
2.5. Each bar contains a 1.5 mm diameter BCF-91A (Luxium Solutions) WLS optical fiber which

Figure 2.5: Setup of detector 2 in the laboratory. Figure taken from [45].

is connected to a MicroFC-30035 (ONSemi, previously SensL) SiPM for light readout, as seen
in Figure 2.6. The scintillator bars are covered in polytetrafluoroethylene (PTFE) tape to en-
sure light containment in the bars. Consecutive layers are placed orthogonally to allow data
acquisition of the X- and Y-coordinate, with the top two layers at a certain distance from the
bottom two layers. For a separation distance of 90 cm, Monte Carlo simulations predict a 1.82
sr geometrical angular acceptance. When all four plates are stacked on top of each other, the
simulations predict a 5.71 sr angular acceptance. The readout system is FPGA-based, employ-
ing a Xilinx custom-made solution [57]. When every layer has at least one bar that detected
an event, the event is accepted and recorded in an output file [45]. Otherwise, the trajectory
reconstruction cannot be executed. Experimental tests have been performed to investigate the
imaging capabilities of the muon detector. Currently, the detector is being prepared for in-situ
measurements at the Astroparticle Physics Laboratory of the Horia Hulubeei National Institute
for Nuclear Physics and Engineering (IFINHH) in Romania.
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Figure 2.6: Left: scintillator bar with groove. Right: WLS fibers installed in the grooves and
connected the SiPMs and PCB. Figure taken from [45].

2.3 Simulation framework

To identify structural anomalies and draw conclusions in muography, it is essential to compare
measured data to accurate simulations. Simulations can be performed under various hypothe-
ses—for example different densities or cavity dimensions—to determine the best agreement
between observed data and simulation [16]. To ensure meaningful comparisons, the simula-
tion should be as realistic as possible; the target, the interaction of muons with matter and the
detector response should be modeled realistically. Generally, the simulation pipeline of any
muography experiment can be characterized by the following phases:

1. Cosmic ray generation,

2. Passage of muons through matter,

3. Hit coordinate reconstruction,

4. Track reconstruction,

5. Image reconstruction.

In the following subsections, each simulation phase will be explained concisely in the context
of the ScIDEP project.

2.3.1 Cosmic ray muon generation

The first step in the simulation process is the generation of cosmic-ray muons and background
particles. Various cosmic-ray generators are available, and the choice depends on the require-
ments of the study and the subject that is being investigated, as some generators are adapted for
underground targets for example. CR generators can broadly be divided into three categories:
cosmic-ray air shower generators, parametric generators and special generators [25]. Cosmic-
ray air shower (CRAS) generators simulate the complete cascade of secondary CRs produced
by the interaction of primary CRs with the atmosphere, while parametric generators are based
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on mathematical models of the CR muon flux. The parametrization of the latter category can
either be derived from experimental data or from outcomes of simulations using CRAS genera-
tors. Lastly, special generators are developed for specific applications, such as underground or
underwater muons.

Two widely used CRAS generators are CORSIKA and CRY [23, 24]. CORSIKA (COsmic
Ray SImulation for KAscade) simulates the evolution of the cosmic-ray air showers in the at-
mosphere initiated by the primary CRs. All generated particles are tracked until they interact,
decay or are absorbed. While this exensive tracking makes it a detailed simulation, it also makes
it computationally intensive. In contrast, CRY is based on precomputed input tables, making it
faster but more approximate: only protons are used as primary cosmic rays, the energy range is
limited and the atmosphere is modeled in a simplified manner.

EcoMug (Efficient COsmic MUon Generator) is a parametric Monte Carlo generator tailored
for muography applications, as it takes the muon distribution into account. With EcoMug it is
possible to generate cosmic ray muons from a hemispherical, planar or cylindrical surface, in
contrary to other generators, which usually only allow flat generation surfaces. This variety
allows for a more efficient generation of nearly horizontal muons, particulary useful in case the
detector views the target from an angle. The muon generation is implemented in such a way
that the generated tracks follow the realistic angular and momentum distribution, regardless of
the shape of the generation surface. Furthermore, EcoMug provides users the flexibility to gen-
erate cosmic ray muons according to user-defined parameterizations of their differential flux.
The advantage of a parametric generator is generally a faster speed of execution and the possi-
bility to pre-filter muons based on momentum or direction. A comparison of the performance
of EcoMug, CORSIKA and CRY was done by [16].

Examples of special generators are muTeV and MUPAGE [25]. The former is developed
to generate high-energy muons for underground or underwater laboraties, while the latter is
mainly designed for underwater or underice neutrino experiments. This category of generators
is not relevant for the objectives of the ScIDEP project and therefore will not be adressed in more
detail.

2.3.2 Passage of muons through matter

After muons are generated, their interaction with both the pyramid and the detector has to be
simulated accurately. Several simulations tools are available for this purpose, such as Geant4
or PUMAS [58, 59]. While Geant4 provides the possibility to accurately model the detector
and pyramid, PUMAS does not offer this feature and is specifically meant for muon transport
through the target. To realistically model the energy loss and potential scattering of the muons,
the pyramid must be defined with precise dimensions and density. Similarly, the detector has to
be modeled according to reality, incorporating the correct geometries and material properties.
In addition, the detector response requires accurate simulation. When a muon traverses the
scintillator and deposits energy, this energy is converted into photons, which spread over the
scintillator. Photons crossing the WLS fibers are absorbed and re-emitted, after which they are
transported via internal reflection in the fibers to the SiPMs. This process should be modeled
with the specific optical properties. Furthermore, the relevant physical interactions themselves,
that the muons or secondary particles undergo, have to be simulated accurately. The specific
simulation model developed and used in this thesis is described in detail in Chapter 3.
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2.3.3 Hit coordinate reconstruction

When a muon traverses a scintillator detector plate, the produced photons that cross a WLS
fiber are transported into the fibers to the SiPMs, where the signal will be read out. A concep-
tual illustration of this is shown in Figure 2.7. As previously mentioned, each detector plate

Figure 2.7: Muon traversing a PVT plate producing photons, some of which are captured and
reflected through a WLS fiber. Figure taken from [51].

comprises 120 channels—60 for the X-dimension and 60 for the Y-dimension. Since the detector
consists of one homogeneous plate, scintillation light will spread across the plate. Consequently,
a single muon hit will typically result in multiple channels being activated. To determine the
actual hit coordinate, the detector response must be digitized. Through a process of clustering,
the hit coordinate is reconstructed from the signal distributed across the different channels. The
reconstructed hit position is calculated through the center of gravity, as a weighted average of
the fiber positions xi and yi:

xhit =
∑n

i wxixi

∑n
i wxi

and yhit =
∑n

i wyiyi

∑n
i wxi

. (2.1)

Here, xhit and yhit are the reconstructed x- and y-coordinate, with the weights wxi and wyi being
either the number of detected photons per channel, or the total energy deposited per channel.
A reconstructed hit coordinate is characterized by two parameters: the total energy deposit
and the hit position [16]. If a muon traversing a scintillator plate happens to activate multiple
channels, the ensemble of these channels is typically referred to as a cluster.

2.3.4 Track reconstruction

This list of reconstructed hit coordinates is passed to a tracking algorithm, which reconstructs
the muon trajectories. A tracking algorithm uses mathematical methods to determine the most
likely muon trajectory from a set of input coordinates. Its purpose is to identify the optimal
combination of clusters while suppressing noise, such as secondary particles. The development
and performance of a novel tracking algorithm for muography is explained in Chapter 4.

2.3.5 Image reconstruction

Once the directions of the CR muons are retrieved from the tracking algorithm, it is possible
to reconstruct an image of the pyramid. The first step in this process involves constructing a
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two-dimensional muon flux map as a function of the direction angles. After doing this for both
the free-sky configuration and target configuration, a transmission map can be reproduced, us-
ing the definition in Equation 1.13. This map is then converted into a two-dimensional opacity
map, where higher opacity corresponds to regions with greater density of thickness, and lower
opacity may indicate cavities or less dense areas. By comparing the measured muon flux with
the expected flux through a relative transmission map, anomalies can be revealed that may hint
at unknown features or hidden cavities inside the pyramid. The process of image reconstruc-
tion is discussed in Chapter 5.



Chapter 3

Simulations

From generating muons and simulating their interactions with the pyramid to recording detec-
tor hits and storing the output: a muography simulation involves many sequential steps and
demands a careful setup. To draw legitimate conclusions, the simulation has to be fine-tuned
accurately according to the experiment and requires enough statistics. Both the detector and
pyramid must be accurately modeled, and an appropriate simulation toolkit must be selected
to handle muon interactions, as discussed in Section 3.1. Additionally, cosmic ray muons must
be generated according to their realistic energy and angular distribution. Selecting a suitable
CR muon generator depends on the specific objectives of the muographic study, as described
in Section 3.2. One obstacle to muography is obtaining a sufficient number of detector hits:
many CR muons generated in the atmosphere will never reach the detector, either because they
will miss it or because they are absorbed in the target. Consequently, it will computationally
be extensive—demanding significant power and time—to simulate and acquire enough muon
hits. To counter this challenge, an optimized yet approximative simulation has been developed,
which restricts the muon generation to an inverted cone aligned with the detector’s field of
view, as explained in detail in Subsections 3.2.1 and 3.2.2. Once the muons have been tracked
through the pyramid, the relevant hit information must be recorded and stored, as discussed in
Section 3.3.

3.1 Detector and pyramid characterization

3.1.1 Geant4

To simulate the passage of CR muons through the pyramid and the detector, Geant4 was uti-
lized, a state-of-the-art Monte Carlo toolkit for simulating the interaction of particles with mat-
ter [58]. Developed in C++ in an object-oriented framework, it allows users to model complex
detector geometries and accurately track particle trajectories as they traverse various geome-
tries and materials. Geant4 uses advanced algorithms to extensively model different physical
interactions, including processes that result in multiple scattering and energy loss, leading to
an accurate simulation of the muon’s interaction within the object. The simulation parameters
can be adjusted according to the experimental setup, including materials, detector characteris-
tics, and relevant physics processes. This flexibility, in combination with its ability to precisely
simulate complex particle interactions, makes Geant4 a powerful tool for studying muon inter-
actions in detail.

25
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A Geant4 simulation—commonly referred to as an application—is composed of several user
classes, which allow customization of various aspects of the simulation [60]. User initialization
classes are used to define and configure the experimental setup, detector geometry for example,
and the physics processes before the start of a simulation run. User action classes, on the other
hand, are responsible for defining behavior during the run itself. These may include run, event,
tracking, and stepping processing, as well as primary particle generation. A run in Geant4 con-
sists of a sequence of events, which all share the same detector configuration and physics list
[61]. An event begins with the generation of one or more primary particles, after which each
particle is tracked through the geometry, and secondary particles are produced through the ear-
lier defined physical interactions. Each secondary particle is likewise tracked. This continues
until the event’s particle stack is empty, meaning that there are no more particles to be tracked.
Particles may be removed from the stack if they exit the experimental boundaries or fall below a
certain, user-defined, energy threshold for example. A track can be seen as a snapshot of a parti-
cle, it represents the current state of a particle as it moves through the geometries. It is updated
every step, where a step captures the differential information of a particle over a segment of its
trajectory. The simulation of a detector response is achieved using the sensitive detector class.
Whenever a particle crosses a sensitive detector volume, a hit object will be generated. A hit
is defined as a snapshot of the particle’s physical interaction within the sensitive region of the
detector. Hit objects can store step information such as position, time, and energy deposition
during the step, as well as geometrical information such as volume identifiers. For each type of
sensitive detector, a corresponding hit class is created to specify which information should be
stored. Moreover, it is possible to set certain conditions, such that only hits meeting these prede-
termined requirements—particle type for instance—are stored in a hit collection, which can be
accessed at the end of an event to extract the relevant data. The physics used in the Geant4 sim-
ulations can be configured either through a predefined model—known as a reference physics
list—or by constructing a custom physics list. A widely known and currently Geant4’s default
reference physics list is FTFP BERT. Each process in this list is constructed using cross sections
and interaction models that define the detailed physical behavior. There is no implementation
of optical photons in this physics list, so to simulate the full detector response this should be
added explicitly.

3.1.2 Modelization

A detailed model of the first muon detector, as described in Subsection 2.2.1, was implemented
for this thesis. Three tracking stations were modeled, as seen in Figure 3.1a. This resulted in a
total of three tracking stations, one more compared to the configuration described in Subsection
2.2.1. The motivation for this extra tracking station is discussed in Chapter 4. The grooves were
modeled into the tracking stations by subtracting volumes of 2 × 3 × 60 m3 from the plates.
The tracking stations were spaced 30 cm apart and modeled as EJ-200 PVT, with the specific
material properties, such as absorption length and scintillation yield, taken from the manufac-
turer’s product sheet [50]. EJ-200 has a long optical attenuation length and fast timing, with an
emission spectrum peaking at 425 n within a range of 400-500 nm [62]. These scintillator prop-
erties were included in detail in the GEANT4 material description. The WLS optical fibers were
placed in the grooves and modeled as a BCF-92 formulation, again with the material properties
provided by the manufacturer [52]. BCF-92 absorbs photons in the 359-458 nm range and re-
emits photons in the 465-502 nm range [62]. In Geant4, these fibers were modeled as plexiglass
(C5H8O2) with a density of 1.19 g/cm3 and were then assigned the specified optical properties
such as spectrum, refractive index, and decay time. A close-up of the WLS fibers and SiPMs is
shown in Figure 3.1b. The SiPM windows were modeled as 3 × 3 × 0.3 mm3 glass plates and
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(a) Detector model. (b) Close-up of the WLS fibers and SiPMs.

Figure 3.1: Model in Geant4 of the scintillator detector described in Subsection 2.2.1, as well
as a close-up of the placement of the WLS fibers and SiPMs. Colors are chosen arbitratrily for
visualization purposes and do not represent the actual detector model.

the SiPMs themselves as 3 × 3 × 1.15 mm3 aluminum boxes. All definitions of elements and
materials used in the simulation were extracted from the National Institute of Standards and
Technology (NIST) database.

