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Abstract

Advancements in nuclear, particle, and astroparticle physics are intricately intertwined
with technological progress in experimental instrumentation, particularly in the case of
detectors used for precision measurements of the properties of particles. Furthermore,
their use in radiation imaging fosters advancements in biomedical and material sciences.
An emerging direction of development involves integrating resistive materials into detec-
tor architectures to enhance their performance and durability, thereby ensuring compli-
ance with the stringent requirements for measurement precision and operation in more
challenging conditions anticipated in future High Energy Physics (HEP) experiments.
This movement is noticeable in detectors presently operational at the Large Hadron Col-
lider experiments at CERN and those planned for the near future.

Continuous advancements in modeling and simulation tools, such as Garfield(++),
have guided the widespread development and understanding of detector structures. Since
new sensor technologies are proposed regularly, with resistive detectors becoming an ever-
increasing fraction of these, it is prudent to reflect this progress in the capabilities of the
modeling tools. Up to now, the effects of components with finite conductivity have not
been modeled adequately in the software tools that are used for simulating the signal
in particle detectors. As part of this thesis, a new framework was developed that is
applicable to the wide range of detectors that are inaccessible through analytical means.
Laboratory and test beam measurements are used to adjust and validate the simulation
framework. Subsequently, the methodology is employed to test and optimize the response
of various innovative particle detector readout structures.

Through simulation and measurement, we have explored novel solutions in the field of
Multi-gap Resistive Plate Chambers, Micro Pattern Gaseous Detectors, and solid-state
sensors, arising from the implementation of materials with finite conductivity. In addition
to deepening the understanding of existing structures, these studies are necessary for
designing and optimizing the next generation of particle detectors and their application
to specific needs driven by HEP experiments and other applications.
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Vooruitgang in de kern-, deeltjes- en astrodeeltjesfysica is nauw verbonden met de
technologische vordering van experimentele instrumentatie, zoals detectoren die worden
gebruikt voor het meten van de positie, tijd en energie van subatomaire deeltjes. Boven-
dien bevordert hun gebruik in radiologie verdere ontwikkelingen in de biomedische en
materiaalwetenschappen. Gezien de striktere eisen voor meetnauwkeurigheid en de meer
uitdagende meetomstandigheden die worden verwacht in toekomstige experimenten in
de Hoge Energie Natuurkunde (HEP), worden er nieuwe oplossingen gezocht voor de
volgende generatie van deeltjessensoren. Een veelbelovende innovatie is de integratie
van materialen met een eindige elektrische weerstand die kunnen worden gebruikt om de
nauwkeurigheid en robuustheid van het meetinstrument te verbeteren. Deze ontwikkeling
kunnen we zien wanneer we kijken naar de detectoren die momenteel worden gebruikt in
de experimenten van de Large Hadron Collider van CERN, of diegene die gepland zijn
voor de nabije toekomst.

Voortdurende vooruitgang in simulatiesoftware, zoals Garfield(++), hebben bijgedra-
gen aan de algemene ontwikkeling van detectiestructuren en de kennis over de achterliggende
werking. Aangezien er regelmatig nieuwe sensortechnologieën worden voorgesteld waar-
bij detectoren met elektrische weerstandsmaterialen een steeds groter deel van zijn, is
het nodig om deze vooruitgang te weerspiegelen in de berekeningscapaciteiten van de
modelleringstools. Tot nu toe zijn de effecten van componenten met eindige elektrische
geleidbaarheid ofwel niet, of niet nauwkeurig genoeg, gemodelleerd in de softwaretools
die worden gebruikt voor het simuleren van het signaal in deeltjesdetectoren. Als on-
derdeel van dit proefschrift is er een nieuw raamwerk ontwikkeld dat van toepassing
is op een breed scala van detectoren die niet toegankelijk zijn via analytische metho-
den. Laboratorium- en deeltjesbundelmetingen worden gebruikt om de simulatie aan te
passen en te staven. Vervolgens wordt de methodologie gebruikt om de eigenschappen
van verschillende innovatieve uitleesstructuren van de deeltjesdetector te testen en te
optimaliseren.

Door middel van simulatie en metingen verkennen we nieuwe oplossingen op het
gebied van Multi-gap Resistive Plate Chambers, Micro Pattern Gaseous Detectors en
vaste-stof sensoren die voortkomen uit de implementatie van materialen met eindige
elektrische geleidbaarheid. Naast het verdiepen van de kennis over bestaande structuren
zijn deze studies essentieel voor het ontwerpen en optimaliseren van de volgende generatie
deeltjesdetectoren en hun toepassing in HEP-experimenten en andere toepassingen met
specifieke benodigdheden.
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Chapter 1

Introduction

Progress in experimental nuclear and particle physics hinges upon our ability to accu-
rately measure the properties of particles coming from various sources, such as astro-
physical events or particle colliders. For particle physics experiments, this progress is
closely tied to the advancements in both particle accelerators and detector technologies.
In such experiments – for example those found at the Large Hadron Collider (LHC) [1]
at CERN – one strives to measure the kinematics of the particles, i.e., their energies,
momenta, paths, and arrival times, and separate them based on their type. To this
end, different kinds of detectors are designed to measure specific aspects of the parti-
cles: tracking detectors for the trajectories and momenta (given a magnetic field) of
charged particles, hadronic and electromagnetic calorimeters for energy measurements,
detectors using Cherenkov radiation for particle identification, etc. These detectors rely
on the transfer of energy from incident particles to a sensitive detector medium, which
is subsequently converted into a macroscopic observable. The nature of the interaction
is subject to the type of the incident particle. For example, the strong interaction allows
for detection of neutrons or energy measurements of hadrons, while the weak interaction
enables the observation of neutrinos [2]. However, the most common interaction detector
technologies rely on for their measurements is the electromagnetic interaction. Beyond
the instrumentation of current or future collider experiments, particle detectors find ap-
plication in, among other things, medical imaging [3], material science, nuclear reactor
imaging [4], and archaeology through tomography of cosmic ray muons [5].

In this work we will primarily focus on so-called ionization detectors, the operational
principle of which is based upon the creation of a primary ionization pattern in the
sensitive medium by an incident particle. This pattern is comprised of clusters made
up of either electron-hole pairs in the case of semiconductors, or electron-ion pairs in
gases (or cryogenic liquids). The specific pattern – influenced by the detector medium,
the particle’s type, and energy – undergoes inherent fluctuations due to the stochastic
nature of the underlying processes. These fluctuations can be characterized by the mean
interaction distance, denoting the average distance between clusters, and the cluster size
distribution, providing the number of pair productions in each cluster. Two examples are
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2 CHAPTER 1. INTRODUCTION

given in Fig. 1.1 (left) for the interaction of a photon and a relativistic muon with a gas
medium. A detailed discussion of this topic can be found in most reference works, e.g.,
Ref. [2, 6]. Depending on their electric charge, electrons and ions (holes) undergo sep-
aration and travel through the detector when placed in an electric field. As they move,
signals are induced on the readout electrodes, which can be subsequently processed and
analyzed.

In gases, the amount of primary charge deposited by a single charged particle is typi-
cally below the observable limit. However, the application of strong electric fields triggers
internal charge amplification through the generation of Townsend avalanches, enhanc-
ing the signal-to-noise ratio of the detector. A notable illustration is the Geiger-Müller
counter, wherein a strong electric field near the central wire facilitates charge amplifi-
cation by imparting enough energy to the electrons to ionize the atoms and molecules
in the gas. This principle led to the seminal work of G. Charpak with the invention of
the Multi-Wire Proportional Chamber (MWPC) in 1968 [7], which has been continuously
refined since its introduction. MWPCs persist until today in High Energy Physics (HEP)
experiments and can be found in the muon detector systems of experiments at the LHC.
In 1988, a new category of gaseous detectors emerged, known as Micro-pattern Gaseous
Detectors (MPGDs), driven by the need to surpass the limitations of wire-based detec-
tors in terms of localization and rate capability. Two of the most well-known MPGDs are
the Gas Electron Multiplier (GEM) devised by F. Sauli in 1997 [8] and the micro-mesh
gaseous structure (MicroMegas) introduced by Y. Giomataris in 1996 [9]. Fig. 1.1 (left)
illustrates the operating principle of a GEM detector, where high field regions are gener-
ated within conical holes inside a thin-foil made of copper-insulator-copper by applying
a potential difference across the foil. A simulated Townsend avalanche inside a GEM
hole is shown in Fig. 1.1 (right). While some will be collected on the surfaces of the
insulator inside the hole or copper layer below, a significant fraction of electrons will be
successfully extracted into the induction gap, where they continue to drift towards the
anode plane where they will be collected. Multiple such GEM foils can be used in succes-
sion to increase the charge total amplification of the structure, while decreasing the risk
of discharges [10]. Building on the extensive history of gaseous detectors, MPGDs have
undergone continuous Research and Development (R&D) leading to their integration into
the four large LHC experiments: ATLAS [11, 12], CMS [13, 14], ALICE [15, 16], and
LHCb [17, 18]. An overview of these detectors and their applications can be found in
Ref. [19, 20, 21].

While gaseous detectors are advantageous for instrumenting large areas, the need
for precise tracking near the interaction vertices makes semiconductor sensors the pre-
ferred technology. In most large HEP experiments, the localization of primary interaction
vertex and secondary vertices from decay particles is mostly performed by silicon pixel
detectors positioned at the innermost layers close to the beam pipe. For reading on the
underlying physics and operation of this detector family we refer to Ref. [23, 24]. As the
High-Luminosity LHC (HL-LHC) [25] at CERN approaches, presenting unprecedented



3

Figure 1.1: Left: Cross-sectional diagram of a GEM detector. By employing an electric
field Ed, the primary electrons in the drift gap, resulting from the energy deposition by
incident particles, are transported to the amplification region. Here, they undergo charge
amplification and are subsequently extracted, along with the secondary electrons, to drift
within the induction gap toward the readout plane. As they traverse the induction gap
the movement of they a signal is induced on the electrodes that make up the readout.
This diagram is based on Ref. [22]. Right: Simulated Townsend avalanche inside a
GEM hole. The drift lines of the charge carries are overplayed with the equipotential
lines resulting from the potential differences between the electrodes.

requirements for temporal, spatial performance, and radiation hardness, all while en-
suring strong pileup mitigation, extensive R&D have been ongoing and continue to be
pursued on different technologies to meet the stringent requirements [26]. One exam-
ple is the advancements in tracking detectors to handle the increased number of primary
vertices per bunch crossing. The availability of the time coordinate in addition to the spa-
tial coordinates is advantageous for the next generation of tracking technologies, proving
particularly beneficial for track and vertex reconstruction [27, 28]. This has spurred the
development of so-called 4D-tracking sensors, which combine a high granularity readout
with precise timing capabilities; examples include the Resistive Silicon Detector (RSD)
[29] and the 3D Diamond detector [30] are prime examples. With the aim of perform-
ing precision measurements not achievable at the HL-LHC, colliders such as the Future
Circular Collider (FCC) [31], the Compact Linear Collider (CLIC) [32] and the Muon
Collider [33] are being proposed. These collider machines would tighten the requirements
on the detector performances even further.

In the pursuit of more precise and robust detector designs for future experiments,
there is a growing movement of incorporating materials with finite electrical conductivity,
referred to as resistive materials or resistive elements, into the detector architectures [26].
This strategy offers a way to enhance operational stability, exemplified by the resistive
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strip MicroMegas of the ATLAS New Small Wheel (NSW) [34], and to optimize the
performance of the detectors, as seen in the case of the RSD. The formation of the
induced signal on the readout electrodes in the presence of these materials – which is
the main topic of this thesis – can be said to be comprised of two constituents: (i) the
direct induction from the movement of the free charge carriers in the detector medium
(prompt response) and (ii) the induction from the time-dependent reaction of the resistive
elements (delayed response). Consequently, the detector’s response varies based on the
specific implementation and characteristics of these resistive materials, expanding the
range of possible configurations.

To further the capabilities of a detector design a good understanding of the underly-
ing physics driving these devices is a prerequisite. Detailed simulation toolkits such as
Geant4 [35, 36] and Garfield(++) [37, 38] have already played a key role in widespread
development of particle detectors and detection methods. Therefore, extending the capa-
bility of these commonly used simulation software tools towards new technological solu-
tions is vital. Theoretical estimates of the response of resistive detectors can, in part, be
pursued analytically. While offering the benefit of insight through equations, solutions
can only be obtained analytically for a small subset of the larger group of existing detec-
tors. In this thesis, we present a novel numerical approach to characterise the response
of various geometries of resistive materials by numerically applying an extended form of
the Ramo-Shockley theorem with great flexibility. This was done in conjunction with
work on the widely used program Garfield++ toolkit, which allows for the simulation
of the physical processes underpinning the detectors. With this methodology we have
explored novel solutions in the field of Multi-gap Resistive Plate Chambers (MRPCs),
MPGDs, and semiconductor sensors. Measurements of the response of resistive detectors
were performed to validate the accuracy of the macroscopic prediction derived from the
Monte Carlo simulations. The application of this numerical approach to contemporary
and future resistive technologies can inform the design of the next generation of particle
detectors driven by the specific needs of future HEP experiments.

In Chapter 2, we delve into the fundamental principles of signal induction in resistive
particle detectors. By treating Maxwell’s equations in the quasi-static limit, we arrive
at the extended form of the Ramo-Shockley theorem for conductive media, a central
element in our work. This theorem is systematically applied to various toy model ex-
amples, elucidating the principles of signal response in both non-resistive and resistive
devices. We discuss the merits of the extension to the Ramo-Shockley theorem compared
to alternative methods, such as the transmission line equation, the two-dimensional Tele-
graph equation, and the RC-circuit element representations. With the framework for the
computation of signal induction in resistive detectors established, we will explore the
Johnson-Nyquist noise these resistive elements introduce into the system in Chapter 3.
Here, a strategy is proposed to estimate the effect through both measurement and numer-
ical simulation. The remainder of the work is the application, extension, and validation
of the discussed numerical approaches to specific detector technologies. We have grouped
these technologies based on the prominence the resistive elements have in their response,
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which is reflected in the division of the work into three remaining parts. In Part II, we
consider the limit where the delayed response can be neglected. As an elementary case,
we have the XYU-GEM detector of Chapter 4 for which resistive elements are absent.
In this novel concept, we have developed a three-coordinate readout structure to resolve
reconstruction ambiguities. In Chapter 5, the influence of a thin high resistivity layer on
the timing performance will be discussed for the case of the precise timing PICOSEC Mi-
croMegas detector, with the aim of developing a robust multi-pad that retains the below
25 ps resolution. Simulations were performed to inform the design of the prototype and
to estimate the signal formation in the presence of a resistive layer and the rate capa-
bility of the device. The resulting prototype was characterized using Minimally Ionising
Particles (MIPs). In Part III, detector technologies characterized by the predominant
contribution of the resistive elements to their response will be discussed. A prime ex-
ample of the leveraging the mechanism of signal formation in the presence of resistive
elements is shown in Chapter 6, where the principles of resistive position-sensitive readout
structures will be treated. Our numerical framework will be employed for the calculation
of the characteristic correction map of the two-dimensional interpolation readout of the
MICROCat detector in the absence and presence of non-uniformities in surface resistiv-
ity. As a radiation-tolerant 4D-tracking technology, the ongoing R&D for 3D diamond
detectors uses two different simulation strategies. Both methods – the transmission line
approach and the numerical application of the extended Ramo-Shockley theorem used
through our collaboration with the TIMESPOT project – will be discussed in Chapter
7. In the final part, Part IV, the intermediate situation where both the prompt and
delayed response are of significant importance will be discussed. Chapter 8 will be on
the resistive strip MicroMegas. With this detector, a comparison of the measured and
simulated induced current shape will be made to gauge the accuracy of the simulations.
We will summarize the work contained in this thesis in chapter 9.
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Chapter 2

Signal formation in resistive
detectors

In this chapter, we provide a comprehensive survey of the essential theoretical foundations
for the computation of induced signals in detectors containing resistive materials. We
systematically examine fundamental principles, define key concepts, and present the
numerical calculation techniques that have been implemented into Garfield++ [38, 39,
40]. While this will be a critical reference point for the subsequent chapters, it also
introduces several benchmarking studies to validate our numerical approach.

2.1 Principles of current induction

Particles become detectable when they transfer (a portion of) their energy to the medium
of the detector. Some of this energy leads to the creation of a primary ionization pattern
through the ionization of nearby atoms and molecules. In the presence of an electric
field, the resulting electron-hole or electron-ion pairs within semiconductor or gas-based
media separate in accordance with their electrical charge polarity and traverse the de-
tector medium. As we will explore further, this motion induces an electrical current on
metal readout electrodes located inside the detector. This particular readout method is
highly prevalent and commonly employed in both the MPGD and solid-state detector
families. Notably, depending on the experimental application, there are other ways of
particle detection, e.g., the detection of the emission spectrum coming from scintillation
light inside the gas. This work will exclusively focus on the observation technique based
on the induced signal formation on metal readout electrodes in ionisation detectors. The
description of the motion of charges in the presence of electric and magnetic fields, as
well as the resulting generation of current, fall within the domain of electrodynamics.
In this field, the fundamental equations governing these phenomena are Maxwell’s set
of coupled partial differential equations. Together with the Lorentz force law, they are
a cornerstone of classical electromagnetism and have played a pivotal role in our under-
standing of the fundamental forces, classical optics and electrical engineering.

9
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Let us consider a linear material characterised by a non-uniform volume resistivity
ρ(x) which is the reciprocal of the volume conductivity of the material σ = ρ−1, permit-
tivity ε(x), and permeability µ(x). The local current density resulting from the presence
of an electric field E will be according to Ohm’s microscopic law

j(x, t) = σ(x)E(x, t) , (2.1.1)

with position x ∈ R3 and time t ∈ R. In this particular scenario, Maxwell’s equations
that govern the vector fields are expressed as follows

∇ ·D(x, t) = ρ(x, t) (Gauss’ law) (2.1.2a)
∇ ·B(x, t) = 0 (Gauss’ law for magnetism) (2.1.2b)

∇×E(x, t) = −∂B(x, t)

∂t
(Faraday’s law) (2.1.2c)

∇×H(x, t) =
∂D(x, t)

∂t
+ je(x, t) + σ(x)E(x, t) (Ampère’s law) (2.1.2d)

for a magnetic field B(x, t) = µ(x)H(x, t) and displacement field D(x, t) = ε(x)E(x, t).
Contributing to the total current density is the externally impressed current density je.
It is related to the corresponding externally impressed charge density ρe through the
continuity equation

∇ · je(x, t) = −∂ρe(x, t)
∂t

, (2.1.3)

the empirical law expressing charge conservation.

When a perfectly conducting metal plate, i.e., σ → ∞, is subjected to a static
external electric field, the field induces a charge distribution on the metal’s surface due
to the redistribution of electrons within it. The resulting induced charge distribution
creates an electric field within the plate that opposes the external field. Since the field
lines are oriented perpendicular to the surface, we can employ the integral form of Gauss’
law ∮

∂V
ε(x)E(x) · dA =

∫
V
ρ(x)d3x (2.1.4)

to establish a connection between the surface charge density σs(x, y) [C/m2] and the
electric field at the metal surface. As depicted in the cross-section schematic in Fig. 2.1,
we take a rectangular volume V that contains the plane S on the metal surface. For a
uniform relative permittivity εr one can then obtain that

n̂ ·E(x)
∣∣
x∈S =

σs(x, y)

ε0εr
, (2.1.5)

with n̂ being the outward-pointing normal of S. More generally, taking the integral over
the surface yields the induced charge on the metal plane

Q =

∮
∂V
ε(x)E(x) · dA =

∫
S
σs(x, y) dxdy . (2.1.6)
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Figure 2.1: Induced surface charge density on the surface of a perfectly conducting metal.

This principle of charge density induction is at the foundation of how signals are formed
in a particle detector. It is through this mechanism that both the movement of charge
carriers in the medium and the reaction of the resistive elements induce an electrical
current on the electrodes placed in the detector. To explore these concepts we present
two practical textbook examples.

2.1.1 Charge moving in a half-space

To understand the mechanism behind the formation of signals on electrodes form the
movement of charges, we will first focus on the idealized case where the system is only
comprised of perfectly conducting and insulating materials. To review the basic princi-
ples, let us consider the example of a charge carrier q in a half-space z > 0 with a static
homogeneous medium characterized by its permittivity ε and an infinitely extending,
perfectly grounded metallic plate at z = 0 [41].

Working in the electrostatic regime, the field equation for the scalar potential ϕ is
given by the Poisson equation

∇ · (ε(x)∇ϕ(x)) = −ρ(x) , (2.1.7)

where ρ is the charge density in the half-space. For a point-like particle at position x′

this distribution can be written using a Dirac delta distribution

ρ(x) = qδ(x− x′) . (2.1.8)

If we impose the Dirichlet boundary condition

ϕ(x, y, 0) = 0 , ∀x, y ∈ R , (2.1.9)

the solution to Eq. (2.1.7) can be found through the method of images [42]

ϕ(x, y, z) =
q

4πε

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

− q

4πε

1√
(x− x′)2 + (y − y′)2 + (z + z′)2

.

(2.1.10)
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The two terms represent the combined free-space solutions for two charges located at
heights z′ and −z′, respectively. Because the right-hand side of Faraday’s law (2.1.2c)
vanishes, the electric field reads

E(x) = −∇ϕ(x) . (2.1.11)

Through induction the resulting electric field on the plate creates the charge distribution
given by Eq. (2.1.5). Using Eq. (2.1.10) this distribution can be written as

σs(x, y) = − ε
∂ϕ(x, y, z)

∂z

∣∣∣∣
z=0

= − q

2π

z′(
(x− x′)2 + (y − y′)2 + z′2

)3/2 . (2.1.12)

Consequently, the overall charge induced on the metal surface is therefore

Q =

∫ ∞

−∞

∫ ∞

−∞
σs(x, y, x

′, y′) dxdy = −q , (2.1.13)

which is independent of the position of charge q . So in this specific instance, the charges
are merely redistributed on the surface when the charge carrier’s position changes, and
there is no flow of current between the plate and ground.

For most physics applications, position information of the incident particles is re-
quired, which is typically achieved through the segmentation of the readout plane into,
for example, strip or pad electrodes. While the total amount of induced charge over
the entire plane remains unchanging, the distribution of the surface charge density posi-
tioned on the surface Sk of electrode k ∈ Z is depending on the position of charge q. As
an example we partition the grounded metal plate into strip electrodes running in the
y-direction and individually ground them. Assuming that the width wx of the strip is
considerably greater than the spacing between neighboring strips, we can approximate
them as being perfectly adjacent. The total induced charge on strip with index k is then
given by

Qk

(
x′, z′

)
=

∫ ∞

−∞

∫ kwx+wx/2

kwx−wx/2
σ(x, y) dxdy (2.1.14)

= − q

π

[
arctan

(
wx − 2(x′ − kwx)

2z′

)
− arctan

(
wx + 2(x′ − kwx)

2z′

)]
.

(2.1.15)

This induced charge on the grounded readout strip now depends on the point charge’s
position above the readout plane. If it were to move along a trajectory x(t) this becomes
time-dependent and result in a current

Ik(t) = −dQk(x
′(t))

dt
, (2.1.16)

flowing between the electrode and ground. Here, we adhere to the ‘conventional current
direction’, in which the current arrow is oriented away from the electrode. A positive
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current, therefore, signifies a decrease of positive charge on the electrode. If q traverses
the path given by x′(t) = (x′, y′,−vt) for v > 0 and t < 0, the induced current has the
form

Ik(t) =
4qvwx

[
4t2v2 + w2

x − 4(x′ − kwx)
2
]

π [4t2v2 + (wx + 2x′ − 2kwx)2) (4t2v2 + (wx − 2x′ + 2kwx)2]
, (2.1.17)

until q reaches the metal surface. For this reason we conclude it is the motion of the
charge that is responsible for generating the signal being picked up by the electrode. As
shown in Fig. 2.2 (left), the signal on the strip located below the charge’s trajectory
increases sharply when approaching its surface. The degree of sharpness intensifies as
the strip narrows, and in the limit wx → 0, the induced current approaches a Dirac delta
distribution:

lim
wx→0

Ik(t) = qδ(t) , x′(0) ∈ Sk . (2.1.18)

This ‘small pixel effect’ resembles charge collection, where a current spike occurs as the
charge reaches the electrode. This aspect should be taken into consideration when de-
signing components like small silicon pixels, for instance. However, this is not the typical
operating regime for most particle detectors, which usually feature electrodes with a
substantial surface area, leading to more complex induced signal shapes. In general, the
notion of ‘pulsed’ signals through charge collection is not applicable and we have to work
with the induced currents. Henceforth, in the ongoing course of this work, the term
“signal” will be used interchangeably with “induced signal” or “induced current”, with the
process of induction implied.

The amount of charge collected on each readout strip can be determined through
integration of the signal over its duration, i.e., when (x′, y′) ∈ Sk we have∫ 0

−∞
Il(t)dt = qδkl , l ∈ Z , (2.1.19)

where we used the Kronecker delta function δkl. While smaller in amplitude, the neigh-
boring electrodes do see a signal, referred to as signal sharing, as plotted in Fig. 2.2
(center and right) despite no charge being collected there. The time-dependent induced
charge distribution in Eq. 2.1.12 stretches until these strips, causing in a current that
has both a positive and negative component, resulting in a vanishing induced charge
contribution when integrated.

2.1.2 Maxwell’s equations in the quasi-static limit

Up to this point, we have exclusively addressed the subject of signal formation in the pres-
ence of dielectric media. In order to transition towards materials with finite conductivity,
often referred to as resistive materials or resistive elements, we will now proceed with
an example involving the diffusion of charge at the interface between two such media.
To accomplish this, we will handle Maxwell’s equations within the quasi-static regime
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Figure 2.2: Current induced by the movement of a charge carrier in a half space, starting
from x′ = 0 and z′ = g, on three neighboring strips, as described by Eq. 2.1.17. The
strips are centered at x = 0 (left), x = wx (center), x = 2wx (right).

[43, 44, 45], an essential element in formulating the theorems detailed in the following
section.

Quasi-statics refers to a regime in which the dimensions of the system are considerably
smaller than the electromagnetic wavelength associated with the primary timescale of the
problem. This results in the nearly instantaneous propagation of electromagnetic fields,
essentially approaching the limit where the speed of light, denoted as c, tends toward
c → ∞. Within this derivation, our focus is on electroquasistatics, which incorporates
capacitive effects while excluding inductive influences. This applies to conventional par-
ticle detectors in cases where the velocity of the moving charges is significantly slower
than the speed of light and the conductivity σ is small. As a result the right hand side
of Faraday’s law is neglected, i.e.

∇×E(x, t) ≈ 0 ⇒ E(x, t) = −∇ϕ(x, t) , (2.1.20)

where the electric field can be expressed as the gradient of the potential. Using this result
in Ampère’s law (2.1.2d), and taking the divergence in the Laplace domain yields

∇[σ(x, s) · ∇]ϕ(x, s) +∇[ε(x, s) · ∇]sϕ(x, s) = −sρe(x, s) , (2.1.21)

for an arbitrary linear isotropic medium dependent on the Laplace parameter s. This
can be written more concisely by defining an effective permittivity

εf (x, s) := εr(x, s)ε0 +
σ(x, s)

s
. (2.1.22)

Using this, Eq. (2.1.21) updates to

∇ · (εf (x, s)∇)ϕ(x, s) = −ρe(x, s) . (2.1.23)

Written in this way, the above equation has the form of the Poisson equation (2.1.7) in the
Laplace domain found for electrostatic systems. As a result, we can determine the time-
dependent solutions for a medium with a specified conductivity by first solving the related
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Figure 2.3: Schematic representation of a charge deposited at the interface between two
resistive half-space materials.

electrostatic system and then replacing εr → εf in the Laplace domain. Subsequently, the
inverse Laplace transform must be applied to return to the time domain. It is important
to note that the same conclusion applies to Green’s functions, as they represent the
potential for a source of the form δ3(x)δ(t) in an electrodynamics problem.

This brings us to the example treated in Ref. [46], where a charge q is placed at the
boundary surface between two half-space resistive materials, as shown in Fig. 2.3. In the
electrostatic system the solution to the Poisson equation is given by

ϕ(x) =
q

2π (ε1 + ε2)

1

|x|
, (2.1.24)

with ε1 and ε2 being the permittivity of the bottom and top material, respectively. With
the introduction of a point charge q at t = 0 positioned along the interfacing surface that
separates two distinct half-spaces, the charge density can be expressed in terms of the
Heaviside distribution Θ(t) with the definition

Θ(t) :=

{
0 if t < 0

1 if t ≥ 0
. (2.1.25)

At this point we note that its Laplace transform is given by

L [Θ(t)] =
1

s
. (2.1.26)

As we aim for our solution to commence at t = 0, we must not only substitute the
permittivities with their corresponding effective quantity as given in Eq. (2.1.22), but
we also introduce the factor qΘ(t), which implies dividing the charge by the Laplace
parameter, i.e., q → q/s. The solution in the Laplace domain then reads

ϕ(x, s) =
q

2π (ε1 + ε2) (s+ 1/τ)

1

|x|
. (2.1.27)
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where τ := (ε1 + ε2)/(σ1 + σ2). Moving back to the time domain then reveals that

ϕ(x, t) = L −1[ϕ(x, s)] =
q

2π (ε1 + ε2)

1

|x|
e−t/τ , t ≥ 0 , (2.1.28)

and we have a seemingly exponentially decaying point charge characterized by the time
constant τ . This can be interpreted as the resistive medium responding to the sudden
introduction of a point charge within it, resulting in the generation of currents aimed at
mitigating its presence. This we can see by calculating the current on two half-spheres
enveloping the charge q and centered at its position. Let ∂V1 and ∂V2 denote the surfaces
of the top and bottom half-sphere. Then for l ∈ {1, 2} the current going through them
can be determined using the flux

Il(t) =

∮
∂Vl

j(x, s) · dA

= −q σle
−t/τ

2π (ε1 + ε2)

∫
Vl

∇2 1

4π|x|
dV

= q
σl

(ε1 + ε2)
e−t/τ , t ≥ 0 . (2.1.29)

This can be related to the total charge that flows through each surface by integrating
the currents

Ql =

∫ ∞

0
Il(t)dt =

σl
σ1 + σ2

q , (2.1.30)

and all of the charge initially positioned at t = 0 is compensated by charges flowing into
the volume, since Q1 +Q2 = q.

2.2 Weighting potentials and Ramo-Shockley theorem

In the preceding section, we explored the fundamental principles governing induced cur-
rents on a grounded electrode, which are generated by the electric field of a mobile
charge carrier and the subsequent response of the resistive medium. While the principles
remain the same for more intricate detector designs, the calculations can swiftly become
quite challenging and computationally-intensive. Since most particle detectors can, by
approximation, be considered to be made of perfect insulators and ideal electrodes, the
Ramo-Shockley theorem applies. This late 1930’s seminal work from Shockley [47] and
Ramo [48] provides us with the capability to compute the current induced by an exter-
nally applied charge density on any grounded electrode. This is achieved through the use
of a static weighting potential, a scalar field that encapsulates the electrode’s reaction to
an external source. The primary benefit of this potential is that it is purely dependent
on the arrangement of the geometry, and therefore decoupled from the motion of the
charge carriers that induces the signal. Hence, the weighting potential method provides
computational efficiency when performing Monte Carlo simulations. After calculating
the weighting potential using a finite element solver, subsequent steps such as charge
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deposition, charge transport, and the computation of the induced signal can be executed
using software tools like Garfield++ [38, 39, 49]. In addition, this strategy avoids the
need to solve the Poisson equation of the system for all moving electrons, ions and holes
in the detector medium to obtain the generated signal in all readout electrodes, making
the overall computation less involved. Continued efforts have been made to extend the
applicability of the result of Shockley and Ramo. These endeavors aim to encompass a
broader range of scenarios, including signal formation in the presence of a static space-
charge distribution [50], incorporation of external impedance elements connected to the
electrodes [51], the connection with the equivalent electrical circuit description [6], and
induced currents in the presence of dielectric and nonlinear media [52, 53].

For detectors containing weakly conducting materials, the time dependence of the sig-
nals is given by both the movement of the free charge carriers in the detector medium and
the dynamic reaction of the resistive materials. In this case an extension to the basic form
of the Ramo-Shockley theorem needs to be employed which utilizes a dynamic weighting
potential that encompasses the behavior of the resistive medium [46, 54, 49]. This can
be derived by treating Maxwell’s equations in the quasi-static regime as discussed in Sec.
2.1.2 and employing Green’s reciprocity theorem to link charge distributions with their
corresponding electrostatic potentials. The resulting theorem is the same as the one
found for the case of the presence of an external impedance network [51], highlighting its
close tie with the lumped element representation of detector geometries as a (continuum
limit of) linear network of interconnected discrete complex impedances. In these works
the weighting potentials are obtained through the use of a Dirac delta function which can
be numerically difficult to deal with. Therefore another approach can be used following
Ref. [55, 56]. While we will only give the proof for weakly conducting media, a more
general proof that the result of this extension to the Ramo-Shockley theorem satisfies the
full Maxwell’s equations can be found in the work of W. Riegler and P. Windischhofer
[57] based on the Lorentz-reciprocity [58].

2.2.1 Extended form of the Ramo-Shockley theorem for conductive
media

Let us examine an arbitrary configuration consisting of K perfectly grounded metal elec-
trodes positioned within a linear medium. This medium is characterized by its position
and frequency-dependent permittivity ε(x, s) and conductivity σ(x, s). We place within
this system an externally impressed time varying charge density ρe(x, s) that will induce
currents flowing from the electrodes to ground. This setup is depicted in Fig. 2.4 (left).
When treating Maxwell’s equations in the quasi-static limit, the resulting scalar field
ϕ(x, s) is a solution to the Poisson equation (2.1.23) with the effective permittivity given
by Eq. (2.1.22).

Through the use of the reciprocity theorem we can relate this solution to the solution
of a closely related system where ρe(x, s) is absent and all but one electrode are grounded.
The electrode under study, denoted by index k ∈ {0, 1, . . . ,K}, is put under a potential
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Figure 2.4: Left: The generation of currents, denoted as Ik, on electrodes Sk, is the
result of an externally impressed charge density ρe(x, s). Right: Setup to calculate the
dynamic weighting potential Ψk(x, t) of electrode k.

step of height Vw at time t = 0 resulting in a potential Ψk(x, s) permeating through the
system. In Fig. 2.4 the system is depicted. The field equation in the Laplace domain
then reads

∇ · (εf (x, s)∇)Ψk(x, s) = 0 , (2.2.1)

which is subject to the Dirichlet boundary conditions

Ψk(x, s)|x∈Sl
=
Vw
s
δkl , (2.2.2)

on surfaces Sl of electrode l. Using Green’s second theorem and suppressing the argu-
ments of the functions we have the following relation∮

∂V
(Ψkεf∇ϕ− ϕεf∇Ψk) · dS =

∫
V

(Ψk∇ · [εf∇]ϕ− ϕ∇ · [εf∇]Ψk) d
3x , (2.2.3)

with V being the volume encapsulated by the electrodes. Considering the Laplace equa-
tion (2.2.1) and the imposed condition in Eq. (2.2.2) the above equation reduces to

Vw
s

∮
Sk

εf (x, s)∇ϕ(x, s) · dS = −
∫
V
Ψk(x, s)ρe(x, s) d

3x . (2.2.4)

Following Eq.(2.1.6), the right hand side of the above expression represents the charge
induced on electrode k

Qk(s) = − s

Vw

∫
V

Ψk(x, s)ρe(x, s) d
3x . (2.2.5)

Now that we have established this relationship, we can turn to the time domain. We
will make use of the continuity equation (2.1.3) and leverage the Laplace convolution
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property

L−1 (F (s)G(s)) =

∫ t

0
f(t− t′)g(t′) dt′ , (2.2.6)

to obtain

Qk(t) = − 1

Vw

∫ t

0

∫
V
Ψk(x, t− t′)

∂ρe(x, t
′)

∂t′
d3xdt′ (2.2.7)

= − 1

Vw

∫ t

0

∫
V
∇Ψk(x, t− t′) · je(x, t′) d3xdt′ , (2.2.8)

where the gradient of Ψk expresses the electric field, i.e.,

Qk(t) =
1

Vw

∫ t

0

∫
V
Ek(x, t− t′) · je(x, t′) d3xdt′ . (2.2.9)

At this point, the utility of this approach begins to become apparent. The time-dependent
potential Ψk(x, t) signifies the response of the detector given a source. Here Ψk(x, t) is
called the weighting potential of the k’th electrode of the system, which can be computed
independently from je. The associated vector field Ek(x, t) is referred to as the weighting
field. When taking σ → 0 in the above expression the weighting potentials become static
and instantaneous, i.e. Ψk(t,x) → ψk(x)Θ(t). In this limit, the induced charge reduces
to

Qk(t) = − 1

Vw

∫
V

Ψk(x)ρe(t,x) d
3x , (2.2.10)

which represents the case where the detector is comprised of perfectly insulating and
ideally conducting materials.

The time-dependent external charge density is a sum of all charges propagating
through the detector’s medium, coming from the primary ionization pattern sourced
by an incident particle and possible Townsend avalanches in the presence of a high elec-
tric field. Given the linearity of Maxwell’s equations, we can treat the contribution from
individual charges separately and sum up all the solutions at the end. Compared to the
overall scale of the detector, the ions can be approximated as being point-like alongside
the electrons and holes. For a point-like charge carrier following the trajectory xq(t)
shown in Fig. 2.5 (left) starting at t = 0, the charge density takes the form

ρe(x, t) = qδ3(x− xq(t))Θ(t) , (2.2.11)

given an electrical charge q. The current density then reads

je(x, t) = ρe(x, t)ẋq (t) , (2.2.12)

with the dot notation denoting the derivative with respect to time: ẋ (t) := dx (t) /dt.
Performing the volume integral of equation (2.2.9) yields an induced charge of

Qk(t) =
q

Vw

∫ t

0
Ek(xq(t

′), t− t′) · ẋq(t
′) dt′ . (2.2.13)
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Figure 2.5: Left: Induction of currents Ik on electrodes Sk though the movement of
a charge carrier along its xq(t) trajectory. Right: An equivalent circuit diagram can
depict the impact of the medium, where, if the medium is insulating, the impedance
components Zkl(s) are represented by the mutual capacitance between the electrodes.

For x1 and x2 being the start and end point, respectively, of xq(t), it follows that the
total induced charge on the electrode is given by

Qk =
q

Vw
lim
t→∞

(
Ψk(x1, t)−Ψk(x2, t)

)
. (2.2.14)

This suggests that the eventual quantity of induced charge is independent of the path
taken by charge q. As one takes the k’th weighting potential to be static, i.e., the detector
materials other than the electrodes are perfectly insulating, the time integral reduces to

Qk(t) =
q

Vw
[Ψk(xq(0))−Ψk(xq(t))] . (2.2.15)

To obtain the induced current on the electrode as given by Eq. (2.1.16), we take the
time derivative of Eq. (2.2.9). For this we note that

d

dt

∫ t

0
Ek

(
xq

(
t′
)
, t− t′

)
· ẋ
(
t′
)
dt′

=

∫ ∞

0

d

dt

(
Ek

(
xq

(
t′
)
, t− t′

)
Θ
(
t− t′

))
· ẋ
(
t′
)
dt′

=

∫ t

0
Hk

(
xq

(
t′
)
, t− t′

)
· ẋ
(
t′
)
dt′ ,

(2.2.16)

where we have defined the vector field vector field given by

Hk(x, t) := −∇∂Ψk(x, t)Θ(t)

∂t
. (2.2.17)
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Using this result, we find the induced current is given by

Ik(t) = − q

Vw

∫ t

0
Hk

[
xq

(
t′
)
, t− t′

]
· ẋq

(
t′
)
dt′ . (2.2.18)

Noting that Hk(x, t) has the dimension [V m−1 s−1], it cannot be interpreted as an
electric field. In the quasi-static regime, when we neglect the propagation times of elec-
tric fields, the introduction of a step voltage Vwθ(t) leads to an immediate potential
Ψk(x, 0) permeating the detector volume, from which point it is a smooth function of
time. Furthermore, at t = 0 all conducting components exhibit insulating characteristics
as they do not have sufficient time to react. Conversely, for t→ ∞, all resistive elements
behave like perfect conductors. We can therefore say that Ψk(x, t) is comprised of two
components: the static prompt component ψp

k(x) := Ψk(x, 0), and the dynamic delayed
component ψd

k(x, t), i.e.,
Ψk(x, t) := ψp

k(x) + ψd
k(x, t) , (2.2.19)

where ψd
k(x, 0) = 0 by definition. The first term gives the immediate generation of current

on the electrode due to the motion of a charge carrier within the medium, whereas the
second term encompasses the reaction of the resistive materials. Using the definition in
Eq. (2.2.19) the weighting vector can be expressed as

Hk(x, t) = −∇ψp
k(x)δ(t)−∇

∂ψd
k(x, t)Θ(t)

∂t

=: Ep
k(x)δ(t) +Hd

k(x, t) ,

(2.2.20)

where Ep
k(x) will be the prompt weighting field and Hd

k(x, t) the delayed weighting vector.
Expressed in this way we can write the induced current as

Ik(t) = − q

Vw
Ep

k(xq(t)) · ẋp(t)−
q

Vw

∫ t

0
Hd

k

[
xq

(
t′
)
, t− t′

]
· ẋq

(
t′
)
dt′ , (2.2.21)

where the first term is the relation found for the basic form of the Ramo-Shockley the-
orem, while the second term is the time-dependent contribution of the resistive media
that this extension adds. It is now straightforward to show that in the limit where the
materials are either perfectly insulating or ideal conductors, the induced current is given
by

Ik(t) = −
∫
V
Ep

k(x) · je(x, t) d
3x , (2.2.22)

which is the original Ramo-Shockley theorem.

The medium between the electrodes can be represented by a linear equivalent circuit
comprised of ‘lumped’ impedance elements Zkl(s), k, l ∈ {0, 1, . . . ,K} as shown in Fig.
2.5 (right), The current flowing between node k and l is related to the respective node
voltages vk and vl by ikl = (vk − vl) /Zkl [46]. The entries in the related admittance
matrix Ŷ = Ẑ−1 is then defined as

Ymn(s) =
s

Vw

∮
Sn

εeff (x, s)∇Ψm(x, s) · dS , (2.2.23)
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in terms of which the entries in the impedance matrix can be expressed as

Zkl(s) = − 1

Ykl(s)
k ̸= l (2.2.24a)

Zkk(s) =
1∑N

l=1 Ykl(s)
. (2.2.24b)

If there exists a static charge distribution ρ(x) in addition to the externally applied
time-dependent charge distribution, such as the accumulation of charge on dielectric
surfaces in MPGD structures, the induced current of the basic form of the Ramo-Shockley
theorem can be expressed as

Ik(t) =
1

Vw

∫
V

Ψk(x)
d

dt
(ρ(x) + ρe(x, t)) d

3x

=
1

Vw

∫
V

Ψk(x)
dρe(x, t)

dt
d3x ,

(2.2.25)

using Eq. (2.2.10). While space charge does influence the motion of drifting charges, it
is not necessary to consider it when calculating the weighting potential.

2.2.2 Weighting potential for a N-layer parallel plate type geometry

In this section we discuss the potential for a point charge in the system depicted in Fig.
2.6. It consists of N parallel layers with varying permittivity and conductivity, confined
from above and below by two grounded planes. In situations where one of the grounded
planes is divided into strips and pads, the obtained solution is employed to calculate
the time-dependent weighting potential associated with these electrodes. This layout is
the basis for a multitude of detector designs, such as the (Multi-gap) Resistive Plate
Chamber (MRPC) [59, 60], the amplification gap of a MicroMegas (MM) detector [9],
the induction gap of a Gas Electron Multiplier (GEM) [8], and the silicon bulk of the
RSDs. The techniques that will be presented here have been taken from Ref. [54, 45, 61],
which will provide us with necessary equations for the examples that will follow.

Working in the quasi-static limit, the solution to the problem has can be expressed
in terms of a the Green’s function G(x,x′, s):

ϕ(x, s) =
1

ε0

∫
V
G(x,x′, s)ρ(x′, s) d3x′ , (2.2.26)

which satisfies the relation

∇ · (εf (x, s)∇)G(x,x′, s) = −δ3(x− x′) . (2.2.27)

Since in this regime there is a close connection between the static and time-dependent
solution, it suffices to find the solution for the electrostatic system

∇ · (ε(x)∇)G(x,x′) = −δ3(x− x′) , (2.2.28)
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Figure 2.6: A configuration comprising N insulating layers with relative dielectric per-
mittivities (denoted by n) and grounded plates positioned at z = z0 and z = zN . A point
charge q is located at the interface between layer m and m+ 1 at z = zm.

from which the dynamic solution follows. In addition to two grounded metal plates
between which the layered geometry resides, we impose that the geometry of Fig. 2.6 is
also grounded on the edges positioned x = 0, a and y = 0, b. We place a point charge on
the interface of layer m and m+ 1 at xm = (x0, y0, zm). After a Fourier expansion in x
and y we can write the most general solution of the Green’s function in layer n as

Gmn (x,xm) =
4

ab

∞∑
α,β=1

sin
(
απ

x

a

)
sin
(
απ

x0
a

)
sin
(
βπ

y

b

)
sin
(
βπ

y0
b

) fmn (kαβ, z)

kαβ
,

(2.2.29)

where kαβ := π
√

α2

a2
+ β2

b2
and the geometry dependent function fmn (k, z) containing the

height dependence that is of the form

fmn(k, z) = An(k)e
kz +Bn(k)e

−kz , n ∈ {1, 2, . . . , N} . (2.2.30)

The coefficients An(k) and Bn(k) must be determined by the boundary condition

fm1 (k, z0) = 0 fmN (k, zN ) = 0 (2.2.31)

and the continuity condition on the interfaces between the different materials

fmn (k, zn) = fm(n+1) (k, zn)

εn
∂fmn(k, z)

∂z

∣∣∣∣
z=zn

= εn+1

∂fm(n+1)(k, z)

∂z

∣∣∣∣
z=zn

+ kδmn .
(2.2.32)

The potential on layer n from a point-charge q with corresponding charge density ρe(x) =
qδ3(x− xm) can then be determined through

ϕmn(x, y, z) =
q

ε0
Gmn(x, y, z) , zn−1 < z < zn , (2.2.33)
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which induces a charge density distribution on the metal plates.

If we segment the bottom metal plane into electrodes with surfaces Sl, integrating
the charge distribution over this surface yields the induced charge on it

Qind
(
x′, y′, zm

)
= − ε0ε1

∫
Sl

∂ϕm1 (x, x
′, y, y′, z, zm)

∂z

∣∣∣∣
z=z0

dS . (2.2.34)

This induced charge is related to the weighting potential through ρe(x) using Eq. 2.2.10.
Performing the surface integral over a rectangular pad electrode of width wx × wy posi-
tioned at x = (xp, yp, z0) on the anode, gives an expression of the weighting potential of
the form

Ψ
(
x′, y′, zm

)
= ε1Vw

∫ xp+wx/2

xp−wx/2

∫ yp+wy/2

yp−wy/2

∂Gm1 (x, x
′, y, y′, z, zm)

∂z

∣∣∣∣∣
z=z0

dxdy . (2.2.35)

Going back to our Green’s function (2.2.29), we obtain the solution

Ψ
(
x′, y′, zm

)
=
16Vw
π2

∞∑
α,β=1

sin
(
απwx

2a

)
sin
(
απ

xp

a

)
sin
(
απ x′

a

)
α

×
sin
(
βπ

wy

2b

)
sin
(
βπ

yp
b

)
sin
(
βπ y′

b

)
β

hm (kαβ, zm) ,

(2.2.36)

where we defined
hm (k, zm) :=

ε1
k

∂fm1(k, z)

∂z

∣∣∣∣
(z=z0)

. (2.2.37)

This result gives the weighting potential solution for heights corresponding to the inter-
face of the stacked dielectric layers. To obtain the solution at a point within a dielectric
layer we can simply segment it into two at the height of the charge and assign the same
permittivity to both layer m and layer m + 1. Now that we have the static solution,
we note that all information about the permittivity of each layer is contained in the
function hm (k, z), such that the time-dependent solution can be obtained by replacing
hm (k, z) → hm (k, z, s) following Eq. (2.1.22), Vw → Vw/s and performing the inverse
Laplace transformation.

To determine the solution for a geometry that extends infinitely, we can perform the
coordinate transformation x̃ := x − a/2 and ỹ := y − b/2 such that the origin of the
coordinate system coincides with the center of the layout. Afterward, one can proceed
by taking the limit a, b→ ∞. We take kx := απ/a and ky := βπ/b such that the solution
reads

Gmn

(
x̃, x̃′, ỹ, ỹ′, z, zm

)
=

1

π2

∫ ∞

0

∫ ∞

0
cos
[
kx
(
x̃− x̃′

)]
cos
[
ky
(
ỹ − ỹ′

)] fmn(k, z)

k
dkxdky ,

(2.2.38)
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since
∑

α,β=1 →
∫ ∫

dαdβ = ab/π2
∫ ∫

dkxdky [61]. The weighting potential for an pad
located in an infinitely extending system then reads

Ψ
(
x̃′, ỹ′, zm

)
=
4Vw
π2

∫ ∞

0

∫ ∞

0
cos
(
kx
(
x̃− x̃′

))
sin

(
kxwx

2

)
× cos

(
ky
(
ỹ − ỹ′

))
sin

(
kywy

2

)
hm (k, zm)

kxky
dkxdky .

(2.2.39)

Similarly we can derive the solution for a strip of width wx extending to infinity in the
y-direction, which reads

Ψ
(
x̃′, zm

)
=

2Vw
π

∫ ∞

0
cos
(
k
(
x̃− x̃′

))
sin

(
kwx

2

)
hm (k, zm)

k
dk . (2.2.40)

The presented expressions can be used to derive electric fields and weighting fields for a
wide range of detectors. For more examples and a discussion on the speed of convergence
of the above relations we refer to Ref. [61], where it is demonstrated that they are
well-suited for numerical evaluation.

2.3 Toy model examples for parallel plate geometries

Having established the general framework of the extended form of the Ramo-Shockley
theorem for conductive media, we can now continue our discussion on the characteris-
tics of the signals formed in resistive and non-resistive toy model detector structures.
This analysis will help us pinpoint crucial factors that will be significant in numerical
computations of more intricate detector configurations, which will be the focus of the
following chapters. For simplicity, we will restrict our examples to geometries involving
parallel plates. This limitation will allow us to utilize the results obtained in Sec. 2.2.2.
Commencing with two examples where the basic form of the Ramo-Shockley theorem
is applicable, we will then proceed to two examples involving resistive elements. These
examples are based on the ones presented in Ref. [41]. Additional instances of signal
formation in resistive detectors are explored in Ref. [61].

2.3.1 Electron-ion pair in a parallel plate chamber

Let us consider a gas volume bounded from above and below by two parallel metal plates
separated by a distance g. The weighting potential is given by

Ψ(z) =
Vw
g
(g − z) . (2.3.1)

For an electron-ion pair placed at a height z0 in an electric field along the positive z-axis,
the differently charged particles ±q drift in opposite direction to the cathode and anode
with a constant velocity vion and −ve for the ion and electron, respectively. The induced
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Figure 2.7: The induced current on the anode resulting from the creation of an electron-
ion pair within a parallel plate chamber for z0 = g/2 and ve = 8vion.

current flowing from the anode is given by

Ie(t) =
q

g
ve , 0 ≤ t ≤ g

ve
,

Iion(t) =
q

g
vion , 0 ≤ t ≤ g

vion
,

(2.3.2)

taking the form of a square with the same polarity. An example is given in Fig. 2.7.
Both signals have an area of

Qe =
qz0
g
, Qion =

q(g − z0)

g
, (2.3.3)

As already indicated by Eq. (2.2.15), the total amount of charge on the anode equals
the amount of collected charge once both charges have reached their endpoints of their
paths, regardless of the initial position of the pair: Qe + Qion = q. Nonetheless, the
fraction contributed by each depends on z0 because of their varying path lengths.

As a next step we segment the anode into infinitely long strips l ∈ Z running in the
y-direction and centered at x = lwx. Through conformal mapping to an upper half-plane
a closed formed solution for the weighting potentials can be found [62]:

Ψl(x) =
Vw
π

arctan

(
sin
(
π x−lwx

d

)
sinh

(
πwx

2d

)
cosh

(
π x−lwx

d

)
− cos

(
π z
d

)
cosh

(
πwx

2d

)) . (2.3.4)

In Fig. 2.8 (left), the weighting field strength is plotted. Due to the imposed boundary
conditions, the solution for the weighting potential has a discontinuity at the edges of the
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Figure 2.8: Left: Weighting field strength of a 400 µm wide readout strip within a
128 µm high parallel plate geometry. Here a divergent solution is found at the corners
of the electrode due to its perfect adjacency with its neighboring electrode. Right: An
example of the electron component (represented by the solid line) and the ion component
(represented by the dashed line) of the induced signal on three adjacent strips located
on the anode.

strip, resulting in diverging weighting field there. In reality, neighboring strips or pads
are not perfectly adjacent in the manufactured readout structure, and this divergence
is an unwelcome feature of the simplification used here. Regardless, the edges of the
strips, while not yielding infinitely big weighting fields, do result in noticeably higher
field strengths from their sharp metal corners, resulting in an increased sensitivity for
any charge carrier passing through this area. The signal from the above electron-ion pair
induced on three neighboring strips is shown in Fig. 2.8 (right). Integration of these
gives the induced charge contributed by the electron

Qe
l =

q

π
tan−1

[
tan

(
πz0
2g

)
coth

(
π((2l + 1)wx − 2x0)

4g

)]
+
q

π
tan−1

[
tan

(
πz0
2g

)
coth

(
π(2x0 − (2l − 1)wx)

4g

)]
.

(2.3.5)

The result for both components is shown in Fig. 2.9 for different values of z0. As estab-
lished before, the total charge flowing from the electrode to ground through induction
will equal the collected charge once all electrons and ions have reached the end of their
trajectories. However, if the electron is collected on the adjacent strip, its contribution
is negative due to the negative weighting field strength in that region. When combined
with the positive contribution of the ion, the total sum equals zero.
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Figure 2.9: Contributions to the total amount of charge flowing from the readout strip to
ground. Left: The electron contribution as a function of the ionization position. Right:
The ion contribution plotted as a function of the ionization position.

2.3.2 Current induction from a Townsend avalanche

The amount of charge due to primary ionization that is being deposited in a gaseous de-
tector medium is typically too small for direct detection. To improve the signal-to-noise
ratio (S/N), internal charge amplification is required, which involves electron multiplica-
tion within a strong electric field. In the case of the MicroMegas device, these Townsend
avalanches are generated between the mesh electrode and anode structure, called the
amplification gap, where the rapidly growing number of electrons and ions will result in
a current on each readout channel. This example will consider the signal induced on an
infinitely extending grounded metal anode plane by such an avalanche.

To simplify our calculations for the signal induction in the amplification gap with size
g, we will approximate the mesh as a metal plane, creating a uniform electric field in the
induction gap where the electrons and ions will be drifting at constant velocities ve and
vion, respectively, along the z-axis. Furthermore, the avalanche growth at high electric
field strengths will be treated as exponential, i.e.,

Ne(z) := eᾱz , Ne(t) = eᾱvetΘ

(
g

ve
− t

)
, 0 ≤ t ≤ g

ve
, (2.3.6)

where ᾱ denotes the effective Townsend coefficient, given by the difference between the
Townsend α and attachment coefficient η. This is the gain factor, indicating on average
the number of electrons that will be generated in the avalanche per primary electron.
Splitting the externally impressed current density in the electron and ion current contri-
butions – indicated by the subscript e and ion, respectively – the former comes in the
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form
je(x, t) = ρe(x, t)ve(t) , (2.3.7)

where the charge density is given by

ρe(x, t) = qNe(ze(t))δ
3(x− xe(t))Θ(t) . (2.3.8)

Evaluating the volume integral in Eq. (2.2.22) the electron component of the signal
reduces to

Ie(t) = −e0Ne(t)Ew(xe(t)) · ve(t) , (2.3.9)

with e0 being the elementary charge. For this parallel plate geometry the velocity vector
can be taken as ve(t) = −veẑ and the weighting field as Ew(x) = −ẑ/g.

During the evolution of the avalanche, the electrons are created alongside the sec-
ondary ions that drift in the opposite direction toward the cathode. To obtain the
charge density of these ions, ρion(x, t), we use the continuity equation (2.1.3) where the
externally impressed charge density in the MM amplification gap is given by ρ(x, t) =
ρe(x, t)+ρion(x, t) and the total current density can be expressed as j(x, t) = veρe(x, t)+
vionρion(x, t). To simplify the calculation, let us go to the one-dimensional case and
take ρe(z, t) = exp(ᾱ (g − z))δ(z − g + vet) and add the condition that ρe(z, t) = 0 for
t /∈ (0, g/ve) later. The continuity conservation equation (2.1.3) becomes

∂ρion(z, t)

∂t
+ vion

∂ρion(z, t)

∂z
= qveᾱδ (z − g + vet) , (2.3.10)

the solution of which is given by

ρion(z, t) =f1(z − viont)−
qveᾱ

ve + vion

∫ t

1
exp

[
ᾱ
(
g − z + viont− viont

′)]
× δ

(
t′ − g + viont− z

ve + vion

)
dt′ ,

(2.3.11)

where the function f1(z) can be fixed by requiring that ρion(z, t) = 0 as long as the
electron avalanche did not yet pass through z, i.e., z > g − vet. Thus the function is
given by

f1(z) =
qᾱve

ve + vion
e

ᾱve(g−z)
ve+vion . (2.3.12)

When the electron avalanche comes to a halt at the anode, we need to ensure that the
ion density becomes zero for z < vion(t− g/ve). This condition leads to the final solution

ρion(x, t) =
qᾱve

ve + vion
e

ᾱve(g+viont−z)

ve+vion δ(x)δ(y)

[
Θ

(
t− g − z

ve

)
−Θ

(
t− viong + vez

vevion

)]
,

(2.3.13)
after going back to three spatial dimensions. Integrating equation (2.2.22) over the length
of the gap z ∈ [0, g] we obtain the contribution of the ions

Iion(t) = −e0Nion(t)
vion

g
. (2.3.14)
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Figure 2.10: Left: General MM induced signal shape for a anode plane. Right: Toy
model induced current on MM plane anode for Ar/ CO2 93%/7% at a potential difference
between anode and mesh of 510 V.

Here, Nion(t) represents the number of ions present in the amplification gap at time t
and can be expressed as:

Nion(t) :=
(
eᾱg − eᾱveviont/(ve+vion)

)
Θ

(
g

ve
+

g

vion
− t

)
−
(
eᾱg − eᾱvϵt

)
Θ

(
g

ve
− t

)
.

(2.3.15)
To illustrate the typical shape of the signal in a parallel plate geometry the left panel
of Fig. 2.10 shows the fast electron peak and slow ion tail. To provide a more realistic
example, we will examine a MicroMegas with a gas mixture consisting of 93% Argon and
7% CO2. The relevant electron transport data for this gas mixture were calculated using
MAGBOLTZ [63, 64], considering atmospheric pressure and an absolute temperature of
293.15 K. These electron transport properties are illustrated in Fig. 2.11, in conjunc-
tion with the ion transport properties for Ar+ in Ar [65, 66, 67]. For an induction gap
measuring 128 µm and a potential difference of 510 V between the cathode and anode,
the Townsend and attachment coefficients are α = 659.47 cm−1 and η = 1.25717 cm−1

respectively, which includes the Penning transfer rate of r = 4.0477 · 10−1. This config-
uration yields a total gain of exp(ᾱg) = 4560.21. The velocities of the charge carriers
become ve = 1.17276 · 10−2 cm/ns and vion = 4.86209 · 10−5 cm/ns while their transver-
sal diffusion coefficients are DT = 1.84373 · 10−2 √

cm and 1.12607 · 10−3 √
cm, for the

electrons and ions respectively.

The total contributions of both the electron peak and the ion tail to the total amount
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Figure 2.11: Gas properties plots for in Ar/CO2 93%/7%. Top left: Electric field
strength dependence on the velocities of the electrons and ions. Top Right: Transverse
diffusion coefficientDT of the electrons and ions. Bottom: An electric field strength scan
of the attachment coefficient η and Townsend coefficient α with and without appropriate
penning transfer r.

of charge flowing between the anode and ground is

Qe =

∫ ∞

0
Ie(t) dt = −e0

eᾱg − 1

ᾱg
,

Qion =

∫ ∞

0
Iion(t) dt = −e0

eᾱg(ᾱg − 1) + 1

ᾱg
.

(2.3.16)

The total amount of induced charge Q equals the total collected charge, i.e.,

Q := Qe +Qion = −e0eᾱg . (2.3.17)
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Figure 2.12: A schematic illustration depicting a bulk resistive layer that separates the
anode from the gas gap. A charge q moves through the gap at a consistent velocity before
reaching the resistive plate.

Following straight from the arguments of Sec. 2.3.1 the fraction of Q contained in the
electron and ion current is dependant on ᾱg, giving for higher values an increased con-
tribution of the ion signal. This phenomenon arises from the exponential growth in the
number of ions generated near the anode. These ions must traverse a substantial portion
of the gas gap, which is significantly longer compared to the relatively shorter path of
most electrons. Following from Eq. 2.3.16, the ratio of the two contributions can be
calculated

Qe

Qion
=

eᾱg − 1

(ᾱg − 1)eᾱg + 1
≈ 1

ᾱg − 1
, for eᾱg ≫ 1 , (2.3.18)

where for our reference settings we get a ratio of 0.134644. Equivalently, the fraction of
the total charge contained in the electron peak is

Qe

Q
=

1− e−ᾱg

ᾱg
≈ 1

ᾱg
, for eᾱg ≫ 1 . (2.3.19)

Under our reference settings, it is observed that only 12% of the total charge is concen-
trated within the electron peak. The above equations show that the division of Q in Qe

and Qion is solely dependent on the gain in the volume below the mesh where for higher
gains, Qion dominates.

2.3.3 Resistive Plate Chamber (RPC)

We start by applying the extended formalism introduced in the preceding sections to
examine a specific case containing a resistive element, namely, the single-gap RPC-type
geometry illustrated in Fig. 2.12. This configuration consists of a two-layer parallel plate
structure comprising a resistive plate with a thickness denoted as d and a gas gap with
a thickness of g. Within this setup, a point charge q undergoes motion from a position
z = g to z = 0 at a velocity of v = g/T . The resistive layer is characterized by a
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relative permittivity εr and a conductivity denoted as σ. The prompt solution to the
static version of this system is

ψp(z) = Vwεr
g − z

d+ εrg
, 0 < z < g . (2.3.20)

Making the transformation to the effective permittivity (2.1.22) yields a time-dependent
weighting potential of the form

Ψ(z, t) = ψp(z) + ψd(z, t) t ≥ 0

= Vw

(
1− d

d+ εrg
e−t/τ

)(
1− z

g

)
, 0 < z < g ,

(2.3.21)

where we have defined the characteristic time constant τ := ε0
σ

d+εrg
g . The contribution to

the signal coming from the bulk resistive material is then given by the delayed weighting
potential

ψd(z, t) = Vw

(
1− e−t/τ

) d
g

g − z

d+ εrg
. (2.3.22)

The weighting vector H(z, t) is given by

H(z, t) = ẑ
Vwεr
d+ εrg

δ(t) + ẑ
Vw
gτ

d

d+ εrg
e−t/τΘ(t) . (2.3.23)

The resulting prompt signal is then given by

Ip(t) =


qεrv

d+ εrg
t ≤ T

0 t > T

, (2.3.24)

which is independent of the conductivity of the resistive plate. An additional contribution
coming from the delayed part of the signal

Id(t) =


qv

d+ εrg

d

g

(
1− e−t/τ

)
t ≤ T

qv

d+ εrg

d

g

(
eT/τ − 1

)
e−t/τ t > T

, (2.3.25)

which, in general, does not immediately vanish after the charge q has terminated its
motion since the resistive plate continues in its effort to compensate the newly arrived
charge. However, when, we consider the limit τ → ∞, it becomes evident that the cur-
rent Id(t) tends to approach zero ∀t ≥ 0. In this scenario, the bottom layer essentially
functions as an insulating layer, leading to a reduction in the pure prompt signal am-
plitude as the distance d between layers increases. On the other hand, in the opposite
extreme where τ → 0, the bottom layer behaves like a perfectly conducting medium and
effectively extends the anode. In this regime the total signal then takes the form

I(t) =
qv

g
Θ(T − t) , (2.3.26)
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Figure 2.13: The signal induced at the anode, resulting from the motion of a charge q
as it moves through the gas gap towards the resistive plate with changing conductivity,
occurs over a time period T . Here we have taken εr = 1.

where the distance between anode and cathode is effectively reduced to a distance g.

The total induced signal for different characteristic time constant are shown in Fig.
2.13. The induced charge is given by

Qp = −
∫ ∞

0
Ip(t) dt =

q

Vw
[ψp(g)− ψp (0)] = − qgεr

d+ εrg
,

Qd = −
∫ ∞

0
Id(t) dt = lim

t→∞

q

Vw

[
ψd(g, t)− ψd (0, t)

]
= − qd

d+ εrg
,

(2.3.27)

where the total induced signal is then given by

Q = Qp +Qd =
q

Vw
lim
t→∞

[Ψ(g, t)−Ψ(0, t)] = −q . (2.3.28)

Here, the contribution from Qd can be interpreted as the result of currents that are drawn
from the anode to compensate for the arrived charge on the resistive plate.

Most RPC designs employ a phenolic-paper laminate (bakelite) or high-resistivity
glass material for the resistive plate. For these materials, the typical volume conductivity
falls in the range of O(109 − 1012) Ω/cm. Consequently, this results in a characteristic
time constant of τ ∝ ε0/σ ≈ O(10−3 − 1) s, which is notably longer than the typical
signal duration of T ≈ O(1− 10) ns. This corresponds to the case of τ ≫ T in Fig. 2.13,
such that for RPCs, the induced signal is predominantly given by the prompt component
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[68]. It directly follows that this observation also holds for MRPCs, for which the prompt
weighting potentials are given in Sec. 2.2.21.

2.3.4 Signal spreading in a resistive layer

As will be discussed at the outset of Chapter 4, the size and spacing of the readout elec-
trodes compared to the width of the collected charge cloud poses a strict lower bound
on the spatial resolution that can be obtained. In the case of a MicroMegas where the
transversal diffusion of the Townsend avalanche can be negligible compared to the pad
size, the position reconstruction is made more difficult due to the limited sampling of the
collected charge distribution. A substantial increase in the number of electronic channels
would be needed to improve the position resolution significantly through charge sharing
between pads. Nevertheless, implementing a high-granularity readout in specific detector
applications, such as for a Time Projection Chamber (TPC), can become impractical.
Instead, the signal can be shared over adjacent channels through the use of a thin layer
with finite conductivity, an advancement that has been developed with a TPC applica-
tion in mind [69]. This technique is employed in, for example, the RSD and resistive
plane MicroMegas for the Tokai to Kamioka (T2K) Near Detector upgrade [70].

When examining the conduction within a thin sheet of finite surface area in Fig. 2.14
(left) with a height denoted by dR and conductivity σ, we can use the second Ohm’s law
to define the quantity

R =
ρ

dR

b

a
=: R1

b

a
, (2.3.29)

called the surface resistivity [Ω/□]2. Here R1 is the equivalent resistance across the foil
when measured from sides b that is, characteristically, unchanged for all square sizes. To
relate the current density and electric field in this thin layer, the microscopic Ohm’s law
can then be written as

j(x, y, t) =
1

R
E(x, y, t) . (2.3.30)

This layer can act as a resistive anode separated from the grounded readout plane by an
insulating layer, such as Kapton® (Apical®). A schematic representation of the geometry
is given in Fig. 2.14 (right), where the thin rectangular resistive layer is grounded on the
edges of the geometry x = 0, a and y = 0, b. Structures such as these are becoming more
prevalent in particle detectors for various reasons: (i) discharge protection by offering an
increased impedance to ground [71, 34], (ii) separating the high voltage circuit from the
readout circuit, and (iii) the charge spreading in the layer resulting in an increased num-
ber of channels participating in the event which can be beneficial during reconstruction

1We have integrated the evaluation of these weighting potential equations into Garfield++ for plane,
strip, and rectangular pad electrodes. This implementation is available as part of the ComponentParal-
lelPlate class, which can be used for simulating MRPCs. An illustrative calculation of an MRPC signal
can be found on the Garfield++ webpage [38].

2The unit Ω/□ is pronounced ‘ohm per square’.
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Figure 2.14: Left: A thin sheet of material with surface resistivity R. Right: Schemat-
ically depicted parallel plate geometry with a gas gap of size g and a thin resistive surface
separated from the bottom grounded plane by an insulator of thickness d. A charge pair
±q is placed at the height of the resistive layer, after which the charge q traverses the
gas gap at a constant velocity.

Figure 2.15: A diagram illustrating a four-layer configuration with an electrode featuring
surface Sl positioned on the lower grounded plate is shown. This configuration is a limit
case of the structure depicted in Fig. 2.14 (right). In this setup, a charge q resides at
the interface between layers 3 and 4 situated at coordinates (x, y) = (x′, y′).

as mentioned earlier3. The surface resistivity value R is subject to the desired applica-
tion, with higher values generally preferred for robustness reasons. In this example, we
will examine the case of a MicroMegas containing an insulating layer covered by a thin
resistive coating, such as Diamond Like Carbon (DLC).

To find the solution of the weighting potential for an electrode in the geometry under
consideration we note that it is the limit case of the four-layered arrangement shown
in Fig. 2.15, the general solution to which is outlined is Sec. 2.2.2. If we want layer
m to represent a thin resistive layer with surface resistivity R, we define the effective

3As we will explore in Chapter 5, the introduction of resistive elements into the readout structure
generally decreases the device’s rate-capability. Various novel strategies for enhancing charge evacuation
are being developed for different resistive gaseous technologies to counteract this impact [72, 73, 74].
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permitivity

εm → εm +
1

(zm − zm−1) ε0Rs
, (2.3.31)

with εm the relative permittivity of the layer. To obtain the dynamic weighting poten-
tial solution in the Laplace domain for the infinitesimally thin layer we take the limit
limzm→zm−1 fnm(k, z, s). In the case of the four layer geometry the function f13(k, z, s)
reads

f13(k, z, s) =
ε0R sinh(k(d+ z)) sinh(k(g − z0))

Rsε0ε3 sinh(dk) cosh(gk) + sinh(gk)(Rsε0ε1 cosh(dk) + k sinh(dk))
,

(2.3.32)
where we have set ε4 = ε3, to reflect the charge position inside the gas gap. Its repre-
sentation in the time domain is then

f13(k, z, t) =
sinh(k(d+ z)) sinh(k(g − z0))e

−t
τ(k)

ε3 sinh(dk) cosh(gk) + ε1 cosh(dk) sinh(gk)
. (2.3.33)

Here, we define the k-dependent time constants given by

τ(k) :=
ε0R

k
[ε1 coth (kd) + ε3 coth (kg)] . (2.3.34)

As a first step we want to know the induced charge on a pad located on the grounded
anode plane below the resistive layer for a charge deposited on the resistive layer at
position x′ and time t = 0. Since for a bounded geometry this weighting potential is
given by Eq. (2.2.36), then

Qind
(
x′, t

)
=Θ(t)

16q

π2

∞∑
α,β=1

sin
(
απwx

2a

)
sin
(
απ

xp

a

)
sin
(
απ x′

a

)
α

×
sin
(
βπ

wy

2b

)
sin
(
βπ

yp
b

)
sin
(
βπ y′

b

)
β

h3
(
kαβ, z

′, t
)
,

(2.3.35)

for kαβ := π
√

(α/a)2 + (β/b)2 and we use definition (2.2.37) to write

h3(k, z, t) =
ε1 sinh(k(g − z0))e

−t
τ(k)

ε3 sinh(dk) cosh(gk) + ε1 cosh(dk) sinh(gk)
. (2.3.36)

This outcome sharply contrasts against the previous example, where instead of having
one time constant that governs the time development of the weighting potential, we now
have a continuous distribution of them, all of which contribute. Since kαβ is dependent
on a and b, these time constants are dependent on the size of the grounded resistive layer,
where the diffusion of the charge in the layer is slower for larger sizes. For a resistive
layer grounded on the edge of a finite square of length a = b, the induced charge on the
segmented anode’s 1 × 1 mm2 pads has been calculated following Eq. (2.3.35). Using
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a surface resistivity of R = 1 MΩ/□ these solutions are shown in Figure 2.16 for three
adjacent pads for different values of a. They suggest that in the central region of the
detector, the early-time behavior is minimally affected when varying a. Nevertheless, at
late times, the difference in the size of the resistive layer becomes apparent, where the
smaller area detectors drain the diffusing charge distribution in the layer more efficiently.
This is when the largest time constant τ11 := τ(kαβ)|α,β=1 starts dominating. In the
case of a = b it can be written in terms of the total capacitance of the resistive layer to
ground as if it was a metal plane, i.e., for small values of k we have

τ11 ≈
1

2π2
R

(
ε1
a2

d
+ ε3

a2

g

)
=

1

2π2
R (C1 + C3) , (2.3.37)

where C1 and C2 denote the capacitance to the anode and cathode, respectively.

The solution given in Eq. (2.3.35) is not in closed form and has to be evaluated
numerically. This double sum can be shown to converge more slowly as the area of the
detector increases; for large values of k the summand is suppressed by (αβ)−1 and

h(k, t) ≈ 2ε1
ε1 + ε3

exp

[
−k
(
d+

t

R (ε1 + ε3)

)]
. (2.3.38)

While the convergence speed is independent of the distance between the resistive layer
and the cathode, we do find that it slows significantly for high ratios of ab/d2. The
number of terms that need to be summed for an accurate evaluation quickly rises as soon
as one steps into the area of applications in HEP experiments. To illustrate this, we
can take the T2K ND280 upgrade detector prototype where a = 36 cm, b = 38 cm and
d = 50 µm. Here, we require a total number of terms of O(108) to evaluate the solution
at t = 0 alone [75]. The convergence speed can possibly be improved by using series
acceleration methods. However, for geometries lacking an analytical solution, ways to
manage larger area structures numerically ought to be devised.

The scenario in which a charge q appears seemingly out of nowhere at time t = 0 is not
in line with physical principles. A more natural scenario for charge deposition within the
active area occurs through pair production resulting from the primary ionization pattern
caused by an incident particle or through the multiplication process during an electron
avalanche. When a Townsend avalanche is generated inside the gas gap, the ions also
contribute to constructing the delayed part of the signal. Since the dominant fraction of
the total number of electron-ion pairs is formed at the bottom of the amplification gap,
we can, as a first approximation, consider the case of Fig. 2.14 (right) where a charge
pair q and −q is generated at t = 0. Let the charge q subsequently traverse the gas gap
from z = 0 to z = g at a constant speed v within a time interval 0 ≤ t ≤ T := g/v, then
the prompt induced current for a strip centered at x = 0 is given by

Ip(t) =
2gε1
πT

∫ ∞

0

sin
(
kwx
2

)
cos(kx) cosh

(
k
(
g − gt

T

))
D(k)

dk , t < T , (2.3.39)
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Figure 2.16: Induced charge on three 1 × 1 mm2 neighboring pads positioned at x =
(xp, 0,−d) from a charge q deposited at the center (x = (a/2, a/2, 0))) of a square resistive
layer with various widths a. Here, g = 128 µm, d = 100 µm, and R = 1 MΩ/□ and the
result is given for xp = a/2 (top left), xp = a/2 + 1 mm (top right) and xp = a/2 + 2
mm (bottom).

where the denominator is

D(k) := ε1 cosh(dk) sinh(gk) + ε3 sinh(dk) cosh(gk) . (2.3.40)

The reaction of the resistive layer is captured by the delayed current flowing from the
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electrode to ground, reading

Id(t) =
gε1q

π

∫ ∞

0

sin
(
kwx
2

)
cos(kx) (F1(k, t) + F2(k, t)) exp

{
−gk − t

τ(k)

}
D(k)

dk t < T

=
gε1q

π

∫ ∞

0

sin
(
kwx
2

)
cos(kx) (F3(k) + F4(k)) exp

{
−gk − t

τ(k)

}
D(k) (gkτ(k) + T ) (gkτ(k)− T )

dk t ≥ T ,

(2.3.41)
where we have defined the functions

F1(k, t) :=
e2gk

T − gkτ(k)

(
1− e

t
(

1
τ(k)

− gk
T

))

F2(k, t) :=
1− exp

{
t
(
gk
T + 1

τ(k)

)}
gkτ(k) + T

F3(k) := T
(
2e

gk+ T
τ(k) − e2gk − 1

)
F4(k) := gk

(
1− e2gk

)
τ(k) .

(2.3.42)

The sum of both components results in a bipolar signal. From Eq.(2.3.36) we deduce
that

∫∞
0 h3(k, z, t) dt = 0, which directly shows that

∫∞
0 Ip(t) + Id(t) dt = 0 for all elec-

trodes on the bottom plane, corresponding to the net zero amount of charge collected
on the electrodes. This is because the current compensating the point charge −q exclu-
sively flows to ground through the infinitesimally thin resistive layer. Since most track
reconstruction algorithms in HEP experiments rely on the center-of-gravity (CoG) of
the quantity of charge in adjacent readout channels, the total amount of induced charge
cannot be used. Instead the peak value of the signal from each channel is used for the
purpose of reconstruction.