A three-dimensional model of the Pyramid of Khafre and its known internal structure was
downloaded as an STL file [63], which included the burial chamber and both entrances that
lead to it, as well as the subsidiary chamber. This model was modified in the 3D computer
graphics software tools Blender and MeshLab, to ensure it was closed and suitable for import
into Geant4 [64, 65]. During this process, the corridors were separated from the pyramid body.
Both these models were saved in separate ASCII-format STL files and imported into Geant4
as a solid using the CADmesh tool [66]. Within Geant4, the corridors were subtracted from
the pyramid body, resulting in the final geometrical pyramid structure as known today. The
imported model in Geant4 is shown in Figure 3.2. This structure was modeled as limestone,

Figure 3.2: Model in Geant4 of the Pyramid of Khafre including its known internal features.

represented by calcium carbonate (CaCO3) provided by the NIST material database. Since the
lower corridor lies primarily below ground level, underneath the base of the pyramid, it is not
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visible in the model shown in Figure 3.2. To include the underground parts, a ground volume
should be implemented in Geant4. The ground can be modeled as standard rock or another
material that more accurately represents the geological composition of the Giza plateau. The
corridor structure can then be subtracted from this ground volume.

The detector and the pyramid were encapsulated in a shared World volume in the simu-
lation. This World volume, which represents the experimental area of interest, was a cube of
500 × 500 m3 and was composed of air. Consequently, the voids within the pyramid were filled
with air. The global coordinate system is defined by the World volume, with the origin being
the center of the cube. The pyramid was placed inside the World volume such that its base
center aligned with the origin and the origin corresponded to ground level. As a result, because
of the positioning of the King’s chamber within the pyramid, the origin lied inside the burial
chamber. The vertical axis of the pyramid aligned with the z-axis. The detector was placed
around the origin of the world volume, with its first scintillator plate 9 cm above the origin and
the two subsequent tracking stations always 30 cm below the preceding one.

For this thesis, the processes of interest were Bremsstrahlung, ionization, pair production,
and multiple scattering for muons. Although additional processes—optical processes or in-
teraction processes for secondary particles—were also included in a custom physics list, these
were not relevant for this analysis, as only muons were tracked. The motivation for focusing
solely on muons is given in Section 3.3.

To record hit information when a particle traverses a scintillator plate, the detector plates
were set as sensitive detectors in Geant4. A requirement was implemented such that only hits
from primary muons with a non-zero energy deposition were stored, to prevent the recording of
secondary particles. A complete simulation of the detector response—the optical photon prop-
agation within the scintillator and the corresponding SiPM response—would require marking
the SiPM windows as sensitive detectors, to check of many photons reach the SiPMs, and trans-
form this into a realistic output. However, simulating the propagation of these optical pho-
tons significantly increases computational time, and was therefore omitted from the simulation.
Nevertheless, it is important to note that in an actual experimental setup, the true positions are
not directly observable, as only the signal from each channel is recorded. Thus, future stud-
ies will need to incorporate the hit reconstruction based on the realistic detector output, also
investigating the influence of noise.

3.2 Cosmic ray muon generation

To generate the CR muons, various CR generators are available, as explained in Subsection 2.3.1.
The most straightforward way to generate a particle in Geant4 is by employing a particle gun
from the G4ParticleGun class [60]. It allows users to specify the particle type, momentum,
direction, and position, among other variables. In the case of muography, the particle gun is a
simplified setup, as it does not take the angular and energy distribution of the CR muons into
account. Because of this, it should not be used to simulate muographic images intended to be
compared to observed data. Nevertheless, the method still has its benefits: due to its simplic-
ity, it is an ideal option for initial testing and debugging. In this thesis, the particle gun was
employed to generate artificial muons for acquiring hit data to develop, test, and optimize the
tracking algorithm (see Chapter 4). It was also used to scan the traversed length through the
pyramid across all directions and to obtain a relationship between incoming and outgoing en-
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ergies for a muon traversing the pyramid, two essential things to optimize the simulation (see
Subsection 3.2.2).

For a more realistic CR muon generation, EcoMug was selected as the primary generator in
the simulation. As a parametric generator, it offers both computational efficiency and flexibil-
ity in defining the generation surface. The planar and hemispherical generation surfaces from
EcoMug were investigated, with two examples shown in Figure 3.3a and 3.3b respectively. Due

(a) Planar generation surface of size 70× 70 cm2

centrally positioned 5 cm above the uppermost
detector plate.

(b) Hemispherical generation surface with a ra-
dius of 50 cm centered on the uppermost detec-
tor plate.

Figure 3.3: Planar and hemispherical generation surface of the EcoMug generator, shown for a
generation of 1000 muons in Geant4. The red and blue lines correspond to the muon tracks.

to its computational efficiency, EcoMug is well-suited for producing preliminary simulations
within the limited time frame of this research. Its seamless integration with Geant4 further-
more enhances its utility for this analysis. It is important to note that while EcoMug generates
the muon’s energy, position, and direction, the muon itself must still be fired through the Geant4
particle gun.

The first generation surface that was explored, was a hemisphere centered at the origin with
a radius large enough to cover the entire pyramid. However, as mentioned in Chapter 1, most
generated CR muons will never reach the detector, either because they will miss the detector
or because they will be absorbed in the target. When generating 1 billion muons in Geant4 on
a hemisphere covering the pyramid, only roughly 1500 events1 were recorded. The simulation
of these 1 billion muons traversing the pyramid took approximately 1 hour and 30 minutes.
Hence, it would have taken an incredible amount of time to acquire enough data to reconstruct
the image of the pyramid with a proper resolution and statistics. To solve this computational
obstacle, the development of an optimized simulation is proposed, which limits the generation
of muons inside an inverted cone comprising the field of view of the detector. EcoMug does
offer constraints on the generated zenith and azimuthal angle, yet it does not offer a function to
limit the generation of muons inside an inverted cone. The principle of the optimized simula-
tion is to first generate the muons close to the detector, using a small generation surface, which
decreases the probability of muons missing the detector planes. Muons that enter a region close
enough to the detector will then be extrapolated to outside the pyramid, where they will be

1An event is defined as a muon hitting all three tracking stations, not to be confused with the event definition of
Geant4 as explained in Subsection 3.1.1.
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fired and tracked through the pyramid. Finally, muons that actually hit all three detector planes
are accepted as events and their information is stored in a file for further analysis.

3.2.1 Small surface generation

The first step is to generate muons on a small generation surface. This generation surface should
be sufficiently small, to ensure a significant fraction of the generated muons passes near the de-
tector, yet large enough to enclose the entire detector field of view. A muon is defined as a
nearby muon if its trajectory passes within the range of the detector plate surface plus an ad-
ditional foreseen margin, as illustrated in Figure 3.4. The area of the detector plus margin will

Figure 3.4: Simplified illustration of the three tracking stations (black) surrounded by an imag-
inary margin, depicted in red. The purple dots represent the intersection of the trajectory of the
nearby muon with the corresponding margin areas.

be called the nearby area. It is important to remark that at this stage, the muon is not yet ac-
tually fired; however, the generation information such as position and momentum is available
through the EcoMug generator. This information is used to approximate the trajectory of the
muon as a straight line and calculate its intersection with the nearby area. If this intersection
falls within the nearby area for all three detector planes, it can be reasonably argued that the
muon is likely to hit all three detector planes. Consequently, a nearby muon will be extrapo-
lated to outside the pyramid.

To find the optimal generation surface, resulting in the most number of hits in all three
planes, a study was done using the free sky configuration. Hemispherical and planar generation
surfaces were explored, differing in sizes and central positions. For each of these surfaces, 3
million muons were generated and fired. The hits on the uppermost detector plane are shown in
Figure 3.5 for four configurations of generation surfaces. While a hemisphere with a radius of 40
cm positioned in the center of the uppermost detector plane results in more hits than a similarly
placed hemisphere with a radius of 50 cm, it is obvious from the upper right plot that not the
entire field of view of the detector is covered. This does not come as a surprise, since a detector
plane with a surface size of 60× 60 cm2 needs a hemisphere with a radius of minimum 42.43 cm
for full coverage. For a generation surface placed at a distance d above the uppermost detector
plane, one needs to be careful that its size scales with d, such that it still covers the detector’s
field of view. To compare the hemisphere with a planar surface, a plane of size 70 × 70 cm2

positioned 5 cm above the uppermost detector plane was modeled. By comparing the upper
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Figure 3.5: Number of hits on the uppermost detector plane for a) a hemisphere with a radius
of 50 cm positioned at (0, 0, 9) cm, b) a hemisphere with a radius of 40 cm positioned at (0, 0, 9)
cm, c) a plane of 70× 70 cm2 positioned at (0, 0, 14) cm and d) a plane of 85× 85 cm2 positioned
at (0, 0, 19) cm.

left and lower left plots, it can be deduced that the planar surface results in more hits. A bigger
planar surface of 85 × 85 cm2 positioned 10 cm above the detector—as seen in the lower right
plot—was also explored, however, this did not result in more hits. Consequently, the planar
generation surface of 70 × 70 cm2 positioned 5 cm above the uppermost detector plane was
selected as the small generation surface. To find the ideal margin, another study was conducted
in a later stage of this optimized simulation, as discussed in Section 3.3. Other notions of a muon
passing near the detector could be defined, such as it passing in a volume (sphere or cube for
instance) around the detector.
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3.2.2 Muon extrapolation

If a generated muon is classified as a nearby muon, the next step is to extrapolate it to the
outside of the pyramid. To determine a suitable position to generate the muon from, outside
the pyramid, a large surface—like a plane or hemisphere—can be defined. Then, it is only a
matter of calculating the intersection between the surface and the muon’s trajectory—which is
approximated as a straight line defined by the initial position and direction by Ecomug in the
first step. While calculating the intersection with a plane is mathematically less complicated,
a hemisphere offers the advantage of confining the generation point closer to the pyramid. In
turn, this allows for a smaller World volume to be used in the simulated, which is preferred to
reduce computational time.

When a muon passes through the pyramid, it will interact with the surrounding matter, re-
sulting in a loss of energy. Evidently, the muon’s energy when reaching the detector is lower
than its energy when entering the pyramid. Thus, to extrapolate a muon from near the detector
to outside the pyramid, this energy loss has to be accounted for, to fire the muon with the cor-
rect energy. The energy loss of a muon traveling through matter is a non-trivial calculation, as
its interactions with this surrounding matter are stochastic. The average energy loss for a muon
traveling through a medium is described by Equation 1.9. This expression highlights the com-
plexity of the calculation: the energy loss per traversed unit of length is a function of the energy
itself, along with the factors a(E) and b(E), which depend on the energy in a non-trivial way. It
is due to these complex interactions that MC simulation tools such as Geant4 exist, to simulate
these processes that are analytically unsolvable. The aim of this analysis, the extrapolation, is
even more challenging: instead of calculating the energy loss, the energy gain has to be esti-
mated. Doing this with the same level of accuracy as Geant4’s forward simulation requires the
calculation of the reverse physics processes. However, for muons, these reverse processes have
not been implemented yet in Geant4. While specialized tools like PUMAS have been designed
specifically for muography to work in backward mode, these are often hard to integrate into the
Geant4 framework [59, 16]. Consequently, an alternative approach was pursued in this thesis.

This novel approach is an approximation of the reality, nevertheless, for producing prelim-
inary images of the pyramid within the limited time frame of this research, it serves its pur-
pose. From Equation 1.9, it can be deduced that the energy that the muon has before entering
the pyramid—called the incoming energy Ein—can be related to the traversed length through
the pyramid and the muon’s energy when reaching the detector—called the outgoing energy
Eout. To explore this relationship, a simulation was implemented in Geant4 to generate a two-
dimensional data histogram. The principle is that, for a given traversed length and outgoing
energy, the corresponding bin can be identified from which the incoming energy can be ac-
quired. In the simulation, a limestone block with a length of 150 m and a cross section of 5 × 5
m2 was modeled. A muon particle gun was positioned to shoot particles through the cross sec-
tion into the block, as seen in the setup in Figure 3.6. Since the average energy of CR muons at
sea level is around 4 GeV, and the relative energy loss is expected to be larger for low-energy
muons, it was motivated to split the data into different energy histograms. The intervals for
the incoming energy for the generated muons were selected as follows: [0, 300] GeV, [200, 2300]
GeV, [2000, 13000] GeV and [10000, 55000] GeV. This way, the lower energy histograms can be
reconstructed with a higher resolution capturing more variability, providing a more detailed re-
lationship between traversed length, incoming, and outgoing energy. For each of these ranges,
a run of 1 million events was executed. Per event, one muon was generated with a randomly as-
signed energy from the designated range. The overlap between the consecutive energy ranges
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Figure 3.6: Model in Geant4 of the limestone block used to acquire the energy histograms. The
red/yellow line corresponds to the trajectory of a muon.

is intentional, as it accounts for the fact that the outgoing energy of a muon will be lower than
its incoming energy. This will result in a data gap in the histogram for bins corresponding to
large traversed lengths and outgoing energies. Consequently, when reconstructing the energy
histograms, to remove this data gap, a cut was applied on the outgoing energy intervals, such
that these correspond to [0, 200] GeV, [200, 2000] GeV, [2000, 10000] GeV and [10000, 50000] GeV.
For outgoing energies exceeding 50000 GeV, it was observed that the relationship between the
incoming and outgoing energy was relatively stable, exhibiting less variation in terms of the
traversed length, compared to lower energy ranges. Hence, a constant value of 2000 GeV was
added to estimate the incoming energy in this case. It should be noted that this approximation
is quite rough and should be refined in the future2. For every generated muon, the energy Eout
it had inside the limestone block after traversing a certain distance, was recorded in steps of one
meter from 50 to 150 meters. For each combination of the traversed length at a step and corre-
sponding energy Eout, the histogram was populated with the generated energy Ein, capturing
this complex three-dimensional relation. As a result, given a specific value for the traversed
length and outgoing energy Eout, the average incoming energy Ein can be extracted from the
corresponding bin. An example of an energy histogram is shown for the range of Eout = [0, 200]
GeV in Figure 3.7a.