As we will see, this method uses a more ambiguously defined quantity that is subject
to the nature of the shaping performed by external front-end electronics. This signal
shaping is typically done to increase the signal-to-noise ratio via frequency filtering. We
consider an unipolar shaper with an impulse response function of the form

f(t) = g exp(n)

(
t

tp

)n

exp(−t/τ), tp = nτ (2.3.43)

where n the order of the shaper, τ is the RC time constant, g is the gain factor. When we
assume that the multiplicative growth of Townsend avalanche is exponential, following
Eq. (2.3.6), in addition to imposing that the transversal diffusion is negligible compared
to the electrode’s size, we can estimate the current formation along the lines of Sec. 2.3.2.
The resulting current induced on three 1 mm wide neighboring strips is presented in Fig.
2.17 for different surface resistivities. Since the ions’ electric field also permeates through
the resistive layer, it spurs the flow of current in it. Consequently, both the electrons
and ions contribute to the ‘spreading’ of the signal to neighboring channels. Fig 2.17
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Figure 2.17: Induced current of a Townsend avalanche in the gap on adjacent neighboring
1 mm wide strip channels for a surface resistivity R of 500 kΩ/□ (full line), 1 MΩ/□
(dotted line), 10 MΩ/□ (dashed line). Top left: Prompt and delayed component of
strip 1 centered below the avalanche. Top right: Strip 2 as nearest neighbor to strip 1.
Bottom left: Strip 3 as next nearest neighbor to strip 1. Bottom right: Convoluted
signal in five neighboring strips for a shaper with tp = 50 ns, n = 1 and R = 500 kΩ/□.

shows the resulting currents at the output stage of a first-order shaper. As a result, the
maximum amplitude, also called the Pulse Height (PH), and peaking time of the signal
in each channel is given in Fig. 2.18 for different peaking times. Here a clear dependence
of the PH distribution over the channels on the shaping time can be observed. Most
notably, for large peaking times the PH value goes down again due to the bipolar nature
of the induced current.
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Figure 2.18: Characteristics of the resulting signal following shaping. The connecting
lines are for guiding the eye. Top left: The PH as a function of the strip number, with
R = 500 kΩ/□, and strip 5 corresponds to the location where the electron avalanche was
centered. Top right: The peaking time of the signal in adjacent strips with R = 500
kΩ/□. Bottom: The PH as a function of the strip number, with a surface resistivity of
10 MΩ/□, again with strip 5 corresponding to the location where the electron avalanche
was centered.

When two events that virtually coincide occur in close spatial proximity, a phe-
nomenon known as pileup occurs, wherein local electrodes register an overlapping signal.
Since the reduction in surface resistivity leads to the spreading of the signal across a
greater number of channels, this causes an increase in the minimum distance required
between two events to prevent pileup. Consequently, the adoption of signal spreading
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using a resistive sheet may result in a diminished overall rate capability of the detector.

2.4 On the use of the Telegraph equation

Regarding the MPGD family, the role of a thin layer of resistive material in diffusing
the charge was noted in the seminal work of M. S. Dixit [69]. Here, using the lumped
element approximation an infinitesimally thin resistive anode separated from a segmented
readout plane with an insulating layer is often considered as the continuum limit of a two-
dimensional RC network. In this case, we can define an equivalent capacitance between
the resistive layer and ground. The surface charge density σs(x, y, t) [C/cm2] due to
the diffusion of the charge deposited on the conductive layer is then governed by the
two-dimensional Telegraph equation

∂σs(x, y, t)

∂t
=

1

Rc

(
∂2σs(x, y, t)

∂x2
+
∂2σs(x, y, t)

∂y2

)
, (2.4.1)

with R being the surface resistivity and c the distributed capacitance per unit area.
The solution for an infinitely extending layer is a Gaussian distribution centered at the
deposition position that widens over time [69]. Within this section, we will discuss using
the Telegraph equation as a limit case of the solution found using the quasi-static limit
of the Maxwell equations of the previous section. Furthermore, we will describe the
scenarios in which this approximation is satisfactory.

2.4.1 Charge diffusion in a resistive layer

We reconsider the parallel plate system depicted in Fig. 2.14 (right) where a charge q is
deposited on an infinitesimally thin resistive layer that this time is grounded at infinity.
Discussion of the scenario involving a finite rectangular plane will be reserved for the
conclusion. For q placed at (x, y, z) = (x′, y′, 0) we can write the time evolution of the
surface charge density on the resistive anode using Gauss’ law as

σs(x, y, t) = ε0ε1
∂ϕ13
∂z

∣∣∣∣
z=0

− ε0ε3
∂ϕ43
∂z

∣∣∣∣
z=0

, (2.4.2)

where ϕmn is given by Eq. (2.2.33) and (2.2.38) [61]. For the charge located at surface
of the conductive layer, ϕ33 vanishes and ϕ43 can be written in terms of

f43(k, z, t) =
sinh(k(g − z))e

−t
τ(k)

ε1 coth(dk) sinh(gk) + ε3 cosh(gk)
. (2.4.3)

With this, the surface charge density can be expressed as

σs(x, y, t) =
q

π2

∫ ∞

0

∫ ∞

0
cos
[
kx
(
x− x′

)]
cos
[
ky
(
y − y′

)]
e

−t
τ(k) dkxdky , (2.4.4)

where once more we have an infinite number of time constants (2.3.34) governing the
time evolution of the solution. For late times, the slower suppression of the integrand
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is primarily influenced by the longer time constants, which take precedence. These are
given by small values of k, and in this regime can be approximated as

τ(k) ≈ ε0R

k2

(
ε1
d

+
ε3
g

)
=
R

k2
(c1 + c3) =

R

k2
c , (2.4.5)

in terms of the capacitance c per unit area of the resistive layer (treating it as though
it were a metallic plane) to the top and bottom grounded plane, denoted by c1 and c2,
respectively. In this limit Eq. (2.4.4) reduces to

σs(x, y, t) ≈
Q

4πRct
exp

(
−(x− x′)2 + (y − y′)2

4Rct

)
, (2.4.6)

which is the Gaussian function that solves the Telegraph equation (2.4.1). This can be
understood when noting that the current density flowing over the resistive layer is related
to the potential on it using Eq. (2.3.30) and E = −∇ϕ. Utilizing this relation in the
continuity equation yields

∂σs(x, y, t)

∂t
=

1

R

(
∂2ϕ(x, y, t)

∂x2
+
∂2ϕ(x, y, t)

∂y2

)
, (2.4.7)

of which Eq. (2.4.4) is a solution. Through approximation, we establish a connection
between the voltage and surface charge density on the conducting surface, expressed
as σs(x, y, t) = cϕ(x, y, t), transforming the above relation into the Telegraph equation
(2.4.1). Nevertheless, this approximation holds true only when the charge distribution
exhibits a negligible gradient over distances of the order of d [61]. During early times, i.e.,
t < Rc, when the charge distribution is highly localized around its placement location,
this simplification becomes inadequate.

2.4.2 Signal induction at late times

The induced charge on a strip of width wx located on the bottom plane that stretches
to infinity in the y-direction can be obtained through the weighting potential in Eq.
(2.2.40). For small values of k, the denominator of the integrand takes the form

ε1 cosh(dk) sinh(gk) + ε3 coth(gk) ≈ ε1 + ε3
d

g
. (2.4.8)

After integration, the charge induced on the readout strip is given by

QTel(x
′, y′, t) =

ε1qg

2 (ε1g + ε3d)

erf

wx − 2(x− x′)

4
√

t
Rc

+ erf

wx + 2(x− x′)

4
√

t
Rc

 ,

(2.4.9)
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Figure 2.19: The induced charge on neighboring strips k, each measuring wx = 200 µm
in width, and positioned at xp = kwx, in response to a charge deposition at x′ = 0 on the
thin resistive layer. The solution is presented for three cases: the complete solution of
Eq. (2.4.4) (represented by the dotted line), QTel (depicted by the solid line), and Q∞

Tel
(shown as a dashed line), all as functions of time. The parameters used in this context
are g = 128 µm, d = 80 µm, and R = 1 MΩ/□.

of which the factor ε1g/ (ε1g + ε3d) signifies that part of the signal is also coupled out
through the top grounded plane. When neglecting the capacitance to the cathode plane,
we can write

Q∞
Tel(x

′, y′, t) := lim
g→∞

QTel(x
′, y′, t)

=
q

2

erf

wx − 2(x− x′)

4
√

t
Rc1

+ erf

wx + 2(x− x′)

4
√

t
Rc1

 .
(2.4.10)

The same result is found when the ground bottom plane should perfectly reflect the
charge density on the resistive layer −σs(x, y, t). Integrating it over the surface of the
electrode then yields the above relation [61]. For the case of a resistive plane MicroMegas,
the results for QTel and Q∞

Tel are compared to the complete solution of Eq. (2.4.4) in Fig.
2.19. We find that the early time behavior is not accurately captured by the Gaussian
shaped QTel predicted by the Telegraph equation, yet it becomes a viable description
when the charge distribution becomes broad for time t > Rc where the curves approach
the exact solution. Exclusively taking into account the capacitive coupling between the
resistive anode and the grounded readout plane, the induced charge is consistently over-
estimated at all times. The same observations can be made for the induced current shown
in Fig. 2.20, where the induced currents is zero at t = 0 for the Gaussian approximation.
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For charges drifting in the gas gap following a path xq(t), the induced charge density
is given by Eq. (2.2.13) where the z dependence of the weighting field is given by the
factor cosh [k(g − z)] ≈ 1 for small values of k. In this limit we can write

Q(t) ≈ − q

Vw

∫ t

0
T
[
xq(t

′), yq(t
′), t− t′

]
Eplane

[
xq(t

′)
]
· ẋq(t

′) dt′

=

∫ t

0
T
[
(xq(t

′), yq(t
′), t− t′

]
I0(t

′) dt′ ,

(2.4.11)

where we define the impulse response function T (x′, y′, t) := QTel(x
′, y′, t)/q using Eq.

(2.4.9) and the static weighting field Eplane(x) = −ẑ/g. Following the basic form of the
Ramo-Shockley theorem, the current I0(t) can be interpreted as the one being induced
on the resistive layer, if it were considered to be a perfectly conducting surface, by the
motion of the charge carrier q inside the gas gap. The dynamics of the resistive layer
is then captured by T (x′, y′, t) that one has to convolve with I0(t) to get the complete
solution. This is precisely the methodology under which the RC-circuit representations
of this geometry operate.

2.4.3 Conclusion

The Telegraph equation approach is widely adopted for the description of the diffusion
of a charge on an infinitesimally thin resistive layer by defining a capacitance of the
resistive layer to ground. The solution for a grounded resistive anode at infinity is a
Gaussian shaped surface charge density that ‘spreads’ inside the resistive anode with
an Rc time constant. We have found that this description is a late-time limit of the
full solution that satisfies Maxwell’s field equations in the quasi-static regime. When
considering both approaches, it can be deduced that the Telegraph equation produces
satisfactory outcomes for time intervals beyond t > Rc, but it falls short in capturing the
initial segment of the signal. When only taking the capacitive coupling to the bottom
grounded readout plane, the total induced signal resulting from the charge diffusion is
overestimated. In addition, the Rc time constant is derived for an infinitely extending
geometry, while the edges of a a× b finite active area do affect the time evolution of the
full solution:

τ (kαβ) =
ε0R

π
√

α2

a2
+ β2

b2

[
ε1 coth

(
π

√
α2

a2
+
β2

b2
d

)
+ ε3 coth

(
π

√
α2

a2
+
β2

b2
g

)]
,

(2.4.12)
where the dominant time constant is then given by Eq. (2.3.37). Since we have assumed
that the propagation speed within the field is negligible in comparison to the overall size of
the system, we can assert the charge initiating diffusion at t = 0 is immediately ‘aware’
of the finite distance to the grounded edge of the resistive layer. Consequently, when
considering the application of the Telegraph equation approach to scenarios in which the
distance to ground cannot be simplified as infinite, caution must be exercised. Never-
theless, this challenge can be effectively addressed by using the dominant time constant
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Figure 2.20: The graph displays the induced current on four neighboring readout strips
resulting from the induced charge, as shown in Fig. 2.19, at different positions: xp = 0
(top left), xp = 200 µm (top right), xp = 400 µm (bottom left), and xp = 600 µm
(bottom right). The data is presented for three solutions: the full solution according to
Eq. (2.4.4) (depicted by the green line), QTel (represented by the blue line), and Q∞

Tel
(shown as the yellow line).

(2.3.37) within the infinite sum (2.3.35), or employing a discrete approach to solve the
Telegraph equation such as through the use of an RC-circuit representation, allowing for
the incorporation of the finite dimensions of the system. This lumped element approach
does imply that the surface charge density σs and potential voltage ϕ directly related
through the capacitance: σs = cϕ. Here it is critical to note that this approximation
holds true only when the gradient σs remains small across the surface of the resistive
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Figure 2.21: Schematic depiction of the circuit representation of an infinitesimally short
repeating segment of the transmission line.

layer [61]. When the primary goal of the calculation is to provide an estimate of the
number of channels over which the signal will be shared, the so-called cluster size4, in a
resistive readout, these descriptions will yield a satisfactory result, particularly for elec-
trodes that are located further away from the CoG of the event. Moreover, when dealing
with resistive readouts, like the two-dimensional resistive readout structure utilized in
the MicroCAT detector [76] (see Chapter 6), it becomes feasible to obtain a good approx-
imation of the total charge that flows to ground from each electrode on the resistive layer.
Nevertheless, for accurately resolving of the signal’s leading-edge, it becomes necessary
to depend on the complete extended version of the Ramo-Shockley theorem.

Eq. (2.4.1) is frequently expressed analogously to the one-dimensional transmission
line equation. When the distributed transconductance G is negligible, this equation can
be written as

∂2V (x, t)

∂x2
= LC

∂2V (x, t)

∂t2
+RC

∂V (x, t)

∂t
, (2.4.13)

with R, L and C being – in units per length – the distributed resistance, inductance and
capacitance, respectively. This equation is found as the continuum limit of an infinite
series of the repeating lumped element circuit unit cell shown in Fig. 2.21. Therefore,
the arguments made for the RC-circuit representation also apply here [61].

2.5 Numerical signal calculations

In detectors that contain resistive components, the process of signal generation on an
electrode can be ascertained by utilizing its time-dependent weighting potential. In the
preceding two sections, we have computed the induced signals when dealing with either a
bulk resistive layer or an extremely thin layer with finite conductivity in a parallel plate
configuration. For most intricate resistive detector architectures these potentials can not
be obtained through analytical methods, rather, a numerical method is needed. As will

4This should not be mistaken for the quantity of electron-ion or electron-hole pairs generated within
a singular cluster through the ionization of the medium, even though the same term denotes it.
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be presented here, the time-dependent weighting potential can be obtained using Finite
Element Method calculations. The conjunction with the Garfield++ toolkit enables for
the modeling of the response of complex detector geometries containing resistive media.
This approach, which will be the focus of this section, has in part been discussed in our
publications [56, 77].

2.5.1 Signal induction from a segmented path

The Monte Carlo algorithm employed in Garfield++ for the microscopic electron trans-
port within the drift medium relies on the energy-dependent collision rate of an electron
with the medium’s composites. Thus, due to the influence of the electric field, the elec-
tron experiences variations in both energy and collision rate during its free flight phase.
This variability can be accounted for using the null-collision technique, as described in
Ref. [78, 39]. Using this algorithm, a free time ∆t can be obtained, resulting in one
segment of the overall path composed of numerous such segments. To then numerically
calculate the resulting induced signal from this particle’s partitioned trajectory, a dis-
cretized version of the framework described in Sec. 2.2 is needed.

Let us partition the path xq(t) of a point-like charge q into L segments, each defined
by its begin xn and end point xn+1 corresponding to respective times tn and tn+1, with
index n ∈ {1, 2, . . . , L}. For each small segment the charge induced on electrode k at
time t can be approximated by

∆Qk,n (t) ≃
q

Vw

[
ψp
k (xn)− ψp

k (xn+1)

+ ψd
k (xn, t− tn)− ψd

k (xn+1, t− tn)
]

×Θ(t− tn) ,

(2.5.1)

for small step sizes [56]. Here, we favor utilizing the scalar weighting potential field over
the vector weighting field due to its singular value at every point in space, which improves
numerical efficiency. Summing over all L segments of the total path yields the induced
charge Qk(t) sourced by the particle track

Qk (t) ≃
L∑

n=1

∆Qk,n (t) = Qk,p (t) +Qk,d (t) . (2.5.2)

The induced current is then the time derivative of this signal

Ik (tn+1) ≃ −Qk (tn+1)−Qk (tn)

tn+1 − tn
. (2.5.3)

Considering that the objective is to compute the induced signals arising from the motion
of charges in gases or semiconductors, the induced charge for each single particle track
is determined separately using Eq. (2.5.1), and these individual contributions are then
summed to obtain the total result. This algorithm has been implemented into the Sensor
class of Garfield++, where we need the weighting potential for each electrode under study
in the detector architecture.
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2.5.2 Time-dependent weighting potential

With the inherent complexity of contemporary detectors, characterized by intricate elec-
trode, dielectric, and resistive element shapes, we can not rely on analytical methods
alone to provide the dynamic weighting potential. Instead, we must use tools such as
the commercially available COMSOL® Multiphysics software package [79] to provide
these solutions numerically. As a Finite Element Method (FEM)-based solver capable of
solving the field equations governing electrodynamics systems using the Backward Differ-
entiation Formula (BDF) method [80, 81], this toolkit permits the modeling of geometries
with nearly arbitrary shapes. A pivotal aspect of FEM computations involves segment-
ing, or meshing, the physical surfaces and domain into discrete two or three-dimensional
elements that locally make polynomial approximations, often of second-order, of the po-
tential. The primary disadvantage of this method is for geometries containing features
with dimensions considerably smaller than the overall scale of the model, e.g., the Mi-
croMegas’ woven wires of 18 µm thickness in a 50 × 50 cm2 chamber. Such instances
result in demanding computation time since a high accuracy for the potential necessitates
a dense mesh, resulting in a large field map and, accordingly, slower interpolation [39].
Calculating the time-dependent weighting potential accurately for resistive elements ter-
minated at a boundary situated at a considerable distance from the region of interest
then becomes challenging due to the impact on the time evolution of the solution, as
indicated in Eq. (2.4.12) for a resistive layer. Consequently, it is necessary to represent
the boundary conditions accurately. Further constraints inherent in finite element field
calculations involve the non-differentiability of the electric potential across neighboring
elements and the approximate representation of the field through low-order polynomials
[82].

The FEM approach offers significant flexibility in applying the extended form of
the Ramo-Shockley theorem for conductive media to a wide range of detector designs.
In this approach, the dynamic weighting potential solution is entirely determined by the
configuration and characteristics of the materials within the structure. Given the detector
layout we want to study, the dynamic weighting potential can then be calculated for each
electrode separately using the following recipe:

• Disregard any externally impressed or static charge densities.

• Perfectly ground all electrodes except the one under study to which we will apply
a potential step VwΘ(t). To avoid the discontinuity of the Heaviside step function
described in Eq. (2.2.18), we can apply a voltage ramp of Vw = 1 V instead. The
ramping time of the function needs to be smaller then the reaction time of the
resistive material such that at time t = 0 the contribution coming from ψd

k(x, t) is
negligible. An example of such a ramping function is given in Fig. 2.22.

• Evaluate the solution at logarithmic spaced time points to accurately capture the
early-time dynamics of the solution. From examples 2.3.3 and 2.3.4 we found
that the dynamic weighting potential has the strongest change in time during its
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Figure 2.22: Example of a voltage ramp to numerically represent the step function
needed to determine the time-dependent weighting potential.

early-stage, requiring finer sampling of the solution in that time domain that can
gradually coarsen as time progresses.

The outcome is a finite set of N time-sliced weighting potential maps Ψk(x, tn), n ∈
{1, 2, . . . , N}, that can be provided to Garfield++ for the signal induction calculations.
We identify the slice at t1 = 0 as the prompt weighting potential ψp

k(x) such that
ψd
k(x, tn) = Ψk(x, tn) − ψp

k(x). To evaluate the delayed potential for other times, the
value is linearly interpolated from the two closest time-slices

ψd
k(x, t) ≈

ψd
k(x, tn) (tn+1 − t) + ψd

k(x, tn+1) (t− tn)

tn+1 − tn
, tn < t < tn+1 . (2.5.4)

When the time intervals tn+1 − tn are sufficiently small, much less than the average free
time ∆t of the electron, ion, or hole, this interpolation will yield a reliable estimation
of the induced current throughout the free path. However, for larger time intervals, the
time derivative results in a constant current.

As mentioned above, implementing this approach in the context of large-area detec-
tor configurations that incorporate resistive components terminated at the edge of the
geometry requires further consideration. We can imagine representing an infinitesimally
thin resistive layer accurately by a finely meshed thin layer with corresponding finite
bulk resistivity ρ = RdR for a thickness dR negligible compared to the overall size of
the geometry. Yet, when grounded on the edge such a representation of an expansive
resistive layer can become cumbersome given the number of finite elements involved. To
this end, we used two techniques applicable to any detector size to simplify the com-
putations. The first was to avoid the need to mesh the thin resistive layer using the



52 CHAPTER 2. SIGNAL FORMATION IN RESISTIVE DETECTORS

Electric Shielding surface condition, available in the COMSOL® Multiphysics toolkit,
to the interfacing surface between two domains between which the thin resistive layer
resides. This condition relates the potential above and below the resistive sheet using
the junction condition

n̂ · (j1 − j2) = −∇T · dR
((

σ + ε0εr
∂

∂t

)
∇TΨk

)
, (2.5.5)

for a conductivity σ = (RdR)
−1, relative permittivity εr, n̂ being the normal vector of the

resistive surface, and ji the current densities of the region above and below the layer. The
operator ∇T represents the tangential derivative along the layer. The second technique
was to stretch the model using coordinate mapping rather than directly implementing
the total active area. In order to faithfully depict the boundary conditions within the
finite element model, we utilized coordinate scaling outside a specific region of interest.
This mathematical stretching of the outer regions of the detector also apply on the finite
elements that segment it, given reason to use cell element shapes for which the solution is
resilient to the elongation (such as pentahedrals). For a finite linear scaling the function
Scaling System was used, while for pushing the boundary to infinity the Infinite Element
Domain condition was applied. This approach enabled us to create a more numerically
manageable representation of the geometry, which is smaller than the complete active
area of the detector, yet equivalent to it. An example can be found on the Garfield++
webpage [38].

Referring to the example discussed in Sec. 2.3.4, which concerns the induced charge
arising from a charge diffusion within a confined a× b resistive layer, the time-dependent
weighting potential of the pads has been calculated using a FEM-based model, where the
above two techniques were applied to describe the entire 10× 10 cm2 grounded resistive
anode. Detailed instructions for constructing and solving this system in COMSOL®

are provided in Appendix A. The comparison between this computed solution and the
analytical one of Eq. (2.3.35) is illustrated in Fig. 2.23, demonstrating a within 3.15%
agreement between the two approaches. With this, we successfully circumvent the slow
convergence of the series in the analytical solution. Compared to the equivalent FEM
model with similar mesh quality but lacking the thin resistive layer junction condition
and coordinate scaling, these techniques reduce the model’s degrees of freedom from
8.8 · 106 to 3.5 · 106, resulting in a 21-fold decrease in computation time5. In Fig. 2.24,
the weighting potential of different time slices is given for an infinitely extending resistive
layer where a, b → ∞. The solution at t = 0 corresponds to the prompt solution, which
commences ’spreading’ over the resistive layer at z = 0 as time progresses. This layer
will act as a metal plane for t → ∞, fully canceling out all field lines permeating it and
subsequently shielding the readout electrode from any charges that drift within the gas
gap.

5The computation was carried out using a four-core Apple M1 chip with 8GB of memory. Meshing
the one µm thick resistive layer was accomplished using shell (pentahedral) elements since the same
precision could not be reached using tetrahedral elements.
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Charge spreading on a grounded resistive layer

Figure 2.23: Comparison between the induced charge on neighboring pads determined
analytically and the corresponding COMSOL® solution. The former is given by the full
lines, while the latter is given by the markers of the same colour for several time points.
The charge is deposited in the centre of a 10× 10 cm2 resistive layer with R = 1 MΩ/□.
The five 0.5×0.5 mm2 pads with index k are centered at xp = 4.5+0.5k mm and yp = 0.

The outlined method is appropriate for geometries composed of linear materials,
meaning materials whose resistivity remains constant irrespective of the applied voltage.
Nevertheless, when working with non-linear silicon sensors, it is important to recognize
that the volume resistivity changes with varying applied voltage. Using a TCAD simu-
lation toolkit, we can set up the geometry of the sensor that includes a specific doping
profile and biasing potential across the sensor [55]. This allows us to determine the static
electric field as well as the electron density ne(x) and hole density nh(x) within the semi-
conductor bulk. Using the Drude model, the conductivity σ(x) can then be expressed
as

σ(x) = q [µene(x) + µhnh(x)] , (2.5.6)

where µe and µh denote the mobilities of the electrons and holes [55]. When the sensor
is fully depleted ne(x) = nh(x) = 0, the signal can be calculated by using the static
weighting potential from the basic form of the Ramo-Shockley theorem. For only a
partially depleted sensor, however, the finite value of σ contributes to the formation of
the induced signals, and the time-dependent weighting potential needs to be obtained.
Following the steps outlined in Sec. 2.2, the conductivity parameter σ is influenced by
the voltage applied to the electrode in the case of a completely unbiased sensor, leading
to an inaccurate representation of the conductivity distribution. To address this, we
introduce a small voltage increment to the relevant electrode while the sensor is biased.
Subsequently, we calculate the difference between the resulting time-dependent and static
electric fields, as described in [55]. We have implemented the importing of the solution
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into Garfield++ through the ComponentTcad2d or ComponentTcad3d class. While we
will discuss the signal formation inside solid-state detectors, taking the doping profile
into account using the TCAD approach falls outside the scope of this work.

2.5.3 Implementation in Garfield++

Until now, we have discussed the implementation of the extended Ramo-Shockley the-
orem for numerically obtaining the required time-dependent weighting potential using
a FEM-based solver. We have also examined how to derive the signal from a mov-
ing charge carrier when dealing with a segmented trajectory. In this section, we bring
together these two elements and outline the necessary steps for configuring these calcu-
lations within Garfield++ using the dynamic weighting potential maps obtained using
COMSOL®.

To import the set of time-sliced weighting potential maps Ψi(x, tn), n ∈ {1, 2, . . . , N},
from the FEM calculation, the following files are needed: (i) mesh.mphtxt containing the
node positions and cell types that constitute the mesh, (ii) Potential.txt that holds the
static potential value on each mesh node for the biasing of the cathode and anode giving
the applied field that drifts the charges, (iii) dielectrics.dat assigning the dielectric con-
stants to each material, and (iv) WPotential.txt giving the electrode’s weighting potential
on the nodes for each time slice. Using the ComponentCOMSOL class, we can import
this information into our simulation:
// Import COMSOL’ s po t en t i a l , mesh and d i e l e c t r i c constant map
ComponentCOMSOL fm ;
fm . I n i t i a l i s e ( "mesh . mphtxt" , " d i e l e c t r i c s . dat" , " Po t en t i a l . txt " , "m" ) ;
fm . EnableMirrorPer iod ic i tyX ( ) ;
fm . EnableMirrorPer iod ic i tyY ( ) ;
fm . PrintRange ( ) ;

// Import weight ing po t e n t i a l maps o f two ne ighbor ing e l e c t r o d e s
const std : : s t r i n g l a b e l [ 2 ] = {" e l e c t r od e1 " , " e l e c t r od e2 " } ;
fm . SetDynamicWeightingPotential ( "WPotential . txt " , l a b e l [ 0 ] ) ;

When the readout structure exhibits symmetry such that the weighting potential of a
second electrode can be mapped through rotation or translation of the solution of a first
electrode, we can duplicate the weighting potential of the initial electrode.
const double p i t ch = 0 . 1 ; // Pitch between e l e c t r o d e s [ cm ]
fm . CopyWeightingPotential ( l a b e l [ 1 ] , l a b e l [ 0 ] , p itch , 0 , 0 , 0 , 0 , 0 ) ;

where we have performed a translation of 1 mm along the x-axis to represent a neighboring
electrode. To determine which domain(s) constitute the drift-able medium, we should
designate a gas medium to the domain characterized by a unit relative permittivity:
// Setup o f the gas
MediumMagboltz gas ;
gas . SetComposit ion ( " ar " , 7 0 . , " co2" , 3 0 . ) ; // [%]
gas . SetTemperature ( 2 9 3 . 1 5 ) ; // [K]
gas . I n i t i a l i s e ( t rue ) ;



2.5. NUMERICAL SIGNAL CALCULATIONS 55

Figure 2.24: Cross-section view of the weighting potential solution of a 400 µm wide strip
located at x = (0, 0,−80) µm evaluated at different times of a parallel plate geometry
with an infinitely extending resistive layer.
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// Assign r e l a t i v e p e rm i t t i v i t y to geometry domains
const unsigned i n t nMater ia l s = fm . GetNumberOfMaterials ( ) ;
f o r ( unsigned i n t i = 0 ; i < nMater ia l s ; ++i ){

const double eps = fm . GetPermit t iv i ty ( i ) ;
i f ( eps==1) fm . SetMedium( i , &gas ) ;

}

// Pr int a l l mat e r i a l s
fm . Pr in tMate r i a l s ( ) ;

Within the Sensor class, an assembly of components can be made, which is used to
calculate the induction of current on an electrode due to drifting charges given the applied
field and weighting potentials. Here we can assign which potential map will be used to
propagate the charges, and for which electrodes the signal needs to be calculated:
// Setup o f the s enso r
Sensor s enso r ;
s enso r . AddComponent(&fm ) ; // Assign po t e n t i a l map
senso r . AddElectrode(&fm , l a b e l [ 0 ] ) ; // Assign weight ing po t e n t i a l map
senso r . AddElectrode(&fm , l a b e l [ 1 ] ) ;
s en so r . EnableDelayedSignal ( ) ; // Enable delayed s i g n a l c a l c u l a t i o n

The resulting signal will be coarse-grained into a number of time bins of predetermined
length. The bounds of the time window in which the signal needs to be computed, and
how finely it is resolved, can be set:
// Set time i n t e r v a l
const double tmin = 0 . ; // [ ns ]
const double tmax = 1e3 . ; // [ ns ]
const i n t nTimeBins = 100 ;
const double t s t ep = ( tmax − tmin ) / nTimeBins ;
s enso r . SetTimeWindow( tmin , ts tep , nTimeBins ) ;

The time convolution of the velocity vector with the weighting field in Eq. (2.5.1) needs
to be evaluated over the set time range at a number of predetermined time points. This
can be performed for each time bin:
// Time po in t s at where the delayed s i g n a l i s c a l c u l a t ed
std : : vector<double> times ;
f o r ( i n t i =0; i<nTimeBins ; i++) times . push_back ( tmin+t s t ep/2+ i ∗ t s t ep ) ; // [ ns ]
s enso r . SetDelayedSignalTimes ( t imes ) ;

Alternatively, a more coarse approach can be employed where the evaluation is done for
fewer number of points. The final step involves enabling signal calculation within the
class used for charge propagation:
// Setup o f e l e c t r o n t ranspor t
AvalancheMicroscopic ava l ;
ava l . SetSensor (&senso r ) ;
ava l . Enab l eS igna lCa l cu la t i on ( ) ;

The signal will then be calculated for each segment of the charge carrier during its drift
calculation.
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Figure 2.25: Toy model calculations for the induced current sourced by uniform charge
movement on a readout strip positioned at xp = 0 obtained though the numerical and
analytical method. Here, the positively charged point charge moves from z = 0 to
z = g = 1 mm, with εr = 8, wx = g/2, d = 0.4 mm, T = 10 ns, x = 0 mm and R = 100
kΩ/□.

The complete simulation chain has been validated against various analytical toy-
model examples. The one illustrated in Fig. 2.25 involves an electron-ion pair generated
above an infinitely extended resistive layer, with the ion moving upward at a constant
velocity. This particular example showcases the capacity to faithfully reproduce the
analytical solutions presented in Eq. (2.3.39) and (2.3.41) for the prompt and delayed
current, respectively.

2.5.4 External impedance elements

When a particle traverses an electrode, we observe two mechanisms that cause neigh-
boring electrodes to detect a signal: (i) direct induction, which occurs when a particle
crosses between two neighboring electrodes or near the electrode’s edge, and (ii) so-called
capacitive coupling between the electrodes, where the signal is coupled to nearby elec-
trodes due to their finite mutual impedance. The former was already covered using
the framework outlined in Sec. 2.2 where all electrodes are considered to be perfectly
grounded. Hence, the resulting current flows unimpeded to ground once induced. The
cross-coupling between the metal electrodes that are found in detector readout structures
is due to the presence of a non-zero impedance to ground coming from the front-end elec-
tronics, electrical protection circuit, and high-voltage supply. When the electrodes are
connected with discrete linear impedance components, we can treat them as integral to
the medium, and thus, we need to incorporate these into the time-dependent weighting
potential.
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As an example we can take the single gap RPC geometry given in Fig. 2.12 of Sec.
2.3.3, that contains a bulk resistive layer with conductivity σ. As demonstrated in Ref.
[54], the detector system can be precisely depicted using an equivalent circuit. We will
index the top and bottom metal plane using i = 1 and i = 2, respectively. Using Eq.
(2.2.23) and (2.3.21) we find that impedance between the two is given by

Z12(s) =
1

sC1
+

R/sC2

R+ 1/sC2
(2.5.7)

where A is the surface area of the detector and the two capacitances and the resistance
are given by

C1 =
εrε0A

d
, R =

d

σA
, C2 =

ε0A

g
. (2.5.8)

Here, Z12(s) takes the form of a capacitor in series with a parallel coupled resistor and
capacitor. Consequently, to derive the induced signal after connecting external electrical
components, we can first calculate the currents induced on the grounded electrodes.
Then, we can impress these currents as ideal current sources in the equivalent circuit of
of the detector, to which we attach the external impedance elements [55]. Typically, this
step is executed using an analog circuit simulation software program such as LTSpice [83].
In Fig. 2.26 the equivalent circuit of the system is shown where the two electrodes are
terminated using impedance elements Zc and Za for the cathode and anode, respectively.

Alternatively, we have integrated the external impedance at the level of the weighting
potential Ψ2(x, t) by including it in the FEM calculations. In COMSOL®, this can be
achieved by using the Terminal condition on the electrodes, which allows us to interface
with the Electrical Circuit module, where we can define a linear network comprising
interconnected discrete electrical components. The connection between the terminal and
the linear circuit is established using the External I vs. U coupling. Subsequently, we
apply the voltage (ramp) pulse VwΘ(t) at the specific location where we wish to determine
the induced signal, for example, after the lumped impedance Za connected to electrode
2. Taking Zc and Za as two 50 Ω resistors we calculate the signal after Za from an
Townsend avalanche inside the gas gap using both approaches. The comparison can be
found in Fig. 2.27, where the calculation for the equivalent circuit was performed using
LTSpice. With an average absolute difference of 5.32% between the two solutions, the
methods are demonstrated to be compatible. However, the complete weighting potential
description performed better in capturing the electron peak compared to the general
circuit approach. This improvement can be attributed to the LTSpice model’s limited
sampling of the electron peak of the injected currents.
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Figure 2.26: The equivalence circuit of the geometry shown in Fig. 2.12, with two
added impedance elements. The induced signal on both electrodes obtained through the
weighting potential formalism can be injected as ideal currents into the circuit to obtain
the effect of the external elements and the cross-coupling between the two electrodes.

2.6 Summary

Materials with a finite conductivity are increasingly being incorporated in particle de-
tectors for various purposes, including enhancing their robustness and optimizing their
performance. When these materials are introduced into the detector design – or are
inherent to the detector’s medium, as is the case with undepleted silicon sensors – the
total induced signal in the readout electrodes is a superposition of two contributions:

• Prompt component: the direct induction of current on the electrode from the
movement of charged particles within the drift medium. In this contribution, the
conductivity of the resistive elements is inconsequential, as they function as if they
were perfect insulators.

• Delayed component: the current that comes from the time-dependent reaction
of the resistive materials due to their finite conductivity.

The contribution from the former component is captured by the Ramo-Shockley theo-
rem, which allows us to calculate the current induced by an externally impressed charge
density on any grounded electrode by using a so-called weighting potential. Given detec-
tor architectures containing resistive elements, the weighting potential becomes dynamic
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Figure 2.27: Comparison of the equivalent circuit description with the formulation
using the time-dependent weighting potential, which includes the impact of the external
impedance elements. The graph displays the induced current after passing through the
50 Ω resistor connected to the anode for both methods.

owing to the medium’s finite conductivity. Since solutions are obtainable for only a lim-
ited group of primarily parallel plate detector geometries using analytical techniques, a
numerical approach is needed to describe the broader range of resistive readout structures.

The finite element method approach facilitates the computation of time-dependent
weighting potentials for virtually arbitrarily shaped resistive readout structures. This is
achieved by removing all externally imposed charge densities, applying a rapid voltage
ramp to the electrode under examination, and grounding all other electrodes. The inte-
gration of this method with microscopic modeling tools, such as Garfield++, enables the
calculation of the response of complex detector geometries that include resistive media.
Different techniques can be employed to expand the applicability of this approach to
encompass a wider range of cases:

• Coordinate mapping allows for the accurate representation of the boundary condi-
tions related to the resistive elements in large area systems.

• The application of junction conditions instead of the meshing of thin resistive layers
reduces the number of elements needed during the solving of the electrodynamics
system.

• The inclusion of the impact of an external linear impedance network on the signal
formation within the weighting potential can be achieved either by directly incor-
porating the impedance elements within the model geometry or by interfacing the
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electrodynamics solver with a general-purpose circuit simulation program during
the weighting potential solving step.

For a toy model representation of a 10×10 cm2 resistive plane MicroMegas, it was shown
that the first two points allowed for a reduction of the computation time by more than
one order of magnitude. The overall numerical methodology shows good agreement when
benchmarked against analytically derivable toy models.