It is important to note that this approach only offers an approximation of reality, as the en-
ergy loss depends on the specific stochastic interaction processes involved. Nonetheless, as an
initial method for reconstructing two-dimensional images of the pyramid in a relatively short
time frame, this approach can be used to obtain a preliminary understanding of what to ex-
pect for this image reconstruction. Another method to determine the relationship between the
incoming energy, outgoing energy, and traversed length could involve fitting a model to this
relationship or solving the differential equation in Equation 1.9—but without the negative sign,
to reflect the energy gain—through a numerical procedure. The benefit of fitting a model is that
it would describe a continuous relationship rather than a binned one, yet the question remains
which appropriate model to choose. On the other hand, the numerical procedure has the advan-
tage that there is no necessity to guess a model, though it demands more elaborate calculations.
Additionally, for both methods, it remains challenging to verify that the obtained model reflects
reality. Furthermore, neither approach captures the stochastic nature of muon energy loss in a
medium.

2Nevertheless, the outgoing energy in the final optimized simulations never exceeded 2000 GeV, thus this approxi-
mation did not affect the results.
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(a) Incoming energy histogram in function of
the outgoing energy and traversed length of a
muon crossing the pyramid. This example is for
an energy range of Eout = [0, 200] GeV.
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(b) Traversed length histogram in function of
the azimuth ϕ and zenith (polar) angle θ.

Figure 3.7: Data histograms to acquire the incoming energy and traversed length to use for
extrapolating muons outside of the pyramid.

To use the energy histogram, it is necessary to determine the distance traversed by the muon
through the pyramid. In Geant4, the traversed length of a particle traveling through a certain
volume can be calculated conveniently using the SteppingAction class, as done to generate
the energy histogram. However, this method is unsuitable for the optimized simulation, as the
traversed length is required before the muon actually traverses the pyramid volume. Instead,
the data was also binned in a two-dimensional histogram, containing the traversed length as
a function of the azimuth and zenith angle. In a simulation in Geant4 including the pyramid
model, a particle gun was placed at the origin inside the King’s chamber, practically at the place
where the detector normally is positioned. A run was simulated with 100, 000 events, where per
event a geantino was fired with a randomly assigned direction in the upper hemisphere, to scan
the whole pyramid. A geantino is an auxiliary, imaginary particle in Geant4 that is transported
through the geometry without interacting, making it beneficial for relatively fast simulations
aiming to trace a structure or for debugging purposes [60]. The zenith and azimuth angles were
divided into bins of 1◦, where each bin was populated with the average traversed length. Due
to the relatively low number of events, the histogram still contained some empty bins. These
were filled by performing an extrapolation and the resulting histogram is shown in Figure 3.7b.
This histogram effectively illustrates the influence of the pyramid’s features—the corners and
the top—on the traversed length, which are also expected to be present in the reconstructed
muographic images. For θ ≈ 0, the traversed length is higher as this corresponds to the top of
the pyramid. The same is visible for the corners of the pyramid (ϕ ≈ π/4, ϕ ≈ 3π/4, ϕ ≈ 5π/4
and ϕ ≈ 7π/4), where the maxima are reached for θ ≈ π/2 at the bottom corners of the pyra-
mid. The small decrease in traversed length for θ ≈ 1.40-1.55 corresponds to the upper corridor
that leads to the King’s chamber. Given that CR muons which cross the detector plates will not
always pass exactly through the origin, the acquired histogram is still an approximation. Nev-
ertheless, considering that the detector is relatively small compared to the pyramid, the detector
can be approximated as a point for this specific case.

Both the energy and length histograms were stored as a two-dimensional histogram in
ROOT format, as this allows for easy importation and data extraction in Geant4.
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3.3 Muon tracking through pyramid

All necessary information is now available to extrapolate nearby muons outside the pyramid,
where they will be fired by a particle gun with the extracted incoming energy Ein. The muons
were fired from a hemisphere of 200 m, centered around the origin, by calculating the intersec-
tion between this hemisphere and the muon’s trajectory defined through its generated direction
and position by EcoMug. After a muon is fired, it is tracked by Geant4 through the pyramid,
calculating the interactions and energy losses at each step. An image illustrating the generation
cone of the optimized simulation in Geant4 is shown in Figure 3.8. Only muons were tracked,

Figure 3.8: Simulation in Geant4 of the generation cone, where muons are tracked through the
pyramid, shown for 1000 generated muons at the small generation surface.

killing all tracks from secondary particles, to speed up the simulation process. This means that
the resulting hits will be absent of noise, hence the detector response is not fully simulated.
However, as mentioned before, the optimized simulation is intended as an initial approach for
reconstructing the two-dimensional images of the pyramid and requires refinement in the fu-
ture. When a muon passes through all three planes, it is considered an event, and its generated
information and hit information are stored in a ROOT file.

As discussed in Subsection 3.2.1, a margin was implemented to decide which muons should
be extrapolated. This margin is motivated by the fact that muons will undergo interactions
when traversing the pyramid, possibly resulting in a minor change of direction. As a result, a
muon generated on the small generation surface, that would slightly miss the detector, might,
after being extrapolated and tracked through the pyramid, still end up hitting all three detector
planes. Including this margin essentially means that the inverted generation cone will be big-
ger than the field of view of the detector. The cone must be wide enough to include muons that
slightly change course—to maximize the number of hits—but narrow enough to avoid an ex-
cessive generation of muons that will never reach the detector. To recover this optimal margin,
the optimized simulation was run for a fixed number of 100000 muons, for different margins.
Finally, a margin of 50 cm was selected as it provided the optimal balance between maximizing
hits and minimizing unnecessary muon tracking.



Chapter 4

Muon Track Reconstruction

After simulating the muons passing through the pyramid, the result is a collection of hit coor-
dinates recorded by the detector. To determine the directions from which they traversed the
pyramid, their trajectories must be reconstructed from these hit coordinates. These directions
are essential for the image reconstruction process discussed in the next chapter. To identify
straight-line trajectories from a sparse set of hit coordinates, a reconstruction algorithm based
on the Hough transform is employed. The Hough transform is a computational method for de-
tecting geometric shapes such as lines, as clarified in Section 4.1. For this purpose, straight-line
trajectories in 3D are represented using a non-redundant four-parameter model, introduced in
Section 4.2. From this theoretical foundation, a track reconstruction algorithm was developed
tailored to the ScIDEP project’s data, as detailed in Section 4.3. To evaluate the performance of
this algorithm, efficiency studies were conducted and are discussed in Section 4.4. Since the al-
gorithm is designed to detect straight-line trajectories, its performance was first assessed under
these ideal conditions, to explore the relationships and dependencies among various tracking
parameters, as described in Subsection 4.4.2. Lastly, recognizing that in realistic scenarios the hit
coordinates may be affected by smearing, an additional analysis was performed to investigate
the effects of noise on the algorithm’s performance, as presented in Subsection 4.4.3.

4.1 Hough transform

Given a set of hit points, the aim is to find the true muon trajectories through these points. At
first sight, this might seem straightforward: fitting a straight line through a set of points is a
widely studied and established procedure today. However, due to limited detector resolutions
(time and space), the fact that primary muon hits cannot be distinguished from the other parti-
cles, and the possibility of multiple muons hitting the detector at the same time (i.e. in the same
triggered event), it is necessary to employ a tracking algorithm that is capable of detecting mul-
tiple tracks at a time, while also excluding noise hits. A well-known computational method to
extract features in an image is the Hough transform. This technique is named after Paul Hough,
who patented the idea in 1962 to detect lines in two-dimensional binary images [67]. Later, it
was extended to include the detection of other parametric shapes in images [68]. For the scope
of this thesis, only the application regarding straight lines will be discussed.

The concept of the Hough transform is to transform an image into a parameter space (inter-
changeably called the Hough space) and, using a voting scheme, find the optimal line param-
eters, which describe the lines present in the image. Consider a line in 2D in an image space,

36
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with the cartesian representation
y = mx + b (4.1)

where m is the slope of the line and b the intersection of the line with the y-axis. The aim is
to recover these line parameters m and b. When ranging over values of x and calculating the
corresponding y-values, the collection of coordinates (x, y) will form the line. Equation 4.1 can
be transformed into

b = −xm + y (4.2)

This can be seen as the representation of a 2D line with slope −x and vertical intersection y in
parameter space. Similarly, when ranging over m and calculating the corresponding b-values,
the collection of coordinates (m, b) will form the line. Hence, every fixed point (x, y) in the
image space will result in a line b = −xm + y in the parameter space. Every point on this
line represents a line in the image space going through (x, y). Suppose there are two points
in the image space, namely (x1, y1) and (x2, y2), and assume the line going through them is
described by the equation y = mHx + bH , as depicted in Figure 4.1 on the left. When these
points are transformed into the parameter space, each point maps to a line given by equations
b = −x1m + y1 and b = −x2m + y2, respectively, as illustrated in Figure 4.1 on the right. These
two lines intersect at the point (mH , bH), corresponding to the slope and intercept of the original
line going through (x1, y1) and (x2, y2) in the image space. This concept can be extended: any
set of collinear points in the image space will result in lines in the parameter space that intersect
at a common point representing the parameters of the line on which the collinear points lie.
Thus, by finding these values where many lines intersect, the line parameters (m, b) can be

Figure 4.1: Illustrative picture of the principle of the Hough transform. The figure on the left
depicts the image space with points (x1, y1) and (x2, y2), while the right figure depicts their
transformation into the parameter space.

retrieved. Due to vertical lines giving rise to an unbounded slope (m = ∞) in the cartesian
representation, the Hough transform is usually performed in a polar representation, known as
the Hesse normal form:

x cos θ + y sin θ = ρ (4.3)

Here, ρ is the shortest distance between the origin and the line, and θ is the angle between the
horizontal axis and the perpendicular ρ, as illustrated in Figure 4.2. Analogous to before, now



CHAPTER 4. MUON TRACK RECONSTRUCTION 38

Figure 4.2: Definition of the parameters ρ and θ of the line representation determined by the
Hesse normal form, as in Equation 4.3.

each point in the image space will represent a sinusoid in the parameter space. If n sinusoids in
the parameter space intersect in a point (ρH , θH), then these values ρH and θH represent a line
via Equation 4.3 going through n points in the image space. Summarized, the core principle
of the Hough transform is to transform an image to a parameter space and find the points of
concurrency.

To implement the Hough transform algorithm, both the image space and parameter space
are discretized. The image space is usually naturally discretized into pixels, while the parameter
space—for this example defined by the parameters ρ and θ—is discretized into a finite number
of bins, denoted by nρ and nθ . This discretized parameter space is known as the accumulator,
consisting of nρ × nθ cells, where each cell stores a vote count, which is initially zero. Then,
the algorithm iterates over each pixel (x, y) in the input image and, for a range of θ-values,
calculates the corresponding ρ value using Equation 4.3. For each obtained (ρ, θ) pair, the vote
count in the corresponding accumulator cell is increased by one. This process will result in a dis-
cretized sinusoid in the accumulator for each image point. After all points have been processed,
cells with a high vote count—local maxima—correspond to a pair (ρH , θH) which represents the
parameters of a potential line in the image.

The Hough transform offers several advantages, making it a widely used and recognized
technique. First, its discretized voting scheme allows for line detection in noisy images [69].
Additionally, it can detect multiple lines at once and detect other parametric shapes, such as
circles. These convenient features have led to its application in various fields, including traffic
(lane detection), biometrics, object recognition and tracking, industrial (detection of pipe joints),
medical image analysis, etc. However, a drawback is that the voting accumulator requires a sig-
nificant amount of computational storage and time.

In two dimensions, a line is described by two parameters, resulting in a two-dimensional
parameter space and corresponding Hough accumulator. Conversely, in three dimensions,
a line requires a minimum of four parameters for its full representation, leading to a four-
dimensional parameter space, which is more complex and requires more computational power.
Consequently, other techniques and variations of the Hough transform were investigated for
the three-dimensional reconstruction of the muon’s trajectory. While a significant amount of re-
search exists on 3D Hough-based or other line detection methods, most of these algorithms are
based on edge images. Generally, these edge images consist of a large number of data points, as
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each pixel in the image space has an assigned value. Hence, in that case, the local maxima in the
accumulator will clearly stand out from the surrounding vote areas. In contrast, this research
focuses on employing line detection using only a few hit coordinates per line, resulting in only
a few votes per local maximum. In addition, any two points determine a straight line. Con-
sequently, two hit coordinates is insufficient to reconstruct a muon’s trajectory, as the votes for
true tracks will not stand out to the votes of false combinations. For this reason, a third tracking
station was modeled in the optimized simulation, as described in the previous chapter. Further-
more, due to this sparse hit data, it is not feasible to calculate a gradient image—a technique
used in some of the existing line detection algorithms. This challenge led to the development of
a new tracking algorithm, tailored specifically to the needs of this research.

4.2 Non-redundant line representation

To describe a line in three-dimensional space, at least four parameters are required. The most
common representation of a line in 3D is the cartesian representation:

x⃗ = p⃗ + t⃗b =

x
y
z

 =

px
py
pz

+ t

bx
by
bz

 , (4.4)

where p⃗ is an anchor point of the line and b⃗ is the direction of the line. This representation
utilizes six parameters, making two redundant. In 1988, K. S. Roberts proposed a new line
representation using four parameters, from now on called Robert’s line representation [70]. It
characterizes the direction by two parameters: the azimuth angle ϕ and the zenith angle θ,
where θ defines the angle between the direction vector and the positive z-axis and ϕ the angle
between the positive x-axis and the projection of the direction vector on the xy-plane, as shown
in Figure 4.3 on the left.

Figure 4.3: Illustration of the line parameters θ, ϕ, x′ and y′ as defined in Robert’s line represen-
tation. The left figure demonstrates the azimuth ϕ and zenith θ angle, while the figure on the
right shows the intersection point between the line and a perpendicular plane going through
the origin. Figure taken from [71].
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Then, the direction vector b⃗ can be written as

b⃗ =

bx
by
bz

 =

cos ϕ sin θ
sin ϕ sin θ

cos θ

 , (4.5)

already eliminating one of the redundant parameters. An ambiguity of this representation of
the direction vector is that two anti-parallel direction vectors can describe the same line. To
remove this, the parameters θ and ϕ are restricted such that the direction vectors are confined
to the upper hemisphere, by requiring 0 ≤ θ ≤ π

2 and −π ≤ ϕ ≤ π. After meeting this
requirement, there remains an ambiguity in the xy-plane. This is resolved by implementing the
restrictions by ≥ 0 if bz = 0 and bx = 1 if by = bz = 0. The two remaining degrees of freedom
are used to describe the position of the line. A naive approach would be to pick an arbitrary
anchor point, however, as this still involves three parameters, one of these redundancies can
be eliminated. Robert’s line representation defines two parameters x′ and y′ as the coordinates
of the intersection of the line and a plane going through the origin with as its normal the line
direction b⃗, as illustrated in Figure 4.3. The coordinate (x′, y′) is defined in a 2D coordinate
frame in the plane itself. The coordinate frame is defined in such a way that it is unique and
without special cases or singularities, with its definition described in Appendix A. For a line
with an arbitrary reference point p⃗, the intersection coordinate (x′, y′) becomes:

x′ =
(

1 − b2
x

1 + bz

)
px|
(

bxby

1 + bz

)
py|bx pz (4.6)

and

y′ = |
(

bxby

1 + bz

)
px +

(
1 −

b2
y

1 + bz

)
py|by pz . (4.7)

4.3 Tracking algorithm

4.3.1 Procedure

The tracking algorithm for the detection of muon trajectories using the hit coordinates as input
is based on the Iterative Hough Transform developed by Dalitz et al. [71], but tailored to the
sparse data of this research. The proposed algorithm implements two kinds of accumulators to
find the four parameters θ, ϕ, x′ and y′ describing a muon’s track.

The tracking algorithm begins by applying a Hough transform to the ingested hit coordi-
nates to obtain candidate trajectory directions. This is done using a θϕ-accumulator of size
nθ × nϕ, where nθ and nϕ stand for the number of bins along the θ- and ϕ-dimension, respec-
tively. The amount of bins determines the inititial1 angular resolution of the detected direction
and can be tuned to optimize the performance of the tracking algorithm, as discussed in Section
4.4. For each unique pair of points from the input data, the direction vector defined by those
two points is computed in terms of θ and ϕ, using the conventions described in Section 4.2. For
every obtained (θ, ϕ), the vote of the corresponding cell in the θϕ-accumulator is incremented,
if the computed value of θ does not exceed 80◦. If θ > 80◦, the vote is discarded to avoid form-
ing trajectories from hits within the same tracking station. This threshold could be tightened

1The choice for nθ and nϕ does not reflect the definite angular resolution of the tracking algorithm, as a fit will be
applied afterwards to refine the resolution, as explained later in the paragraph.
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further; for example, also excluding pairs from consecutive tracking stations that exceed the de-
tector’s angular acceptance. Pairs of collinear points will give rise to identical θ and ϕ, resulting
in regions of higher votes in the accumulator, which indicate the potential trajectory directions.
Due to the discretized parameter space and reconstruction uncertainties, hit coordinates from
the same trajectory may yield slightly different (θ, ϕ) values, possibly resulting in a spread of
votes to neighboring cells. To account for this, a clustering algorithm is applied to the accumu-
lator, to identify regions of high votes. This clustering algorithm is described in Section 4.3.2.
After the clusters are detected, only clusters whose total vote count exceeds a certain threshold
are retained. For each of these clusters, the weighted average of the (θ, ϕ) values is calculated,
with as weights the vote count per cell within the cluster. This weighted average is denoted as
(θH , ϕH) and represents a potential direction for a muon trajectory.

The second Hough transform is applied similarly. An xy-accumulator of size nxy × nxy is
used, with nxy being the number of bins along the x′- and y′-dimension. For every direction
candidate (θH , ϕH), the intersection coordinate (x′, y′)—as defined through Robert’s line repre-
sentation in Section 4.2—can be calculated for every hit coordinate p⃗ in the input data, using
Equation A.2 and A.3. For every computed value (x′, y′), the vote of the corresponding cell
in the xy-accumulator is incremented. Again, the votes are clustered, with the clustering algo-
rithm applied to this accumulator playing a crucial role in the track reconstruction. While in
theory, for a perfect line, an arbitrary point on the line will consistently yield the same value
for (x′, y′), this will not be the case in reality. Since (x′, y′) is obtained using (θH , ϕH), even a
slight discrepancy from the actual trajectory’s direction will result in differences in (x′, y′) for
hit points belonging to the same trajectory. This discrepancy will be even more significant for
the xy-accumulator, as it inherits the (θH , ϕH)-discrepancy caused by the discrete nature of the
accumulator and weighted average of the detected cluster. In principle, the spreading of votes
to neighboring cells can be reduced by reducing the number of bins nxy. Nevertheless, this can-
not be reduced arbitrarily, as a certain level of resolution needs to be maintained, and even for
small xy-accumulators, vote spreading cannot be eliminated completely. Hence, clustering in
this accumulator is an essential part of this tracking algorithm, with the discrepancy being one
of the main reasons why the Iterative Hough Transform from Dalitz et al. had to be converted
to meet the needs of this research [71]. For every detected cluster, a weighted average (x′H , y′H)
is calculated in the same way as described before, which represents the potential anchor point
of a muon trajectory.

This leads to a collection of candidate line parameters (θH , ϕH , x′H , y′H). For each candidate
line, the distance is calculated between this line and the hit points from the data input. If this
distance is smaller than a certain threshold, the point is added to a collection Xnearby. For all the
points in this collection, all the possible combinations are made of three hit points on different
tracking stations, where combination i is denoted as a collection Xi

combination. This way, it is
avoided that multiple hits from the same tracking station belong to the same line, in the case two
hit coordinates from the same tracking station lie particulary close to each other for example.
For each combination Xi

combination, a linear fit is computed through these points. To fit a line
through three 3D points x⃗1, x⃗2, x⃗3, the orthogonal least squares fitting method is used [71]. The
anchor point a⃗ of the fitted line is calculated as the center of mass of the points

a⃗ =
1
3

3

∑
i=1

x⃗i (4.8)

and the direction vector b⃗ can be calculated from principal component analysis (PCA): suppose
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Q is the matrix derived from the centered hit points q⃗i = x⃗i − a⃗:

QT = (⃗q1, ..., q⃗n) . (4.9)

Then QTQ is defined as the scatter matrix of size 3 × 3. Now, the direction b⃗ of the fitted line
is the eigenvector corresponding to the largest eigenvalue of QTQ. If the distance between the
fitted line and the points in the collection Xi

combination is smaller than a strict threshold, the points
are immediately accepted as part of the same trajectory, and the corresponding parameters from
the fitted line are saved in Xtrack. If the collection Xi

combination satisfies a broader threshold2, the
line is regarded as a potential trajectory, and Xi

combination is added to a collection Xcandidate. In the
end—when all line parameters have been iterated over—for the lines in Xcandidate, it is verified
if one of these hit points is already part of a detected line in Xtrack. If so, the line is dismissed,
otherwise, the line is accepted as a trajectory and added to Xtrack. Finally, the output of the
algorithm is the collection Xtrack, containing the detected line parameters and hit coordinates

4.3.2 Clustering algorithm

The clustering algorithm employed in the accumulators of the tracking algorithm is DBSCAN,
Density-Based Spatial Clustering of Applications with Noise, by Ester et al. [72]. The principle
idea behind the algorithm is to detect dense regions of data and to distinguish these from noise.
Before delving into the algorithm itself, it is necessary to introduce some key concepts. The
mathematical definitions of these concepts can be found in [72]. Here, the explanation will be
constrained to 2D, but DBSCAN also applies to high-dimensional space. A core point is a point
that lies in a dense region, where the density around a point is defined as the number of points
within a specified radius ϵ. The point p⃗ lies in a dense region, if in its neighborhood—a circle
with radius ϵ centered on p⃗—there are more points than a specified value minPts. On the other
hand, a border point is defined as a point that does not meet the criteria to be a core point but
does lie within a distance ϵ of at least one core point. A noise point is neither a core point
nor a border point—it does not fall within a distance ϵ of any core point. An illustration of
core, border and noise points in the case of minPts = 5 is shown in Figure 4.4. Two additional

Figure 4.4: An illustration of core, border and noise points as defined by the DBSCAN algo-
rithm; example for minPts = 5. Figure taken from [73].

2The strict and broader threshold are determined by assessing the tracking algorithm’s performance for different
values of the thresholds.
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notions are essential for understanding the clustering process: density reachability and density
connectivity.

• A point p⃗ is directly density-reachable from a point q⃗ if p⃗ lies in the ϵ-neighborhood of q⃗
and q⃗ is a core point.

• A point p⃗ is density-reachable from a point q⃗ if there exists a sequence of points p⃗1, p⃗2, ..., p⃗n,
where p⃗1 = q⃗ and p⃗n = p⃗, such that p⃗i+1 is directly density reachable from p⃗i.

• A point p⃗ is density connected to a point q⃗ if there exists a third point o⃗ such that both
points p⃗ and q⃗ are density reachable from o⃗.

The clustering algorithm proceeds as follows: it selects an arbitrary point p⃗ in the dataset and
finds all points that are density-reachable from it, using the specified parameters ϵ and minPts.
If p⃗ is a core point, this results in the formation of a new cluster containing all density-connected
points. If p⃗ is a border point or noise point, it is either added to an existing cluster—if reachable
from a core point—or neglected, and the algorithm moves to the next point. In this context, a
cluster is defined as a maximal collection of density-connected points. Additionally, if a point p⃗
belongs to a cluster and another point q⃗ is density-reachable from p⃗, then q⃗ is also a part of that
same cluster.

The DBSCAN algorithm offers several advantages. One of its strengths is its robustness to
outliers, as it can effectively identify and isolate noise points. Unlike many other clustering
algorithms, the number of clusters does not need to be specified in advance and it is capable of
detecting arbitrary shapes of clusters. DBSCAN is also relatively efficient, being designed for
handling large databases. While it relies on only two parameters (ϵ and minPts), it can be quite
sensitive to their selected value. Another drawback is that DBSCAN may perform poorly on
datasets containing clusters of varying densities. This can be solved by either selecting minPts
in function of the sparsest cluster, or by exploring other algorithms, such as the algorithm HDB-
SCAN, which extends DBSCAN by allowing variation in the parameter ϵ.

4.4 Tracking performance

4.4.1 Algorithm parameters

The tracking algorithm relies on a broad set of input parameters, where each one will have its
influence on the performance of the algorithm. Because of this diverse range of parameters,
it can be challenging to keep track of which values to use for optimal performance. A clear
overview of the parameters and their definition is given in Table 4.1. The parameters can be
divided into three categories, depending on which component of the algorithm they influence:
the accumulator, clustering, and distance parameters.

As the name suggests, accumulator parameters control the bin size of the accumulators,
which in turn determines the resolution of the candidate line parameters (θH , ϕH , x′H , y′H). The
θϕ-accumulator must be refined enough to ensure that the direction angles (θH , ϕH) obtained
through the Hough transform are sufficiently accurate. This accuracy is crucial because these
angles are used to calculate (x′, y′). As mentioned in the previous section, since the trajecto-
ries are not perfectly straight, (x′, y′) will still slightly vary when calculated for points on the
same line. A finer resolution in the direction angles limits these variations and prevents the
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Table 4.1: Definition of the tracking algorithm parameters.

Accumulator parameters
nθ number of accumulator bins for polar angle θ
nϕ number of accumulator bins for azimuthal angle ϕ
nxy number of bins for accumulator x′y′

Clustering parameters
VC minimum votes a cell must have in order to be part of a cluster
VR minimum total votes a candidate region must have in order to be a cluster
ϵ distance between two cells to be considered in the neighborhood of each other

minPts number of points that must be in the neighborhood of a point to be considered core point
Distance parameters

d1 points which are considered close to the Hough-track
daccepted points are considered part of the fitted track → track is accepted immediately
dcandidate points are considered part of the fitted track → track is possible candidate

spread of votes to neighboring cells. The same discussion holds for the xy-accumulator: since
(θH , ϕH , x′H , y′H) represent the initially reconstructed line, its accuracy is important, as higher
precision allows for tighter distance thresholds, which in turn reduces the number of false
tracks. On the other hand, an overly refined accumulator can be counterproductive: when bins
are too small, votes that should accumulate in the same cell might spread across neighboring
cells. This will specifically be the case in the presence of noise, as will be discussed in Subsection
4.4.3. Therefore, a balance must be found: the accumulator should be refined enough to offer
an adequate resolution, but not so fine that related votes are fragmented. In this context, the
adjective related will be used to denote hit points stemming from the same muon trajectory.

Clustering parameters influence both the spatial density—defined in Subsection 4.3.2—and
the vote density of the clusters. These parameters may differ between the θϕ-accumulator and
the xy-accumulator. For the radius ϵ, again balance is necessary. It should be large enough—es-
pecially in the xy-accumulator, where more vote spreading occurs—to ensure that related cells
are clustered together. However, if ϵ is too large, votes from unrelated points might be merged
into the same cluster. This will affect the weighted average of the cluster, which defines the
line parameters, either (θH , ϕH) or (x′H , y′H). This will lead to a discrepancy between the actual
trajectory and the candidate track, which if too large, causes points on the true trajectory not
to be associated with the candidate track anymore. The parameter minPts is set to 1, as this
parameter includes the point p⃗ itself. This allows a cell to form a cluster on itself, without re-
quiring neighboring cells. A filtering mechanism could be applied to only perform clustering
on cells with a minimum required number of votes VC, however, efficiency studies showed this
is best avoided, as explained in the next subsection. Hence, all cells with at least one vote were
considered a core point. While this increases the number of initial candidates for the clustering
algorithm, the parameter VR ensures that only meaningful clusters are selected. Since VR rep-
resents the minimum number of votes a cluster must have, it is intuitive to set VR = 3, as each
vote represents a hit point and there are three related hit points per muon trajectory.

Lastly, the distance parameters define the thresholds to decide whether a candidate line is
accepted as a valid muon trajectory. As for the other parameters, these thresholds also require
careful tuning. The first threshold d1 must be large enough to ensure that all related points lying
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on a candidate line fall within this distance and are added to the collection Xnearby. Given the
limited resolution of the reconstructed (θH , ϕH , x′H , y′H), this threshold cannot be too small. On
the other hand, if it is too big, many irrelevant points might be added to Xnearby. While this
is not critical, as the other distance thresholds dcandidate and daccepted will filter out false combi-
nations, it does increase the number of combinations Xi

combination the algorithm must consider,
increasing the computational time. In principle, the strict threshold daccepted can be set as small
as required, as it was implemented as an extra measure to selectively accept well-fitting recon-
structed tracks, which will prevent interference in other xy-accumulators or interchangeability
with other trajectories. If daccepted = 0, this strict threshold is not applied, and all selections are
made based solely on dcandidate. For the value of threshold dcandidate a trade-off must be made
between being sufficiently small to prevent the detection of false tracks, yet large enough to
ensure all related hit points are considered a part of the fitted line. This is a crucial parameter
to fine-tune, balancing between the rejection of false tracks while maximizing the algorithm’s
efficiency.