An alternative approach for characterizing a readout structure that is AC-coupled
with a thin resistive layer is presented by the two-dimensional Telegraph equation (or
the Transmission line equation in the one-dimensional case). The solution to this equation
approximates the diffusion of charge inside the resistive sheet by using a capacitance of
the layer to the ground frame. While the Telegraph equation accurately captures the
late-time behavior of the signal shape (t > Rc), it does not faithfully represent the initial
part when compared to the discussed extended form of the Ramo-Shockley theorem.
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Chapter 3

Noise in detectors containing
resistive elements

The preceding chapter covered the principles of signal induction in detectors containing
materials with finite conductivities. Besides playing a part in signal formation, rate-
capability, and discharge protection, these materials contribute to the background noise
generated by the system. Particle detectors are susceptible to various sources of noise
coming from statistical fluctuation in the devices themselves and from the external cir-
cuits connected to them. These unavoidable fluctuations are superimposed on the induced
signals and, therefore, pose a practical limit on the signal-to-noise ratio, which can reduce
the measurement accuracy of the device. Given the growing complexity found in modern
detector designs that incorporate resistive elements, there is a need for a comprehensive
numerical technique to evaluate the impact of noise originating from resistive materials.
This chapter introduces an approach based on the finite element method for computing
the thermal noise power spectral density, relying on the self-impedances of the readout
electrodes. The accuracy of this methodology is validated through comparison with an-
alytically solvable systems, and its application to a resistive plane MicroMegas geometry
will be discussed. The contents of this chapter are presented, for the most part, in our
publication [84].

3.1 Noise Characterization

3.1.1 Noise power spectrum

Stochastic processes inside the material of the system – the random movement of the
atoms and molecules of which the matter is comprised – generate a background of current
or voltage fluctuations around a baseline value n0. Given the situation depicted in Fig.
3.1 where a noise signal n(t) is observed over a time interval 0 ≤ t ≤ T , a useful quantity
to quantify the noise is the variance of the fluctuations [6]

σ2n = n2 − n̄2 =
1

T

∫ T

0
(n(t)− n0)

2 dt , (3.1.1)

63
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Figure 3.1: Noise sampled at a rate of 20 GHz at the output of the front-end circuit
connected to a detector readout electrode.

where commonly the mean value n0 is taken as zero. For most application it is beneficial
to characterize the frequency content of the noise by going to the Fourier domain. In the
case of a finite value of T , the signal can be characterized using a finite set of discrete
frequencies fl = l/2πT for l ∈ N0. However, in the limit T → ∞ the distribution of fl
becomes continues, allowing us to define a noise power spectrum w(f). This quantity
signifies the contribution to the variance of the noise given a frequency interval ∆f . As
a result, the variance of the noise is given by

σ2n =

∫ ∞

0
w(f) df =

1

2π

∫ ∞

0
w(ω) dω , (3.1.2)

with frequency f = ω/2π [6]. From the above equation we note that since n(t) has the
dimensions of a current or voltage such that w(f) has the dimension A2/Hz or V2/Hz,
respectively, which denotes a power density.

3.1.2 Johnson-Nyquist noise

In a resistive material free charge carriers exhibit random motion driven by their thermal
kinetic energy. This effect was already contemplated by A. Einstein in 1906 where for a
resistor in thermal equilibrium there would be a noise voltage signals between the resis-
tors ends due to the Brownian movement of the free charges [85]. This phenomena was
initially observed in 1928 by J. B. Johnson in [86], briefly after which the thermal noise
power spectrum was derived by H. Nyquist [87]. In principle, external noise sources,
such as those originating from the readout electronics, can be reduced to arbitrary levels.
However, the thermal noise (or Johnson-Nyquist noise) associated with resistive elements
in the detector is inherent to the device itself and therefore irreducible.
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Figure 3.2: Noise generator produces a power spectrum wv(f) (left panel) or wi(f) (right
pannel).

The original derivation of H. Nyquist of the resulting noise power spectrum is per-
formed by considering two resistors connected to the endpoints of a lossless transmission
line and assumes them to be in thermal equilibrium. The result follows from counting
the vibrational modes of the electromagnetic waves after suddenly shorting both ends of
the line and noting that each mode carries an average energy of

ϵ(ω) =
ℏω

eℏω/kbT − 1
, (3.1.3)

with ℏ being the reduced Planck constant, T the absolute temperature and kb the Boltz-
mann constant. In the classical limit, i.e., ℏω ≪ kbT , the energy per mode can be taken
as kbT . As a result from the counting the derived noise power spectrum wv (wi) for the
voltage (current) fluctuation is given by [87]

wv(f) = 4kbTR (3.1.4a)

wi(f) =
4kbT

R
, (3.1.4b)

which is known to generate white noise, i.e., the spectrum is frequency independent. As
shown in see Fig. 3.2, the outcome can be represented as a voltage (current) source in
series (parallel) with the an ‘ideal’ resistor R. If we have a general network with discrete
resistive elements rather than a single resistor, and the total impedance seen by the
terminals is Z(f), then the noise power spectrum can be written as

wv(f) = 4kbT Re[Z(f)] (3.1.5a)

wi(f) = 4kbT Re

[
1

Z(f)

]
, (3.1.5b)

which again is formulated in term of a noise source connected in series or in parallel with
the impedance network, as depicted in Fig. 3.3.
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Figure 3.3: Noise characterised by the power spectrum of Eq. 3.1.5 is generated by the
general passive network.

The above relations can be proven as follows: we consider the passive linear network,
such as the one shown in Fig. 3.4, whereN nodes are connected byN(N+1)/2 impedance
elements Zmn(f) for m,n ∈ {1, 2, . . . , N}. Without loss of generality, the Zmn(f) can
be decomposed into a real resistance Rmn(f) and a general inductive element iFmn(f),
with Fmn(f) being the so-called reactance. The power spectra of the noise currents imn

from the resistors are

wmn(f) =
4kbT

Rmn(f)
= 4kbT Re

[
1

Zmn(f)

]
. (3.1.6)

For simplicity we will mostly truncate the frequency dependence for what follows. Fol-
lowing Sec. 2.2, the externally impressed currents in are related to the voltages un on
node n by the impedance matrix Ẑ following

un =
N∑

m=1

Znmim , (3.1.7)

or the inverse

in =
N∑

m=1

Ynmum , (3.1.8)

where we have used the admittance matrix Ẑ = Ŷ −1, the entries of which are related to
the impedance elements by Eq. 2.2.24. Let node n = 1 be the point where we intend to
measure the voltage noise fluctuations. When we introduce a current I0 at this node, we
find the related voltage v1 = Z11I0 at this point, where we have the network impedance
Z = Z11 = R11 + iF11. Therefore we find a noise power spectrum of

wv(f) = 4kbTR11(f) = 4kbT Re [Z11(f)] . (3.1.9)

If instead we place currents imn and −imn on nodes m and n respectively, the voltage
on node 1 would read v1 = (Z1m − Z1n)imn. Repeating this process by placing current
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Figure 3.4: Schematic representation of a general passive network where with intercon-
nected nodes using resistors Rmn and reactance elements Fmn.

sources on all the nodes, the outcome becomes

v1 =
N∑

n=1

Z1ninn +
N∑

n=1

N∑
m ̸=n=1

(Z1n − Z1m) imn . (3.1.10)

As a next step, we can write the variance of voltage v1 in terms of the variances wmn of
the currents

wv =
N∑

n=1

|Z1n|2wnn +
N∑

n=1

N∑
m ̸=n=1

|Z1n − Z1m|2wmn (3.1.11)

= 4kbT

N∑
n=1

Re

[
1

Znn

]
|Z1n|2 + 4kbT

N∑
n=1

N∑
m ̸=n=1

Re

[
1

Zmn

]
|Z1n − Z1m|2 , (3.1.12)

which is the power spectrum as seen from node 1. Inserting the definition for Ymn we
can write the expression as

N∑
n=1

1

Znn
|Zn1|2 +

N∑
n=1

N∑
m̸=n=1

1

Zmn

(
|Zn1|2 − Zm1Z

∗
n1

)
= Z∗

11 , (3.1.13)

in which we employ the notation ∗ to denote complex conjugation. Here we have used
the identity

N∑
m=1

YnmZmk = δnk . (3.1.14)
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After additional expansion, Eq. (3.1.9) reduces to Eq. (3.1.11). Once more Nyquist offers
an elegant derivation of this result by considering a resistor connected to one end of a
lossless transmission line while a complex impedance Z(f) = R(f) + iF (f) is connected
to the other end and assuming thermal equilibrium. From this Eq. 3.1.5 directly follows.

These results identify the complex impedance Z(f) as seen from the input terminal
of the readout electronics as the key quantity defining the noise power spectrum in
structures with distributed passive materials. If our detector shows a linear response to
a signal applied at a terminal, it indicates that a complex impedance can fully capture
its behavior. Hence, to find the thermal noise from a general detector, we have to
know its complex impedance. We will see below that this quantity can be determined
either through theoretical analysis or measurement. While analytical calculations suffice
for some simplified geometries, numerical simulation programs are essential for general
detector geometries.

3.2 Numerical determination of noise power spectra

This section presents a methodology for computing the noise power spectrum for arbitrary
detector structures. The numerical approach is subsequently validated by comparing it
against example resistive structures with closed-form analytical solutions.

3.2.1 Description of numerical methodology

Let us consider the system depicted in Fig. 3.5, whereN ideally conducting electrodes are
embedded in a linear anisotropic medium characterised by its 3× 3 frequency dependent
permittivity matrix ε̂ and conductivity matrix σ̂. In analogy to the arguments presented
in Sec. 2.2, the impedance matrix Ẑ relates the applied voltages and corresponding
currents between electrodes m, n ∈ {0, 1, . . . , N}. To obtain the self-impedance Znn(ω)
as seen from the terminal of electrode n, we impose the following Dirichlet boundary
conditions to the system:

Vm := ϕn(x, ω)|x∈Sm = V δmn , (3.2.1)

where all electrodes other than the one under study are grounded. If we work under the
premise that inductive effects are negligible, Maxwell’s equations (2.1.2) in the Fourier
domain reduce to

∇ · jn(x, ω) = −iωρn(x, ω) (3.2.2a)

jn(x, ω) = (σ̂(x, ω) + iωε̂(x, ω)) ·En(x, ω) + je(x, ω) (3.2.2b)

En(x, ω) = −∇ϕn(x, ω) (3.2.2c)

where the subscript n denotes the solving of the system for electrode n. This set of
equations can be solved in the frequency domain using FEM toolkits. Consequently,
we obtain the solution for the current density jn(x, ω) of the problem, allowing us to
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Figure 3.5: Illustration of the experimental and numerical strategies for obtaining the
self-impedance Znn of electrode n. The frequency-dependent currents Im(ω) flow through
the surfaces Sm of the electrodes as a potential V is applied to terminal n.

subsequently calculate the current In(ω) flowing through the surface Sn of electrode n
out of the system. Given that I(ω) = V (ω)/Z(ω) we have

Znn(ω) =
Vn∫

Sn
n̂ · jn(x, ω) dS

, (3.2.3)

where the unit vector n̂ is normal to the surface of electrode n. Note that the same
techniques discussed in Sec. 2.5.2 can be applied to perform computations for large area
structures. Alternatively, given that the content of the admittance matrix is captured by
the dynamic weighting potential, the self-impedance can calculated following Eq. 2.2.23,
where in general we would determine the weighting potential numerically.

In practice, we can experimentally obtain Znn(f) by placing a wire between electrode
n and the voltage source with which we apply a potential V , as shown in Fig. 3.5. With
this experimental setup we can perform a frequency-sweep analysis of the current In(f)
flowing through the wire. This strategy can be reflected in the numerical simulations by
the representation of the connecting wire. This can take two forms:

• The wire can be represented as a physical entity within the system’s geometry.

• By interfacing the EM solver with a discrete circuit solver module the wire can be
treated as a virtual component. Using the DC voltage source of the module, the
potential V can be applied to terminal n resulting in the computation of In(ω) along
the connection. As described in Sec. 2.5.4, this approach allows a the integration
of a general external circuit into the calculation, in a straight forward manner.
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Figure 3.6: Left: Diagrammatic depictions of the example comprised of a capacitor
containing a homogeneous material with finite conductivity. Right: Equivalent circuit
diagrams of the system.

For both cases, the current In(ω) is calculated through the integral of jn(x, ω) over Sn.
This makes it sufficient to directly apply the potential to the electrode without loss of
generality. Dedicated FEM tools, such as the electric currents module in the COMSOL®

streamline this process by providing the self-impedance value for the specific electrode
directly after solving the system.

3.2.2 Toy model examples

To assess the accuracy of our numerical approach, we evaluate its ability to determine
the impedance for the electrodes of two example geometries with exact lumped circuit
representations. For these we compare the numerical results with the closed-form ana-
lytical representation of the self-impedance of the anode. Taken from Sec. 2.5.4 the two
systems we will study are:

• An a× a wide capacitor geometry with a gap size b containing a resistive material
between the capacitor plates that is characterised by its volume conductivity σ and
relative permittivity εr (see Fig. 3.6).

• The single-gap RPC structure of Sec. 2.3.3, where the gas gap of size g is separated
from the anode by an a× a wide resistive plate of thickness b, volume conductivity
σ and relative permittivity εr (see Fig. 3.7).

Following Eq. (2.2.23), one can show that both can be expressed in terms of a circuit of
resistors and capacitors [54].

Since the system in Fig. 3.6 can be treated as the limit case of the RPC geometry,
we will start with the solution of the circuit shown in Fig. 3.7 (right). Here we find that
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Figure 3.7: Left: Schematic representation of of the example system where a resistive
material is situated beneath a gas gap between two metal plates that run parallel to each
other. Right: The equivalent circuit representation of the detector geometry.

the configuration for the RPC corresponds to a series coupling of a capacitor C2 with a
parallel circuit composed of another capacitor C1 and a resistor R. Denoting the anode
as electrode 1, its self-impedance reads

Z11(f) =
1

2πiC2f
+

R

2πiRC1f + 1
, (3.2.4)

where the relation of the lumped parameters with the dimensions and properties of the
medium are given in Eq. (2.5.8). In Fig. 3.8 (left) the self-impedance of the anode in
the capacitor structure, i.e., limg→0 Z11(f), is shown superimposed on the corresponding
numerically acquired values using the methodology outlined in the preceding subsection.
For this, maximum absolute difference between the numerical and analytical result is
7 ·10−4%. The results for the RPC (g > 0) is depicted in Fig. 3.8 (right), where both the
analytical and FEM solutions are shown. For this system we find that the FEM solutions
are within 1.40% agreement with the analytical results.

3.2.3 Self-admittance of a pad electrode

Following the discussion in Sec. 2.4, it becomes evident that the parallel plate readout
architecture shown in Fig. 2.14 (right) – which is composed of a resistive layer AC-
coupled to the embedded readout electrodes – lacks an exact lumped element circuit
representation. If we consider the cathode plane as an approximation of a micro-mesh,
this geometry can be viewed as a toy model for the amplification and readout region
of a resistive plane MicroMegas. The readout plane can be segmented into perfectly
adjacent square pads of size w × w, positioned at a distance d below the infinitesimally
thin resistive layer located in the xy-plane. To reflect the finite size of the active area,
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Figure 3.8: A comparison between the numerical results (solid line) and analytical solu-
tions of Eq. (3.2.4) (markers). Top: Real and imaginary parts of the inverse impedance
Z−1
11 for the anode of a bulk resistive material placed between two metal electrodes with

dimensions a = d = 1 mm, conductivity σ = 1 S, and relative permittivity εr = 8. Bot-
tom: Admittance of the anode for the RPC geometry with parameters g = d = a = 1
mm, conductivity σ = 1 S, and relative permittivity εr = 8.

we impose the boundary conditions that ϕn vanishes at the edges of the resistive layer,
i.e., at (x, y) = (±a/2, y) and (x, y) = (x,±b/2), grounding all electrodes other than the
pad under study, and placing insulating boundary conditions at the remaining edges. To
cope with the large size of a = b = 10 cm, we used both the coordinate mapping and
junction condition techniques of Sec. 2.5.2. In Fig 3.9 the self-impedance on the pad
positioned at the center of the active area is shown for different values for the surface
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Figure 3.9: Real and imaginary part of the admittance of the central pad electrode for
w = 8 mm, a = b = 10 cm, g = 128 µm, and d = 80 µm evaluated for the different surface
resistivities: 100 kΩ/□ (full line), 10 MΩ/□ (dashed line), and 100 MΩ/□ (dotted line).

resistivities R. Here, we find that the real part of the inverse self-impedance is sensitive
to the value of R and that this dependence goes in the opposite direction for high and
low frequencies.

3.2.4 Noise after the amplifier

A useful quantity to characterise the noise behaviour of different amplifiers is the Equiv-
alent Noise Charge (ENC). This number corresponds to the amount of electrical charge
that, when introduced into the detector, produces a signal equal in amplitude than the
Root Mean Square (RMS) of the amplifier output noise [6]. By using the numerically
obtained noise power spectrum at the input terminal of an amplifier connected to the
pad electrode, we can establish the contribution of ENC originating from thermal noise.
Let the response of the amplifier be by given the transfer function gf(iω) with gain g,
then the current noise power spectrum transforms

wi(ω) → wi(ω)g
2|f(iω)|2 , (3.2.5)

at the output terminal of the front-end. The resulting ENC can then be calculated
through the variance of this distribution

ENC2 =

(
σv
g

)2

=
2kbT

π

∫ ∞

0
Re

[
1

Z11(ω)

]
|f(iω)|2dω . (3.2.6)

As we are now in a position to calculate the amplifier output noise, we just need an
expression for f(iω). As an example, let us take the Fourier transform of the n’th order
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Figure 3.10: Thermal noise contribution to the Equivalent noise charge (ENC) at the
output of an n’th order unipolar shaper connected to the central pad electrode as a
function of the peaking time. Here w = 8 mm, a = b = 10 cm, g = 128 µm, and d = 80
µm for various shaper orders: n = 1 (solid lines), n = 2 (dashed lines), and n = 4 (dotted
lines).

unipolar shaper of Eq. 2.3.43, which reads

|f(iω)|2 = (n!entp)
2[

n2 + (ωtp)
2
]n+1 , n ∈ N0 . (3.2.7)

Plugging this into Eq. (3.2.6) and performing the integration numerically we can evalu-
ate the ENC for different shaping orders and peaking times. Fig. 3.10 shows the thermal
noise impact on the ENC at the output stage of the amplifier. As expected, the cor-
responding ENC rapidly decreases as the surface resistivity increases. Indeed, the limit
case of R → 0 would correspond to a purely insulating medium and therefore free from
any thermal noise.
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3.3 Summary

Materials with a finite conductivity contribute to the current and voltage fluctuations
that form the background on which the induced signals are superimposed. Coming
from the random thermal motion of the free charges in these materials, it represents an
irreducible noise source inherent to the detector design. To quantify the magnitude of
this contribution the self-impedance needs to be obtained as the quantity describing the
thermal noise. We proposed a FEM approach to obtain the thermal noise power spectrum
for arbitrary detector geometries by performing a frequency-sweep of the electrode under
study. After validating the approach against toy model examples, it was subsequently
employed to compute the ENC at the output of an amplifier coming from the thermal
noise of a resistive layer in a resistive plane MicroMegas design.
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Part II

Detectors dominated by prompt
signal induction

77





Chapter 4

Ambiguity-free coordinate readout

As an elementary case of a detector structure where the prompt component of the induced
signal is predominant, we will consider a non-resistive readout structure in a Gas Electron
Multiplier device (GEM) [8]. In this detector sub-mm position determination is achieved
by collecting the amplified electron charge on sets of narrow-pitch anode strips and
performing a CoG calculation on the recorded charge distributions. Since this geometry
is effectively composed of perfectly insulating and ideally conducting materials, the basic
form of the Ramo-Shockley theorem applies, as given by Eq. (2.2.22). Starting from a
brief discussion on the spatial resolution using a Qr weighted CoG method for a one-
dimensional strip readout, we will continue with the description of the development of
a three-coordinate projective strip readout aimed at resolving ambiguities in high event
rate applications. The static weighting potential of the strip electrodes was computed
and, in conjunction with Garfield++, used to estimate the charge sharing between the
three coordinate planes, informing the design of the first prototype. After production, the
device was used to verify these results experimentally. This shall serve as an illustrative
instance of the utility of this firmly established framework, a tool that we aspire to
broaden in scope with the inclusion of resistive structures.

4.1 Position resolution of a one-dimensional readout

Structured electrodes can be found in particle detectors for the purpose of position de-
termination of the signal in the readout plane of the detector. The most elementary hit
reconstruction only requires a signal above a certain threshold on one electrode channel,
resulting in a binary outcome of either a hit or a miss. As will become apparent be-
low, it can be more beneficial to sample the collected charge distribution using multiple
electrodes. In this section, we will delve into the spatial resolution of a one-dimensional
anode, examining how it varies with factors such as the strip’s width, the spatial distri-
bution of the charge cloud collected on the anode, and the signal-to-noise ratio (S/N).
The ideas presented here are based of the work performed by P. Fischer [88, 2], which
will be extended with a discussion on the Qr weighting used in the Centre-of-Gravity
method.

79
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4.1.1 Best possible spatial resolution using a strip readout

The preceding chapter detailed that the signal observed in the electrode channels results
from the induction of current due to an externally impressed charge density, such as an
electron cloud, propagating through the drift medium within the detector. Once the
signal is integrated over its entire duration, it yields a measurement of the total charge
accumulated on that electrode, which by extension provides a sampling of the charge
cloud distribution collected on the anode. The spatial extent of this distribution arises
from a combination of factors, including the primary ionization pattern, field configu-
ration, and Gaussian broadening of the charge cloud caused by lateral diffusion. The
latter is a consequence of the random nature of the scattering process and has a stan-
dard deviation of σ = DT

√
d over a distance d with a gas-dependent transversal diffusion

constant DT [39]. Electrodes that intercept a portion of this distribution will generate
a discernible ‘signal’ when integrated if it is bigger then a predefined Threshold Level
(THL). First we will examine the ideal scenario of a noiseless and perfectly neighboring
electrode structure, the outcome of which can be extended to pad electrodes.

Let σs(x, y) denote the net surface charge distribution on the anode resulting from
an externally impressed charge distribution, then the total charge induced on the surface
Sk of electrode k ∈ Z is given by

Qk =

∫
Sk

σs(x, y) dS . (4.1.1)

For now we will limit ourselves to the case of perfectly adjacent readout strips with
width and pitch wx. To estimate the hit position x0 of the incident particle a multitude
of algebraic methods can be used [89]. A popular choice is the charge CoG method

xr =

∑
k kwxQ

r
k∑

kQ
r
k

, (4.1.2)

using weighting of the induced charge by an exponent r ∈ R+
0 . Towards the conclusion

of this section, we will revisit the general case for r, but for the subsequent discussions,
we will consider r = 1, which corresponds to the more conventional CoG form. By
employing a Fourier series the equation above can be reformulated as follows

xr =
wx

2
− wx

2

∞∑
m=−∞

Q
(
m

wx

) sin
(
mπ − 2πmx0

wx

)
mπ

= x0 −
wx

π

∞∑
m=1

Q
(
m

wx

) sin
(
mπ − 2πmx0

wx

)
m

(4.1.3)

where Q is the charge distribution in Fourier space and we normalize such that
∑

kQk = 1
[88]. The residual is thus given by

xε := xr − x0 =
wx

π

∞∑
m=1

(−1)m

m
Q
(
m

wx

)
sin

(
2πmx0
wx

)
. (4.1.4)
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Figure 4.1: Comparison of residual distribution as a function of the hit position for
different charge distribution widths.

Taking the variance of this error gives us the relation for the spatial resolution σres of
the strip readout [88]

σ2res =
1

wx

∫ wx/2

−wx/2
x2ε (x) dx

=
w2
x

2π2

∞∑
m=1

1

m2
Q2

(
m

wx

)
.

(4.1.5)

In case where the width of the total induced charge distribution is negligible compared to
the pitch of the strip electrodes, i.e., a binary readout, we can take the limit σs(x, y) →
δ(x)δ(y). As a result the spatial resolution updates to(

σres

wx

)2

=
1

2π2

∞∑
m=1

1

m2
=

1

12
. (4.1.6)

This limit case applies to detectors with low-granularity readouts where the charge col-
lection is confined to a single electrode. One such example is the CMS GEMs [90] where
a strip pitch of 455 µrad is used resulting in σres = 131 µrad, close to the measured
resolution of 137± 1 µrad [91].

Given that the transversal diffusion of the charge cloud in the gas volume is given
by a Gaussian distribution with a standard deviation σq, the Fourier transform of the
charge distribution can be written as

Qg(k) = exp
(
−2π2k2σ2q

)
. (4.1.7)

Substituting this into Eq. (4.1.4) yields the residuals depicted in Fig. 4.1, which vary
with the standard deviation of the distribution. This method possesses inherent limi-
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tations stemming from structured electrodes and threshold-based effects, resulting in a
periodic pattern in the reconstructed position – an observation first made with MWPC
[92]. As the distribution widens, information regarding the deposited distribution be-
comes increasingly shared with neighboring channels, leading to enhanced reconstruction
capabilities. This trend continues until, for σq → ∞, we observe xε → 0. However, in
practice, we must contend with a noise background originating from various sources and
limited sensitivities of the readout system, preventing us from reaching this ideal state.
Plugging Eq. (4.1.7) into Eq. (4.1.5) provides us with the expression for the spatial
resolution of a strip-segmented readout(

σres

wx

)2

=
1

2π2

∞∑
m=1

exp
(
−4m2π2σ2

q

w2
x

)
m2

, (4.1.8)

As a result, the spatial resolution is dependent on the width of the charge distribution on
the anode relative to the width of the strips. In the context of this noiseless example, it
can be regarded as the lower limit of achievable resolution using the CoG method. Fig.
4.2 illustrates the behavior of this relationship, showing that we achieve nearly perfect
reconstruction when σq exceeds half of the strip width.

If we instead consider the electron-ion pairs clusters in a drift gap of size g,formed
along the trajectory of a relativistic charge moving perpendicular to the readout plane,
each electron will cover variable distances 0 ≤ d ≤ g to reach the anode, undergoing
diffusion along the way. Without loss of generality, we can take a uniform distribution for
the initial heights in the gap. If we impose a constant DT over the electron’s trajectories
the distribution on the anode is then given by

σs(x) =

√
π|x|

[
erf
(

|x|
2σq

)
− 1
]
+ 2σqe

− x2

4σ2
q

2
√
πσ2q

, (4.1.9)

which in Fourier space reads

Qtrack(k) =
1− e−4π2k2σ2

q

4π2k2σ2q
. (4.1.10)

Here, the variance is given by σ2q := D2
T g/2, which is related to the maximal diffusion

from the electrons created at the top of the drift gap. In Fig. 4.2, the resulting spatial
resolution is shown as a function of the pitch of the readout strips. Since the distribution
in Eq. (4.1.9) is more peaked at the center compared to the Gaussian distribution, an
equivalent improvement to the spatial resolution would require a denser readout struc-
ture.

4.1.2 Spatial resolution and noise

Achieving the optimal resolution with a strip readout necessitates a careful alignment of
the readout pitch with the width of the charge distribution, especially in the presence
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Figure 4.2: Comparison of residual distribution as a function of the hit position for
different charge distribution widths.

of noise on the readout channels. The S/N establishes a lower limit on the achievable
resolution, which becomes dominant when σq ≫ wx/2. In such cases, the division of the
total charge over numerous channels results in small fractions per electrode, ultimately
impacting the reconstruction capability due to the dominating noise contributions. We
employ a simple Monte Carlo simulation to estimate the spatial resolution for different
S/Ns.

Consider a noise impulse, denoted as nk, occurring on electrode k so that the mea-
sured charge is given by Qk+nk. The noise distribution is characterized by its variance of
the common mode fluctuations < n2k >= σ2n, with a vanishing average value < nk >= 0.
We will disregard correlated noise sources, commonly referred to as common mode noise,
such as those produced by electromagnetic interference, and assume that the noise hits
in each channel are statistically uncorrelated, i.e., < nknl >= δklσ

2
q . We will express

S/N as the ratio between the total charge
∑

kQk = 1, and the standard deviation of the
noise fluctuations σn. In our specific example, we assume that the noise distribution in
each channel follows a normal distribution with the same standard deviation, σn. Fur-
thermore, this distribution is normalized with respect to the total amount of collected
charge, i.e.,

∑
kQk. A uniform THL is employed across all readout channels, usually de-

termined based on the noise level. This threshold is designed such that a channel is only
read out when the charge fraction exceeds its predefined value, thereby filtering the noise
hits. Sampling the initial cluster position from a uniform distribution over wx the spatial
resolution as a function of the strip pitch, charge distribution width, and S/N is depicted
in Fig. 4.3 for three different acceptance thresholds for the signals. As expected, the
best resolutions tend to be achieved with lower values of S/N. When facing elevated noise
levels, however, raising the THL can be beneficial up to a certain value, beyond which it
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severely limits the cluster size of the event, i.e., the number of neighboring channels that
cross over THL.

The experimental constraints on the gas choice and electric field configurations can
limit the freedom of tuning the width of the collected charge distribution. In addition,
sampling the signal in a densely packed readout structure requires many readout channels
to be read out. As previously discussed in Sec. 2.3.4, another approach involves incor-
porating an extremely thin layer of material with finite conductivity, allowing for signal
sharing among neighboring channels even with relatively large pitches of O(1− 10) mm.
This approach offers increased degrees of freedom for achieving optimal spatial resolution.
However, the bipolar signal results in a net charge of zero after integration, requiring the
use of peak signal amplitudes instead. This, in turn, leads to a non-Gaussian distri-
bution of charge information among adjacent channels, necessitating additional care in
determining the optimal spatial resolution in such cases.

4.1.3 Weighted Centre-of-Gravity method

We revisit the charge-weighted version of the CoG method as presented in Eq. (4.1.2).
In this approach, the value of r = 2 is utilized to enhance the precision of position recon-
struction in strip-based readouts, as outlined in Ref. [93, 94]. The previously explained
Monte Carlo simulation can be iterated for varying values of r > 1. This is done to
determine the optimal value of r as a function of the charge cloud width with respect to
the strip pitch.

In Fig. 4.4 (left) a map of the spatial resolution is displayed for various charge weight-
ing orders. Although there appears to be an improvement in position reconstruction for
values of r > 1, this improvement is constrained to values of r < 3, beyond which the res-
olution begins to deteriorate again. Furthermore, when the spatial extent of the charge
cloud is relatively small compared to wx, a higher weighting order will bias the posi-
tion reconstruction towards the center of the strip containing the bulk of the collected
charge. In such cases, the more conventional CoG method would be preferable since it
more accurately takes into account the small corrections made by the charge input of the
neighboring channels. The position resolution for the optimal σq/wx ratio is presented in
Fig. 4.4 (right) as a function of r. In this plot, we can observe that the most significant
improvements are achieved for higher S/N values as long as the THL does not excessively
limit the cluster size.

4.2 Induced signal on a two-dimensional strip readout

In the preceding section, we discussed the position resolution of a strip readout. In cases
where a sub-mm two-dimensional localization is needed, there are several approaches
available. One option is to employ a second detector that is rotated and positioned be-
hind the first one. Alternatively, a two-dimensional patterned readout electrode, such as
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Figure 4.3: The spatial resolution is assessed in relation to the charge cloud width with
respect to the pitch of a strip readout perfectly tiling the anode plane. This evaluation
has been conducted using the signal on nine adjacent strips for various Signal-to-Noise
ratios and channel threshold levels set at σn (top left), 2σn (top right), and 3σn (bottom).

pixels that have a pitch of hundreds of micrometres, can be utilized. Another approach,
as illustrated in Fig. 4.5, involves using two perpendicular sets of narrow readout strips,
named X and Y, positioned on top of each other and separated by insulating ridges,
typically made of Kapton®. This arrangement defines two readout coordinate planes,
where the collected charge is shared between them [95]. This projective coordinate read-
out scheme has been adopted for most GEM-based experimental setups; a comprehensive
summary of which can be found in [96]. While this setup offers the advantage of requiring
fewer readout channels compared to an equivalently performing pad readout structure,
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Figure 4.4: Left: Spatial resolution using the signal on neigh adjacent strips for a scan of
the CoG weighting orders and the relative charge distribution width. Here THL = σn and
S/N = 100. Right: The optimal spatial resolution that can be reached using different
CoG weighting orders, signal-to-noise ratios and THL of σn (full line), 2σn (dashed line),
or 3σn (dotted line).

Figure 4.5: Illustration of the two-dimensional strip readout used in the induction gap
a detector using a GEM foil as the amplification stage.

it may encounter limitations when operating in environments with high event rates and
high particle multiplicities, as we will explore in the next section.

We will examine the induced signal of the readout structure depicted in Fig. 4.5,
which is positioned within the 2 mm induction gap of a GEM detector. A cross-section
image of a so-called standard GEM geometry is given in Fig. 4.6 with dimensions specified
in Tab. 4.1. The electric field resulting from the potential difference between the cathode,
top and bottom of the GEM foil, and anode is given in Fig. 4.7.
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Figure 4.6: Top and cross-section image of a standard GEM foil taken with a Scanning
Electron Microscope (SEG) [97]. Here the double mask technique was employed during
the chemical etching manufacturing giving the characteristic double cone structure [98].

Figure 4.7: Electric field strength overlaid with streamlines (black) and potential con-
tours (white) from an applied potential difference of 325 V across the 50 µm thick hole.

4.2.1 Charge sharing between different coordinate planes

Given a series of 104 primary electrons originating from the same point at the top of the
2 mm drift gap above the GEM foil, the resulting signals from the secondary charges
induced on neighboring strips was calculated using Garfield++ and the weighting poten-
tial obtained using the FEM solution from COMSOL®. As a gas mixture 70% argon and
30 % CO2 was used at atmospheric pressure and an absolute temperature of 293.15 K.

After traversing their paths, the electrons that were successfully extracted from the
GEM amplification structure and that did not get lost through recombination end up
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Figure 4.8: Left: Density plot of the hit distribution sourced by electrons form the top
of the drift gap. The locations of the X and Y-strips are marked with the four coloured
X-electrodes corresponding to the induced signals and charge shown in the left panel
with the same colour. Right: Induced current on the top layer of strips color coded
following the left panel.

on the grounded readout anode. The arrival position distribution of the electrons on
the anode of such an event is given in Fig. 4.8. Since the integrated charge of the total
induced signal is equal to the collected one, it becomes apparent that the fraction of
total induced charge that is shared between the X and Y coordinate plane is not only
determined through their respective coverage area of the anode surface. Instead, due to
the elevated X-strips, the increased concentration of electrons along the y-direction on
them is caused by the field lines locally focusing the collected charge onto the top strips.
This degree of ‘focusing’ depends on virtually all the parameters of the strip readout
structure, including the separation distance between the X and Y-layer of strips.

4.2.2 Induced signal on neighboring strips

In Fig, 4.8 (right), the induced signals are displayed for the X-strips highlighted in Fig. 4.8
(left). Since the bottom metal layer of the GEM shields the readout from the electric field

Table 4.1: Geometry parameters of the standard GEM geometry.

Parameter Value
Cu thickness [µm] 5

Polyimide thickness [µm] 50
Outer diameter [µm] 70
Inner diameter [µm] 50

Hole pitch [µm] 140
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Figure 4.9: Left: Induced current on the bottom layer of strips with index k denoting
the strip centered at y = −600 + k400 µm. Right: Cumulative induced current as a
function of time.

produced by the charges moving above it, the signal starts as soon as the electrons move
into the induction gap. It is worth noting that while the majority of charge amplification
occurs at the bottom edge of the GEM hole, there may still be minor, albeit arguably
negligible, traces of ion movement that can be observed. Similar to the observation made
in Sec. 2.1.1, the signal in the readout channels collecting the bulk of the charge gets
more peaked as the charge clouds move closer to it, coming from the increased weighting
field strength in the region close to the strip. In addition, there is an extra feature at the
end of the signal shape where it undergoes a polarity switch. This change in sign is a
result of nearby electrons moving past the strip to be collected at the Y-layer, a feature
that is absent from the induced currents on the bottom layer of strips, as shown in Fig.
4.9. The cross-talk current changed to a positive signal since no charge was collected on
the outer strips. In the work of M. Ziegler we can find experimentally obtained signal
shapes for a triple GEM detector equipped with a one-dimensional strip anode that was
read out using a custom-developed amplifier with a 0.5 ns rise time [18]. An example of
these waveforms, recorded during the irradiation of the detector with a 55Fe X-ray source
(see Sec. 4.3), is shown in Fig. 4.10.

4.3 XYU Gas Electron Amplifier

When working with a two-dimensional projective strip readout the number of channels
scales linearly with the active area of the detector, instead of the quadratic scaling for
pad-type electrodes. While this reduces the required electronics inventory, as one goes to
large detection areas and high-rates events can overlap in time, resulting in ambiguities
in the position determination with so-called ghost hits. An example is shown in Fig.
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Figure 4.10: Left: Measured induced current in four neighboring strips sourced by an
incident 55Fe photon. Right: Integrated charge flowing from the strips to ground [18].

Figure 4.11: Schematic diagram of the ambiguous reconstruction from two contempora-
neous events using a two-dimensional strip readout, resulting in ghost hits.

4.11. For charged particle trackers, this issue can be mitigated by amalgamating data
from multiple aligned detectors, frequently installed at different angles. However, in
scenarios involving neutral radiation or single photon detection, as exemplified by the
COMPASS Ring-imaging Cherenkov (RICH) detectors [99], this approach is not always
feasible. While many approaches are available to remedy this, we propose the use of an
additional third coordinate plane equipped with one-dimensional strips. The discussion
of its development in the remainder of this chapter is based on our related publication
Ref. [100], outlinging our findings.
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4.3.1 A three-coordinate strip readout

Various methods have been used to permit the operation of MPGDs in high-rate envi-
ronments. For instance, in the central region of the upgraded GEM-based tracker within
the COMPASS spectrometer, the traditional strip readout has been replaced by a grid
of small pads, each with individual charge readout capability, due to its location at the
highest beam flux [101]. While effective for ambiguity-free reconstruction of multiple
events, this method increases the number of electrode channels from which the signals
need to be retrieved and processed. In an alternative scheme, the so-called hexaboard,
the anode consists of an array of hexagonal pads interconnected on the backplane in three
sets of readout strips at angles of 60◦ from each other [102]. Permitting to reconstruct
multiple events a few mm apart [103], the difficulty in manufacturing reliable multi-layer
printed circuit boards with thousands of metalized holes has discouraged the adoption of
the scheme for large-size detectors. In the context of R&D efforts for the ATLAS Muon
System upgrade, a different method was developed for the resistive strip MicroMegas
detector where a three-coordinate plane readout equipped with thin strip electrodes was
embedded in the insulating layer below the resistive anode, through which the signal is
coupled [104]. However, due to the resistive layout, this methodology only applies to
moderate particle rates.

Driven by the increasingly demanding requirements of particle physics experiments at
high luminosity colliders, we developed a modified version similar to the one described in
Ref. [104], yet where direct charge collection is conducted on three projective coordinates
for each detected event. Similar to the strip readout shown in Fig. 4.5, this readout
structure, named the XYU-GEM, has two perpendicular sets of readout strips (X and Y)
and an additional one below at 45◦ to the others (U) separated by thin insulating ridges.
The active area of the detector measures 10 × 10 cm2 and is equipped with a total of
256 readout strips, each with a pitch of 400 µm in both the x and y-directions, matching
the pitch specified in [105]. Furthermore, there are 511 strips with a pitch of 283 µm in
the U direction. As shown in Fig. 4.13, this ensures a discrete symmetry every 400 µm
in the x- and y-direction, with a diagonal strip running through the vacant space of the
upper two layers. Although the ideal selection would have been a 60◦ angle, this first
prototype was made using pre-existing mechanical structures. Alongside the additional
information gained from adding this bottom coordinate layer to resolve hit ambiguities
or spatial resolution improvement, one can envision other applications, including the
exclusive use of the U strips for triggering purposes. For the latter purpose, we can take
the patterning of the third layer to be relatively coarse and are not confined to using
only strip-shaped electrodes.

4.3.2 Simulation and manufacturing of readout structure

Using a standard triple-GEM amplification structure [105], a schematic of which is shown
in Fig. 4.12, the detector was operated using the standard COMPASS tracker gas mixture
of argon 70% and CO2 30% at atmospheric pressure and room temperature. The high-
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Figure 4.12: Schematic representation of the triple-GEM detector design used in this
chapter. Here the total detector gain is achieved using three amplification stages . Not
drawn to scale.

voltage is distributed to all electrodes through a resistor chain resulting in the fields
quoted in Table. 4.2, yielding a detector gain of O

(
104
)
. We have seen in the Sec. 4.2

that the distribution of the charge over the three readout plane is in part driven by the
local focusing of electrons on the top layers of strips. Therefore, a Monte Carlo simulation
was conducted using COMSOL®, and Garfield++ to estimate these sharing ratios across
the parameter space of potential configurations to estimate the optimum design geometry
for the three sets of readout strips to provide near-equal collected charge.

The bottom metal foil of GEM 3 will shield the readout from the electric field of the
charge carriers propagating through the regions above it. Therefore, by approximation,
we can reduce the model to that of the electrons being injected inside an induction gap
bounded from above by a uniform metal plate. This is because the corrections for the

Table 4.2: Gap sizes and applied electric field strengths in the different regions of the
triple GEM detector using a resistor chain.

Region Height |E|
Drift 3 mm 2.5 kV/cm

GEM 1 50 µm 80.7 kV/cm
Transfer 1 2 mm 3.7 kV/cm
GEM 2 50 µm 73.5 kV/cm

Transfer 2 2 mm 3.7 kV/cm
GEM 3 50 µm 64.6 kV/cm

Induction 2 mm 3.7 kV/cm
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Figure 4.13: Schematic representation of the XYU anode readout board.

presence of GEM holes can be considered negligible, as the induced signals are most
significant when the electron is in close proximity to the readout strips. In addition,
to estimate the global charge sharing of the readout given uniform irradiation of the
entire active area, we can take the initial positions of the electrons entering the induction
region to be uniformly distributed over the xy-plane given the unequal pitch of the
discrete symmetry of the readout and the hole pattern of GEM 3. The same steps
were repeated as in Sec. 4.2 for different strip widths and separation distances between
the coordinate planes. The optimized parameters are listed alongside the ones used for
production in Table 4.3. Here, the optimized width of the X and Y-strips that ensure
equal sharing were uncovered to be 50 µm and 150 µm, respectively. However, with
the available manufacturing procedure, it was found that too fine strips would tend to
detach from the insulator during the Kapton® etching process. As a result, their widths
were increased to 80 µm and 180 µm, resulting in an unequal charge sharing. Better
control over the manufacturing may allow the following devices to approach the optimum
layout. Fig. 4.14 shows the result of the charge-sharing calculation for the optimized
and manufactured design.

The XYU readout board manufacturing process was developed by CERN’s Micro
Pattern Technology (MPT) group aimed to overlay three overlapping sets of metallic
strips at different angles, while being separated by thin insulating ridges. For the upper
two layers, the insulating material between the neighboring strips in the same coordinate
plane was removed, exposing the copper strips of the layer below. As can be seen in
the inset in Fig. 4.13, this ensures direct collection of the shared electron charge on the
three electrodes. This structure differs from those used in other devices, e.g., the resistive
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Figure 4.14: Simulated induced charge as a function of time for the optimized (left) and
actually manufactured (right) XYU readout geometry.

MicroMegas to achieve two-dimensional readout exploiting capacitive couplings through
insulators, that could charge up and affect the high-rate performances [34].

The production of the board involved multiple processing steps, which will be briefly
outlined here:

1. The bottom layer (U) is photolithographically patterned on a single-side copper-
clad 12.5 µm polyimide foil; the layer is laminated on a 1.6 mm thick fiberglass
plate, that will constitute the main supporting board.

2. The middle layer (Y) is then patterned on the bottom side of a double-side copper-
clad thin polyimide foil and coated with an etchable glue 10 µm thick; the U and Y
layers are pasted together under pressure. To allow the realization of the metallized
holes contacts for the connector, the copper layer thickness for the X strips was
increased to 15 µm. Here our calculations show that this increase over the 5 µm
design value slightly affects the sharing.

Table 4.3: Optimized design and practical manufactured geometry.

Optimized Manufactured
Strips X Y U X Y U

Pitch [µm] 400 400 400 400 400 283
Width [µm] 50 150 350 80 180 220
Insulator 25 12.5

thickness [µm] 12.5 22.5
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Figure 4.15: Schematic cross-section and a close-up view of the three overlapping strips.

3. An additional photolithography step is used where the top copper layer is patterned
to realize the X strips. (iv) The composite structure then undergoes several stages
of polymer and glue etching to open the channels for charge collection on the three
layers of metal strips.

Fig. 4.15 provides a close view of the overlapping strips, and a schematic cross-section
of the structure.

Based on the experience acquired with the prototype, a redesign of the geometry of
strips and insulating layers could be envisaged to get closer to the desirable equal sharing
of charge between the three coordinates. In addition, the strip pitch on the U projection
should also be increased to the standard 400 µm to provide a more uniform response.

4.3.3 Experimental measurements

For the measurements in the laboratory the detector was equipped with strip readout
electronics based on the ATLAS/BNL 64-channels VMM3a chip [106] with a peaking
time set at 200 ns, and using the RD51 Scalable Readout System (SRS) [107] digitizing
the input charge of all strips [93]. Developed by the RD51 collaboration [108], the
SRS system is suitable for use with both small R&D setups and mid-sized experiments
using MPGDs. For confirmation, the signal current from different layers was measured
with pico-amperometers and the bottom side of the last GEM was read out with a
Multichannel Analyzer. To irradiate the detector, we used X-rays from an uncollimated
55Fe radioactive source1 which, unless stated otherwise, was placed at a sufficient distance

1The decay process of 55
26Fe to 55

25Mn∗ (half-life of 2.747 years) through electron capture

p+ e → n+ νe ,

leaves a vacancy in the K shell. This process leads to a relaxation chain, which results in photon emission
with an energy of EKα = 5.90 keV (EKβ = 6.49 keV) with a probability of 24.4% (2.86%) [10]. For
simplicity we will only refer to the 5.9 keV emission for what follows.
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Figure 4.16: Spectra of pulse heights obtained for X-rays with an energy of 5.9 keV on
the X, Y, and U projections.

to cover the full active area during the measurements.

The PH spectra recorded on the three projections on exposure to a 5.9 keV 55Fe
X-ray source are shown in Fig. 4.16. This well understood structure of the spectra is
the result of the primary ionisation process by photoelectric absorption process with the
argon atoms. Here, the photon has a probability of roughly 80% to liberate an electron
from the K shell [109], leading to either radiative or non-radiative processes (Auger ef-
fect), which give rise to the emission of a fluorescence photon or an electron, respectively.
Depending on the location of the initial photoabsorption, the fluorescence photon may
ionize another atom or molecule within the gas or escape from the detector without in-
teraction, giving rise to a secondary escape peak at lower PH values alongside the main
photo peak [2].

As expected due to the manufacturing limitations mentioned earlier, the detector,
built according to the specifications in Table 4.3, shows uneven charge distribution among
the coordinate planes. Specifically, the charge sharing in the U plane is lower by about
a factor of two. The relative ratios between the main peaks are, in order from the top to
the bottom layer, 42%, 38%, and 20%2, corresponding well to the simulations done using
the actual production parameters. Furthermore, Fig, 4.17 shows a good correlation of the
charges on X and Y and, respectively, on X and U coordinates. Since the charge sharing
is significantly influenced by the higher density of field lines on the top layers of strips,
the resulting sharing ratios can be modified by applying small polarization voltages to

2This measurement was seconded by a direct current measurement of the three coordinates resulting
in ratios of 45%, 34%, and 21%.
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Figure 4.17: Correlation of the pulse heights between the X and Y-layer (left), and the
X and U layer.

the anode strips; with +15 V on the U strips, the charge on the three coordinates is
almost equal. This is was also found through simulation.

For each event contained in the main 5.9 keV peak, we have deduced the cluster size
from the Root Mean Square (RMS) of the number of adjacent channels going over the
threshold. After considering the strip pitches of 400 µm for X, 400 µm for Y, and 283 µm
for U coordinates, the cluster size is shown in Fig. 4.18 (left) for each coordinate plane.
As anticipated, the U distribution is slightly narrower due to its smaller total collected
charge. However, this variance is not expected to significantly impact the localization
capabilities of the detector. The average value for X and Y, around 375 µm, align with
measurements previously observed in GEM detectors utilizing conventional XY projec-
tive strip readouts [105]. While the results of the three coordinates are encouragingly
close, an appreciable disparity when examining the cluster size in U compared to the
others, which necessitates further investigation.

Due to its intentional design, the readout system is intrinsically overdetermined, the
U coordinate of an event within the photopeak can be deduced using the X and Y projec-
tions. We analysed the residual distribution of the difference between the reconstructed,
U(X,Y), and measured position in U. This revealed a small distortion of the correlations,
probably due to the angle of the U strips slightly deviating from 45◦. After correcting
for this, the result of the calculation is shown in Fig. 4.18 (right), where a Gaussian fit
of the distribution estimates a Full Width at Half Maximum (FWHM) of 127 µm. To
improve the event selection, by reducing the correlation between the position in U and
the XY-readout, only events within this distribution that deviate by a distance of no
more than a few times the strip pitch from zero are considered.
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Figure 4.18: Left: Root Mean Square (RMS) of cluster sizes for the X, Y, and U layer.
Right: Calculated U-projection distance relative to hit positions determined from X
and Y coordinates, utilizing the formula U(X,Y) = 511−X − Y , with 511 representing
the total count of U strips.

4.4 Summary

With the introduction of a third coordinate layer, the XYU-GEM aims for an almost
ambiguity-free reconstruction of multiple coincidental tracks that can occur with high
multiplicity events and increased particle fluence. Contrary to other solutions, such as
pad readout structures and multi-layer strip readout capacitively coupled to a resistive
anode structure, the XYU-GEM directly collects the electron cloud on three stacked
layers of strips. The distribution of charge over the coordinate planes is influenced by
the focusing of field lines on the electrodes in the top two layers, contingent on factors
such as electrode configuration, relative pitch, width, copper thickness of the strips in
different coordinate planes, and the inter-distance between the planes.

An optimal parameter set ensuring equal charge sharing was determined through
simulations, informing the production of the first prototype. We have demonstrated the
prototype’s capability to detect and localize radiation. Due to production limitations,
changes were made to the production parameters, leading to the observation of an un-
equal charge sharing between the layers through both PH and current measurements.
This imbalance could be satisfactorily reproduced using the simulation. Based on the
experience acquired with the prototype, a redesign of the geometry of strips and insu-
lating layers could be envisioned to get closer to the desirable equal sharing of charge
between the three coordinates, e.g., the strip pitch on the U projection should also be
increased to the standard 400 µm to provide a more uniform response.



Chapter 5

Robust precise timing PICOSEC
MicroMegas

Considering the sensitivity of timing applications to the signal’s leading-edge, it remains
uncertain a priori how the timing performance might be impacted when introducing
a thin resistive plane with a certain surface resistivity in the readout of an MPGD.
This query brings to the forefront longstanding topics, such as the rate effect and signal
transparency of a resistive readout. In this chapter, we delve into the considerations that
guided the development of the first multi-channel resistive plane PICOSEC MicroMegas,
aiming for a sub-25 ps timing capability.

5.1 Concept and working principles

Apart from their conventional role in Time-of-Flight (TOF) systems for charged particle
identification, the LHC experiments are currently upgrading or developing fast timing
detectors to perform vertex separation in beam collisions with a high rate of overlapping
interactions (pileup). On such example can be found in the hermetic timing approach
of the CMS MIP1 Timing Detector upgrade, which will be positioned between the CMS
tracker and the calorimeters [28]. This is a crucial strategy to maintain the efficiencies of
the LHC experiments during the upcoming HL-LHC era [110]. In an ultimate scenario,
the HL-LHC will be able to achieve an instantaneous luminosity of 7.5 · 1034 cm−2s−1

with an expected average of ≈ 200 interactions per bunch crossing, spread over an RMS
time range of 180− 200 ps. Without appropriate measures, this unparalleled increase in
background is expected to result in a significant rate of misidentification of primary ver-
tices. Meeting this challenge involves the development of high-precision timing detectors
with a temporal resolution below 100 picoseconds with the ability to withstand substan-
tial levels of radiation exposure [26]. When the additional timing information that can
be gained from the integration of such detectors allows for the time-slicing of the tem-

1The acronym MIP stands for Minimum Ionizing Particle, denoting particles for which the mean
energy loss per unit of length dE/dx through matter is around the minimum value.

99
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Figure 5.1: Simulated event display of the simulated and reconstructed vertex positions
in space-time. Detectable vertex mergers that appear to occur when relying solely on a
position information-based reconstruction (indicated by yellow lines) can be effectively
resolved by incorporating MIP timing information (represented by blue markers). Here,
a MIP timing detector system with a timing resolution of 30 ps that covers the end caps
and the full 2π of the barrel of the CMS detector was assumed [28].

poral structures of the bunch crossings into, for example, 30-40 ps wide windows, the
number of primary vertices drops to the level of the Run-2 LHC pileup levels [28]. Fig.
5.1 showcased the advantage of this four-dimensional (3 + 1 D) reconstruction approach
from simulation. Given these stricter requirements on timing performance by upcoming
physics experiments it is prudent to further explore MPGD and semiconductor-based
sensors as potential fast timing detector technologies is prudent.

The PICOSEC MicroMegas (hereafter PICOSEC) detector concept is brought to
fruition through the implementation of a two-stage MicroMegas detector [9] where the
front window, typically made from a MgF2 crystal, coated with a photocathode serves as
a Cherenkov radiator [111, 112]. The gas volume is divided into two distinct regions by
the woven mesh within the bulk MicroMegas [113]: a pre-amplification region of ≈ 200
µm that stretches above it and a 128 µm amplification gap mechanically defined by pillars
between the mesh and the anode structure. With the thin gas volume, the probability
of ionization of the gas is minimized, where the likelihood of interaction in a gas gap of
size g is given by

P (g) = 1− e−
g
λ (5.1.1)

with λ−1 being the cluster density for charged particles. Rather, a relativistic charged
particle traversing the Cherenkov radiator produces ultraviolet (UV) photons, which are
converted into primary photoelectrons by the photocathode over an area equal to that
covered by the Cherenkov cone. These photoelectrons are injected at the top of the pre-
amplification stage with an RMS timing jitter of less than ten ps [114]. The presence of a
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Figure 5.2: Schematic depiction of the PICOSEC detector components for a resistive
plane multi-channel readout. The photoelectrons sourced by conversion of the Cherenkov
radiation by the photocathode, initiate an electron avalanche in the pre-amplification gap.
The fraction of electrons that traverse the micro-mesh initiate secondary avalanches in
the amplification gap. The thin resistive layer decouples the high voltage application
from the readout electrodes on which the signal is induced by the movement of the
charge carriers in the amplification gap and the response of the resistive layer.

high electric field starts a Townsend avalanche in the pre-amplification region, resulting
in a gain of O(104 − 105) with minimal longitudinal diffusion. A mere fraction, around
a quarter, of the generated electrons will successfully navigate through the mesh into
the amplification gap, where they undergo further amplification, commonly by a factor
of O(10), and initiate the generation of current on the readout electrodes. A schematic
depiction of the device’s layout with a resistive readout structure and operational concept
is given in Fig. 5.2. The detector is operated at atmospheric pressure and room temper-
ature with a flammable gas mixture of 80% neon, 10% CF4, and 10% ethane (C2H6), to
which we will refer to as the COMPASS gas mixture in what follows2.

As demonstrated using a single channel prototype, this detector concept pushes the
boundary of the timing capability that non-resistive MPGDs can reach into the sub 25
ps regime for MIPs [111]. Successful strides have been made towards making the concept
viable for large area coverage by developing a segmented anode multi-channel readout ca-
pable of maintaining the timing performance exhibited by its single-channel counterpart

2While being the current baseline mixture it has a relatively high global warming potential of 740
(normalized to CO2) compared to mixtures such as Ar/CO2 (93%/7%) that has 0.07. There is an
ongoing effort to look for an alternative gas mixture that can provide a good timing performance [115]
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[116]. Recently, comprehensive studies using a muon test beam with a momentum of 80
GeV/c demonstrate that a 10× 10 cm2 device equipped with 100 square pad electrodes
can consistently achieve a sub-25 ps timing resolution using a CsI semitransparent pho-
tocathode [117, 118]. Informed by a Garfield++-based phenomenological model [114],
this result could further be improved to 17 ps using a thinner 180 µm pre-amplification
gap along with a newly developed RF pulse amplifier [117, 118].

Motivated by mitigating the destructive capability of discharges through quenching,
the 100-channel multi-pad design was expanded to incorporate the resistive anode struc-
ture sketched in Fig. 5.2, where the pad electrodes are separated from a thin resistive
DLC layer using an 50 µm thick insulating Polyimide lamina and a glue layer with a
thickness of 10 µm. To uphold the performance of the non-resistive multi-pad prototype
– a feat already accomplished on the level of single-pad prototypes with resistive plane
MM [112] – several aspects needed to be considered that limit the range of possible surface
resistivities R that can be employed: (i) minimal protection against violent discharges by
suppressing the transition from streamer to spark, which allows for the achieving of large
gains and its application in harsh environments, (ii) the operation at moderate to high
fluence while retaining its timing performance by minimizing the voltage drop across the
resistive layer, (iii) retaining the prompt rising edge of the signal, and (iv) minimizing
Johnson-Nyquist noise from the resistive layer. The first point sets a low bound on the
value R, requiring a minimal protection impedance of 10 MΩ to ground for the successful
quenching of the discharges and avoid the burning of the DLC [119]. The inclusion of
the final two points is driven by the imperative of upholding the timing resolution, a
quantity subject to multiple contributions.

To form an intuition for these contributions, we will discuss it for the case of a
constant threshold timing discriminator (CTD), while the more sophisticated method
used for PICOSEC will be described in Sec. 5.5.2. For the case of a CTD, the time
marker of the signal corresponds to the time when the voltage pulse crosses a fixed THL.
The contribution to the attainable timing resolution can be decomposed as [120, 2]:

σ2t =

((
∆vths

)
rms

dV/dt

)2

+
⟨v2n⟩

(dV/dt)2
+ σ2arrival + σ2dist + σ2TDC , (5.1.2)

expressed as a function of the voltage signal after the amplifier3. The first term denotes
the uncertainty due to the time walk, a systematic dependence of the time marker on
the pulse height variations resulting from variations in the number of primary electrons
extracted from the photocathode, as well as Townsend avalanche fluctuations, which can

3This simplified relation is typically presented to elucidate the factors influencing the timing per-
formance of Low Gain Avalanche Diodes (LGAD). Given the largely shared fundamental principles of
timing detectors between these technologies, it will be used as a guide to introduce analogous concepts
here.
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be parameterised by the Pólya distribution4 [122, 123, 121, 124]

Pn =
(θ + 1)θ+1

n̄Γ(θ + 1)

(n
n̄

)θ
e−(θ+1)n/n̄ , (5.1.3)

where n is the number of charges produced, n̄ the mean avalanche size, and θ the shape
parameter. When taking θ = 0, the above relation is that of an exponential distribution,
while for θ > 0 the distribution becomes increasingly rounded. The most probable size
and relative variance of Eq. 5.1.3 are given by n̄θ/(θ+1) and 1/(θ+1), respectively [39].
Consequently, the parameter

(
∆vths

)
rms

in Eq. (5.1.2) captures the RMS of the signal
height variations at the discriminator THL. As detailed in Sec. 5.5.2, this contribution
can be mitigated by employing corrections based on constant fraction discrimination and
amplitude information. With the noise amplitude fluctuations given by vn, the second
term signifies the time jitter coming from the noise present in the detector – to which
the resistive layer will contribute as described in Chapter 3 – and the external electrical
circuit connected to it. These first two terms are inversely proportional to the pulse slew
rate dV/dt, underscoring the importance of maximizing this quantity. For the resistive
plane readout, the delayed component of the signal is opposite in polarity to that of the
prompt one found in the non-resistive detector, as elucidated in Sec. 2.3.4. Consequently,
the surface resistivities needed to be taken sufficiently high such that the reaction of the
thin resistive layer is slower than the time scale of the electron peak and (as such) will not
impede the leading-edge of the signal, meaning the initial rising part of the induced cur-
rent until it reaches its maximum value. The variance in arrival time of the signal σ2arrival,
already minimized by the almost exclusive injection of primary charge at the photocath-
ode, includes contributions from non-uniformities of pre-amplification gap height [116]
and sensitivity to the fluctuations of the initial photoelectrons along their path before
the advent of their amplification [114]. The irreducible contribution from the second to
last term is the distortion from both the prompt weighting field and applied electric field
from that of a homogeneous field found between two parallel plates. The digitization of
the signal, denoted by the final term, also contributes to the overall uncertainty.

While the topic of resistive elements as noise sources was already covered in Chapter
3, the problem of rate-capability and the transparency of the resistive layer to the leading-
edge of the signal remains to be treated. These two topics will be discussed in the case of
the resistive PICOSEC design, the results of which were used to inform the design of a
resistive 100 channel PICOSEC. The characterisation of the produced resistive prototype
using an 80 GeV/c muon beam will be presented, and compared to the performance of
its non-resistive counterpart. This will be preceded by measurements pertaining to non-
resistive signal channel PICOSEC prototypes, in order to acquire familiarity with the
operational principles and signal shape. This will lead us to the topic of the length of the
ion tail in a MM-type device, opening a discussion when compared to simulation results.

4The most cited attempt to a direct proof the conformity of avalanche size variations to this distri-
bution has been criticised, primarily due to the premise made that the energy dependence of ionization
probability is solely a function of avalanche size [121]. Therefore, this characterization is appropriately
regarded as a phenomenological one.
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5.2 Induced signal in a non-resistive single channel device

Our initial focus will be on a single-channel non-resistive design. Our objective is to
assess the signal characteristics originating from single photoelectron events through ex-
perimental measurements. This assessment will encompass two scenarios: one involving
the standard COMPASS gas mixture and the other utilizing an Ar/CO2-based mixture.
Curiously, our evaluation of the standard gas mixture revealed a shorter ion tail than
expected.

5.2.1 Experimental setup

The measurements were performed using two single-channel prototypes, both cylindrical
bulk MM devices containing a circular anode plane with a radius of 5 mm. The 3 mm
thick MgF2 radiator crystal was coated with an 18 nm thick CsI photocathode on a 3
nm chromium, where the chromium helps with the uniform voltage distribution over the
cathode area. The prototypes originate from two distinct production batches. The latest
iteration, referred to as device B in what follows, demonstrates, among other points,
improved PCB planarity and coverage of the calendared mesh’s connection and cuts.
These improvements allowed for a more uniform timing response and stable operation at
narrower pre-amplification gaps compared to the initial version, designated as device A.
The height of the pre-amplification gap was determined by employing Kapton® spacers,
resulting in heights of 200 µm and 130 µm for devices A and B, respectively. The vessel
housing these devices was equipped with a transparent (quartz) entrance window to en-
able the transmission of UV light. As will be specified below, the interiour of the vessel
was flushed with either the COMPASS gas mixture or with 93% argon and 7% CO2 at
normal temperature and pressure (NTP), i.e., 293.15 K and 1 atm .

Fig. 5.3 shows the High Voltage (HV) voltage configuration. As will be further ex-
plored in Sec. 5.2.4, the mesh is grounded with minimal impedance to minimize the
cross-coupling signal from the mesh to the anode. In contrast, the cathode and anode
planes are put to HV. On both connections, two low-pass filter RC circuits were im-
plemented to reduce the noise from the HV supply entering the system. An RF pulse
amplifier read out the induced current on the anode plane [117] and digitized using a
WAVERUNNER 625ZI LeCroy Digital oscilloscope [125], on which a discriminator THL
was set as the trigger for the data acquisition. Using a 250 nm UV LED250J [126],
the photocathode was uniformly irradiated, injecting single photoelectrons into the gas
volume, which subsequently underwent amplification.

5.2.2 Fast signal measurement and ion tail duration

The measured signal shapes of device B using the COMPASS gas mixture for different
voltage configuration are plotted in Fig. 5.4 where the ‘fast’ electron peak and ‘slow’
ion tail are clearly visible. At a more traditional operational point of a MM, i.e.; low
cathode voltage resulting in a drift field strength Ed of O(0.1 − 1) kV/cm, the full
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Figure 5.3: Schematic of the external circuit employed for providing high voltage (HV)
to the anode and cathode, reading out the anode electrode, and noise filtering circuit.

amplification is performed below the mesh. When the amplification field Ea is decreased
to prioritize additional charge production in the pre-amplification region, the charge
information contained within the integral of the ion tail decreases due to the reduced
effective Townsend coefficient ᾱ in the amplification gap, as given by Eq. 2.3.18, alongside
with a noticeable trend toward a longer ion signal with reduced amplitudes due to the
lower ion velocities inside the amplification region. In addition, a more pronounced
electron peak for higher Ed/Ea ratios can be observed which is beneficial for leading-
edge detection of the signal in timing application.

Similarly, the chamber was filled with the Ar/CO2 gas mixture for device A and op-
erated in an MM-style field configuration. A recorded waveform is shown in Fig. 5.5 for
−360 V and 510 V applied to the cathode and anode, respectively. While the typical MM
signal structure can be observed, the length of the ion tail is found to be below 100 ns.
This stands in sharp contrast with the toy-model result found in Sec. 2.3.2 that shows
in Fig. 2.10 (right) more than double the total length of the signal despite the identical
amplification field. Notably, the calculated result is based on the velocity of Ar+ in a
neutral argon mixture without considering the contribution of CO2. However, as we will
return to during the discussion, the contribution does not seem to result in a factor two
difference in ion velocity. These measurements can, therefore, serve as a first estimation
for the length of the ion tail at amplification field strengths.

The ion tail duration, here defined experimentally as the time between the electron
peaking time and the back end of the ion tails in the recorded waveforms was fitted using
a Sigmoid function [127] of the form

V (t) =
c1

c2 + exp [c3(t− t0)]
, (5.2.1)

to determine the time t0 and the free parameters ci, with i ∈ {1, 2, 3}. An example fit
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Figure 5.4: Measured signals using a PICOSEC MM (device B) going form a standard
MM field configurations (top left) to a PICOSEC operation point (bottom right). Here
VC and VA denote the applied voltages on the cathode and anode, respectively, keeping
the mesh at ground.
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Figure 5.5: Measured signal induced on the anode of device A using a fast pulse amplifier.
The tail end has been fitted using Eq. 5.2.1 giving an estimate for the ion tail duration
given by the region between the green dots. Here the polarity of the signal is inverted.

can be found in Fig. 5.5 (right), where the end time when the ion is defined as the time
where the above function is at 2.5% of its upper bound limit: limt→−∞ S(t) = c1/c2. To
exclude results from subpar fits, a cut was introduced on the χ2/Ndof distribution shown
in Fig. 5.6 (left). Only results that satisfied 0.5 ≤ χ2/Ndof ≤ 2 were used to obtain the
probability distribution of the ion tail duration given in Fig. 5.6 (right), where the mean
ion tail duration is estimated to be 75.32 ns for this field configuration.

A quantitative comparison of the signal duration to the one calculated using the ion
velocities found in literature hinges upon several factors. The most prominent one is
the maximal distance over which the moving ions induce a signal, i.e., the amplification
gap height Additional factors that may play a role include (i) the uneven electric field
resulting from the mesh’s woven pattern affecting the average speed of the ions, (ii) the
capacitive coupling between the readout electrodes altering the signal extracted from the
anode, and (iii) signal shaping by the RF pulse amplifier. We will incorporate these
points into a complete simulation of the current response of the detector setup which will
then be compared with the measurement result presented above.

5.2.3 Precise measurement of amplification gap height

The ion tail length is a function of different parameters that come from gas properties,
electric field configuration and the geometry itself. The average velocity of ions u in a
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Figure 5.6: Left: χ2-Distribution for the Sigmoid fits given by Eq. 5.2.1. Only events
withing the gray area were accepted. Right: Distribution of the measured ion tail length.

given by [128]:

u = K

(
E

N

)
E , (5.2.2)

with E being the electric field strength. The ion mobility K, in units of cm2V−1s−1, is
dependent on the ratio of the electric field to the number density of neutral gas N in
which it is moving at a given temperature. This ratio, the so-called Townsend electric
field, governs the equilibrium between the energy ions acquire from the electric field
and the energy they dissipate as a result of collisions with the neutral gas constituents.
Commonly this quantity is given as a reduced mobility, which is the mobility scaled to
273.15 K and atmospheric pressure,

K0 = K

(
P

760 Torr

)
273.15 K

T
(5.2.3)

where P is the neutral gas pressure. Given a parallel plate geometry with infinitely
extending electrodes parallel to the xy-plane a distance g apart, the maximum ion tail
duration is then given by

ttail =
g

K
(
E
N

)
E

∝ g3/2√
∆V

, (5.2.4)

with ∆V being the potential difference between the two electrodes. Here we used the
observation that at high fields u ∝

√
E [129]. This suggests that g has an influence on

both the electric field strength (E = −∆V/g) and the maximum travel distance where
the ion induces a signal. While this does not yet consider the effect of the mesh structure
on the electric field configuration, it does highlight the importance of having a correct
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value for the mesh height to accurately estimate the signal’s duration.

For device A, a measurement of the distance between the anode surface and the top
of the calendared mesh was performed using a Hirox RH-2000 digital microscope [130] by
focusing on surface imperfections on both electrodes through the mechanical movement
of the apparatus. Through multiple measurements at different positions across the active
area, the height of the top of the mesh was found to be dependent on the position. This
dependence was parameterized using a function of the form

g(r) =
(g1 − g2)(p− r)

p−R
Θ(r − p) + g2 , (5.2.5)

where r is the radial coordinate taking the center of the active area as the origin, R is
the radius of the active area, p is the radial position of the pillar. The parameters g1
and g2 were found to be 119.56±1.37 µm and 131.53±1.19 µm, respectively. The above
equation describes a sloping mesh going from g1 at the outer ridge of the active area till
g2 at the pillar positions, while the mesh’s top between the pillars is at a constant height
of g2. For R = 0.5 mm and p = 1.7± 0.1 mm the geometric mean ḡ is 127.58± 0.92 µm.

5.2.4 Calculated ion tail duration for Ar/CO2

Aside from the contribution from the smaller amplification gap, the non-uniformity of
the field due to the structure of the mesh results in a varying ion mobility over the ion’s
trajectory. Furthermore, the signals induced in the three electrodes exhibit some degree
of capacitive coupling with the other electrodes due to external impedance elements
present in the experimental setup (Fig. 5.2.1). Finally, the anode signal is shaped and
amplified by the RS pulse amplifier. These three contributions could collectively impact
the accuracy of the calculated signal duration, and are therefore taken into account in the
simulation of the induced signal on device A’s anode plane presented in this subsection.

Using Garfield++, the trajectories of the electrons and ions can be simulated through
the microscopic tracking and Monte Carlo integration method, respectively, provided the
electric field map for the operational voltages where for the electrons, the parameters
used for their drift, diffusion, amplification, and attachment were provided by MAG-
BOLTZ [39]. The solution for the electric field in the parallel plate geometry, which
includes a calendared woven mesh composed of 18 µm thick wires, was determined using
the Finite Element Method (FEM) approach with the COMSOL® toolkit. The top of
the mesh was situated at a distance of z = ḡ above the anode located at z = 0. Fig.
5.7 shows the field configuration in the mesh region, with the most intense fields being
concentrated at the lower section of the wires. The same observation can be made for
the numerically calculated prompt weighting field solution of the anode, resulting in an
increased sensitivity in this area for the induced signal calculation using the basic form of
the Ramo-Shockley theorem through Eq. (2.2.22). We performed identical calculations
for the induced currents on the mesh and cathode electrodes.
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Figure 5.7: Cross-section cut of the FEM electric field solution around the mesh area.
Left: Electric field strength [V/cm] for y = 32.5 µm. Right: Electric field strength
[V/cm] along the central axis of the mesh within the xy-plane.

The trajectories of all charge carriers involved in a single photoelectron event are
shown in Fig. 5.8 (left). Notably, a slight amplification can be observed above the mesh,
while the bulk of the charge production occurs within the amplification region. Illustrated
in Fig. 5.8 (right) are the projected end points of the ion tracks onto the xy-plane. In
this configuration, the low Ea/Ed ratio leads to reduced transparency for both electrons
and ions, with approximately three-quarters of the drifting ions being collected on the
mesh. The resulting induced signals for this single photoelectron event are presented
in Fig. 5.9 (left) for all three electrodes. Since the amplification gap closely resembles
a parallel plate chamber, the weighting fields of both the mesh and the anode are, by
approximation, the same, with the exception of their sign.

The incorporation of the circuit illustrated in Figure 5.3, along with the amplifier
model, allowed us to calculate the cross-coupling of the electrodes and the amplifier’s
response in LTSpice. To include the equivalent circuit of the detector itself into the
network, the capacitance between the anode, mesh, and cathode (designated as elec-
trodes 1, 2, and 3, respectively) was determined through the FEM, yielding the Maxwell
capacitance matrix:

Ĉij =

 ∑
nC1n −C12 −C13

−C21
∑

nC2n −C23

−C31 −C32
∑

nC3n


=

 6.69785 −6.67702 −0.0208369
−6.67701 10.2697 −3.59272
−0.0208369 −3.59272 3.61356

 pF .

(5.2.6)

for a circular active area with a radius of R = 5 mm. The value for C12, i.e., the
capacitance between the anode and mesh, is encouragingly close to the one of a parallel
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Figure 5.8: Left: Trajectories of the electrons (yellow) and ions (red) in the gas medium
for a single photoelectron event. The positions of ionization and excitation are indicated
by yellow and green dots, respectively. Right: Density map depicting the number of
entries of the projection of the endpoints of ion tracks, which result from 94 individual
photoelectron events.

plate capacitor

C =
ε0πR

2

ḡ − 2rw
= 6.34611 pF , (5.2.7)

with the radius of the wire rw being 18 µm. Following the reasoning of Sec. 2.5.4, the
induced signals on the electrodes are treated as ideal current sources, resulting in the
voltage pulse after the amplifier shown in Fig. 5.8. Compared to the directly induced
current, the voltage pulse’s electron peak at the amplifier’s output terminal is broader.
Furthermore, it reduces in amplitude compared to the ion tail amplitude. This is even
more exacerbated when introducing a non-zero resistance Rmesh between the mesh con-
nection and ground, resulting in the mesh’s current being, in part, coupled out through
the anode. Due to its opposite sign, the amplitude of the current on the anode is reduced
and increases the signal rise time. This is a significant incentive to minimize the mesh’s
impedance to ground for timing applications. Despite the above considerations, the total
length of the signal still exceeds 200 ns.

In summary, the observed length of the ion tail in an MM amplification stage, with
an amplification field of 39.8 kV/cm and utilizing a gas mixture consisting of 97% argon
and 7% CO2, was measured to be 75.32 ns. This is shorter by more than a factor two
compared to the calculated length using the ion mobilities found in the literature, even
when considering the correct height of the mesh, cross-coupling between electrodes and
the shaping of the amplifier.



112 CHAPTER 5. ROBUST PRECISE TIMING PICOSEC MICROMEGAS

Cathode (x10)

Mesh

Anode

0 100 200 300 400 500
-0.10

-0.05

0.00

0.05

0.10

Time [ns]

In
du
ce
d
cu
rr
en
t[
μ
A
]

Vamp (Rmesh = 0 Ω)

Vamp (Rmesh = 100 Ω)

Vamp (Rmesh = 1 kΩ)

Vamp (Rmesh = 10 kΩ)

Vamp (Rmesh = 100 kΩ)

RS induced current

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.

0.2

0.4

0.6

0.8

1.

1.2

1.4

Time [ns]

V
ol
ta
ge
pu
ls
e
[m
V
]

In
du
ce
d
cu
rr
en
t[
μ
A
]

Figure 5.9: Ideal induced current on all three electrodes for a single photoelectron event,
absent of any cross-coupling between the terminals. Left: Electric field strength [V/cm]
for y = 32.5 µm. Right: The theoretical induced current on the anode, overlaid with
the voltage pulses at the amplifier’s output terminal for different termination resistors
for the mesh.

5.2.5 Discussion

Since we have been using the mobilities found in a pure argon gas some discrepancy be-
tween the calculated and measured ion tail is to be expected. Indeed, when going to an
Ar/CO2 mixture, there are three notable changes: (i) the Ar+ mobility will be dependent
on the CO2 content of the gas [131, 132], (ii) the creation of CO+

2 that likewise will drift
in the medium either though direct ionisation or the Penning effect [133, 134, 135, 136],
and (iii) through ion chemistry there is a transfer of charge from the noble gas ions
to CO2 that will form slower CO+

2 · (CO2)n cluster together with CO2 molecules [137].
Less numerous are the Ar+ · Ar dimers, unless for high fractions of Ar and pressures
significanlty higher then 1 atm. This chemistry most likely increases in complexity when
considering gas impurities, although the addition of water of the gas mixture tends to
result in a lower mobility [132]. As a result, after less then 10 ns the main contributors
to the ion tail signal are CO+

2 · (CO2)n clusters which tend to move slower than the
CO+

2 . This would result in a longer predicted ion tail, and thus not seem to resolve the
discrepancy.

When dealing with amplification level field strengths, the natural difficulties of mea-
suring mobilities of different ion species leaves us reliant on those obtained at low pres-
sures of P ≲ O(0.1− 10) Torr. These measured reduced mobilities (5.2.3) can be scaled
for the use at ambient pressure. For Ar/CO2 measurements at ambient pressure have
been performed field strengths of O

(
102 − 103

)
V/cm in the absence of any Townsend

avalanches using a triple GEM detector [132], yet no measurements are reported in lit-
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erature for E = O
(
104
)

V/cm. Hence, the problem of this striking discrepancy remains
unresolved and stands as an open question necessitating further investigation.