Achieving the right balance between different parameters is crucial. In some cases, even
small adjustments to a parameter value can have a subtle yet significant impact on the per-
formance, and the relationship between parameters is not always immediately obvious. To
investigate these complex behaviors, a performance study of the algorithm was conducted. In
this context, performance refers to both the efficiency in correctly identifying true tracks and the
ability to avoid detecting false ones. The performance was studied for ideal tracks, representing
perfectly straight lines. Finally, the influence of noise and smearing on the tracking algorithm
is investigated.

4.4.2 Ideal tracks

Ideal tracks refer to muon trajectories defined by their exact hit coordinates as they pass through
the detector, without taking the detector response and secondary particles into account. This
means the hit coordinates represent the precise location where the muon traversed the detector
plates, rather than the reconstructed hit coordinates obtained through the procedure described
in Subsection 2.3.3. Consequently, the muon trajectories can be regarded as quasi-perfectly
straight lines, showing minimal signs of smearing or measurement uncertainties. Nonetheless,
slight deviations may still occur due to potential scattering in the detector material.

The first thing that can be investigated is the computational time required by the tracking
algorithm as a function of the input size. Here, the input size is represented in number of
tracks, with each track consisting of three hit points. Figure 4.5a shows the computational time
as a function of the number of input tracks being processed by the algorithm. This plot was
generated using a sample of 60 events and, while it displays the absolute time rather than the
average computational time, it provides a useful initial indication of how computational time
scales with input size. The computational time remains relatively steady when fewer than 10
to 20 tracks are being fed into the algorithm. Beyond this point, a noticeable increase occurs.
This jump is expected, given the algorithm’s nature of combinatory mathematics and iteration
loops. It involves calculating all possible combinations of hit point pairs to determine (θ, ϕ),
constructing the sets Xi

combination and iterating over candidate directions (θH , ϕH) to retrieve the
corresponding (x′H , y′H). Additional looping is performed at the end to determine which candi-
date tracks will be accepted as a trajectory. The total runtime of the algorithm is also sensitive
to parameter choices, as more clustering or larger distance thresholds are expected to prolong
the calculation. Nevertheless, the general trend will remain consistent and is sufficient for the
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(a) Computational time for a sample of 60
events. The time is displayed in seconds.

(b) Zoom-in of the left plot for the first 10
events. The time is displayed in milliseconds.

Figure 4.5: Computational time of the tracking algorithm in function of the number of tracks it
processes at once.

analysis conducted here. The parameters used to generate Figure 4.5 are listed in Table B.1 in
Appendix B. The leap in runtime beyond 10 to 20 tracks suggests a trade-off: while processing
more tracks at once is more productive, it may slow down the algorithm significantly. While
this leap is not ideal, it is also not an obstacle: each track comprises only three hit points, and
splitting the input is manageable. It has to be noted that this algorithm is not suitable for large-
scale applications such as images or large point clouds. Feeding too many tracks at once will
cause the accumulator to become oversaturated, leading to excessive clustering and decreased
performance, resulting in missed or falsely identified tracks. Based on this turning point and
the computational time, the algorithm is ideally applied to batches of tracks, limiting the batch
size to 10 tracks. A zoomed-in view of the computational time for the first 10 tracks is displayed
in Figure 4.5b, with the exact values presented in Table 4.2. From six tracks onward, the com-

Table 4.2: Computational time in function of tracks, for the values plotted in Figure 4.5b.

Tracks time (ms)
1 15.9
2 22.6
3 30.4
4 38.9
5 48.3
6 62.5
7 90.1
8 107
9 131

10 152

putational time begins to rise faster with respect to the number of input tracks, suggesting that
it is optimal to limit the number of tracks being fed into the algorithm to a maximum of 5 at
a time. To better understand where the performance starts to degrade, the tracking efficiency
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was analyzed for the same sample of 60 events. The results, based on the same parameters
used in the timing study, are shown in Figure 4.6. For this sample of ideal tracks, the tracking

Figure 4.6: Tracking algorithm efficiency in function of number of tracks it processes at once,
for a sample of 60 events.

algorithm is able to detect all tracks when up to 46 tracks are being fed into the algorithm at
once. Beyond this point, the algorithm starts to decrease in performance, either failing to detect
all tracks, detecting false tracks, or both. This arises from the increased density of hit points,
which makes it more likely that unrelated points lie close together. Consequently, the distance
threshold becomes less effective, causing incorrect combinations to form false tracks. If these
false tracks are immediately accepted as valid tracks, their associated hit points are removed
from the dataset, preventing correct tracks from being identified later on. Additionally, the ac-
cumulators get oversaturated. To study the efficiency in more detail, the input was limited to 10
tracks at a time. A sample of 100 events was processed by the tracking algorithm in ten different
configurations: first, one track was being fed into the algorithm at a time; second, two tracks at a
time; continuing up to ten tracks at a time. As a result, the average tracking performance could
be inspected as a function of the number of tracks simultaneously processed. This procedure
was repeated for multiple combinations of the tracking parameters to evaluate whether subtle
parameter changes significantly affect the outcome and to explore the relationship between pa-
rameters. From these studies, the optimal parameter values were identified for reconstructing
the complete dataset acquired through simulations. As there are countless possible parameter
combinations, only the most relevant results are presented and discussed in this section.

In the case of ideal tracks, minimal spreading is expected in the θϕ-accumulator for the votes
corresponding to hit points lying on the same track. Hence, it seems reasonable to set the clus-
tering threshold VC equal to 2 or 3, such that only cells with a relatively high number of votes
are considered. The performance was evaluated using Vθϕ

C = 2, with the other parameter values
provided in Table B.23. As seen on the performance plot in Figure 4.7a the efficiency of detect-
ing true tracks is smaller than 100%, having a constant value of 81% regardless of the number
of tracks. This constant value hints that the same tracks are systematically missed, likely due to

3All parameters for the efficiency plots are presented in Appendix B. To maintain the readability of the text, this
appendix will not be mentioned repeatedly.
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their votes being distributed across two or three different accumulator cells. When decreasing
VC to 1, the efficiency reaches 100%, as seen in Figure 4.7b, indicating that all tracks are then cor-
rectly identified. These performance plots were conducted using high-resolution accumulators,
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(a) Efficiency for VC = 2. (b) Efficiency for VC = 1.

Figure 4.7: Tracking efficiency compared for parameter VC = 2 and VC = 1 while keeping the
other parameters constants. The other parameters used in the tracking algorithm to create these
plots are given in Table B.2 and B.3.

where the θϕ-accumulator had a size of 360× 720 and the xy-accumulator size 200× 200. To re-
duce the spreading of votes across multiple cells, lower-resolution accumulators are proposed.
While this will result in a lower resolution of the obtained direction and position candidates, this
can be countered by loosening the distance thresholds. Moreover, since the number of tracks
being processed simultaneously is relatively small, it is assumed that the accumulators will still
be detailed enough to make the distinction between collinear hits and bad votes. Figures 4.8a
and 4.8b show examples of a θϕ-accumulator of size 200 × 200 and an xy-accumulator of size
100 × 100, respectively. As shown in Figure 4.8a, the true track candidates are clearly separa-

(a) θϕ-accumulator of size 200 × 200 (b) xy-accumulator of size 100 × 100

Figure 4.8: Example of a θϕ-accumulator and xy-accumulator for a vote distribution of 10
tracks..

ble from bad votes in the θϕ-accumulator. However, the xy-accumulator (Figure 4.8b) already
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begins to show signs of oversaturation, containing multiple, ambiguous high-vote regions. Us-
ing these smaller dimensions for the accumulator, the efficiency was recalculated for VC = 2,
with other parameters provided in Table B.4. While the efficiency has improved compared to
the high-resolution case, it is still smaller than 100%, reaching approximately 95-96%, as seen
in Figure 4.9a. When reducing VR from 3 to 2, the 100% efficiency is recovered, as observed in
Figure 4.9b. However, since VR reflects the minimum number of votes a cluster must have, it is

(a) Tracking efficiency for VC = 2 and VR = 3 . (b) Tracking efficiency for VC = 2 and VR = 2.

Figure 4.9: Tracking efficiency compared for parameter VC = 2 and VR = 3 and 2, while keeping
the other parameters constants. The other parameters used in the tracking algorithm to create
these plots are given in Table B.4 and B.5.

more intuitive to set VR = 3, considering that each trajectory consists of exactly three hit points.
Given that the efficiency remains more or less constant for the configuration in Figure B.4, this
suggests that the same tracks are still consistently missed. This is likely due to their votes being
spread over three separate cells, resulting in clusters where each cell receives only a single vote.
To detect these sparse clusters, the threshold VC should be decreased to 1.

A similar discussion applies to the xy-accumulator. However, contrary to the θϕ-accumulator,
setting VC = 2 and VR = 2, does not yield 100%, as visible in Figure 4.10. A plausible explana-

Figure 4.10: Tracking efficiency for VC = 2 and VR = 2 for xy-accumulator clustering. The other
parameters used in the tracking algorithm to create this plot are given in Table B.6.

tion for the lower efficiency is that the xy-accumulator inherently exhibits more vote spreading
than the θϕ-accumulator, due to its dependence on the direction candidates obtained from the
θϕ-accumulator. This motivates the choice of VC = 1 and VR = 3 in the xy-accumulator. To
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account for this vote spreading, the clustering parameter ϵ should be sufficiently large. Never-
theless, it is also evident that an excessively large epsilon will have a reverse effect, as demon-
strated in Figure 4.11a for ϵθϕ = 10. In this configuration, the efficiency drops significantly as

(a) Tracking efficiency for ϵ = 10 and d1 = 50 (b) Tracking efficiency for ϵ = 10 and d1 = 700.

Figure 4.11: Tracking efficiency compared for parameter ϵ = 10 and d1 = 10 and 700, while
keeping the other parameters constants. The other parameters used in the tracking algorithm
to create these plots are given in Table B.7 and B.8.

the number of tracks increases. This behavior is intuitive: a larger radius means more points
farther apart will be grouped into the same cluster, eventually leading to sparsely populated
clusters that can span large portions of the accumulator. When calculating the weighted aver-
age of such a cluster, the resulting line parameters will not correspond to a valid track anymore.
As seen in Figure 4.11b, increasing the distance threshold d1 to 700 mm4 restores the track detec-
tion efficiency to 100% Interestingly, the number of false tracks remains close to 0%, presumable
because the values of daccepted and dcandidate used in this configuration remain sufficiently strict
to prevent incorrect tracks from being formed. Nevertheless, setting d1 = 700 is highly un-
desirable, as such a large threshold will result in nearly all hits points being included in the
collection Xnearby, involving a lot of combinatorics to construct the corresponding candidate
collections Xi

combination. This undermines the core objective of the algorithm, to minimize the
combinatory operations and reduce computational cost.

The final category of parameters to explore is the distance parameters. In Figure 4.12a, the
tracking efficiency is shown for a distance threshold of d1 = 10 mm. This threshold proves to be
too low, as not all tracks are detected, which is likely due to the finite resolution of the Hough
accumulators. Increasing the threshold to d1 = 30 mm restores full efficiency, as illustrated in
Figure 4.12b. Evidently, relaxing the thresholds daccepted and dcandidate will eventually lead to an
increase in the detection of false tracks. The final decision for the algorithm parameters used in
the track reconstruction of all simulated data, is presented in Table B.12.

This discussion on parameter tuning could go on indefinitely since numerous factors influ-
ence the efficiency, yet these observations highlight the main parameters that must be balanced
carefully. Selecting optimal values involves a trade-off: stricter thresholds may miss some tracks
but may improve overall track quality by filtering out less reliable trajectories, whereas looser
thresholds may increase efficiency but risk the detection of false trajectories.

4The units of this threshold are inherited from the units of the hit coordinates.
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(a) Tracking efficiency for d1 = 10. (b) Tracking efficiency for d1 = 30.

Figure 4.12: Tracking efficiency compared for parameter d1 = 10 and d1 = 30, while keeping the
other parameters constants. The other parameters used in the tracking algorithm to create these
plots are given in Table B.9 and B.10.

4.4.3 Noise and smearing

As mentioned in Subsection 3.1, the scintillator detector plates were defined as sensitive de-
tectors in the simulation. This setup provided the exact hit coordinates corresponding to the
points where the muon intersected the scintillator plates. Moreover, secondary particles were
not tracked, resulting in a clean, noise-free data acquisition. In the actual experimental setup,
however, these exact coordinates will not be available. Instead, hit coordinates will have to be
reconstructed from the signals registered by the SiPMs (Subsection 2.3.3). This reconstruction
process may lead to a slight smearing of the muon’s trajectory, introducing an uncertainty based
on the resolution of the detector. Additionally, noise hits may arise from secondary particles or
dark noise, a characteristic of the SiPMs. In principle, the tracking algorithm should be able
to make a distinction between noise hits and muon hits, provided the level of noise remains
within acceptable limits. However, dark noise specifically will influence the reconstructed hit
coordinate. Track smearing can result in more vote spreading in the accumulator, making it
more challenging to identify clusters corresponding to real trajectories. Therefore, the final
tracking algorithm applied to experimental data must be carefully tuned to take these factors
into account. This subsection presents preliminary studies investigating the impact of noise and
smearing on the track reconstruction performance.

To evaluate the tracking resolution under more realistic conditions, a single muon trajectory
was artificially smeared 1000 times. The smearing was implemented using a Gaussian distri-
bution with a standard deviation of 11 mm, based on preliminary detector resolution studies
[54]. An example of the impact of smearing on the vote distribution in the θϕ-accumulator is
shown in Figures 4.13a and 4.13b, which display the ideal and smeared cases, respectively. The
smeared hit coordinates were then processed by the tracking algorithm and the reconstructed
average direction (θreco, ϕreco) was compared to the true track direction (θactual , ϕactual). It has
to be noted that this procedure essentially assesses how well a straight line fits the smeared
hit points, as the final stage of the tracking algorithm always involves a linear fit through the
identified candidate points in Xi

combination. Nevertheless, it is still interesting to compare this
resolution to the ideal tracking resolution discussed in Chapter 5. Using the same algorithm pa-
rameters as for the ideal case, the reconstruction failed to detect 844 out of 1000 smeared tracks.
This was expected, as the original parameters were optimized to utilize straight-line trajectories.
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(a) θϕ-accumulator for an ideal track.
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(b) θϕ-accumulator for a smeared track.