5.3 Impact of a thin resistive layer on the leading edge

Incorporating a resistive layer into the readout structure of the robust PICOSEC design
introduces an impact on the overall signal shape coming from the resistive layer’s finite
conductivity and the insulating laminate’s presence. Crucial for timing measurements,
this influence can adversely affect both the shape and amplitude of the leading-edge of
the signal induced on the pad electrodes. The subject of the ‘transparency’ of the re-
sistive layer to a signal generated by charges moving above it and the induction on the
readout electrodes located below has been a longstanding topic in detector research [138].
A classic example is the contribution to the timing performance from the graphite layers,
which form an integral part of contemporary (M)RPCs designed for the HV application
and avalanche charge dissipation. Due to the finite conductivity of these layers, the reac-
tion of this resistive element will result in the emergence of a delayed component to the
signal, which negatively contributes to the signal amplitude due to its opposite polarity
to the prompt current. It is now well understood that this contribution is negligible for
the typical value of O(300) kΩ/□ of this material. A seminal study on this topic was
performed by G. Battistoni et al. in 1982 [138] who utilized a lumped element equivalent
circuit to estimate the signal transparency of a thin resistive cathode layer, which di-
vides the gas volume of a MWPC from an insulating layer containing AC-coupled closely
spaced strip electrodes. As described in Sec. 2.4, this approach hinges on the ability
to define a capacitance between the resistive layer and ground, which only holds at late
times. Instead, we rely on the numerical framework developed in Chapter 2 to apply
the extended form of the Ramo-Shockley theorem to estimate the delayed component’s
contribution to the electron peak amplitude found in the resistive PICOSEC design.

We consider the geometry sketched in Fig. 5.2, where a thin resistive layer with a
surface resistivity R positioned between the amplification gap of size g and the insulating
layer with thickness d is terminated around its entire outer edge situated at x = 0, 10
cm and y = 0, 10 cm. Since we are exclusively interested in the formation of the signal
on the 1 cm2 square pad electrodes on the readout plane, only the movement of the
charges below the micro-mesh will contribute to this. Therefore, we approximate the
amplification gap structure as a parallel plate geometry as given in Fig. 2.15. While
the analytical solution is given by Eq. 2.2.29, we have opted to use the numerical recipe
found in Sec. 2.5.2. Given a Towsend avalanche that occurs in the amplification region,
we aim to assess the contribution of the delayed component to the electron peak as a
function of the parameter R and the relative position of the avalanche with respect to
the pad electrode. The dynamic weighting potential was calculated for the central pad,
i.e., xp = yp = 5 cm, for different surface resistivities and subsequently integrated into
our Garfield++ model. An example prompt signal Ip and delayed signal Id from a
Townsend avalanche is shown in Fig. 5.10 (left) for three different surface resistivities.
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Although the ion tail is indeed accounted for, its amplitude is significantly smaller in
comparison to the electron signal, causing the ion tail to be nearly imperceptible due
to the fine signal binning. The amplitude of the prompt component resulting from the
instantaneous induction of signal from the movement of both the electrons and ions below
the mesh is subject to the relative permittivity εr and thickness of the insulating layer.
Compared to the non-resistive design where this laminate is absent, this results in a
fundamental signal reduction by a factor fp, which in the limit of wx ≫ g can be written
as

fp =
Ep(d)

Ep(0)
= 1− d

d+ εrg
, (5.3.1)

where we used Eq. (2.3.22) with εr reestablished. In our scenario, this corresponds to
a value of fp = 0.89. The response of the resistive layer, as captured by the delayed
component of the signal, occurs over a longer time as R grows, such that for large surface
resistivities this contribution can be neglected inside the initial ≈ 1 ns time range of the
electron peak.

As an indicator for the contribution of the resistive layer to the electron peak ampli-
tude, we define the relative peak amplitude as the ratio between the prompt signal and
the total signal: Min

[
Ip(t) + Id(t)

]
/Min [Ip(t)]. This is plotted as a function of different

surface resistivities in Fig. 5.10. We observe heightened sensitivity to the resistive layer’s
behavior at the periphery of the pad electrode due to the more immediate signal spreads
over the adjacent channels. As R ≳ 100 kΩ/□, we enter a regime where the electron peak
of the induced signal is virtually unaffected by the delayed component of the signal. This
outcome remains consistent even when accounting for the response of the pulse amplifier
that reads out the channels. Similar to Sec. 5.2.4, this was accomplished by utilizing an
LTSpice amplifier model, treating the induced signals as ideal current sources.

In conclusion, due to the occurrence of avalanches in the amplification region over the
several mm wide area covered by the radiator’s Cherenkov cone, coupled with the lack of
prior knowledge regarding the particle’s hit position, it is imperative to reduce the impact
of the DLC layer’s response on the leading-edge of the signal across the entire surface of
the readout pad. We have found that for surface resistivities exceeding 100 kΩ/□, the
electron peak is unaffected by the delayed component on the signal. However, we need
to contend with an overall amplitude reduction of around 11% due to the presence of the
60 µm thick insulating layer between the amplification gap and the readout plane. This
model can be further developed in order to describe the relation between the temporal
resolution for the case of surface resistivities below 100 kΩ. Furthermore, it has the
potential to quantify the extent of enhancement in spatial resolution attributable to
signal propagation to neighboring channels by including the weighting potentials of the
adjacent pads in the calculation.
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Figure 5.10: Left: The prompt and delayed components of the induced signal on the 1
cm wide square pad, which is positioned at the center of the active area (xp = yp = 5
cm), are determined for a Townsend avalanche initiated at the top of the amplification
gap, specifically at the point centered at x0 = 0 and y0 = 5.4 cm. The result is given for
R = 100 Ω/□ (full line), R = 1 kΩ/□ (dashed line), and R = 100 kΩ/□ (dotted line).
Right: The relative peak amplitude as a function of the surface resistivity for different
avalanche positions on the pad where x0 = 0. The plot markers represent the calculated
values, while the lines are to guide the eye.

5.4 Rate-capability estimation

Because of its non-zero resistance to ground, the resistive layer of our readout causes
an ohmic reduction of the electric field within the amplification gap when high gains or
high event rates are encountered. The decrease in gain that follows adversely affects the
efficiency and timing performance of our device, the degree of which is dependent on
the surface resistivity and precise grounding scheme of the resistive layer. For resistive
MPGDs, the rate effect, here referring to a device’s ability to maintain its gain under a
certain event rate per unit area, has been theoretically assessed using various methods.
For resistive plane configurations like the one discussed in this chapter, previous work
estimated the gain reduction as a function of the particle flux Φ [Hz cm−2] for different
surface resistivities [139]. This estimation was achieved by taking the limit of the solution
(2.4.6) of the Telegraph equation (2.4.1) in the case of a current being imposed on an
infinitely extending resistive layer. While this approach captured the qualitative behav-
ior observed in experimental data, it does not account for the boundaries of the resistive
readout. Another approach, focusing on the µ-Resistive WELL (µ-RWELL) detector,
was presented by G. Bencivenni et al. [140]. They provided the average resistance to
ground Ω̄ given the irradiated current over a circular area with a radius r at the center
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of a circular resistive layer. This resistance could be expressed in terms of the layer’s
radius c as Ω̄(c) ≃ R(2c − r)/2πr, where the voltage drop can then be calculated using
Ohm’s first law. A numerical approach was employed in another study conducted by Z.
Fang et al. [141]. They represented the resistive layer as a discrete electrical system,
thus enabling the assessment of the local voltage drops and rate effects for the more
complex charge evacuation schemes found in various µ-RWELL prototypes [72] resulting
from a position dependent irradiation current density. Our work presents an alternative
numerical method based on the FEM, where the Maxwell equations are solved under the
quasi-static limit. This method provides the flexibility to handle systems with greater
complexity that are technically more challenging to represent using a circuit-based ap-
proach, e.g., vertical charge evacuation through embedded resistors [142, 143], or multiple
DLC layers [72, 73, 144].

First, we will review the concept of the voltage drop across our resistive layer given
an externally impressed direct current (DC) source. After this, the gain reduction will be
estimated using precise numerical solutions of the potential in the design of the resistive
anode on which a current density from the particle flux is imparted. Using this, we
estimate the maximum surface resistivity value that allows the resistive PICOSEC design
to be effectively operated within a π beam at the H4 Secondary Beam Line facility of
the CERN Super Proton Synchrotron (SPS).

5.4.1 Voltage drop across a thin resistive layer

In this part, we will reexamine the configuration depicted in Figure 2.15. This config-
uration involves a thin resistive layer electrically connected to the ground and situated
along its entire outer boundary at coordinates x = 0, a and y = 0, b, which is positioned
between the gas gap and the insulating layer. In addition, let us apply an amplification
field in the gas gap of strength Ea. Given a charge q deposited on the resistive layer
at t = 0, currents will start flowing in the resistive layer to compensate for this newly
arrived charge, resulting in its seeming decay. As seen in Sec. 2.3.4, the dynamics are
governed by the infinite number of time constants given by Eq. (2.3.34), the largest of
which, τ11, dictates the time scale over which the charge is horizontally drained by the
resistive layer to the ground frame. This happens at a rate set by the maximal time
constant of the system, e.g., for g = 128 µm, d = 60 µm, a = b = 10 cm, ε1 = 3.7,
and R = 10 MΩ/□ we have τ11 = 3.12 ms. As indicated by Equation (2.3.37), when the
endpoint of the resistive layer is shifted to a greater distance, this time constant increases.

Given several charges deposited in the same region in rapid succession, the combined
effects of their electric fields within the amplification gap will lead to a localized reduction
in Ea. In the limit, we can apply a constant DC-current, represented as q(t) = I0t, to
the resistive layer, rather than introducing a single charge of q(t) = qΘ(t) [145]. Working
in the quasi-static limit, we can reuse the methods outlined in Sec. 2.1.2 in addition to
noting that q(s) = L(I0t) = I0/s

2. The steady-state solution can then be found through
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limt→∞ ϕ(x, t) = lims→0 sϕ(x, s), resulting in the potential on the resistive layer to be
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(5.4.1)
where we employ the following notation

x> :=

{
x0 x < x0

x x ≥ x0
, x< :=

{
x x < x0

x0 x ≥ x0
. (5.4.2)

We find back the Ohmic relation between the voltage drop, resistance to ground and
the injected current. It is worth noting that the dependence on the size and dielectric
constants of the gas gap and insulating layer are absence in the steady-state solution,
which is fully determined by the properties of the resistive layer.

5.4.2 Simulated gain drop at high particle fluxes

Due to spatial constraints on the Printed Circuit Board (PCB), the final design of the
resistive anode layer uses eight termination points as shown in Fig. 5.11, instead of
connecting it along its entire outer edge as was the premise before. A 10 MΩ resistor is
connected to each of these points to ensure the minimal impedance at every point on the
active area to avoid destructive capabilities of the discharges resulting in the burning of
the DLC layer. These additions resulted in us opting for a FEM approach to determine
the steady-state solution of the voltage drop across the resistive layer given a circular π
beam profile with a rate of 1.9 MHz. Given the exponential relation between the am-
plification gain and the voltage difference of the mesh and anode, we could deduce the
resulting decrease in gain.

Given the 10×10 cm2 geometry shown in Fig. (5.2), we empress a constant boundary
DC-current source je(x, y, t) on the resistive layer starting at t = 0. As an ansatz, we
took the beam spot as circular with a radius of rb centered in the active area. In polar
coordinates, the externally applied current density can be expressed in terms of the
particle flux per surface area Φ as

je(r, t) = −e0npGeΦΘ(rb − r − a)Θ(t)ẑ , (5.4.3)

where e0 denotes the electron charge, andGe is the effective detector gain given an applied
voltage Va on the anode. The number of primary charges np depends on the quantum
efficiency of the photocathode used, and for what follows will be taken as np = 5, which
is a conservative overestimation for a DLC photocathode [112]. In addition, we fix the
beam’s radius to rb = 7.5 mm. Solving Maxwell’s field equations using the electrical
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Figure 5.11: Electric potential ϕ(x, y) across the resistive layer due to the injection of a
current density coming from a 15 mm wide circular beam with a flux of Φ = 5.66 · 105
cm−2s−1 and effective detector gain Ge = 106.

currents module within the COMSOL® toolkit, the steady-state solution was obtained
for various values of Ge, Φ, and R. An example of the potential value across the resistive
layer is shown in Fig. 5.11. The voltage drop caused by the constant charge deposition
on the resistive readout structure is at its highest at the center of the beam profile on
the active area. Subsequently, it gradually tapers as it extends towards the periphery
of the beam spot, and its impacts can be detected throughout the entire resistive layer.
Due to the presence of the termination resistors, the potential does not reach zero at the
connection points of the resistive layer. Following Ohm’s law, this sets a lower bound to
the rate capabilities that can be achieved as R→ 0, since a global voltage drop will occur
over the entire layer due to the constant current flowing through the 1.25 MΩ equivalent
resistor. What is more, due to the symmetry of the system, the current is equally drained
over all connection points, while shifting the position of the beam towards the corners of
the active area, an increase in the voltage drop was found proportional to the increased
current that flowing over the two neighboring resistors.

Given an amplification field resulting from the potential difference between the grounded
mesh and the anode plane set at a voltage Va we can sum to this the average voltage
drop in the beam spot ϕ̄ :=

∫
A ϕ(x, y) dA/πr

2
b . The result in the irradiated circular area

for fixed Φ, and Va is shown in Fig. 5.13, where Ge is plotted as a function of the av-
erage voltage in the beam spot Va + ϕ̄ that it causes. Until now, we have treated Ge as
independent of the local alteration of the anode voltage due to the charge deposition on
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the resistive layer, while in truth, it will be coupled

G = exp
[
c1(Va + ϕ̄) + c2

]
, (5.4.4)

where the parameters c1 and c2 depend on the gas properties and detector field configu-
ration. As sufficient time passes, an equilibrium state G is established where the surface
current density impressed on the resistive layer leads to a voltage reduction in the irra-
diated area, ultimately resulting in an effective gain that matches the generated surface
current density as given by Eq. (5.4.3). To find this stable point, we need to estimate
the free parameters in the above relation between the effective gain G0 and Va, i.e., the
gain curve of the detector, in the absence of any rate effects.

The gain curve of the amplification region for our detector can be either obtained
through simulation or experiment by varying the amplification field and counting the
arrived charge per event. Going with the experimental approach, we employed the con-
figuration discribed in Sec 5.2.1, using a resistive single-channel prototype featuring a
pre-amplification gap size of 200 µm. The current Ia on the anode plane resulting from
a uniform and O(1) kHz low-intensity UV LED irradiation was measured using a pico-
ampere meter. Knowing the single photoelectron event rate fpe through the areas of
the PH spectra for a fixed exposure time using an MCA, the gain could be estimated
using G0 = fpe/e0Ia for different (pre-)amplification fields. The results for two different
cathode voltages are plotted in Fig. 5.12 alongside the fitted curves of Eq. (5.4.4) to
estimate the trends. We do observe the anticipated exponential relationship where the
fit adequately describes the data.

Following Eq. (5.4.3) when Ge = G0, je constitutes the expected current density after
irradiating over a long time scale, i.e., when the system is in equilibrium. Consequently,
the steady-state solution for voltage drop and gain can be estimated by identifying the
point of intersection between the two curves. In Fig. 5.13 the gain drop curve is shown
as a function of the anode voltage given a 1.9 MHz event rate. For operational voltages
of Vc = 475 V and Va = 275 V the expected gain is reduced by 5.24% and 8.87% for
R = 10 MΩ/□ and R = 20 MΩ/□, respectively. While in this model, an ideal beam of
pions is considered, in truth, there will be contamination with particle showers from the
interaction of the meson with the material of the experimental setup. This results in a
significant increased energy deposit inside the detector geometry, yielding a temporary
higher current density on the resistive layer, the degree of which is a function of the rate
at which these showers occur. Hence, the results presented here can be regarded as the
most favorable scenario.

5.4.3 Conclusion

Incorporating a resistive layer into the readout structure of a robust PICOSEC design
will lead to a reduction of the gain within the amplification region when exposed to con-
tinuous high particle fluxes. To estimate this rate effect for a 1.9 MHz π beam at the
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Figure 5.12: Computed relation between the gain Ge of the externally applied current
density je on the resistive layer as a function of the average voltage drop Va − ϕ̄ on
the anode. Furthermore, we have depicted the measured gain, represented as G0, for
diverse (pre-)amplifications, indicating the data points with markers, where a 5% error
is assumed. The full lines signify the exponential fits for the two gain curves, employing
Eq. (5.4.4). The equilibrium state can be identified as the point of intersection between
G0 and Ge.
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Figure 5.13: Calculated normalized gain for the resistive PICOSEC as a function of the
applied anode voltage Va for different surface resistivities an cathode voltate of −475 V
(left panel) and −500 V (right panel),

CERN SPS H4 Beam Line, we obtained the steady-state solution for different surface
resistivities by combining the FEM numerical results of the simulated potential drop on
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the anode layer and the measured gain curve using low rate single photoelectron events.
As a result, a below 20% gain drop is found for a surface resistivity of 20 MΩ/□. Con-
sidering the spatial variation of the voltage drop, denoted as ϕ(x, y), across the readout
plane, implementing gain compensation via an increase in the applied anode voltage will
uniformly elevate the amplification field. This elevation can lead to undesirably high
gains in regions beyond the beam profile. Furthermore, in cases of non-constant event
rates at intermittent intervals without incoming particles, the system will relax to its
initial state, leading to an amplification field that surpasses the desired level.

Depending on the final HEP application requirements, this calculation can be re-
peated with the beam-relevant parameters. This outcome was taken into account, along
with the minimal discharge protection prerequisites and a negligible reduction to the
rising edge of the electron peak due to the delayed component of the signal, and the final
surface resistivity value for production was fixed at 20 MΩ/□.

This simple resistive layout only allows the evacuation of the deposited charge along
the edges of the geometry. Therefore, this design is not scalable for high-rate applications
requiring extensive surface area coverage. Within the development of resistive layer-based
readout structures within the MPGD family, more sophisticated ‘local’ charge evacuation
schemes have been devised that are suitable for large area coverage [72]. One such
structure is realized through the implementation of draining vias in a double resistive
layer layout, with the bottom layer ensuring minimal protective impedance [142, 143, 72,
73, 144]. These types of rapid grounding techniques hold the potential to overcome the
typical rate limitations associated with large-area resistive readout structures and could
be applied to following resistive PICOSEC designs.

5.5 Timing performance

Informed by the theoretical considerations covered in the previous sections, an initial
prototype of the resistive PICOSEC has been manufactured and subjected to testing,
both in a laboratory setting and in the context of the µ-beam experiments during RD51
test beam campaigns [146]. An image of the readout board is shown in Fig. 5.14. During
the production process, particular attention was given to maintaining excellent planarity
throughout the active area. This was done to preserve a consistent drift gap size, which,
in turn, ensures uniform signal-arrival times (SAT) across the readout. In comparison
to the non-resistive counterpart, however, which achieved a deviation below 10 µm [118],
the resistive prototype exhibits a roughly threefold higher deviation.

In this section, we aim to experimentally assess the timing performance of both the
resistive multi-pad prototype, specifically in the context of MIPs. These measurements
were conducted during the RD51 test beam campaigns at the H4 Secondary Beam Line
facility of CERN SPS, involving the use of 80 GeV/c muons.
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Figure 5.14: Image of the readout board covered by the bulked mesh, for which the
distance to the readout is mechanically defined by the pillars positioned above the center
and shared corners of the readout pads.

5.5.1 Experimental setup

As shown in Fig.5.15, the North Area – holding both physics experiments and test beam
facilities – forms part of the accelerators complex of CERN. The PICOSEC test beams
campaigns took place in the H4 beam line positioned downstream of the T2 target.

The experimental arrangement, depicted in Fig. 5.16, consisted of a tracking telescope
designed for ascertaining the impact positions of incoming particles. This setup featured
three triple GEM detectors5 with two-dimensional strip readout structures, whose signal
was shaped using the APV25 front-end ASICs and subsequently digitized it using the
SRS system for all electrode channels. Two Microchannel Plate Photomultiplier Tubes6

(MCP-PMTs) with quoted time resolutions below 6 ps, served as the timing reference
and trigger source [111, 148, 149, 116, 118]. As the data acquisition system, the signal
induced by the detector was amplified using the aforementioned high-bandwidth RP
pulse amplifier before it was digitized by a LeCroy WR8104 oscilloscope at a sampling
rate of 10 GS/s. The tracker and timing data were correlated by means of the event
ID, which was generated by the SRS system as a serial bitstream that subsequently was
recorded by the oscilloscope and thereby included in the timing data set [118]. While
the setup was used to study a multitude of PICOSEC designs, we will focus on the 100
channel multi-pad resistive and non-resistive designs as the detector under test (DUT).

The (resistive) PICOSEC prototype was configured with a 180 µm pre-amplification
gap, which was mechanically established using polyimide spacers situated between the

5The gas mixture used was 70% argon and 30 % CO2 at NTP.
6Hamamatsu MCP-PMT R3809U-50
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Figure 5.15: Schematic overview of CERN’s accelerator complex [147].

CsI photocathode (deposited on a thin chromium layer) and the calendared micro-mesh.
These components were situated within a detector housing, which was continually flushed
with the COMPASS gas mixture. The housing chamber is illustrated in Fig. 5.17, the
design details of which can be found in Ref. [118]. Square pads measuring 9.82 × 9.82
mm2 were arranged in a 10×10 readout grid on the readout plane with a 1 cm pitch. To
obtain the timing resolution on a pad located on row i and column j, denoted as pad ij
for what follows, where i, j ∈ {0, 1, . . . , 9}, both MCP-PMTs were aligned to its center as
projected on xy-plane. In both prototypes, the mesh was grounded, whereas the anode
7 and the cathode were connected to a CAEN HV supply. Each HV line had a low-pass
filter to reduce the noise originating from the HV supply.

7In the robust design, the resistive layer is subjected to HV, while the readout plane is grounded.
Conversely, in the non-resistive multi-pad configuration, each readout electrode was maintained at HV,
and the readout electronics were capacitively decoupled in the amplifier’s input stage.
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Figure 5.16: Diagram of the test beam telescope and data acquisition chain used during
the RD51 SPS test beam campaigns. Here MCP-PMT 2 is used to trigger the acquisition
system though the use of a discriminator THL on the signal, while MCP-PMT 1 is used
as the absolute time reference to which the PICOSEC DUT is compared. For track
reconstruction of the incident muon three triple GEM detectors are employed.

5.5.2 Data analysis methodology

For time sensitive application the implementation of leading-edge discrimination using
a fixed THL leads to the problem of time walk when dealing with signals of varying
heights. As depicted in Fig. 5.18 (left), signals of different amplitudes are associated
with different signal arrival times (SAT) [2]. Notably, pulses with greater amplitudes
are observed to arrive earlier. In the best-case scenario, this approach typically yields
timing resolutions within the range of 400-500 ps [150]. Considering the insufficiency of
this level of precision for our specific requirements, a more sophisticated methodology
must be used where the response time is corrected given the amplitude of the signal. To
this end, the method of constant fraction discrimination (CFD) is employed, in which
the time stamp is determined as the moment when the signal reaches a predefined frac-
tion k of its peak amplitude [2]. This is shown in Fig. 5.18 (right). If the rise time is
independent of the signal height, this is expected to fully correct for the time walk.
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Figure 5.17: Image of the resistive PICOSEC equipped with an pulse amplifier card in
the test beam setup. The muons pass through the detector from left to right.

The expected signal structure is comprised of an electron peak8 and ion tail, as shown
in Fig. 5.4. In the case of both the MCP-PMT 1 and PICOSEC signals, the recorded 200
ns of the signal waveform preceding of the event was used to determine the noise level and
baseline offset. The amplitude of the electron peak Vamp was subsequently determined by
calculating the difference between the electron peak’s minimum value and the established
baseline level. Given linearity between the charge produced and the size of the signal,
the distribution of Vamp was fitted using a Pólya function of the form given in Eq. 5.1.3.
A related quantity is the electron peak charge, i.e., charge contained within the electron
peak, which is determined through integration of from the start of the signal until the
end of the electron peak structure. Note that here, the term electron peak charge is not
synonymous with the fraction of the induced charge contributed by the electron signal
as given by Eq. 2.3.16. To minimize the noise contribution in the determination of the
timing of the event through CFD, a logistic function of the form

V (t) =
c1

1 + c2 exp [c4(c3 − t)]c5
, (5.5.1)

was used to fit the rising edge. The to be free parameters ci, with i ∈ {1, 2, , 3, 4, 5}, can be
understood as the supremum of the function, the scaling factor for t = c3, the time shift

8While labeled as the electron peak this part of the signal already has contributions form the ions
drifting in the amplification gap (Fig. 2.10), especially after shaping of the amplifier (Fig. 5.9).
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Figure 5.18: Time walk illustration given a fixed discriminator threshold level (THL)
for two signals with different peak amplitude. The response time is determined as the
point at which the signal crosses the THL value for two methods: the constant threshold
discriminator (left) and the constant fraction discriminator (right). For the latter the
THL is set to 20% of the maximum signal amplitude.

of the signal, the speed of the function change, and the asymmetry of the growth rate,
respectively [112]. The time of the pulse is then taken as the time corresponding where
the fitted curve reaches k = 20% of the max value c2. The DUT’s timing performance in
the center of the pad is determined through the residual distribution of the signal arrival
time (SAT) difference between the reference (MCP-PMT 1) and the DUT signal. Using
the tacking data, a geometric selection criterion was applied to the hit position of the
muons, ensuring that the 6 mm-wide Cherenkov cones remained entirely within the pad’s
area. Furthermore, we only considered events within the effective photocathode diameter
of 11 mm in the central region of MCP-PMT 1, given its documented timing performance
degradation at its periphery [148, 149]. Finally, the rise time of the leading-edge of the
DUT was ascertained by estimating the time it takes for the fitted Sigmoid curve (Eq.
5.5.1) to transition from 10% to 90% of its maximum value.

5.5.3 Results

In what follows, we will present the outcomes of the measurements for two pad electrodes,
one for the resistive PICOSEC readout and the other for the non-resistive configuration.
The signal rise time and timing performance will be compared at operating voltages that
produce comparable signal-to-noise ratios for both systems.

For what follows, the results are discussed for the resistive PICOSEC when operated
at −470 V and 290 V for the cathode and anode, respectively. The waveforms obtained
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Figure 5.19: Signal waveforms for the reference timing MCP-PMT and the resistive
PICOSEC MM operated at −470 V and 290 V for the cathode and anode, respectively.

with pad 17 in the prototype and MCP-PMT 1 for a single muon event are shown in
Fig. 5.19, where the duration of the former is significantly shorter compared to the latter
due to the absence of any ion tail. The average electron peak amplitude for the resistive
PICOSEC across this pad is shown in Fig. 5.20 (left), where lower amplitudes on the
edges of the pad result from the sharing of signal with adjacent pads. For the events
where the Cherenkov cone is contained within the confines of the pad the distribution
of Vamp is given in Fig. 5.20 (right), where the distribution was fitted using a Pólya
distribution resulting in an estimated average signal amplitude of 130.4 ± 1.5 mV on a
background noise an RMS of 1.24± 0.49 mV.

The residual distribution of the SAT difference is depicted in Figure 5.21 (left). It was
subjected to a Gaussian fit with mean µ and standard deviation σ, which corresponds
to the estimated timing resolution of 20.5 ± 0.5 ps. Despite the CFD, it shows an
asymmetric tail on the right-hand side of the measured distribution. This phenomenon
can be attributed to the presence of relatively diminutive electron peak signals with
delayed arrival times, which represent only a minor portion of the overall event dataset.
Consequently, as shown in Fig. 5.21 (right), this gives rise to a correlation between the
SAT and the charge associated with the electron peak q̃. The relation between the two
was phenomenologically gauged using a parametric function of the form

⟨SAT(q̃)⟩ = c1
q̃c2

+ c3 (5.5.2)

where ci for i ∈ {1, 2, 3} are the free parameters that were estimated through the fitting
of the data [111]. As shown in Fig. 5.21 (right), this function adequately describes the
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Figure 5.20: Right: Peak amplitude as a function of the hit location of the muon
track across the pad electrode. Left: Distribution of the peak amplitue of the signal
pulses in the central area the pad. The mean is determined though fitting with the Pólya
distribution.

trend. Similarly, the rise time of the signal is plotted as a function of q̃, resulting in
the correlation shown in Fig. 5.22. The notable increase in rise time observed at lower
electron-peak charge valuesis ascribed to events occurring outside the central region of
the pad.

An identical analysis was performed for pad 27 of the non-resistive multi-pad device.
When operated with a cathode voltage of −445 V and an anode voltage of 275 V, we
attained a S/N comparable to that observed in the previously mentioned measurement.
In this configuration, we determined the mean peak amplitude to be 116.31± 1.58 mV,
with a baseline noise fluctuation with an RMS of 1.20±0.09 mV. The residual distribution
on the difference in SAT between the DUT and reference MCP-PMT is shown in Fig.
5.23, resulting in an improved timing resolution compared with the resistive readout
structure of 18.3 ± 0.6 ps. The leading-edge rise time was measured to be 0.747 ± 0.03
ns, which is consistent within the margin of error with the values depicted in Fig. 5.22
for the resistive readout.

In summary, these results indicate that the resistive multi-pad PICOSEC MM retains
its the timing performance of below 25 ps at the center of the pads. We note that variation
in the timing performance may be ascribed to the inclusion of a DLC layer and Kapton®

laminate, alterations in the signal routing and grounding arrangement on the PCB -
necessary for accommodating the resistive readout within the detector housing - could
also make a non-negligible contribution to the device’s sensitivity.
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Figure 5.22: Correlation plot between the leading-edge rise time of the signal and the
electron-peak charge.
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Figure 5.23: Gaussian-fitted residual distribution for the SAT difference between the
reference MCP-PMT and pad 27 in the non-resistive multi-pad PICOSEC.

5.6 Summary

The fast timing PICOSEC MM concept successfully pushes the timing resolution with
MPGDs below 25 ps for MIPs by employing a two-stage amplification structure alongside
a virtually-simultaneous injection of primary photoelectrons at the top of the gas volume.
Building upon the encouraging results obtained from the most recent 100-channel proto-
types, we have conducted simulation studies to better understand how performance may
evolve during the transition to a robust design. In this updated configuration, the read-
out pads are situated below a thin Kapton® layer, positioned beneath a resistive DLC
sheet with a surface resistivity R. A key observation was that the delayed component of
the induced current leaves the rising edge of the signal unaffected if R ≥ 100 kΩ/□. To
asses the rate-capability, we used FEM calculations to estimate the potential drop across
the resistive layer given a specific beam intensity and profile. By incorporating data from
effective gain measurements, the expected gain drop was calculated for a wide range of
surface resistivities and event rates. In conjunction with the requirement of sufficient
quenching of sparks, this lead us to fixing the surface resistivity at R = 20 MΩ/□ across
the 10× 10 cm2 area.

After production, the new multi-pad prototype was extensively tested in the lab-
oratory and test beam. In this chapter, we reported a first comparison between the
single-pad response of the resistive and non-resistive multi-pad. We have found that the
timing performance remains below 25 ps and that the signal’s rise time is preserved.
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Chapter 6

Resistive 2D interpolation readout
structure

In the preceding chapters, specifically in Chapters 2 and 4, we explored the utilization
of segmented anode structures for achieving one or two-dimensional localization of an
incident particle’s position. In the context of Part II, we delved into a method where the
location information was derived directly from the sampling of the charge distribution,
relying on the prompt component of the signals. Chapter 2 introduced an alternative
strategy involving a thin resistive layer AC-coupled in the readout plane. This innovative
approach aims at dispersing the signal across neighboring channels, thereby increasing
the cluster size of the event.

The discussion in this chapter will shift towards a DC-coupled resistive readout
method, wherein the position information is discerned through a charge sharing mech-
anism between distinct electrodes. As with the AC-coupled readout, this approach sig-
nificantly reduces the required number of readout channels without sacrificing spatial
resolution. The concept of position-sensitive readout using resistive materials has a rich
history, spanning over half a century, with its origins tracing back to the one-dimensional
case of a wire, which was adopted in numerous experiments [151].

First, we will briefly examine the basic principles of the one-dimensional case before
delving into the intricacies of position-sensitive resistive readout schemes, which offer
two-dimensional spatial reconstruction. For the latter, the correction maps required for
linear position interpolation will be numerically calculated. This computation involves
applying the extended form of the Ramo-Shockley theorem for conductive media to
the readout electrodes and simulating the device’s response using Garfield++. We will
account for possible non-homogeneous surface resistivity after production on the level
of the time-dependent weighing potential calculation to describe its effect on the spatial
performance.
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Figure 6.1: Schematic representation of a perturbed transmission line connected to two
external impedance elements.

6.1 Charge sharing on a transmission line

In Sec. 2.4 of Chapter 2, the Gaussian solution to the Telegraph equation – depicting
the diffusion of a point charge within an infinitely extending thin resistive layer – was
discussed. This solution represents the late-time limit of the complete solution that
satisfies the Maxwell’s equations in the quasi-static regime over the entire time domain.
From Eq. 2.4.11 is could be deduce that when a point charge travels through the parallel
plate gap above the resistive layer, the induced current on and AC-coupled readout can
be calculated using the basic form of the Ramo-Shockley theorem. This calculation uses
the static weighting field a parallel plate chamber, effectively treating the resistive layer
as if it were perfectly conducting. Subsequently, this computed current ‘on’ the resistive
layer by the movement of the charge can be applied to the layer as an ideal current source
at a position (x, y) = (x0, y0). The layer’s dynamics at late times are then governed by
the solution of the Telegraph equation. A similar result regarding a transmission line
is detailed in Ref. [57]. Deriving the dynamics of the transmission line following a
perturbation at a specific location along its length is, therefore, sufficient to describe the
characteristic behavior of such a one-dimensional system. For this case, it can be shown
that there is a linear dependence between the position of collection on the wire and the
charge read out on both ends [151, 152]. In this section, we will derive this practical
property, alongside providing the general relation that will serve as a reference point for
the following chapters. What follows is based upon Ref. [153].

6.1.1 Equations of motion

The transmission line model can be represented by an repeating series of lumped com-
ponents formed out of the circuit shown in Fig. 2.21. In the continuous limit where this
segments are taken to be infinitesimally short, the line voltage V (x, t) and the current
I(x, t) are related by

∂V (x, t)

∂x
= −RI(x, t)− L

∂I(x, t)

∂t
∂I(x, t)

∂x
= −GV (x, t)− C

∂V (x, t)

∂t

(6.1.1)

where the parameters R, L, C and G are the distributed resistance, inductance, capac-
itance and conductance, respectively, expressed per unit of length of the transmission
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line. For the system found in Fig. 6.1 where a current source I0(t) = qδ(t) has been
placed on x = x0 the general solution in the frequency domain is given by

Va(x, ω) = Va+e
−γx + Va−e

γx

Ia(x, ω) =
1

Z0

(
Va+e

−γx − Va−e
γx
)

Vb(x, ω) = Vb+e
−γx + Vb−e

γx

Ib(x, ω) =
1

Z0

(
Vb+e

−γx − Vb−e
γx
)

(6.1.2)

where the propagation constant γ and the characteristic impedance Z0 are expressed as

γ :=
√

(R+ iωL)(G+ iωC) , Z0 :=

√
R+ iωL

G+ iωC
. (6.1.3)

The constants Va± and Vb± found in Eq. (6.1.2) must be determined by imposing of
boundary conditions. Assuming that the two sides a, b are terminated by frequency-
independent impedances Za,b, the boundary conditions of the system sketched in Fig.
6.1 read:

Va(0, ω) = −ZaIa(0, ω)

Va (x0, ω) = Vb (x0, ω)

Ia (x0, ω) = Ib (x0, ω)− q

Vb(l, ω) = ZbIb(l, ω) .

(6.1.4)

As a result, the constants of the solution are then given by

Va+ = −qZ0 (Z0 − Za) (Zb cosh (γ (l − x0)) + Z0 sinh (γ (l − x0)))

2 sinh(γl)
(
ZaZb + Z2

0

)
+ 2Z0 (Za + Zb) cosh(γl)

Va− =
qZ0 (Za + Z0) (Zb cosh (γ (l − x0)) + Z0 sinh (γ (l − x0)))

2 sinh(γl)
(
ZaZb + Z2

0

)
+ 2Z0 (Za + Zb) cosh(γl)

Vb+ =
qZ0e

2γl (Zb + Z0) (Za cosh (γx0) + Z0 sinh (γx0))

e2γl (Za + Z0) (Zb + Z0)− (Z0 − Za) (Z0 − Zb)

Vb− = −
qZ0e

−γx0 (Z0 − Zb)
(
e2γx0 (Za + Z0) + Za − Z0

)
2 (e2γl (Za + Z0) (Zb + Z0)− (Z0 − Za) (Z0 − Zb))

.

(6.1.5)

The consequent solutions for the current read out on both ends of the wire are therefore

Ia(0, ω) = −qZ0 (Zb cosh (γ (l − x0)) + Z0 sinh (γ (l − x0)))

sinh(γl)
(
ZaZb + Z2

0

)
+ Z0 (Za + Zb) cosh(γl)

Ib(l, ω) =
qZ0 (Za cosh (γx0) + Z0 sinh (γx0))

sinh(γl)
(
ZaZb + Z2

0

)
+ Z0 (Za + Zb) cosh(γl)

,

(6.1.6)

while the voltage is given by

Va(0, ω) =
qZ0Za (Zb cosh (γ (l − x0)) + Z0 sinh (γ (l − x0)))

sinh(γl)
(
ZaZb + Z2

0

)
+ Z0 (Za + Zb) cosh(γl)

Vb(l, ω) =
qZ0Zb (Za cosh (γx0) + Z0 sinh (γx0))

sinh(γl)
(
ZaZb + Z2

0

)
+ Z0 (Za + Zb) cosh(γl)

.

(6.1.7)
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These general solutions will be of use in subsequent chapters to cover a multitude of
different types of resistive readout structures.

6.1.2 Position and timing

Setting the conductance G to zero, the current is confined to the wire and flows though
the terminals on its ends. The resulting total charge flowing through Za and Zb is then
given by

Qa =

∫ ∞

0
Ia(0, t) dt = lim

iω→0
Ia(0, iω) = q

Zb +R (l − x0)

Za + Zb +Rl

Qb =

∫ ∞

0
Ib(l, t) dt = lim

iω→0
Ib(l, iω) = q

Za +Rx0
Za + Zb +Rl

(6.1.8)

where we can see that we have conservation of charge: Qa +Qb = q. This constitutes a
crucial outcome resulting from the sharing of charge between the two connections. The
linearity of the charge flowing from the contacts of the wire with the location of the
charge deposition allows for the reconstruction of the event position through

x0 =
lQbR−QaZa +QbZb

QaR+QbR
. (6.1.9)

This reduces further to

x0 =
lQb

Qa +Qb
, (6.1.10)

when taking the case were both ends are perfectly grounded (Za = Zb = 0). The concept
of position-sensitive readout, which translates position into corresponding analog signals
in a linear manner, has been employed in numerous designs [151]. Compared with pure
pixel devices, this leads to a significant reduction of electronic channels with comparably
good spatial resolution at the same time.