Figure 4.13: Comparison between the vote distribution of an ideal and smeared track in the
θϕ-accumulator. The visualization is zoomed-in on the vote distribution of the track.

First of all, an improvement to the tracking algorithm was introduced: periodic clustering in the
θϕ-accumulator. For tracks with the azimuth angle ϕ close to π or −π, calculating the directions
for pairs of related hit points may result in votes at opposites side of the accumulator, due to the
constrained range of ϕ ∈ [−π, π], especially in the case of smearing. To takes this into account,
the (θ, ϕ) votes were converted to direction vectors on the unit sphere and the clustering algo-
rithm was performed in 3D on these vectors. This adjustment had not yet been implemented
in the ideal case, since votes for these related hit points generally populate the same cell, and
preliminary results of the algorithm were satisfactory. However, this periodic clustering should
be applied to future versions for consistency and accuracy. A drawback of this approach is that
the clustering parameter ϵ becomes less intuitive, as it now represents a distance in 3D space
rather than a distance between accumulator cells. The parameters used for the reconstruction
of the smeared tracks are listed in Table B.11 in Appendix B. These were adapted from the ideal
case, to account for the smearing effects. With these adjustments, only 5 out of 1000 tracks re-
mained undetected. These 5 missed tracks likely result from excessive spreading of the votes
in the accumulator or a poor match between the smeared hits and the proposed candidate line.
Figures 4.14a and 4.14b show the distribution of the differences between the reconstructed and
actual trajectory direction. The standard deviations of these distributions are 48.64 mrad for
∆ϕ and 22.69 mrad for ∆θ. As will be discusseed in the next chapter, this is considerably larger
than those obtained in the ideal case. However, this comparison should be interpreted with cau-
tion, as the results presented here are based on a single smeared trajectory, hence not reflecting
the variability of the dataset. Additional studies are required to draw more general conclusions.

When a single smeared track is processed by the algorithm, the effects of smearing remain
manageable by the tracking algorithm. The challenge arises when multiple smeared tracks,
or a combination of smeared tracks and noise, are fed into the algorithm simultaneously. Fig-
ure 4.15 demonstrates the θϕ-accumulator for three ideal tracks (Figure 4.15a) and for three
smeared tracks (Figure 4.15b). For visualization purposes, the accumulator size used in this
case is 100 × 100. As observed in the figures, smearing causes the votes to become scattered
over the accumulator: no cell contains multiple votes and no clear local maxima are visible.
On the contrary, the ideal θϕ-accumulator contains concentrated votes from related hit points,
forming distinct peaks. This lack of pattern in the smeared case makes it difficult for the algo-
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(a) Tracking resolution for azimuthal angle ϕ.
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(b) Tracking resolution for zenith angle θ.

Figure 4.14: Obtained tracking resolution for a track that was smeared a 1000 times, for Gaussian
smearing with a standard deviation of 11.
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(a) θϕ-accumulator for three ideal tracks.
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(b) θϕ-accumulator for three smeared tracks.

Figure 4.15: Comparison between the vote distribution of three ideal and smeared track in the
θϕ-accumulator. For visualization purposes, the accumulator is 100 × 100, where the range of θ
is limited to 60 as there were no votes outside this range.

rithm to reliably identify clusters, limiting its effectiveness. This highlights the need for further
improvements.

For noise, the perspective remains slightly more optimistic. Artificial noise was introduced
by randomly selecting a position coordinate within a detector plate using a uniform distribu-
tion. Figure 4.16a displays the θϕ-accumulator of a smeared track combined with one artificial
noise hit, while Figure 4.16b shows the accumulator for the same track—yet smeared differ-
ently—with three artificial noise hits. Despite each cell containing only a single vote, the votes
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(a) θϕ-accumulator for one smeared track and one
noise hit.
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(b) θϕ-accumulator for one smeared track and three
noise hits.

Figure 4.16: Comparison between the vote distribution in the θϕ-accumulator for one artificial
noise hit and three artificial noise hits, and in both cases one smeared track.

associated with the smeared track remain distinguishable from those originating from the noise
hits. This highlights the power of the accumulator approach in the tracking algorithm, sepa-
rating trajectories from noise. Finally, the case of three smeared tracks combined with three
noise hits was studied. Figure 4.17 displays the corresponding θϕ-accumulator where the votes
originating from noise are shown in black, while the votes from related muon hits are shown in
white. Again, a lack of pattern is observed, which comes as no surprise, given that this effect
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Figure 4.17: θϕ-accumulator for three smeared tracks and three additional noise hits. The votes
originating from noise are shown in black, while the votes from related muon hits are shown in
white. The grey area indicates cells without votes.
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was already present in the case of three smeared tracks alone.

Over time, a more realistic simulation—one that takes into account the full detector re-
sponse, reconstructed hit coordinates, and tracking of secondary particles—will need to be
implemented, as this is essential to better characterize noise behavior and the extent of track
smearing. Additional parameters, such as the energy deposited by the hits, could also be in-
corporated, to help discriminate between muon hits and noise. Moreover, strategic cuts could
be applied to filter out poorly reconstructed or heavily smeared tracks, improving the over-
all tracking quality. Finally, insights from alternative tracking algorithms could be explored to
further enhance the performance.



Chapter 5

Image Reconstruction

With the optimized simulation and tracking algorithm in place, the full simulation workflow
can now be executed to obtain a muographic image of the pyramid. For this analysis, three sim-
ulation scenarios were carried out: a free sky configuration, a configuration including the pyra-
mid as it is currently known, and a configuration of the pyramid with an additional room. The
resulting hit coordinates from each configuration were processed using the tracking algorithm
to reconstruct the muon trajectories. As a first step, a quality assessment of the reconstructed
tracks was performed to ensure that they accurately reflected the originally generated muon
directions. This evaluation is presented in Section 5.1. Once the directions were successfully
reconstructed, the image reconstruction of the pyramid could proceed. Firstly, a transmission
map of the pyramid was generated by comparing the free sky and current pyramid configu-
rations, as discussed in Section 5.2. This transmission highlights the structural features of the
pyramid. Then, a relative transmission map was generated by comparing the current pyramid
model with the modified model that includes an additional void. This analysis aims to explore
the sensitivity limits of the detector in identifying an excess in muon flux that could indicate the
presence of hidden cavities, as detailed in Section 5.3.

5.1 Simulation and evaluation of muon tracks

To generate detailed images of the muon transmission through the Pyramid of Khafre, it is es-
sential to acquire a sufficient amount of data so that the features of the pyramid and possibly
unknown features are distinct. Typically, high-resolution muographic imaging requires datasets
containing millions of muon hits, collected over several weeks or months of measurement [37,
42]. Fortunately, data generated through optimized simulations is usually faster, making it
possible to gain a first insight into the expected image of the pyramid. Three simulation con-
figurations were performed in this analysis: free sky, pyramid, and pyramid with an additional
room.

The free sky data acquisition did not require the optimized version of the simulation, as the
small generation surface was already adequate to yield a sufficient number of hits. To maintain
consistency with the optimized version, the same small generation surface—a planar surface of
70 × 70 cm2 positioned 5 cm above the uppermost detector plate—was used. From this surface,
40 million muons were generated, resulting in approximately 10 million recorded events. The
exact details of the data acquisition are provided in Table 5.1. For the transmission through the

56
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Table 5.1: Details of the simulation time (rounded to the minute), total amount of recorded
events and track reconstruction for the three configurations: free sky, pyramid, and pyramid
with an additional room. The simulation time is the time it took to run a batch of 10 million
muons.

Simulation time Total recorded events Undetected tracks False tracks
Free sky 29 min 10,504,923 2.2% 0.033%
Pyramid 4 h 13 min 3,079,505 0.20% 0.022%

Room 3 h 34 min 3,239,904 0.14% 0.022%

pyramid—both the simulation of the pyramid as known today, as the pyramid with an extra
room, both referred to as the target configuration—the optimized simulation was used. In these
cases, 100 million and 105 million muons were simulated, respectively, on the small generation
surface. This resulted in the acquisition of approximately 3 million muons for each configura-
tion, with the details in Table 5.1. The simulation was run in batches of 10 million muons, as
this took around 3 to 4 hours for the target configuration, to avoid possible crashes resulting in
data loss. Initially, the average simulation time of these batches was considered as a runtime
measure. However, it was observed that the simulation times varied significantly per run, de-
spite processing the same number of muons. These variations were linked to fluctuations in
the computational load on the laptop used for the simulations, often running other processes
such as track reconstruction simultaneously. To ensure consistency, a representative runtime
was measured by running one simulation under certain conditions—while no other programs
were active on the laptop—and is provided in Table 5.1, for each configuration.

To calculate the muon transmission, as defined in Equation 1.13, it is necessary to deter-
mine the muon flux, which requires knowledge of the data acquisition time. Technically, the
detector efficiency is also required. However, it is assumed that the efficiency remained con-
stant across all simulation runs, reducing the factor ϵFS/ϵ to unity. While EcoMug can estimate
the total acquisition time to generate a desired number of muons on a given generation sur-
face, even accounting for constraints on azimuth and zenith angles, this estimation could not
be applied in this particular analysis. The optimized simulation used the small generation sur-
face from EcoMug but afterwards generated the muons from a manually defined hemispherical
surface. The effective generation area on this hemisphere is limited by the intersection of the
inverted generation cone. As a result, EcoMug’s built-in time estimation was not applicable to
the target configurations. To approximate the acquisition time, the computational runtime of
the simulations was used instead, as given in Table 5.1. Notably, the free sky simulation exe-
cuted significantly faster than the target simulations—a pattern consistent with real experimen-
tal conditions—making the runtime a reasonable basis for estimating relative rates. However,
this approach provides only an order-of-magnitude estimation, rather than absolute values of
the flux. Therefore, the term muon rate is adopted throughout this chapter, instead of muon flux.

Although the generated information on the muons is available through the simulation, the
purpose was to reconstruct images under conditions that closely resemble those of the real
experimental setup. Therefore, the track reconstruction was applied to all hit data. The recon-
struction was performed in batches of three events at a time, as this was found to provide the
best performance in terms of speed. The finalized parameters for the full track reconstruction
used across all simulated datasets are listed in Table B.12 in Appendix B. The algorithm’s per-
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formance was evaluated for all three datasets to ensure reconstruction quality before the image
reconstruction. The detected tracks were classified as either true or false tracks, by utilizing the
EventID information, available through the simulation. The efficiency in identifying true tracks
and the rate of falsely detected tracks are presented in Table 5.1. The false positive rate remained
consistently low across all datasets, ranging from 0.022% to 0.033%. The number of undetected
tracks also remained small for the target configurations, however, for the free sky dataset, the
missed detection rate exceeded 2%, corresponding to approximately 200, 000 tracks not being
reconstructed. This may partly be attributed to limitations in the accumulator used during the
track reconstruction, particularly its lack of periodicity in ϕ. While this might account for some
of the missed detections, the tenfold increase compared to the target configurations is notable
and cannot be fully explained at this stage. Nonetheless, this result highlights the need for pe-
riodic clustering in the θϕ-accumulator and further refinement of the tracking algorithm.

To further assess the quality of the track reconstruction, the tracking resolution was evalu-
ated by comparing the true track directions to those detected by the algorithm. Figure 5.1 shows
the distribution of angular difference for the pyramid dataset, with false tracks excluded. The
left-hand plot (5.1a) illustrates the difference in azimuth angle ϕ, while the right-hand plot (5.1b)
shows the difference in zenith angle θ. To focus on the central distribution, the range of the plots

(a) Resolution for the azimuth angle ϕ. (b) Resolution for the zenith angle θ.

Figure 5.1: Tracking resolution of the tracking algorithm for the pyramid configuration as
known today.

was constrained to [−2◦, 2◦]. As seen in Figure 5.1a, a degree of overflow is present, indicat-
ing large deviations between the reconstructed and actual track angle. It is also notable that
the distribution for the azimuth angle is broader than for the zenith angle. When calculating
the standard deviation within this plotted range—excluding overflow—values of 3.85 mrad for
ϕ and 1.27 mrad for θ were obtained. The broader distribution for ϕ could be explained by
the lower resolution of ϕ in the θϕ-accumulator and possibly the lack of periodic clustering.
A similar pattern is observed in the configuration with the additional room. The distributions
of this case can be found in Figure C.1 in Appendix C. The standard deviations here are 3.85
mrad for ϕ and 1.29 mrad for θ, indicating a consistent angular resolution across these target
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configurations. In contrast, the free sky configuration again shows a notably different behavior.
Figures 5.2a and 5.2b reveal broader distributions in both ϕ and θ, suggesting a decrease in an-

(a) Resolution for the azimuth angle ϕ.
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(b) Resolution for the zenith angle θ.

Figure 5.2: Tracking resolution of the tracking algorithm for the free sky configuration.

gular precision. Furthermore, there is a significant overflow in the azimuth angle distribution,
though it should be noted that this dataset contains a larger number of events, which could con-
tribute to the increased spread. The standard deviation for the free sky configuration—again
excluding overflow and false tracks—is 11.4 mrad for ϕ and 4.38 mrad for θ. Although these
values remain relatively low, within acceptable resolution limits, the discrepancy with the tar-
get configurations is still particular. The reason remains unclear. One hypothesis is that the
larger dataset size may introduce more variability since it contains about three times as many
hits and is not influenced by muon absorption. All datasets were reconstructed using identical
algorithm parameters, so reconstruction differences cannot explain the observed broadening.
To investigate this further, the tracking algorithm could be rerun with additional flags to trace
potential anomalies. However, due to the large computational time of reconstructing these free
sky tracks, such an analysis is left for future studies.

5.2 Muon transmission through the pyramid

After acquiring the hit data and performing the track reconstruction, the final phase is to recon-
struct the image of the pyramid. This is typically done in terms of direction angles θ and ϕ and
more specifically, using the components tan(θx) and tan(θy), where θx and θy correspond to the
azimuthal projections of the direction vector on the xz-plane and yz-plane, respectively. Given
a direction vector defined as in Equation 4.5, these components can be calculated as:{

tan(θx) = bx/bz = tan(θ) cos(ϕ)
tan(θy) = by/bz = tan(θ) sin(ϕ)

. (5.1)
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The image of the muon count distribution was reconstructed as a two-dimensional histogram
with 200 bins for both dimensions, and the results for the free sky and pyramid are shown in
Figures 5.3a and 5.3b, respectively. In the free sky configuration, the muon rate distribution
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(a) Histogram from the free sky acquisition.
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(b) Histogram from the pyramid acquisition.

Figure 5.3: Two-dimensional histograms of the number of detected muons at the detector posi-
tion for the free sky and pyramid configuration. The dimension of the histograms is 200 × 200
bins.

appears fairly uniform, as expected in the absence of any structures. However, a notable ab-
sence of counts is observed in the region around tan(θy) ≈ 0 and tan(θx) ≤ 0, particularly near
the origin. This is more clearly visible when zooming in, as shown in Figure 5.4b. This region
corresponds to muons arriving from the fourth quadrant of the xz-plane and to vertical muons.
This drop in counts is not physical, as confirmed by comparison with the distribution of the
generated muon directions in Figure 5.4a. The discrepancy becomes even more visible when
analyzing the difference between the reconstructed and generated images, which clearly shows
the deficit of reconstructed tracks in this region, as visible in Figure 5.4c. A likely explanation
is that the clustering algorithm used in the track reconstruction was not periodic, which may
have introduced a bias or inefficiency in that angular sector. Regarding the deficit at the ori-
gin, this can presumably be attributed to the redundancy of ϕ for vertical muons, i.e., θ = 0.
To address this in the accumulator, calculated directions with θ falling below a small thresh-
old ϵ ∼ 0 should be concentrated into a single bin, independent of the corresponding ϕ value.
These deficits also explain the tenfold increase of undetected tracks for the free sky dataset as
discussed in the previous section, since the muon flux is maximal for nearly vertical muons.
While such discrepancies are unfortunate, they highlight the importance of conducting these
muographic simulations to identify and correct deficiencies in the tracking algorithm.

On the contrary, the reconstructed image of the pyramid displays a more structured pattern,
consistent with the expected absorption of muons by the pyramid’s internal geometry. The re-
gion with lower counts (pink-purple) is curved inwards toward the origin, while the region
around the origin (orange-yellow) forms a square-like shape with distinct corners. Notably, the
ϕ-assymetry is absent here. This may be due to the smaller amount of data, but it is more likely
due to better tracking performance, as supported by the values in Table 5.1 discussed in the pre-
vious section. Since nearly vertical muons enter near the apex, the distance traveled through
the pyramid before reaching the detector will be larger, resulting in a lower transmission for
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(a) Muon distribution for the generated direc-
tions.
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(b) Muon distribution for the reconstructed di-
rections.

0.5 0.4 0.3 0.2 0.1 0.0
tan( x)

0.2

0.1

0.0

0.1

0.2

tan
(

y)

1500

1000

500

0

500

1000

1500

N
Re

co
N

G
en

(c) Difference of the muon distribution between
the generated and reconstructed directions.

Figure 5.4: Comparison of the muon distribution between the generated directions and the
reconstructed directions for the free sky configuration. Zoom-in on region −0.25 < tan(θy) <
0.25 and tan(θx) ≤ 0.

this direction.

To better interpret this reconstructed structure, the pyramid muon rate is compared to the
free sky rate by calculating the transmission according to Equation 1.13, using the simulation
times as acquisition times, as mentioned in the previous section. First, to have a reference,
a two-dimensional map of the traversed length through the pyramid was reconstructed as a
function of the muon direction. This map was created using the same simulation employed to
generate the length histogram described in Subsection 3.2.2. It was constrained to the region in
the field of view of the detector and is demonstrated in Figure 5.5. The cross-like structure in
this map can be explained by the features of the pyramid. Muons entering the pyramid from the
corners, corresponding to the diagonals in the image, will travel a longer distance than muons
entering from the sides of the pyramid. Furthermore, for the region in the detector’s field of
view, the largest traversed distance will be for muons entering near the top, corresponding to
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Figure 5.5: Two-dimensional map of the traversed length through the pyramid as a function of
the muon direction, for the pyramid as known today. The map is constrained to the detector’s
field of view.

the blue-green region of the map. While this can serve as a benchmark for the muon transmis-
sion image, it has to be remarked that a transmission map also takes the muon spectrum into
account, which will result in a more complicated relationship. The resulting transmission map
for the pyramid is shown in Figure 5.6a. As expected, the transmission values are less than one,
reflecting the absorption of muons by the pyramid. While the absolute values may not exactly
match reality, due to the simulation-specific assumptions and acquisition time approximation,
the order of magnitude is consistent with expectations. In this initial transmission map, some
structural features begin to emerge, but the overall image remains relatively uniform compared
to the traversed length map in Figure 5.5. This is largely due to the edges: as visible in Figure
5.6a, the outer regions exhibit some bins with relatively higher transmission, primarily due to
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(a) Transmission map.
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(b) Masked transmission map: T < 0.012.

Figure 5.6: Two-dimensional maps of the muon transmission through the pyramid as known
today. The dimension of the histograms is 200 × 200 bins.

low statistics. Although a substantial amount of data was acquired, the muon flux decreases
with increasing zenith angle θ, resulting in fewer events for large values of θ. To enhance the
appearance of the structural features, a mask was applied to filter out higher transmission val-
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ues, selecting T < 0.012. With this threshold applied, the features of the pyramid become
much clearer, as demonstrated in Figure 5.6b. In particular, the cross-shaped pattern is visible:
the four regions at the sides of the map containing relatively higher transmission (red-colored)
compared to the central region and diagonals. These diagonals correspond to the path through
the corners of the pyramid, where muons will traverse more limestone, resulting in stronger
attenuation. The central region exhibits a more complex behavior, showing alternating regions
of higher and lower transmission. This pattern is due to the interplay between the geometry of
the pyramid and the angular distribution of the incoming muon flux. In the origin of the map,
an increase in transmission is observed. However, this effect is an artifact resulting from the
less reliable track reconstruction in the free sky dataset and consequently biased muon distribu-
tion. This was also confirmed by reconstructing the transmission map for the generated muon
directions, as shown in Figure C.2 in Appendix C. Ignoring this artifact, the transmission near
the origin is lower, which corresponds with the physical expectations, since this region corre-
lates to nearly vertical muons, entering near the apex of the pyramid. Because these muons
travel through a greater thickness of limestone, they experience more absorption, resulting in
lower transmission. Moving slightly outward from the center, a localized increase is observed,
which can be attributed to the decrease in the traversed length. Beyond this point, the transmis-
sion decreases again until it begins to rise once more at large inclination angles, apart from the
diagonals. This trend reflects the competition between the path length and the muon flux dis-
tribution: while the flux decreases with increasing zenith angle, the distance traveled through
the pyramid also shortens. Additionally, for higher inclination angles, the average energy of
the muons increases, which may further contribute to the increased transmission observed. The
very low transmission in the corners of the map is attributed to limited data in those regions.

5.3 Muographic search for a hidden void

The purpose of the ScIDEP project is to scan the Pyramid of Khafre for potential hidden voids,
to gain a deeper understanding of its internal structure, and in turn, the construction of the
pyramids as a whole. Hence, an interesting aspect to determine in this analysis is the smallest
void that could realistically be detected with the current detector model, as well as estimating
the time required for data acquisition to observe a muon excess associated with such a void.

Figure 5.7: Geant4 model of the Pyramid of Khafre with an additional room placed above the
King’s chamber, at position (5 m, 0 m, 30 m).
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As shown in the previous section, muon transmission is generally lower in the region directly
above the detector compared to the lateral regions at the edges of the detector’s field of view.
Therefore, one expects that a void placed at a lower inclination angle would be easier to detect,
as more muons are observed in this region, leading to more statistics. To explore the detection
limits, a hypothetical hidden chamber with dimensions of 3 × 8 × 2.5 m3 was placed into the
pyramid at a height of 30 m, with an offset of 5 m along the x-axis. These dimensions are based
on the sizes of the existing rooms within the pyramid. This corresponds to the chamber being
positioned above the King’s chamber, with its longest side oriented orthogonally to that of the
King’s chamber, as illustrated in the Geant4 model in Figure 5.7. The muon distribution of the
pyramid with this additional room is shown in Figure 5.8. At first glance, the distribution ap-
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Figure 5.8: Two-dimensional histogram of the number of detected muons at the detector posi-
tion for the pyramid with additional room configuration. The dimension of the histogram is
200 × 200 bins.

pears very similar to the case without the hidden room, with no notable difference to the naked
eye. This is expected, given the relatively small size of the void in comparison to the overall
mass of the pyramid, and the limited data acquisition.

To evaluate whether the presence of such a hidden chamber can be detected, the relative
transmission is calculated, as defined in Equation 1.18. This way, the measured transmission
can be compared to the expected one. Again, a two-dimensional map was generated of the tra-
versed length through the pyramid as a function of the muon direction, as shown in Figure 5.9.
Comparing this map with the map of the traversed length through the pyramid without hidden
structures (Figure 5.5), the room is clearly identifiable as the red rectangular spot, located to the
right of the center, in the region of reduced traversed length. This can be used as a reference
to locate the room in the relative transmission map. In this analysis, only simulated data is
available, as measured data acquisition is not ongoing yet. Accordingly, Texpected represents the
simulated transmission through the known structure of the pyramid, while Tmeasured includes
the effect of the simulated hidden chamber. The resulting relative transmission is shown in Fig-
ure 5.10a. In this image, 100 bins were used in each dimension, to compensate for the limited
statistics. Nevertheless, especially at the outer edges, several bins exhibit high relative transmis-
sion values. In principle, the relative transmission should be close to 1, with values exceeding 1
in angular regions corresponding to a void. A trained eye might spot a faint, lighter-blue region
slightly shifted to the right of the center in Figure 5.10a. However, due to the low statistics at
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Figure 5.9: Two-dimensional map of the traversed length through the pyramid as a function of
the muon direction, for the configuration of the pyramid with an additional void.

the image boundaries, this signal remains vague. To enhance visibility, a mask can be applied
to selectively display regions where the relative transmission falls below a certain threshold,
potentially revealing the shape of the void. Initially, a mask of R < 1 was tested. In theory, this
should highlight the region corresponding to the room, by excluding the excess. However, the
resulting image remained fairly uniform. When testing other thresholds, a value of R < 0.88
produced a visible contour where the data vanishes, as observed in Figure 5.10b. This contour
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(a) Relative transmission map.
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(b) Masked relative transmission: R < 0.88.

Figure 5.10: Two-dimensional relative transmission maps of the pyramid with additional room
configuration vs. pyramid as known today. The dimension of the histograms is 100 × 100 bins.

corresponds with the simulated room’s location. Although the order of magnitude of the rel-
ative transmission is reasonable, the value of 0.88 for the mask proves that the absolute value
appears to be underestimated. This highlights the limitation of using the simulation runtimes as
an approximation for the realistic acquisition times. While this approach provides a useful ini-
tial estimate of the order of the muographic quantities, it is not a fully accurate approximation.
A more precise estimation could be achieved by incorporating EcoMug’s estimated acquisition
time and scaling it according to the actual surface area from which muons are generated outside
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the pyramid.

Due to the low statistics, a cut was applied to the data, restricting the angular range to
−0.4 < tan(θx), tan(θy) < 0.4, and the number of bins was reduced to 50. Figure 5.11 shows the
resulting relative transmission map for this region, where a drop of magnitude is observed in
the color bar, compared to the one from 5.10a, due to the low statistic edge bins being excluded.
In this zoomed-in map, the room becomes visible even without applying a mask. The purple
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Figure 5.11: Two-dimensional relative transmission map of the pyramid with an additional
room configuration vs. the pyramid as known today, after a cut was applied: −0.4 <
tan(θx), tan(θy) < 0.4. The dimension of the histogram is 50 × 50 bins. The angular range
of the room is indicated by the purple rectangle

rectangle in the figure denotes the angular region corresponding to the actual room dimensions:
0.112 < tan(θx) < 0.226 and −0.139 < tan(θy) < 0.139. To determine whether this region truly
shows a muon excess, the flux difference between the expected and measured configuration
was calculated. The initial approach was to fix tan(θy) (e.g., at 0, within the range of the visible
excess) and plot the flux difference profile along tan(θx), and vice versa. The flux difference
here is more specifically the difference in the flux density between the simulation with the hid-
den room and the one with the pyramid as known today. This density-based comparison was
necessary for a proper normalization because simulation runtimes only approximate the actual
acquisition time. Instead of analyzing a single bin, however, a range of bins was selected, and
the total flux within this range was used to calculate the difference. The results are presented
in Figure 5.12, where the top plot shows the difference profile along tan(θx), and the right plot
the profile along tan(θy). The dashed purple lines indicate the angular ranges used for tan(θx)
and tan(θy), derived from the actual span of the simulated room. Ideally, one would determine
these ranges based on the observed excess, but this was not possible here due to the limited
statistical significance. The light purple shaded regions in the top and right plots correspond to
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Figure 5.12: The same relative transmission map as in Figure 5.11. The top plot shows the profile
of the total flux density difference between the pyramid with an extra room and the pyramid as
known today, for −0.14 < tan(θy) < 0.14, along the range of tan(θx). The right plot shows the
profile of the total flux density difference for 0.11 < tan(θx) < 0.22, along the range of tan(θy).
The dashed purple lines indicate the angular ranges used for tan(θx) and tan(θy) to calculate
the flux differences. The light purple shaded regions in the top and right plot correspond to the
angular extent of the simulated void

the angular extent of the simulated void. In theory, the flux difference should be around zero
if the measured configuration matches the expected model. While the observed excess within
the room’s angular region is too small to draw a strong statistical conclusion, a clear trend
emerges: within the room’s range, a muon excess is observed, whereas outside this range, there
is a deficit. To further explore this observation, the actual muon (density) flux profiles were
plotted for the same angular ranges of tan(θx) and tan(θy), as shown in Figure 5.13. Within the
purple-shaded region—the region of the room—an increased flux is observed for the simulation
with the hidden room, underlining the presence of a localized muon excess. From the current
analysis, it can be concluded—aside from statistics—that a clear muon excess is observable in
the region corresponding to the simulated void. To determine whether this excess is statistically
significant, however, more simulated data must be acquired.