A similar feat can be achieved using the timing of the signals. When Za = Zb = 0,
the current flowing from end point B to ground is given by

Ib(l, ω) = q
sinh

(
x0

√
iClRlω/l

)
sinh

(√
iClRlω

) , (6.1.11)

where Cl := Cl and Rl := Rl are the total capacitance and resistance of the wire,
respectively. In Fig. 6.2 (left) the signals are plotted in the time domain for different
initial depositions of the charge, using

Ib(l, t) =
1

2π

∫ ∞

−∞
Ib(l, ω)e

iωtdω . (6.1.12)

As the charge is deposited further from x = l the current on side b will not only be
attenuated due to the sharing of the charge with connection A, but also be delayed in
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time. This delay can be characterised using the Center of Gravity time of both side A

tcoga (x0) =

∫∞
0 tIa(0, t) dt∫∞
0 Ia(0, t) dt

= − lim
iω→0

I ′a(0, iω)

Ia(0, iω)

=
1

6
CR(2l − x0)x0 ,

(6.1.13)

and connection B
tcogb (x0) = − lim

iω→0

I ′b(l, iω)

Ib(l, iω)

=
1

6
CR

(
l2 − x20

)
.

(6.1.14)

Expressed in terms of C0 and R0, these quantities are plotted as a function of x0 in Fig.
6.2 (right), where we find a non-linear dependence on the initial location of q. However,
linearity can be restored when taking the difference between the CoG time on both sides

tcogb (x0)− tcoga (x0) =
1

6
ClR(l − 2x0) , (6.1.15)

allowing for a linear reconstruction capability using the time difference between the signal
measured on both ends of the wire. This is the basic principle behind some contemporary
detector designs, such as the improved RPC (iRPC) [154] of the foreseen upgrade to the
CMS Muon system [14] where the strip electrodes are read out on both sides. In addition,
this allows for the scaling of the strip-based readout structures to larger areas without
impeding the timing capability of the device due to the finite propagation speed of the
signal through the electrodes.

6.2 Two-dimensional interpolation readout

Given the interpolation capability of the one-dimensional case of a wire, it is natural that
this would be extended to the case of two-dimensional reconstruction using a resistive
readout. In this section the basic concepts and merit of these type of position sensitive
structures will be discussed before going into the modeling efforts of the next section.

The longstanding concept of charge sharing between electrodes connected to a resis-
tive layer has prompted numerous theoretical approaches to describe its characteristics.
Predominantly, these approaches focus on numerically solving the Telegraph equation
(2.4.1) to capture the diffusion of the charge. For the square thin resistive layer grounded
on each side by a separate electrode depicted in Fig. 6.3 (left), the dependency of the
charge sharing between the edge electrodes on the position of a deposited point charge
q was described by the work of E. Mathieson [155]1. Fraser et al. later proposed a de-
scription for more complex interpolation structures, including one where four “L”-shaped

1In the recent work of W. Riegler [61], the current distribution across the four borders is given in the
quasi-static limit of Maxwell’s equations.
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Figure 6.2: Right: Current flowing through connection B (x = l) to ground form a
charge q being deposited at a position x0. Left: Center of Gravity time as a function of
the hit position.

Figure 6.3: Right: Position sensitive readout cell using a thin layer material with a
finite surface resistivity to share the collected charge between the four strip electrodes
placed at the edges of the cell. Left: resistive readout cell using L-shaped electrodes to
enable hit position dependent charge division.

anodes are located at the corners of a square resistive layer [156, 157], as shown in Fig. 6.3
(right). Let us consider that x0, y0 ∈ [−g/2, g/2] and Qi for i ∈ {1, 2, 3, 4} are the total
collected or induced charge on the four nodes. When performing a linear interpolation
using a linear four-node algorithm, alternatively called Anger-logic [158],
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x =
g

2

(Q2 +Q4)− (Q1 +Q3)∑4
i=1Qi

y =
g

2

(Q3 +Q4)− (Q1 +Q2)∑4
i=1Qi

,

(6.2.1)

a non-negligible position dependent reconstruction offset on the edge of the resistive cell
from the true collection point can be observed. This issue is a recognized challenge that
is inherent in resistive readouts of this family. While sub-optimal, a good understanding
of the distortion through theoretical or experimental means allows for the construction
of a correction map which can subsequently be used to correct the position obtained by
the linear interpolation using the measured charge ratios.

The linearity observed in the one-dimensional case can be restored in two dimensions
by adopting the specific geometry illustrated in Fig. 6.4. In this configuration, a resistive
layer with surface resistivity R1 is surrounded by concave thin strips with a lower surface
resistivity R2, the values of which are related through

R1

R2
=
a

w
, (6.2.2)

assuring the linearity of the interpolation [159, 160]. One can show that when applying a
(unit) potential to nodesN1 andN2 while keepingN3 andN4 at ground that the steady-
state electric potential is linearly dependent on the position [76]. Given Eq. (2.2.14), this
explicitly proofs the linear position sensitivity of the readout. Recent applications of this
principle can be found in the advancement of position sensitive MCPs [161]. Although
practical, this solution leads to issues of incomplete tiling of the readout plane when
aiming to cover a larger active area.

Motivated to cover the active area of a detector completely using a resistive anode
cell with no dead area, the two-dimensional resistive interpolation readout found in Fig.
6.5 was developed [162]. To minimize linear interpolation distortions it incorporates
the idea of a square resistive readout cell adjoined by low resistivity strips with node
electrodes placed on its four corners. Using the charge sharing between these corner
nodes, the CoG position of the collection position of avalanches inside a readout cell
can be reconstructed [76, 163]. An analytical solution for charge division in a position-
sensitive silicon detector utilizing this readout was obtained by solving the Telegraph
equation for a deposited charge [164]. Nevertheless, this model comes with limitations
stemming from the assumption that the border strip resistance is zero. To address this,
an RC-circuit approach was employed to better describe the charge sharing phenomenon
[165]. In the context of the development of the Micro-Compteur à Trous (MicroCAT)2

MPGD [166, 167], this two-dimensional interpolation readout structure was proposed by
H.J. Besh et al. [168]. For this technology the surface resistances of the low resistivity

2Similar to the MicroMegas gas amplification structure the (Micro)CAT separates a drift and ampli-
fication region (≈ 200 µm) with a mesh-type structure with circular holes.
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Figure 6.4: Gear’s resistive position-sensitive readout concept using four readout nodes,
N1, N2, N3 and N4, that ensures linear hit position interpolation capability in two
dimensions.

strips and the bulk of the high resistivity cell typically range from 1–10 kΩ/□ and 0.1-1
MΩ/□, respectively [76]. Within its rate capacity, the resistive positions sensitive anode
realizes the performance of a pixel detector, offering a spatial resolution of approximately
200 µm. Notably, this is achieved while reducing the required number of electronic
channels per unit area by two orders of magnitude compared to a pixel detector with
the same resolution [168]. This concept has recently gained renewed attention in the
context of developing a DC-Coupled Low Gain Avalanche Diode (LGAD) device [169,
170], where the signal shape is used for both timing and position measurements. In
addition, a recently development on a resistive anode design employes discrete metal
electrodes rather than planar resistive layers to capture the induced signal and utilizing
an resistor chain for charge division [171].

From Eq. (6.2.2), we deduce that in the limit R1/R2 → ∞, the charge sharing be-
tween the nodes holds a perfect linear relation with the CoG position of an charge cloud.
However, event rate considerations put an upper bound on R1 since it dominates the
time of the charge draining of the system. Simultaneously, the parallel resistive noise
of the resistive border imposes a lower limit on the value of R2 [163]. Due to the finite
ratio R1/R2, deviations of the position reconstruction from the actual collection point
are anticipated when using the linear four-node-encoding algorithm. This is because the
collected charge is not entirely confined within the cell structure; instead, a portion of it
flows into adjacent cells making the distortion more pronounced in the area near the low
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Figure 6.5: Schematic depiction of a 8× 8 mm2 (MicroCAT-type) resistive readout cell
within the collective readout structure. The readout nodes, represented by black circles,
are positioned at the intersections of the low resistivity strips indicated by the dark gray
color.

resistivity border. Alternative interpolation methods are available that try to capture
the lost charge information by using the neighboring cells’ readout nodes or overcome
the distortion through a mixed or weighted interpolation algorithm [163, 172, 173]. Even
so, non-uniformity in both R1 and R2 during production results in additional distortions
that can significantly affect the reconstruction capability of the detector. Therefore,
thoroughly assessing this non-uniformity contribution in the design stage before manu-
facturing resistive position-sensitive anodes is prudent.

6.3 Simulation of the correction map

To enhance the position performance of the resistive position-sensitive anode and align
it with the dimensions required for the intended detector technology implementation, it
is crucial to employ sound physical and numerical methods. Until now, this was only
achieved though the numerical solving of the Telegraph equation. In this section, we
will utilize the extended form of the Ramo-Shockley theorem to analyze the MicroCAT
resistive position-sensitive anode. This analysis aims as calculating the correction map
under both the scenarios of uniform and non-uniform distribution of surface resistivity
across the cell.
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6.3.1 Model of the readout structure

The MicroCAT operates with a 250 kV/cm drift field in the O(1) mm drift region and
performs gas gain below the mesh structure using a field of 30 kV/cm for an amplification
gap of 200 µm using a gas mixture of 90% argon and 10% CO2 at NTP. To take the Mi-
croCAT structure into account these regions are smoothly connected though the mesh’s
opening over a region of length ≈ 150 µm across the structure, according to the modeling
presented in Ref. [174]. In this work we have treated the mesh as a perfect shield be-
tween both regions, and we have exclusively focused on the movement and amplification
of charge in a 200 µm parallel plate-like amplification structure yielding a uniform am-
plification field. Considering that the aim was to calculate the induced signals resulting
from moving charges in a gas and the reaction of the resistive material, the Garfield++
toolkit is used. Using the dynamic weighting potential of the device, the induced charge
for each electron and ion track could be calculated independently and summed up giving
the full signal shape of each node over time.

The response of the central cell – shown Fig. 6.5 – in a 5×5 grid of 8×8 mm2 resistive
cells has been calculated in a parallel plate setup, similar to the ones found in Telegraph
equation based simulation work of H. Wagner et al. [76]. Unless stated otherwise, the
values of R1 and R2 are taken as 100 kΩ/□ and 1 kΩ/□, respectively. Added to this is a 1
mm thick ceramic substrate below the anode [163, 174, 175]. In which, resistors Rd were
embedded directly below the readout nodes to represent the impedance to ground due to
external electronics. This approach of implementing the contribution of external discrete
elements into the time-dependent weighting potentials is distinct from the circuit-based
approach described in Sec. 2.5.4, yet equivalent.

6.3.2 Dynamic weighting potential

The dynamic weighting potential Ψ1(x, t) of the resistive position-sensitive anode is
shown in Fig. 6.6 for Rd = 50 Ω. The localized nature of the prompt component –
it rapidly decays when moving radially away from the node – suggests that the contri-
bution of the delayed component dominates the induced signal. As time progresses, the
reaction of the low resistivity border strips becomes apparent due to their small surface
resistivity compared to the one hundred times larger value found in the interior of the cell.
For practical considerations, a numerical solution of the steady-state of Ψi is obtained at
a time slice for a finite time, where the solution has already closely converged to its final
value. This steady-state solution reveals a non-vanishing weighting potential outside the
adjacent cells. This indicates that the draining of charge is not fully contained in one cell
since, in general, the node’s contribution located in next to adjacent cells will be non-zero.

As the overall induced charge resulting from the motion of a point charge is connected
to the steady-state solution through Eq. 2.2.14, and considering that the ions’ end points
align with the “mesh” plane where ∀t ∈ R, n ∈ {1, 2, 3, 4}: Ψn = 0, the proportion of
the electron’s charge induced on the readout nodes is determined by its impact position
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Figure 6.6: Four logarithmic scaled contour plots of the numerically obtained dynamic
weighting potential of the upper left readout node of the central cell of the resistive anode
for different time slices. Here the upper left plot, taken at t = 0 represents ψp

1(x) while
the steady-state solution is given by the last panel.

according to the steady-state solution of the electrodes. As a result, the total induced
charge on node n given the impact position x1 = (x1, y1, 0) of electron is given by

Qn =
e0
Vw

lim
t→∞

Ψn(x1, t) , (6.3.1)

to which the ions do not contribute. To reconstruct the CoG position of a Townsend
avalanche containing L electrons, the four-node interpolation algorithm of Eq. (6.2.1)
then reads

x =
g

2
lim
t→∞

L∑
l=1

[Ψ2(xl, t) + Ψ4(xl, t)]− [Ψ1(xl, t) + Ψ3(xl, t)]∑4
i=1Ψi(xl, t)

y =
g

2
lim
t→∞

L∑
l=1

[Ψ3(xl, t) + Ψ4(xl, t)]− [Ψ1(xl, t) + Ψ2(xl, t)]∑4
i=1Ψi(xl, t)

,

(6.3.2)

where xl is the end position of electron l ∈ {1, 2, . . . , L}.
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Figure 6.7: Induced charge Q3(t) on node N3 for a point charge q being injected at
(x, y) = (x0, y0) at t = 0 and Rd = 0 Ω. Right: The induced charge for R2 = 1 kΩ/□
are indicated by the full and dashed lines for R1 = 100 kΩ/□ and R1 = 500 kΩ/□,
respectively. Left: The full and dashed lines illustrate the induced charge for R1 = 100
kΩ/□, with distinct cases of R2 = 1 kΩ/□ and R2 = 10 kΩ/□, respectively.

6.3.3 Induced charge on readout node

From the discussion on the relation of R1/R2 and the problem of distortion we can
already devise that both R1 and R2 play a role in the precise charge sharing between
the four nodes. In addition, the higher their respective values, the longer the required
integration time of the signal to obtain the collected charge on each channel, as shown in
Fig. 6.7 for the case of a point charge being deposited at different points in the central
readout cell at time t = 0. The early-time spreading of the charge appears to be primarily
influenced by the lower surface resistivity of the border strips. In contrast, the duration
required to accumulate the total amount of charge is determined by R2. However, both
R1 and R2 play pivotal roles in the eventual convergence to the total induced charge.

The cumulative induced charge on the four readout nodes located at the corners of
the central cell has been computed for a sequence of avalanches initiated by a single
electron at the cathode. These initial electrons were positioned above the central read-
out cell at distinct positions, which were then reconstructed through the calculated total
induced charge on the corner nodes. As a result, the resulting correction map has been
calculated by virtue of expression (6.3.2) for the start and end points of all electrons.
Using the same coordinate system as in Fig. 6.5 the resulting plot given in Fig. 6.8
shows a distortion-free center of the readout cell which degrades when approaching its
border. The same has been observed using the Telegraph equation based models found
in literature [76, 163, 173]. In Fig. 6.9 our result is directly compared to the one found
in the work of H. Wagner et al. [76], where we find good agreement for a terminator
resistors value of Rd = 100 Ω.
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Figure 6.8: Correction map of the central cell in the resistive readout due to linear
interpolation. The coordinate system is taken such that the center of the cell corresponds
to the origin. The lattice nodes indicate the point of the initial position of a single electron
at the cathode. The dots show the reconstructed Center of Gravity positions due to linear
interpolation.

To validate the theoretical calculations, we compare our results with measurements
conducted by H. Wagner et al. [76]. In their experiment, a predefined quantity of charge
was directly injected onto the surface of the low resistivity strip using a needle placed on
its surface. Given the manual placement, and the mechanical hysteresis of the needle a
uncertainty of ±50 µm is assumed. The experimentally observed distortions are plotted
alongside the theoretical curves in Fig. 6.9, where we find a good agreement with the
experimental data.

6.3.4 Non-uniform surface resistivity

Given constraints on the precision of the manufacturing procedure of the resistive anode,
non-homogeneity in the surface resistivity can degrade the position capability of the de-
vice. An example of this can be found in a GEM-based prototype where a variation of
around 20% was observed in surface resistivity [176]. Here, we propose a novel way to
calculate the effects of varying surface resistivity using the dynamic weighting potential.

To emulate a relatively severe case of non-uniformity within one readout cell, a map
of surface resistivity was generated using Perlin noise, a gradient noise function used in
computer graphics to create natural-looking random patterns [177]. The method em-
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Figure 6.9: Comparison between the experimental distortions in the x-direction at the
edge of the resistive cell (x0 = ±4 mm) with the simulated results from both our study
and the Telegraph equation-based approach detailed in [76].

ploys a grid of gradient vectors that are smoothly interpolated to produce the random
pattern shown in Fig. 6.10 (left). By adjusting the initial settings of the noise generator,
various aspects of the noise pattern can be controlled, including amplitude and the rate
of variation across the cell. The surface resistivity distribution R1(x, y) on the central
high resistivity pad was utilized to calculate the dynamic weight potentials of the four
nodes, which broke the system’s symmetry. Following the procedures described in the
previous subsections, this asymmetry could be observed in the correction map displaying
the reconstructed positions of the event’s CoG, as shown in Fig. 6.10 (right). The more
pronounced deviations from the ideal correction map are observed in the region around
the peaks and valleys of R1(x, y). In these areas, the reconstructed positions appear to
be either repelled or attracted to the center of the feature, respectively.

While applied to the case of the MicroCAT, the methodology of incorporating the
effect of non-homogeneous surface or volume resistivity in the modeling efforts through
a randomly generated Perlin noise map can be applied to any resistive detector. Specific
technologies can be highly sensitive to these variations, such as the case of the 4D tracking
RSDs where an expected roughly factor two degradation in spatial resolution is reported
for a 2% variation in surface resistivity [178]. Hence, simulations of this nature can
be employed to estimate the sensitivity of the performance of the designed structure to
anticipated non-uniformity in the resistive elements during production.
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Figure 6.10: Right: The surface resistivity distribution R1(x, y) across the central
readout cell as randomly generated using Perlin noise. The variation in values is around
the central value of 100 kΩ/□. Left: Theoretical correction map form linear interpolation
in the presence of a non-uniform resistive readout cell for Rd = 50 Ω.

6.4 Summary

Within their rate capabilities, resistive positive-sensitive readouts can be used to sig-
nificantly reduce the required number of readout channels without loss of localization
precision. While the linearity of the position interpolation can be preserved going from
the one-dimensional case of a wire to a two-dimensional readout, this is only the case
when adopting a specific concave configuration that does not allow for fulll tiling of the
readout plane. Consequently, this limitation led to the development of alternative read-
out structures, exemplified by the MicroCAT readout. This structure utilizes a tiling
arrangement of square resistive cells, each equipped with readout nodes at the corners.
As a result, employing a linear position reconstruction using the total charge induced
on readout nodes would result in deviations of the reconstructed position from the CoG
position of an event. To study the accuracy of the implementation of the extended form
of the Ramo-Shockely theorem in Garfield++, we calculated the correction map of the
readout for Townsend avalanches in the amplification region. The resulting map captures
the measured interpolation distortions within the experimental uncertainty. Additionally,
these results are found to be consistent with those from previous simulation studies using
RC networks. Furthermore, the effect of non-uniformity in surface resistivity within a
readout cell was addressed by incorporating a surface resistivity map, generated using
Perlin noise, into the correction map.
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Chapter 7

3D Diamond detectors

Following the stringent requirements of future hadron machines, the 3D diamond detec-
tor adopts a novel resistive readout architecture to overcome the anticipated challenges.
The response of the resistive electrodes will be characterized using a transmission line de-
scription of the system, which will subsequently be compared to the full-time-dependent
weighting potential approach. Given pion hits, the current response will be calculated,
the shape of which will be analyzed.

7.1 Concept and working principle

As highlighted in Chapter 5, the design of detectors for upcoming high-luminosity hadron
machines, such as the HL-LHC, encounters the significant challenge of reconstructing the
trajectories of an unparalleled density of charged particles. In addition to this is the ex-
pected increase in flux of ionizing particle leads to a higher level of radiation exposure for
the detectors. For instance, the sensors positioned closest to the interaction points in the
vertex locator of the LHCb experiment, scheduled for installation in 2032, are expected
to withstand a radiation dose of O(1017) 1 MeV neq cm−2 over a ten year period [179].
This engenders concerns regarding potential radiation damage to sensors and front-end
electronics throughout their operational lifespan [180].

Semiconductor sensors comprised of diamond have demonstrated exceptional radia-
tion tolerance compared to contemporary silicon devices [181, 182]. This resilience is
further enhanced by adopting the innovative three-dimensional readout structure illus-
trated in Fig. 7.1, where the electrodes run parallel with one another inside the bulk of the
sensor [183, 184, 30]. The columns used as the signal readout are interleaved with biasing
columns, where a potential difference is applied between them to generate the motion of
the free electron-hole (e-h) pairs. Compared to the more traditional planar sensors, this
approach shortens the charge carrier path within the material, significantly improving
both the response speed and charge collection efficiency [185]. This characteristic proves
especially valuable in detectors with substantial charge-trapping mechanisms, as seen in
diamond or silicon sensors exposed to high radiation levels. In contrast to their silicon

149
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Figure 7.1: Schematic depictions of the 3D diamond sensor’s geometry. Right: Dimen-
sions of the sensor with a pixel cell size of 55 × 55 µm2 comprised of a central readout
pillar (light gray) and four biasing pillars (dark gray) placed at the corners. Left: Pro-
jected view of a electron-hole pair form the primary interaction of a incident pion. The
applied potential difference guides the oppositely charged carriers to the readout and
biasing columns.

counterparts, the columnar electrodes comprising the 3D architecture are obtained by
focusing a femtosecond laser within the bulk domain to cause a local phase transition to
a resistive composite of DLC, amorphous carbon, and graphite [186, 187]. Depending on
the production parameters, the resulting electrodes have a total end-to-end resistance in
the range of O(105 − 106) Ω over their 450− 500 µm length [188], categorizing them as
resistive electrodes. Further details on this innovative fabrication process can be found
in Ref. [180, 188]. Additionally, diamond exhibits a low leakage current owing to its
large energy gap, possesses a small dielectric constant leading to low capacitance, and its
carriers demonstrate high mobility and saturation speed compared to silicon [189]. The
latter characteristic makes it appealing for timing applications by reducing the spread
in the collection times of charges. However, the drawbacks of using diamond include the
generation of low signal amplitudes from energy deposition by passing particles owing
to its sizable energy gap [189], as well as the existing challenge of large-scale production
[190].

Within the INFN TIMESPOT1 R&D project framework, the manufactured 3D dia-
mond devices use single-crystal chemical vapor deposited (sCVD) diamond samples with

1TIME and Space real-time Operating Tracker.
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a engraved pixel size of 55×55 µm2. Typically, rows of columns are connected together in
a single readout channel. The overall device thickness is 500 µm, and the resistive pillars
run to approximately 50 µm from the opposite surface. For these sensors a sub-100 ps
timing resolution hase been demonstrated for MIP [180] with good detection efficiency,
making them a good candidate for tracking applications in future experiments.

7.2 Transmission line description

Considering the ohmic composition of the pillar electrodes, we will first cover the working
principle of the 3D Diamond detector concept using a transmission line description by
arguing that the resistive readout columns can be approximated as such. As the electrons
and holes propagate in the bulk diamond, the induction of signal on these columns can
then be seen as ideal currents — calculable using the basic Ramo-Shockley theorem with
a static weighting potential — that propagates through a wire after injection [57]. This
method, coupled with KDetSim [191] for charge transport, has been used by L. Anderlini
et al. [188] to enhance the understanding of experimental findings and explore potential
optimizations, while circumventing the more involved TCAD simulations (e.g. [192]).
The details of this strategy for the 3D diamond sensor was worked out by G. Passaleva
and W. Riegler [193], the results of which will be the topic of this section. The aim is to
derive the response of the transmission line to rapid signal injections and provide a toy
model example of how these ideal currents look like for this readout architecture.

7.2.1 Transfer function from injection of charge

For the following derivation we will rely on the results already obtained in Sec. 6.1, where
we studied the system depicted in Fig. 6.2 perturbed by the injection of charge q at po-
sition x = x0 along the transmission line’s length. By adopting appropriate boundary
conditions, this will provide us with a delta response function for the terminal reading
out the transmission line.

If taking one of the sides to be perfectly insulating, i.e., Zb → ∞, the current flowing
through Za, as given by Eq. (6.1.6), can be written as

Ia(0, ω) = qZ0
cosh(γ(l − x0))

Z0 cosh(γl) + ZA sinh(γl)
. (7.2.1)

Here, we have reversed the sign of the current to be compliant with the conventional
direction of the induced current. When assuming that there is a vanishing impedance to
ground on side A (Za=0), the above equations reduces to

Ia(0, ω) = q
cosh(γ(l − x0))

cosh(γl)
. (7.2.2)

As depicted in Fig. 7.2, a set of four bias columns encircle a single readout column,
with the separation between the bias pillars measuring 55 µm. This system can be
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Figure 7.2: Approximation of the readout pixel by a cylindrical chamber.

approximated by situating the readout pillar within a cylindrical chamber of a radius
b = 55/

√
2 ≈ 40 µm, as depicted in Fig. 7.2. For this system, the capacitance and

inductance per unit of length of the readout pillar are given by

C =
2πε0εr

ln
(
b
a

) , L =
µ0
2π

ln

(
b

a

)
, (7.2.3)

respectively. Here a denotes the radius of the readout pillar, εr the relative permittivity
of the bulk diamond, and µ0 the permeability of free space. Taking a = 6 µm, l = 450
µm and εr = 5.7, the total capacitance and inductance of this electrode is

Cl = Cl ≈ 75.2 fF , Ll = Ll ≈ 0.17 nH . (7.2.4)

The impedance resulting from the inductance is expressed as Z = iωLl, equating to
1.07 Ω at a frequency of 109 Hz. This value is inconsequential compared to the overall
resistance of Rl = 300 kΩ of the pillar and can, therefore, be disregarded. Furthermore,
we make the assumption of a negligible transconductance G ≈ 0. As a result, Eq. (7.2.2)
equates to

H(x0, ω) :=
Ia(0, ω)

q
=

cosh
[√
iωRlCl(1− x0/l)

]
cosh

√
iωRlCl

, (7.2.5)

which is written in the form of a transfer functionH(x0, ω); capturing the dynamics of the
graphitic pillar. The characteristic time constant that governs the system’s dynamics is
τ := RlCl ≈ 2.26 ns. Fig. 7.3 (left) shows the bandwidth of the transfer function
of different signal induction points. Given a general injection current Iind(t) at x = x0
instead of qδ(t), this current needs to be convoluted with the normalized impulse response
function

H(x0, t) =
1

2π

∫ ∞

−∞
H(x0, ω)e

iωt dω , (7.2.6)

in the time domain to deduce the current observed at terminal A. Since for small and
large values of ω Eq. (7.2.5) is exponentially suppressed the above integral can be eval-
uated numerically, with the exception of x0 = 0 where H(0, ω) = 1. The result of this
is shown in Fig.7.3 (right), where the signal is delayed in its arrival time and reduced
in amplitude as the injection distance from the terminal is increased. In the case of our
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Figure 7.3: Right: Transfer function of the response of the transmission line readout
electrode. Left: Signal on terminal A form the injection of charge q at different locations
x0.

diamond sensor, Iind(t) denotes the current induced on the pillar from the movement of
the electron-hole pairs as if the readout electrode was a perfectly conducting metal rod.
This calculation can be achieved by applying the basic form of the Ramo-Shockley theo-
rem, wherein the static weighting potentials are computed for N azimuthally symmetric
ring electrodes, dividing the readout column along its length. The resultant currents can
then be introduced into the transmission line at positions corresponding to the centers
of their respective rings by utilizing Eq. (7.2.6). By aggregating all contributions, this
process produces the measured current read out from the end of the resistive pillar.

Electron-hole pairs are generated in clusters throughout the path of the incident
particle. When the trajectory of this particle is assumed to be parallel to the readout
column, then, on average, this results in a uniform distribution of primary charge along a
line. With the injection of this constant line charge on the transmission line, the average
transfer function is given by

H̃(ω) =
1

l

∫ l

0
H(x0, ω) dx0 =

tanh
(√
iωRlCl

)
√
iωRlCl

, (7.2.7)

which is shown in Fig. 7.3 (left). In the time domain it reads

H̃(t) =
1

2π

∫ ∞

−∞
H̃(ω)eiωt dω . (7.2.8)

One can show that, for late times t > 0.2RlCl the expression H̄(t) ∝ exp (−2.5t/RlCl)
emerges. This result aligns with the distinctive exponential decay pattern observed in
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the solution of the Telegraph equation, as discussed in Sec. 2.4.

According to Eq. (6.1.13), one can calculate the Center of Gravity (CoG) time of the
transfer function through

tcog(x0) = RlCl
x0(2l − x0)

2l2
, (7.2.9)

which is shown in Fig. 7.4. Unsurprisingly, as the signal is injected further away form
the readout point of the pillar, the arrival of the signals becomes progressively later, to
the point where it converges to tcog → RlCl/2 at the end of the line. The average value
of tcog(x0) is RlCl/3, meaning that half of the signal comes later than 0.752 ns. Likewise,
the expression for the second moment of the CoG time is given by

t2cog(x0) =

∫∞
0 t2H(x0, t)dt∫∞
0 H(x0, t)dt

= lim
iω→0

H ′′(x0, ω)

H(x0, ω)

= RlCl
8l3x0 − 4lx30 + x40

12l4
.

(7.2.10)

With these expression we can write the RMS of the pulse width as

RMS(x0) =
√
t2cog(x0)− tcog(x0)2

= RlCl

√(
4l3 − 6l2x0 + 4lx20 − x30

)
x0

√
6l2

,

(7.2.11)

which is presented in Fig. 7.4. As expected, the signals become wider as the injection
point is further removed form the readout terminal. Given the stochastic process of
the energy lost by the particle and the energy deposited in the material i.e., Landau
fluctuations, the fluctuations of the CoG time can be written as [194]

σt = w(l)

√
1

l

∫ l

0
t̄2cog(x0) dx0 −

(
1

l

∫ l

0
tcog(x0) dx0

)2

=

√
7w(l)

3
√
5
RlCl , (7.2.12)

where in its general form the function w(l) is defined as

w(l)2 :=

∫ ∞

0

[
d

λ

∫ ∞

0

n21pclu (n1)

(n1 + n)2
dn1

]
p(n, l) dn , (7.2.13)

with p(n, l) being the probability for a relativistic particle to deposit n e-h pairs along a
path of length l, pclu(n) the cluster size distribution, and λ the average distance between
primary interactions. As a result, the timing performance is linearly related to RlCl,
such that a factor 10 decrease in resistance of the column would yield an improved σt by
one order of magnitude.
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Figure 7.4: Timing characteristics of the signal pulls at the readout terminal for different
charge injection positions.

7.2.2 Induced signal from electron-hole pair movement

With the transmission line description of the readout column, the dynamics of the resis-
tive electrode are captured in the derived impulse response function. This can be directly
used in conjunction with a numerical simulation framework, such as Garfield++, where
the movement of the carriers can be calculated for each event. The simulation flow would
then include the computation of the induced current on the electrodes as if they were
perfectly conducting, after which the resulting current would be convoluted with Eq.
(7.2.6). In order to gain a comprehensive understanding of the signal’s structure, we
will confine our analysis in this section to the trajectory of a singular electron-hole pair
within the cylindrical chamber, as a description of the pixel cell.

The velocities of electrons and holes, when subjected to an electric field of magnitude
|E|, will reach a saturation point under sufficiently high field strengths. To get a realistic
estimate of their trajectories we use the following parametrization for their velocities
[195, 196, 197]:

|ve(E)| = µe|E|
1 + µe|E|

vse

, |vh(E)| = µh|E|
1 + µh|E|

vsh

, (7.2.14)

where µe (µh) and vse (vsh) are the mobility and saturation velocity for the electron
(hole), respectively. Their exact values are influenced by the purity of the diamond, yet
for illustrative purposes, we employ the following set of values for the mobility [198]

µe = 1266
cm2

Vs
, µh = 1992

cm2

Vs
, (7.2.15)
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Figure 7.5: Drift velocity of the electrons and holes in the CVD diamond.

and saturation velocity

vse = 1.13× 107
cm

s
, vsh = 1.25× 107

cm

s
, (7.2.16)

which are in the same range as the ones found in Ref. [199, 200]. The velocities obtained
are depicted as a function of electric field strength in Fig. 7.6, where it is noteworthy that,
unlike silicon sensors, the hole’s movement can be faster than that of the electron2. It has
been found that diamond detectors have a high intrinsic breakdown voltage which allows
for its operation at high electric field configurations. This, coupled with the elevated
electron and hole mobility, has the potential to lead to a reduction of the impact of the
temporal spread of the charge collection on the time resolution of the sensor [180].

To gather the holes at the readout electrodes we apply a biasing potential. To do
so the central pillar is virtually grounded, while the outer edge of the chamber is put at
V0 > 0, resulting in the electric field

E(r) = − V0

r ln
(
b
a

) r̂ , a < r < b , (7.2.17)

with r being the radial coordinate. Plugging this into Eq. 7.2.14 and placing the ap-
propriate signs to indicate the direction of motion, the radial trajectories of the electron

2This is not always the case, as it is contingent on the properties of the CVD diamond.
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and hole being created as a pair at position r = r0 and time t = 0 are given by

re(t) =

√
vse ln

(
b
a

) (
r20vse ln

(
b
a

)
+ 2µeV0(r0 + tvse)

)
+ µ2eV

2
0 − µeV0

vse ln
(
b
a

)
rh(t) =

√
vsh ln

(
b
a

) (
r20vsh ln

(
b
a

)
+ 2µhV0(r0 − tvsh)

)
+ µ2hV

2
0 − µhV0

vsh ln
(
b
a

) ,

(7.2.18)

respectively. The electron reaches its endpoint at r = b, while the hole reaches its
endpoint at r = a, at a time

te :=
b− r0
vse

+

(
b2 − r20

)
2µeV0

ln

(
b

a

)
th :=

r0 − a

vsh
+

(
r20 − a2

)
2µhV0

ln

(
b

a

)
,

(7.2.19)

giving the time range in which they induce a signal on the readout pillar.

To calculate the signal on the central column from the movement of the e-h pair we
apply the basic form of the Ramo-Shockley theorem. Following Eq. 2.2.22 the contribu-
tion from each charge carrier is given by

Ie(t) =
e0

re(t) ln
(
b
a

) ṙe(t)Θ(te − t) t > 0

Ih(t) = − e0

rh(t) ln
(
b
a

) ṙh(t)Θ(th − t) t > 0 .
(7.2.20)

In Fig. 7.6 (left), the signals are depicted for various initial positions of the pair. As the
pair creation takes place farther from the readout pillar, the signal composition changes
based on the contribution of different charge carriers. When r0 is in proximity to a, the
total signal is predominantly comprised of the electron signal. This observation is also
apparent in the respective contributions of each carrier to the induced charge, illustrated
in Fig. 7.6 (right). Alongside this, the CoG time of the total signal, given by

tcog =

∫ te
0 tIe(t) dt+

∫ th
0 tIh(t) dt∫ te

0 Ie(t) dt+
∫ th
0 Ih(t) dt

, (7.2.21)

is dependent on this, as shown in Fig. 7.7. This leads to a dependence of the SAT to
the primary interaction position, adding to the overall timing resolution of the sensor
in conjunction with the signal’s propagation speed along the resistive column, and the
fluctuation in the primary ionisation pattern.
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Figure 7.6: Right: Induced signal form an electron-hole pair on the readout column
taken to be perfectly conducting. The initial positions are r0 = 10 µm (full line), r0 =
22.5 µm (dashed line), r0 = 35 µm (dotted line). Left: Contributions to the total induced
charge from the different carriers given different initial distances form the readout column.
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Figure 7.7: Center of Gravity time of the signal as a function of the initial distance of
the e-h pair form the central readout column.

7.3 Dynamic weighting potential of a readout column

For a more detailed description of the current response exhibited by the 3D readout struc-
ture, we return to the numerical dynamic weighting potential approach. This method-
ology will be employed for various resistive pillars, from which the resulting signals will
be computed using Garfield++ resulting from pion tracks. To conclude, a comparative
analysis with the transmission line description will be provided.
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7.3.1 Simulation setup

The calculated current response of the detector to an incident MIP has been obtained
through the use of Garfield++. This involved the calculation of the primary charge
deposition pattern, charge carrier transport driven by the applied electric field and the
determination of the induced signal. The latter was achieved through the use of the
extended form of the Ramo-Shockley theorem for conductive media by convoluting the
velocity vectors of the drifting charges with time-dependent weighting vectors of the
readout electrodes (i.e., Eq. (2.2.18)). One benefit of adopting this method is its con-
sideration of electrons and holes as point particles in the calculation. In certain TCAD
simulations, it is necessary to represent charge deposition as a continuous distribution,
resulting in the unrealistic behavior of individual charge carriers seemingly ’diffusing’ [49].

The simulation of the primary ionization pattern of a charged particle tracking
through a gas or solid-state medium can be performed with the widely used High Energy
Electrodynamics (Heed) toolkit [201], developed by I. Smirnov. The computations pre-
sented in this thesis were conducted using the C++ iteration of Heed [202]. For this work,
the simulation will be reported for 180 GeV/c pions with a normal incidence direction to
the sensor’s orientation, as depicted in Fig. 7.1 (left), for which the primary ionization
structure was calculated on an event-by-event basis. The general characteristics of these
interactions are given in Fig. 7.8, where both the calculated average cluster density and
cluster size distribution are presented for the diamond medium at an absolute tempera-
ture of 296.15 K.

The modeled 3D architecture is comprised of resistive readout columns interleaved
with the biasing columns. Integrating these resistive electrodes into sCVD diamond
involves the production of graphitic buried electrodes using femtosecond laser pulses
[203]. The resulting columns exhibit variations in column diameter due to the inherent
tolerance of the production process [192]. Additionally, graphite possesses a significantly
lower density compared to diamond, introducing mechanical stress within the diamond
lattice during the graphitization process [188], which may lead to local imperfections
in the sensor. Since representing these intricacies directly in a FEM environment was
not straightforward and would have required a detailed study of these irregularities, the
pillars were represented as cylindrical electrodes with a diameter of 12 µm [204] and
a height of 450 µm. As shown in Fig. 7.9, they were arranged in a 3 × 3 grid for the
readout columns, alternating with the 4×4 biasing columns within a 275×275×500 µm3

sensor. The electrode’s resistance was taken to be 30 kΩ [188], corresponding to a volume
resistivity of ρ ≈ 0.75 Ωcm. This geometry was implemented into the COMSOL® toolkit,
focusing particularly on refining the meshing near the pillar areas due to their curvature
and the higher gradient of the electric (weighting) potential. This has been done to
enhance the accuracy of the subsequent Monte-Carlo integration method employed by
Garfield++ for modeling charge carrier transport in that region.