The dimensions of the simulated void were based on the existing chambers in the Pyramid
of Khafre, taken slightly smaller than the known subsidiary chamber. This choice was moti-
vated by the expectation that any yet-undiscovered rooms are likely to be smaller and to test
the limits of the detector. However, larger voids remain of interest, as the ScanPyramids collab-
oration discovered a corridor over 30 m in the Pyramid of Khufu, as mentioned in Subsection
2.1 [42]. In general, regardless of the size of the simulated void, additional simulation data is
required to obtain more detailed results and to perform a meaningful statistical analysis. To ac-
celerate the exploration process, multiple voids could be inserted simultaneously in future sim-
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(a) The total flux density profile along tan(θx),
for −0.14 < tan(θy) < 0.14.

(b) The flux density profiles along tan(θy), for
0.11 < tan(θx) < 0.22.

Figure 5.13: The flux density profiles, for the same ranges as illustrated by the dashed purple
lines in Figure 5.12.The light purple shaded regions correspond to the angular extent of the
simulated void.

ulations, provided their angular regions do not overlap. Overlapping regions would introduce
ambiguity in the excess profiles unless a three-dimensional reconstruction is feasible. In that
case, overlapping angular regions could be disentangled through tomographic imaging tech-
niques [74]. Hence, an important future step is to include the second detector in the simulation
framework. Furthermore, using both detectors simultaneously—each placed at different view-
points—would allow for data acquisition from multiple angles, enabling three-dimensional re-
construction of the pyramid’s interior. For even more detailed simulations, a future model
could include the limestone cap of the pyramid. Additionally, incorporating a realistic detector
response is essential for producing transmission images that accurately reflect the experimen-
tal conditions. To ensure meaningful comparisons between simulated and measured data, it
is crucial that the analysis pipelines for both remain as consistent as possible. Alongside this,
the muon tracking algorithm should be reviewed and refined, especially in light of the discrep-
ancies observed in the free sky data. Moreover, acquisition times should be determined more
accurately to estimate how long real measurements would take in order to achieve sufficient
data for statistical precision. This could be explored by incorporating EcoMug’s predicted ac-
quisition time and adjusting it based on the actual surface from which muons are generated
outside the pyramid.



Chapter 6

Conclusion and Outlook

Over a century after Victor Hess’s discovery of cosmic rays, cosmic ray muons have proven to
be a powerful tool for imaging structures on Earth through muon radiography. Due to their
relativistic properties, cosmic ray muons can penetrate large, dense materials, rendering them
ideal candidates for non-invasive imaging of the internal structure of these objects. In particular,
transmission muography estimates the opacity of an object by analyzing the attenuation of the
muon flux along specific paths. By comparing the number of muons passing through a struc-
ture with a free sky reference, a density map of the structure can be produced. This technique
has already proven its value across a wide range of disciplines, from volcanology to archaeol-
ogy—a famous example being the ScanPyramids collaboration’s discovery of a large void in
the Great Pyramid of Giza. The Egyptian pyramids continue to captivate both researchers and
the public, as there is no definite consensus on the precise methods of their construction. The
ScIDEP project aims to shed new light on this mystery by employing transmission muography
to investigate the internal structure of the Pyramid of Khafre, the second-largest of the Pyra-
mids of Giza. Despite being only slightly smaller, the interior of the Pyramid of Khafre appears
significantly simpler. Using scintillator-based tracking detectors placed both inside and outside
the pyramid, the objective is to acquire two- and three-dimensional maps of the Pyramid of
Khafre, in search of hidden structures.

A key challenge in muography is the low probability that muons will traverse the detector
plates after passing through the target: many CR muons will either miss the detector or be ab-
sorbed in the target. Consequently, it is computationally demanding to simulate and acquire
a sufficient number of muon events. To address this, an optimized simulation was developed
to constrain the generation of muons inside an inverted cone comprising the field of view of
the detector. First, the pyramid and the detector components were modeled using Geant4,
state-of-the-art for simulating particle interactions with matter. A 3D model of the pyramid as
known today was imported and modeled as limestone. The scintillator plates were defined as
sensitive detectors, enabling to record muon hit data when traversing a detector plate. After
characterizing the experimental setup, a suitable cosmic ray muon generator was required. The
choice of EcoMug was driven by its computational speed, adaptability, and seamless integra-
tion with Geant4. The optimized simulation started by generating muons on a small surface
positioned close to the detector, maximizing the probability that a muon would pass through
all three detector planes. When a muon passed sufficiently near all three planes, it was ex-
trapolated to outside the pyramid, which required the muon’s energy prior to entering the
pyramid. Since the energy loss depends on the muon’s energy and its stochastic interactions

69
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along its path—making it a complex quantity to calculate—an approximative method was im-
plemented: the relationship was captured in a two-dimensional histogram, correlating outgoing
energy and path length to the corresponding incoming energy. An additional histogram was
created to find the traversed length as a function of the muon’s direction. Finally, using these
histograms, muons could be generated outside the pyramid. These extrapolated muons were
tracked through the pyramid and, if a muon passed through all three detector planes, its hit
data and generated information were recorded for further analysis for the next stage.

This next stage focused on the reconstruction of the muon’s trajectory. For this purpose,
a new tracking algorithm was developed, based on the Hough transform, a computational
method for detecting geometric shapes. The muon’s trajectory was described by Robert’s line
representation and two accumulators were implemented: one to determine the line’s direc-
tion (θ, ϕ), and another to identify the coordinate (x′, y′). The clustering algorithm DBSCAN
was applied to the accumulators to identify clusters of maximal votes—corresponding to likely
track candidates—followed by a fit to refine the resolution. The algorithm was evaluated for
ideal tracks, referring to muon trajectories derived from the true hit coordinates (i.e., not re-
constructed from the fiber signals). While computational time increases significantly with the
number of input tracks, this could be managed by splitting the input into batches. A sample of
100 events was processed in 10 different configurations to assess the algorithm’s performance
in function of the number of input tracks. This was done for various values of the tracking
parameters, where results showed that subtle changes in these values could significantly affect
the performance. Finally, the influence of noise and smearing on the performance of the algo-
rithm was tested. While the presence of noise appears manageable, smearing was found to be
a harder challenge, indicating that further refinement of the algorithm will be necessary for its
application to realistic data.

Finally, the optimized simulation and track reconstruction were integrated to reconstruct
two-dimensional muographic images of the Pyramid of Khafre. Simulations were run for three
configurations: free sky, the current model of the pyramid, and the pyramid with a hypotheti-
cal additional void. Approximately 10 million events were simulated for the free sky scenario
and about 3 million for each of the two pyramid configurations. While the false track rate re-
mained below 0.33%, the rate of undetected tracks in the free sky data was—with a value of
2.2%—notably higher compared to the pyramid configurations. This discrepancy was traced
back to limitations in the track reconstruction, specifically the lack of periodic clustering in the
θϕ-accumulator and a lack of proper treatment for vertical tracks. These findings highlight the
critical role of simulations in validating and refining the reconstruction algorithm. Using the
reconstructed tracks, a transmission map was generated by comparing the muon rate distribu-
tions between the free sky and pyramid configuration. Here, the muon rate was defined as
the number of detected muons divided by the simulation runtime. The resulting transmission
map showed realistic magnitudes (less than 1), where the structures present in the map cor-
responded to the known features of the pyramid. Lastly, to investigate the detector’s limits in
terms of sensitivity, a room was simulated above the King’s Chamber. In this configuration, a lo-
calized muon excess was observed in the relative transmission map, which corresponded to the
angular span of the hypothetical room. While definitive conclusions cannot be made because
of limited statistics, these results offer a first insight into the detector’s potential for resolving
hidden structures and highlight promising directions for future refinement and studies.

The ScIDEP project emphasizes the value of muography in non-invasive archaeological ex-
ploration to uncover new insight into ancient structures, and illustrates the importance of in-
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terdisciplinary and international scientific collaboration. Looking forward, additional data is
required to draw statistically significant conclusions. This can be achieved either by extend-
ing the simulation runtime or by employing alternative simulation techniques. To accelerate
the analysis, multiple void hypotheses could be evaluated simultaneously. Another step for-
ward involves simulating the second detector and determining its optimal placement outside
the pyramid. By modeling the expected muon flux on this detector, an ideal positioning can
be selected to maximize signal strength. Consequently, more accurate estimations of the data
acquisition times are essential to determine how long actual data collection would need to last
to reach sufficient statistical precision. Additionally, with two detectors in operation, three-
dimensional reconstruction becomes feasible, and the development of a tomographic recon-
struction algorithm will be necessary. Incorporating a realistic detector response—including
hit reconstruction from the SiPM signals, and detector efficiency—is also vital for generating
transmission images that accurately reflect the experimental conditions. Furthermore, for more
precise modeling, the model of the pyramid could include the limestone cap at the top of the
pyramid. Lastly, another crucial development is the tracking algorithm. In particular, the θϕ-
accumulator should be refined, in light of the discrepancies observed in the free sky data, and
the influence noise should be accounted for by including secondary particles in the simulation.
Just as pyramids are built stone by stone, each refinement is a building block in the muographic
research of the ScIDEP project.



Appendix A

Robert’s line representation:
coordinate frame

As discussed in Section 4.2, Robert’s line representation of the three-dimensional line is defined
by four parameters, θ, ϕ, x′, and y′; where θ and ϕ determine the direction of the line. The
parameters x′ and y′ are defined as the coordinates of intersection of the line and a plane going
through the origin with as its normal the line. The coordinate (x′, y′) is defined in a 2D coor-
dinate frame in the plane itself. This coordinate frame is determined in such a way that it is
unique and without special cases and singularities. The way this frame is defined is by rotating
in the plane defined by z⃗ and b⃗ (thus rotating around an axis z⃗ × b⃗), by an angle arccos(⃗z · b⃗).
The rotation matrix A is:

A =

1 − b2
x

1+bz
− bxby

1+bz
bx

− bxby
1+bz

1 − b2
y

1+bz
by

−bx −by bz

 (A.1)

Then the unit vectors of the coordinate frame are given by the columns of A. For a 3D line with
an arbitrary reference point p⃗, the intersection coordinate (x′, y′) can be calculated as follows:

x′ = p⃗ · x̂′ = p⃗ · Ax̂ =

(
1 − b2

x
1 + bz

)
px −

(
bxby

1 + bz

)
py − bx pz (A.2)

and

y′ = p⃗ · ŷ′ = p⃗ · Aŷ = −
(

bxby

1 + bz

)
px +

(
1 −

b2
y

1 + bz

)
py − by pz . (A.3)

Reversely, when given (x′, y′), a line anchor point can be calculated as

p⃗ = x′ ·

1 − b2
x/(1 + bz)

−bxby/(1 + bz)
−bx

+ y′ ·

−bxby/(1 + bz)
1 − b2

y/(1 + bz)
−by

 , (A.4)

and the direction vector as

b⃗ =

 bx
by

+
√

1 − b2
x − b2

y

 . (A.5)
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Appendix B

Tracking algorithm parameters

In Subsection 4.4.2, the influence of several tracking parameters on the performance of the track-
ing algorithm was investigated. This appendix contains all values used to generate the corre-
sponding efficiency figures.

Table B.1: Parameters used for Figure 4.5.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

180 360 100 1 3 2 1 1 2 3 1 50 5 1

Table B.2: Parameters used for Figure 4.7a.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

360 720 200 2 3 2 1 1 3 3 1 50 5 1

Table B.3: Parameters used for Figure 4.7b.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

360 720 200 1 3 2 1 1 3 3 1 50 5 1

Table B.4: Parameters used for Figure 4.9a.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 2 2 2 1 1 3 3 1 50 5 1
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Table B.5: Parameters used for Figure 4.9b.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 2 2 2 1 1 3 3 1 50 5 1

Table B.6: Parameters used for Figure 4.10.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 2 1 2 2 3 1 50 5 1

Table B.7: Parameters used for Figure 4.11a.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 10 1 1 3 3 1 50 5 1

Table B.8: Parameters used for Figure 4.11b.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 10 1 1 3 3 1 700 5 1

Table B.9: Parameters used for Figure 4.12a.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 2 1 1 3 3 1 10 5 1

Table B.10: Parameters used for Figure 4.12b.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 2 1 1 3 3 1 30 5 1

In Subsection 4.4.3, the tracking resolution was evaluated by smearing a single track 1000
times and reconstructing the resulting smeared tracks. The values of the trackings parameters
used for this reconstruction are provided in Table B.11.
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Table B.11: Parameters used to determine the tracking resolution in case of smeared tracks, in
Subsection 4.4.3.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 0.8 1 1 2 5 1 60 30 10

In Section 5.1, the track reconstruction was performed on the three simulation dataset. The
algorithms used for this reconstruction are provided in Table B.12.

Table B.12: Parameters used to reconstruct the muon trajectories.

Accumulator Clustering θϕ Clustering xy Distances
nθ nϕ nxy VC VR ϵ minPts VC VR ϵ minPts d1 daccepted dcandidate

200 200 100 1 3 2 1 1 2 3 1 50 5 1



Appendix C

Tracking resolution

In Section 5.1, the tracking resolution was acquired by comparing the reconstructed directions
to the actual muon directions, for all three configurations. The distribution of the angular dif-
ferences for the configuration of the pyramid containing an additional room are presented in
Figure C.1. The left-hand plot (C.1a) illustrates the difference in azimuth angle, while the right-
hand plot (C.1b) shows the difference in zenith angle.

(a) Resolution for the azimuth angle ϕ. (b) Resolution for the zenith angle θ.

Figure C.1: Tracking resolution of the tracking algorithm for the pyramid configuration with an
additional room.
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To verify that the transmission map of the pyramid in Section 5.2 should not exhibit a deficit
near the origin of the map, the transmission map was reconstructed using the generated muon
directions, as shown in Figure C.2.

1.0 0.5 0.0 0.5 1.0
tan( x)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tan
(

y)

0.000

0.002

0.004

0.006

0.008

0.010

R p
yr

a/R
FS

R

Figure C.2: Two-dimensional map of muon transmission through the pyramid as known today,
based on the generated track directions. The dimension of the histogram is 200 × 200 bins. A
mask to the transmission of T < 0.012 was applied.
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