160 CHAPTER 7. 3D DIAMOND DETECTORS

10-1 100 101 102 103
0

10

20

30

40

γ -1 [1]

C
lu
st
er
de
ns
ity

[1
/μ
m
]

100 101 102
10-3

10-2

10-1

100

101

102

Cluster size [1]

P
ro
ba
bi
lit
y
[%

]

Figure 7.8: Primary interaction pattern characteristics of a relativistic pion tracking
through the diamond material, as calculated by Heed. Right: Average number of clusters
per unit of distance for different Lorentz factors. Left: The probability to have n
electron-hole pairs per primary interaction for a pion with a momentum of 180 GeV/c.

For the applied electric field, the biasing columns were placed at V0 = 100 V, includ-
ing the backplane to which they were connected, while the readout pillars were perfectly
grounded. While applied to the terminal points at the outer end of the electrodes, the
applied potential propagates along the entire length of the pillars given sufficient time
due to their non-zero volume resistivity. To streamline the numerical computation, we
assumed that the electric field remained static throughout the entire charge collection
process and that any variation resulting from the signal current could be neglected. Fig.
7.10 shows the resulting electric potential and field solutions. The inhomogeneity of the
electric field strength can result in variable speeds of charge carriers below their sat-
uration velocities for a portion of their paths. This variability, in turn, can lead to a
non-uniform-induced current response based on the position of primary ionization. A
variation in the range of |E| ≈ 103 − 105 V/cm can be observed in the region between
two adjacent readout columns, with the minimum occurring at the midpoint. This range
appears sufficient to attain saturation velocities throughout the volume.

The preceding results were amalgamated with the outcomes of the calculation of the
propagation of the e-h pairs generated from the primary interactions of the pion with the
medium. An example of the paths of the charge carriers is given in Fig. 7.11, where the
holes and electrons are collected on the readout and biasing pillars, respectively. Due to
the insulating gap between one end of the pillars and the edge of the sensor, charges in
this region must traverse a greater distance resulting in a longer collection time.
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Figure 7.9: Simulated 3D readout architecture with graphitic pillar for the purpose of
signal readout (highlighted in blue) and biasing (unmarked). The inner region, delineated
by the outer readout electrodes, features denser meshing, owing to the fact that it serves
as the area of interest in the simulation.

7.3.2 Weighting potential and induced signals

Given an event, the signal from the central pillar has been calculated for the direct
induction from the motion of the charge carriers (prompt component) and the reaction
of the graphetic column (delayed component). The delayed weighting potential of the
readout electrode was calculated through the FEM following the recipe outlined in Sec.
2.5.2. A potential step of Vw = 1 V was applied on the connection terminal, while taking
all other electrodes to be perfectly grounded, thereby considering all external impedance
elements to be negotiable. The resulting dynamic weighting potential Ψ(x, t) solutions
at different time slices are presented in Fig. 7.12 and Fig. 7.13. The prompt component
of the potential ψp(x) = Ψ(x, 0) is, while relatively localized around the connection point
of the electrode, non-vanishing in the detector volume. Nevertheless, as time progresses,
the delayed component’s contribution (ψd(x) = Ψ(x, t)−ψp(x)) to the overall weighting
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Figure 7.10: Applied electric field and potential for the pixel matrix as calculated by
the COMSOL® toolkit. Upper: Cross-section view of the electric field strength at
z = 250 µm. Bottom left: Potential solution for constant z = 250 µm with streamlines.
Bottom right: Potential solution in the xz-plane (y = 0).

potential far outweighs the one from ψp(x). Hence, the majority of the signal will be
caused by the resistive nature of the electrode. Notably, both components do not vanish
in the volume of the neighboring pixel, suggesting signal sharing from direct induction.
In the limit t→ ∞, the solution will reach its steady-state where the pillar will act as a
perfectly conducting metal rod, perfectly propagating the applied voltage pulse over its
entire extent.

In Fig. 7.14 a comparison is made between the signals induced on the central electrode
for different positions of the incident pion. As detailed in Sec. 7.2.2, the nuanced compo-
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Figure 7.11: Drift lines of the free electron-hole pairs of a randomly selected simulated
event. Right: Projected view in the xz-plane. Left: Projected drift lines on the xy-
plane.

sition of the signal, involving contributions from both electrons and holes, is contingent
upon the precise location of primary ionization. In instances where events occur in close
proximity to the electrode under examination, the signal is predominantly shaped by
the influence of electrons as they traverse toward the biasing pillars (see event 2). Con-
versely, this pattern is reversed for events occurring near the biasing columns (see event
5). Due to the delayed reaction of the biasing column, they do not perfectly shield read-
out electrodes from events occurring in adjacent pixel regions (as demonstrated by event
3). Given our assumption that the electrodes possess negligible external impedance, this
cross-talk is present without factoring in the cross-coupling between the electrodes.

While the delayed component of the signal is dominant, there is a minor contribution
from the direct induction signal from the movement of the electrons and hole, mainly
coming from the vicinity of the top part of the electrode. This prompt part has the
expected shape compared to the ones found in Fig. 7.6 (left). The propagation of the
signal along the resistive column gives rise to the relaxation tail in the late-time behavior
of the signal. In this region, a wavy artifact emerges from the interpolations between
the time-slicing of the weighting potential maps (see Sec. 2.5.2). These maps are spaced
further apart in time during late times to mitigate the memory load of the simulation.

The complete readout chain would include the convolution of the induced signals with
the impulse response function of the electronics. For this, the BFP842ESD RF bipolar
transistor3 is used, the simulated impulse response function of which is given in Fig. 7.15

3Produced by Infineon Technologies: www.infineon.com

www.infineon.com
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Figure 7.12: Time-sliced weighting potential solutions for the central resistive readout
pillar at constant z = 250 µm (left column) and y = 0 (right column).
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Figure 7.13: (Continued) Time-sliced weighting potential solutions for the central resis-
tive readout pillar at constant z = 250 µm (left column) and y = 0 (right column).
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Figure 7.14: Induced signal for different events. Top left: Hitmap of the pion track
position for the different events. Top right: Event 1, for which the charge trajectories
are plotted in Fig. 7.11. Center left: Event 2. Center right: Event 3, showing the
cross-talk between three pillars. Bottom left: Event 4. Bottom right: Event 5.
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Figure 7.15: Right: Normalized impulse response function of the readout transistor.
Left: Normalized voltage pulses at output of the shaper.

(left)4. The voltage pulses after the shaping for events from Fig. 7.14 are given in Fig.
7.15, where the pulses are normalized on the premise that during analysis the time-walk
due to Landau fluctuations is mitigated through CFD. From the leading-edge, we observe
a time jitter when comparing the three signals at a fixed THL.

7.3.3 Comparison with transmission line approach

In this chapter, two techniques were introduced to compute the current response of the
resistive readout pillars in the 3D readout structure: (i) the analytical approach, which
approximates the system dynamics as that of a transmission line, and (ii) the numeri-
cal calculation of the dynamic weighting potential within the framework of the Ramo-
Shockley theorem. While the former provides valuable insights through its equations,
aiding in the comprehension of experimental and numerical observations, the latter, with
its more accurate representation of the early-time behavior (see Sec. 2.4) and geometry,
offers a more complete description of the system.

A direct comparison between the two methods is provided in terms of their solutions
for the induced charge readout at the terminal of the electrode, considering the injection
of a point charge q at a specific point on its surface. The results are superimposed in
Fig. 7.16, showing a convergence of solutions to each other at late times. In qualitative
terms, the curves from both computations demonstrate similar behavior, with the most
significant deviations observed in the initial part of the signal. This initial deviation can
be attributed to the fact that, unlike in the transmission line calculation, the initial value
of the induced charge is not zero. This is due to the consideration to the presence of the
prompt contribution to the signal within the Ramo-Shockley theorem approach.

4Courtesy of G. Passaleva and by extension the INFN TIMESPOT project.
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Figure 7.16: Comparison between the induced charge using the transmission line equa-
tion (full line) and the dynamic weighting potential (dotted lines) from deposited charges
q on the resistive column’s surface at different point along its length.

7.4 Summary

The case of signal formation in the 3D readout structure has been treated using two
distinct methods: a transmission line description and the dynamic weighting potential
methodology outlined in Chapter 2. We discussed the application of both methodologies
and their respective merits. While the analytical approach using the transmission line
approximation provides us with an intuitive way of calculating the signal, the arguments
in favour of using the extended form of the Ramo-Shockley theorem are three-fold:

• The formulation of the problem in terms of a transmission line works under the
premise that the local line density is related to the potential via the capacitance,
i.e., σ(x, t) = CV (x, t). As discussed in Sec. 2.4, this relation only holds for the
late-time behavior of the signal; failing to capture the initial portion of the signal
shape accurately. Given the importance of the rising edge of the signals in timing
applications, this can be reflected in the simulated temporal performance. However,
the extent to which this is manifested in the final ‘recorded’ signal depends on the
shaping times of the ASICs. When the shaping time is long enough compared to the
signal length, is is expected that the difference between the results of two methods
will decrease. This happens because for a longer shaping time the signal shape
at the output terminal of the shaper will increasingly resemble its delta response
function.

• With the FEM approach, the precise structure and materials of the full pillars are
resolved in the model. This not only introduces the prompt component into the
signal calculations but also directly provides us with the cross-talk between neigh-
boring readout pixels from due to the partial transparency the resistive columns
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given their finite reaction times. When adding external impedance elements before
solving the EM system for the weighting potentials, the cross-coupling between the
electrodes can be added. This last effect can, however, be added to the transmission
line model by using the admittance matrix between the columns.

• This brings us to a more pragmatic viewpoint: when employing the dynamic weight
potential strategy, quantities such as the electrode’s capacitance automatically fol-
low from the geometry and material definitions and, therefore, are directly folded
into the weighting potential formalism. This relieves us from the need to estimate
these lumped parameters through analytical, numerical, or experimental means.

With this, we do not wish to diminish the critical role of toy models in building our intu-
ition and understanding of the signal induction mechanisms underpinning the system by
distilling the complexity of the problem into its core constituents. However, when greater
precision is needed from the theoretical predictions, the system’s complexity invariably
increases, often then requiring numerical methods to solve it.

The propagation of the signal through the resistive columns introduces a dependence
of the SAT of the signal from different clusters based on their respective positions along
the length of the pillar. As is already stated in literature, this results in the timing
performance of the device being closely linked with the volume resistivity of the ohmic
mixture comprising the readout electrodes. Intensive R&D into the manufacturing of
the resistive pillars has already resulted in the lowering of the resistance of the column
down to 30 kΩ, which poses a lower bound of the attainable resolutions. The discussed
modeling strategies are being employed by the TIMESPOT collaboration, where the
currently the dynamic weighting potential strategy is being benchmarked [205].
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Chapter 8

Resistive strip bulk MicroMegas

In this chapter we systematically build up a complete Monte Carlo model for the re-
sponse of a resistive strip bulk MicroMegas (MM) equipped with a two-dimensional strip
readout structure. To determine the numerical precision of the techniques described in
Chapter 2 and the accuracy of the implementation into Garfield++, we conducted a
benchmarking study using experimental data taken with MIPs during the 2022 RD51
test beam campaign.

8.1 Introduction

In the preceding chapters, we have encountered several resistive MM detectors that fea-
ture readout electrodes embedded in an insulating layer bellow a thin resistive layer.
While this represents a commonly used design for a resistive MM detector, an alterna-
tive layout can be found in the layout of the ATLAS MM. As part of the NSW upgrade of
the ATLAS muon system, this design features a series of readout strips covered by a thin
Kapton® foil, upon which are resistive strips that run perpendicular with the readout
electrodes. The design choice to utilize individual resistive strips instead of a continuous
resistive layer was was motivated by the minimizing the affected area in the event of a
discharge and preventing the spread of charge across multiple readout strips [34]. For
this detector layout, it has been demonstrated that when equipped with two-dimensional
strip electrodes, signal spreading becomes distinctly visible across adjacent channels that
run perpendicular to the resistive strips [104]. Motivated by this observation, we used two
prototypes, each featuring a distinct surface resistivity — specifically, nominal surface
resistivities of 100 kΩ/□ and 1 MΩ/□ – to measure their respective current responses.
Fig. 8.1 shows a cross-section schematic of the geometry, which is supplemented by an
image of the top of the amplification structure in Fig. 8.2. The average induced current
response of the two devices for MIPs has been measured at the H4 beamline at the CERN
SPS. This enables us to experimentally assess the effect of the surface resistivity on the
signal shape. The result is subsequently compared with a detailed Monte Carlo simula-
tion in order to gauge the accuracy of the numerical approach explored and implemented
during this project.

173
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Figure 8.1: Schematic overview of the layout of the two-dimensional resistive strip
bulk MicroMegas. The primary electrons sourced by a muon are shown in yellow while
the positive ion tracks are truncated to the red arrows and absent for the secondary
ions. Indicating the respective indices of the x-strips, the numbering shown will be the
convention used throughout the chapter. This drawing is not to scale.

In addition to intricate Monte Carlo simulations, simplified models such as the trans-
mission line model of Chapter 7 serve as valuable tools for cultivating an intuition of the
way signals are formed in resistive readout structures. That being the case, we first de-
velop a toy model using the previously derived transmission line descriptions to capture
leading principles of the signal’s behavior for the resistive strip readout structure. This
is followed by the setup and results of the Monte Carlo simulation, which considers the
measured height of the mesh. Specific care was placed in the accurate representation
of the boundary condition of the relatively long resistive elements. The estimations of
the induced current response for MIPS will subsequently be compared to the measured
values for the 1 MΩ/□ following a general discussion of the experimental results.

8.2 Transmission line description

Given that the anode is divided into long, relatively thin resistive strips, we can treat the
resistive elements as a set of transmission lines by approximation. In this scenario, the
readout electrodes are AC-coupled with the resistive strip, and we can depict this coupling
using the circuit shown in Fig. 8.3. Here, the capacitor Cs represents the coupling
between the voltage pulses V (x, ω) on transmission lines and the resulting current Is(x, ω)
on the readout electrodes that we take to be terminated to ground through a resistor
Rs. We will work under the premise that the readout electrodes have a negligible effect
on the response of the transmission line, making them ‘passive observers’. Without
loss of generality, these can be taken as strips (denoted by the subscript s) intersecting
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Figure 8.2: Optical microscope image showcasing the amplification structure situated
atop the readout architecture. A pillar mechanically determining the size of the amplifi-
cation gap positioned at the upper left corner of the image„ while the resistive strips are
discernible through the micro-mesh.

Figure 8.3: Circuit representing the AC-coupling of the readout electrodes, terminated
with resistor Rs, to the resistive lines using a capacitor Cs.

the transmission line at a right angle. Given a set of transmission lines and readout
electrodes, the system will contain cross-coupling between the elements. However, for
simplicity, we can focus on the case of a single resistive strip. A numerical solution for a
perturbed RC-line was already pursued in Ref. [206] through discretization of the line.
In this section, we will provide an analytical expression for this response by elaborating
on the findings presented in Sec. 6.1.

8.2.1 Delta response function

To discuss the solution to a perturbed transmission line, we revisit the system depicted
in Fig. 6.1. The solution for the voltage pulse on the line is given by Eq. (6.1.2) and Eq.
(6.1.5). Given that the resistive strips are usually connected to ground or high voltage
at only one side, while the other side is left floating, we evaluate the equations for the
conditions Za = 0 and Zb → ∞.
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If we take the coupling described in Fig. 8.3 such that Cs ≫ Rs, then the current
flowing from the readout electrode to ground is given by

Is(x, ω) =
V (x, ω)

Rs + 1/ (iωCs)

≈ iωCsV (x, ω)

= iωqCs

√
R
sinh
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(8.2.1)

Here, the subscripts a and b indicating the solution left and right of the injection point
is truncated in favor of writing the solution in terms of

x> :=

{
x for x ⩾ x0

x0 for x < x0
, x< :=

{
x0 for x > x0

x for x ⩽ x0
. (8.2.2)

To obtain the solution in the time domain, we note that the above equation has poles
ωn lying along the positive imaginary axis:

ωn :=
i(2πn+ π)2

4cRl2
, for n ∈ Z . (8.2.3)

Then the current measured from the electrode as a function of time is given by

Is(x, t) =
qπ2Cs
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(8.2.4)

where we have defined an infinite number of characteristic time constants

τn :=
4ClRl

(2πn+ π)2
, n ∈ N . (8.2.5)

Consequently, the signal amplitude is directly proportional to the capacitance between
the pickup electrode and the resistive strip. Moreover, the temporal characteristics of
the signal are entirely dictated by the value of RlCl, with the amplitude exhibiting an
inverse proportionality to RlC

2
l , meaning that for lower surface resistivities the signals

will be faster but lower in amplitude. In Fig. 8.4 the solution is shown for various
electrode positions, considering an initial injection of charge at a fixed location. The
anticipated bipolar shape due to the AC-coupling is recovered, leading to the absence of
charge collection on the readout electrodes. Indeed, the total charge flowing from the
electrodes vanishes:

Qs(x) = −
∫ ∞

0
Is(x, x0, t) dt

=
2qCs

Cl
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n=0
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= 0 .

(8.2.6)
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Figure 8.4: Signal on an electrode at position x that is capacitively coupled to a trans-
mission line on which a charge q was injected at position x0 = 0.6l and x0 = 0.5l for the
left and right panel, respectively.

Instead, all the charge is flowing to the ground frame through the connection of the
transmission line:

∫∞
0 Ia(0, t) dt = q. Fig. 8.4 (right) highlights the asymmetric response

of the readout due to the termination of the resistive strips on only one side. While this
effect is present in the delayed response – particularly at the ends of the transmission line
– it is not expected to be a significant factor for the electrodes that are in close proximity
to the event along for large enough values of l. At late times, the dominating term in
the sum is given by n = 0, yielding an exponential relaxation that follows

Is(x, t) ≈ − qπ2Cs

2C2
l Rl

sin
(πx
2l

)
sin
(πx0

2l

)
e
− π2t

4ClRl . (8.2.7)

Following the arguments of Chapter 7, to find the signal from an injected MM current
such as the one given in Sec. 2.3.2, it should be convoluted with the delta response
function h(x, t) := Is(x, t)/q.

8.3 Precise measurement of the amplification gap size

The amplification structure of the resistive strip MM has a mesh suspended above the
readout plane at a nominal distance of 128 µm as defined from the center of the mesh.
Depending on the production, this gap size can differ from the quoted one, as was the
case in Chapter 5. To get the modeling as accurate as possible, the gap was measured
using a Hirox RH-2000 digital microscope following the procedure outlined in Sec. 5.2.3.
The imperfections on both the anode plane and the top of the mesh serve as reference
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Figure 8.5: Photograph of the calendared mesh taken with the optical microscope during
the amplification gap height measurement. Imperfections on the top of surface of the
wires were used as a reference point for the focusing of the microscope.

points for microscope focus. In Fig. 8.5, images from the mesh during the data taking
reveal its noticeable flatness, indicating calendaring of the mesh. On the left panel, the
measured dimensions of the woven micro-mesh-structure are given. The distance between
the top of the mesh and the anode plane was measured at various points across the active
area, resulting in an average distance of 138.23± 1.42 µm. With a wire radius of 9 µm,
we determine an amplification gap height of 120.23± 1.42 µm, significantly smaller than
the nominal height.

8.4 Simulations of a resistive strip bulk MicroMegas

To apply the extended form of the Ramo-Shockley theorem for conductive media nu-
merically to the geometry under investigation, the weighting potential is computed with
COMSOL® using the techniques described in Sec. 2.5.2. Subsequently, we used this
solution in Garfield++ to calculate the induced signal on five adjacent readout strips
in the x-coordinate plane for events caused by muon tracks running perpendicular to
the readout plane, as indicated in Fig. 8.1 (left). Our publication [77] gives a concise
description of the simulation setup and first results, upon which this chapter will expand.

8.4.1 Weighting potential solution

The resistive strips generally adhere to the same overarching arrangement as the y-strip
electrodes, with a few additional characteristics. As shown in Fig. 8.6, neighboring
resistive strips are interconnected repeatedly after 4 mm, a pattern that is shifted by
2 mm from one strip to the next. This network was designed to drain the deposited
charges over a series of neighboring strips instead of a solitary one, thereby equalizing
the effective resistance to the ground frame across the active area. This also results in
a decreased effectiveness of defects in the resistive pattern that could otherwise have
severed the path to evacuate the collected electrons, which would have resulted in a local
buildup of charge [207]. There is also a vertical structure to these resistive elements, the
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Figure 8.6: Image depicting the sputtered resistive anode structure. The resistive strips,
along with their interconnections, are shown as the dark brown lines. Additionally, parts
of the underlying layer featuring bright readout strips, and a singular pillar, are also
discernible [207].

precise nature of which is subject to the manufacturing process, i.e., through sputtering
or screen printing [208]. For example, with the screen printing technique, the resistive
strips have a domed structure roughly 15 µm in height [200], as depicted in Fig. 8.1
(right). To simplify the calculations, we treat the resistive anode architecture as a se-
ries of separated two-dimensional resistive strips with a homogeneous surface resistivity.
With this approach, we assume that the local response of the readout can be adequately
approximated using this simplified layout. In practice, however, the surface resistivity
value can vary across the active area of the detector coming from the manufacturing
procedure, such as non-uniform temperatures and pressures during the gluing stage of
the board. Variations around a factor two have been observed over a 10× 10 cm2 anode
[209]. These fluctuations are around a mean value that is known to drift throughout the
production steps, e.g., during the curing of the ohmic polymer past. As a result of many
production and environmental parameters, the final surface resistivity can be different
from the target value to an appreciable degree, as seen in the ATLAS MM production
[210]. As the resistive strip MM detectors used in this study were manufactured before
the project’s initiation, we could not measure their surface resistivities given the pres-
ence of the fixed micromesh preventing access to the anode structure. This introduces a
systematic uncertainty to our simulation study, the magnitude of which will be discussed
in Sec. 8.5.3 during the final comparison with the measurements.

In the y-direction, the discrete symmetry in the geometry enables a reduction of
the system to the configuration depicted in Fig. 8.7, without loss of generality. This
representation includes a singular resistive strip and y-strip readout electrode within the
geometry, featuring periodic boundaries at the edges at y = ±125 µm. However, the
resistive strips run a finite distance in the x-direction, the length of which is reflected in
the time-dependent reaction as indicated by Eq. 8.2.4. Hence, the size of the active area
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Figure 8.7: Input geometry of the simulated cell of the amplification and readout archi-
tecture of the resistive strip MM. A central region includes twelve x-strip electrodes and
one y-strip within the insulator (highlighted in green), above which a resistive strip is
positioned (highlighted in red). The micro-mesh is suspended above the anode structure.
Two adjacent regions are coordinate mapped to align with the appropriate length of the
resistive strip.

in the x-direction needs to be considered with an accurate set of boundary conditions.
In addition, we aim to acquire signals from multiple neighboring x-strip electrodes, each
of which must be individually represented in the geometry. Consequently, a central area
of interest is defined, comprising twelve x-strips, in which the events will be simulated,
while an outer region is coordinate scaled to span the width of the active area. The focus
was placed on the central region of the active area; therefore, we take the scaling to be
equal on both sides. Within this region, the micro-mesh structure is fully resolved and
suspended above the readout at the measured height quoted in the preceding section; in
the scaled regions, it is coarsely approximated by a metal plate of 36 µm thickness.

The weighting potential has been calculated for the central x-strip electrode, in close
proximity of which the gradient of the weighting potential is expected to be the highest.
Hence, a higher local density of finite elements was utilized to improve the accuracy of
the numerical computation, as indicated in Fig. 8.7. Since typically the resistive strips
are connected to ground or HV on one side, the boundary conditions of this element read
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Ψ(x, t) = 0 , for x =

(
− l

2
, y, 0

)
cm , (8.4.1a)

∂Ψ(x, t)

∂x
= 0 , for x =

(
l

2
, y, 0

)
cm . (8.4.1b)

where l > 0 is the length of the resistive strip taken to be 10 cm, unless stated otherwise.
On the remaining outer edges parallel to the xy and xz-plane we imposed insulating
boundary conditions. The system was solved for the nominal surface resistivities of
R = 100 kΩ/□, R = 1 MΩ/□ and R = 2 MΩ/□ for a finite number of time points
t ∈ [0, 1.1] µs.

Four time slices of the solution of the weighting potential of the central strip are
shown in Fig. 8.8. At time t = 0, the prompt weighting potential instantaneously
permeates the detector volume, as if all resistive elements were perfect insulators. As
time progresses, the resistive strips gradually disperse the potential across their surfaces,
resulting in all conducting materials behaving like ideal conductors as t → ∞. In this
steady-state solution – taken to be the final frame shown in Fig. 8.8 – the amplification
gap is not fully shielded from the weighting potential of the readout electrode due to
the opening between the resistive strips. As the area above these openings is minimally
affected by the delayed component, signals induced from charge carriers drifting in this
region will predominantly exhibit a prompt response, unlike the rest of the amplification
volume, where a significant contribution arises from the reaction of the resistive material.
Consequently, based on Eq. (2.2.14), we can infer that electrons concluding their drift
on this perfectly insulating material will contribute a non-zero value to the total induced
charge measured upon signal integration1.

To increase the quenching of discharges that develop in close proximity to the connec-
tion points, the resistive strips are connected to the HV supply through an intermediate
resistor Rt = O(10) MΩ to provide a minimal impedance to ground2. This addition
alters the boundary condition presented in Eq. 8.4.1a, the effect of which on the signal
formation was gauged by extending the FEM model by virtually terminating the edge
of the resistive element with a total resistance Rt to the ground frame. In Fig. 8.9, the
potential on the terminated side of the strip is shown for varying lengths of the strip and
different values of Rt. As the system is disrupted by the sudden change of conditions
through the voltage step on electrode one at t = 0, this change propagates via the re-
sistive strip to the system’s boundary as a voltage ‘pulse.’ As the length of the resistive
strip is increased, the pulse arrives later and is more defused at the edge. At the same
time, it is shorter and more attenuated for a reduced termination resistance. This can be
interpreted as the system more efficiently draining deposited on the strip if it is shorter

1In actuality, the material possesses non-zero volume and surface conductivities. Consequently, the
accumulated charge will eventually dissipate or be offset by the system.

2The subscript denotes the termination of the element.
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Figure 8.8: Time sliced cross-section weighting potential maps for x-strip number 5 with
resistive strips of 1 MΩ/□. The right and left columns are cross-sections of the solution
at y = 0 and x = 0.
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Figure 8.9: Weighting potential at the connection point of a 1 MΩ/□ resistive strip
positioned at x = −l/2 for different termination resistor values Rt.

and has a reduced impedance to ground. Looking at the magnitude the contribution of a
20 MΩ resistor to the weighting potential at the termination point, we did not expect any
significant changes compared to the solution found for an ideally grounded case. This
was confirmed when looking at the weighting potential in the region around the readout
strip under study, where the contribution was found to be negligible. As a result, for
what follows, we use the solution presented in Fig. 8.8 where Rt = 0 Ω.

8.4.2 Description of Monte Carlo model

The complete response of the detector was modeled using a series of independent calcu-
lations: (i) the primary ionization pattern in the drift gap due to a relativistic muon and
subsequent motion of the electrons until they reach the amplification structure, (ii) the
avalanche development in the amplification region and the resulting signal induction on
the readout electrodes, and (iii) the convolution of the induced currents with the delta
response function of the ASIC. The final signal waveform was then analyzed and aver-
aged over different muon hit positions.

Given the the deviations of the drift field from a uniform field are located close to the
mesh structure, we can approximate the drift gap as a parallel plate chamber with a gap
size of 5 mm. For this volume filled with an Ar/CO2 93/7% gas mixture at NTP, the
energy transfer from a muon with a momentum of 150 GeV/c to this medium, leading
to the creation of electron-ion pairs, was calculated through a Monte Carlo simulation
with Heed. The simulated average cluster density and cluster size are shown in Fig.
8.10, which leads to the Landau distribution of the number of pairs given in Fig. 8.11.
For what follows we take the time of the muon crossing the detector to be t = 0. The



184 CHAPTER 8. RESISTIVE STRIP BULK MICROMEGAS

10-1 100 101 102 103
0

20

40

60

80

100

120

γ-1 [1]

C
lu
st
er
de
ns
ity

[1
/c
m
]

100 101 102
10-4

10-3

10-2

10-1

100

101

102

Cluster size [1]

P
ro
ba
bi
lit
y
[%

]
Figure 8.10: Left: Average cluster density for tracking muon though the Ar/CO2 93/7%
binary gas mixture as calculated by Heed. Right: Simulated cluster size distribution for
a 150 GeV/c muon using Heed.

parameters governing the drift, diffusion, amplification3, and attachment of electrons
were computed using MAGBOLTZ. These parameters were then used to microscopically
simulate the trajectories of electrons towards the amplification structure, driven by a
uniform electric field of 550 V/cm. Fig. 8.12 (left) shows the drift lines of the charge
carriers of one such event where the position of the incident muon runs along the z-axis.
The distribution of the electrons at the bottom of the drift gap is shown in Fig. 8.12
(right), which follows the distribution of Eq. (4.1.9).

After reaching the amplification structure, the electrons were transferred to a second
simulation where they were placed ≈ 150 µm above the mesh. Here, a FEM solution of
the electric field was used for the final portion of the drift field and the amplification field
between the mesh and anode structure. As a result, we included the mesh transparency,
as the electrons were guided through or onto the mesh wires. The avalanche dynamics
were simulated microscopically, given a 550 V potential difference between the mesh and
resistive strips. Taken from Fig. 2.11, the ion mobility was adjusted to align with the
values previously measured in Sec. 5.2. The resulting trajectories of the positive and
negative charge carriers were used in conjunction with the dynamic weighting potential
solution to calculate the total induced signal on the x-strips.

Finally, the impulse response function of the ASIC was convoluted with the total
induced signal of the electrodes. We approximated the electronics by an idealized uni-

3The effective Townsend coefficient was modified based on an expected penning rate of r = 0.40477.
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Figure 8.11: Distribution of the number of primary electrons in a 5 mm drift gap filled
with Ar/CO2 93/7% for a 150 GeV/c muon.
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Figure 8.12: Left: Drift lines of the primary charge carriers in the drift gap for a muon
event. Right: Simulated distribution of the endpoints of the electrons.

polar shaper:

f(t) = gen
(
t

tp

)n

e−
t
τ , (8.4.2)

where the peaking time is defined as tp = nτ [6]. The above expression is normalized
such that at time t = tp it reaches the value of the gain factor g. To emulate the response
of the APV25 ASIC we assumed a peaking time of tp = 50 ns, and a first order shaping
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n = 1, while keeping the amplification to g = 1 [211, 212]. Since this chip is sampling at
40 MHz, the bulk of the simulations were performed using 25 ns wide time bins.

8.4.3 Results

The total induced signal before shaping is shown in Fig. 8.13 for the R = 1 MΩ/□
configuration and a muon going though of the origin of the xy-plane. The different
initial vertical positions of the clusters in the drift gap in conjunction with the transversal
diffusion of the primary electrons result in different arrival times at the mesh that can be
≈ 120 ns at the latest. With the mesh mostly shielding the drift gap from the dynamic
weighting potential, the signal is induced as soon as electrons have propagated through
the mesh and are being amplified. This variation in time is visible in the signal structure
as the multiple electron peaks that are distributed over the part of the induced current.
For the strips below and those directly neighboring the CoG of the event, both the
prompt and delayed components significantly influence the overall current profile. As we
move away from this point, the primary contribution will be from the response of the
time-dependent resistive strips. Notably, the ion tail amplitude is reduced due to the
persistent positive signal polarity of the delayed component. Once the bulk of the ions
are collected, a polarity switch will occur, possibly preceded by other short ones triggered
by the electron current from large Townsend avalanches. For the case of R = 100 kΩ/□
(see Fig. 8.14), the delayed component is significantly faster in time. Consequently, the
ion tail experiences shows suppression. For the sake of comparison, we have used the
identical set of arrival positions and times of the primary electron from a simulated event
in the drift gap for both Fig. 8.14 and Fig. 8.13.

While the charge of electrons arriving on the resistive strips, as can be seen in the top
panel of Fig. 8.13, will be directly drained from the anode structure, the accumulation
of charge on the insulating material results in the modification of the shape and strength
of the amplification field. This charging-up effect results in variations in gain over time
[213], which would require a separate simulation such as the one found in Ref. [214].

For our eventual comparison with the experimental results, the induced current is
averaged over events where the muon tracks were uniformly distributed over the first
half between electrode 5 and 6: 0 ≤ xµ ≤ 125 µm. After convolution with the impulse
response function of the APV25, the average response is given for R = 100 kΩ/□ and
R = 1 MΩ/□ in Fig. 8.15. As anticipated, the strip closest to the muon track, being
electrode 5 and henceforth referred to as the leading strip, exhibits the highest signal
amplitude. The adjacent channels display time-shifted peak amplitudes that are pro-
gressively decreasing in magnitude, illustrating the signal’s spread in the resistive strips
and yielding the distinctive V-shape of the peak position in the time [104]. Owing to the
rapid response of the resistive strips at R = 100 kΩ/□, the average pulse height is lower
than that observed for R = 1 MΩ/□.
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Figure 8.13: Induced current response on the x-strips from a generated muon event for
R = 1MΩ/□. Top: Endpoint distribution of the electrons collected by the resistive
anode. Superimposed is the location of the readout strips (marked in gray) and the
resistive strips (marked in red). The position of the muon track is marked in green. The
indices of the strips are marked at the bottom of the figure, while to hit position of the
muon is marked in green. Bottom left: Prompt, delayed and total induced signal on
x-strip 5. Bottom right: Induced signal on our neighboring readout x-strip 6.

8.5 Signal induction measurement

To assess the accuracy of the implementation of the extended form of the Ramo-Shockley
theorem in Garfield++, the induced current response of the x-strip electrodes in two re-
sistive strip MM detectors with different surface resistivities has been measured using
MIPs. The data was collected during the common RD51 SPS test beam campaigns at
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Figure 8.14: Induced current response on the x-strips from a generated muon event for
R = 100 kΩ/□. Top: Endpoint distribution of the electrons collected by the resistive
anode. Superimposed is the location of the readout strips (marked in gray) and the
resistive strips (marked in red). The position of the muon track is marked in green.
Bottom left: Prompt, delayed and total induced signal on x-strip 5. Bottom right:
Induced signal on our neighboring readout x-strip 6.

the CERN SPS H4 beam line using the MM-based tracking telescope sketched in Fig.
8.16. For specifics on the test beam infrastructure we will refer to Sec. 5.5. The subse-
quent discussion will focus on the measurements performed with 150 GeV/c muons.
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Figure 8.15: Averaged induced current response on the x-strips from a generated muon
track between electrode 5 and 6 for R = 100 kΩ/□ (left panel) and R = 1MΩ/□ (right
panel).

8.5.1 Experimental setups

The setup incorporated three bulk MMs, which included one DUT. These contained
a 1 MΩ/□ resistive strip anode and a two-dimensional strip-based readout structure.
These functioned as our tracking detectors, the recorded signals of which were used for
the offline track reconstruction of the incident muons. To this ensemble, another DUT
was added featuring a 100 kΩ/□ resistive strip bulk MM readout structure. All four
devices had an active area of 10×10 cm2 and adhered to the same layout depicted in
Fig. 2.5. Their orientation in the setup was such that the resistive strips were aligned
parallel to the x-axis, as illustrated by the right-handed coordinate system in Fig. 8.16.
Additionally, we positioned the connection points to HV on the same side. In this way,
the sole difference between the two DUTs was their surface resistivities: 1 MΩ/□ and
100 kΩ/□ respective to the beam direction. Both of these detectors were positioned at
the center of the tracker. As depicted in Fig. 8.17, the detectors were affixed to support
frames that allowed for alignment adjustments in the xy-plane. The cathode and resistive
anode of the MMs were connected to HV, while the micro-mesh was put at zero potential.
Filtering circuits were placed between the HV modules and the detectors to minimize the
noise from the HV supply entering the system. The operation field configurations4 and
resulting effective gains5 are given in Tab. 8.1, with the premise that all devices have

4Prior to the test beam period, we performed laboratory measurements that indicated that the drift
field was within the plateau of the maximum mesh transparency.

5The effective gains were determined for the 100 kΩ/□ MM through current measurements during
irradiation with a 55Fe source. Given the four MMs share the same amplification architecture, it is
assumed that the gain is consistent across all of them.
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Figure 8.16: Schematic representation of the test beam setup used at the CERN SPS H4
beam line. Four resistive strip bulk MMs with two sets of surface resistivities form the
tracking telescope containing two DUTs. The resistive strips (horizontal red stripes) and
their connection point to HV (vertical brown stripe) are indicated. For triggering, three
scintillators (S1, S2, and S3) linked to PhotoMultiplier Tubes are positioned at the front
and rear of the telescope.

an amplification gap size as the one found in Sec. 8.3. Throughout the data taking, the
detectors were operated with a binary gas mixture of 93% argon and 7% CO2 at NTP.

The MM signals was extracted using mounted hybrid cards that housed APV25 chips,
facilitating analog data transmission through HDMI cables to a front-end card in the
RD51 SRS. At this juncture, the signal is digitized and transmitted via Ethernet to a
Data Acquisition (DAQ) PC. The amplitude of the signal over time was digitized using 12-
bit Analog-to-Digital Converters (ADCs), representing the signal digitally. The APV25
is a 128-channel chip sampling at 40 MHz that is constructed using radiation-hard 0.25
µm CMOS technology. It incorporates a charge-sensitive amplifier, a CR-RC shaper with
a 50 ns time constant, and a 192-cell pipeline. Following the reception of the trigger, the
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Figure 8.17: Photograph of the test beam setup used in the RD51 test beam containing
four resistive strip bulk MicroMegas devices and three scintillators.

signals undergo processing by an analog circuit with three possible operation modes: peak
mode, where single sample are read out, deconvolution mode, where the amplitudes of
three successive time bins are combined in a weighted sum [215], and a multi-mode, where
for each trigger the signals of three consecutive time slots are recorded and then read out
separately as with peak mode [216]. The results presented in this chapter are based on
data collected with the multi-mode. In every coordinate plane, we installed three such
cards, yet only two were actively read during the setup’s operation. This was a delib-
erate choice to reduce the number of channels needing processing. Consequently, just
four-ninths of the detectors’ area was fully read out, while the rest remained unprocessed.

Owing to the inherent background noise of the system, the output signal from the
APV25s delivers a continuous stream of low-amplitude pulse fluctuations. When a par-
ticle hit generates signals on strip electrodes, the raw waveforms are recorded into the
dataset, while the waveforms from the unaffected strips undergo rejection through an
online zero-suppression. This algorithm ensures that the integrated waveform of a strip
must surpass a predefined THL based on the standard deviation from the recorded noise
distribution (pedestal variation) to be considered a part of the event; otherwise, it is re-
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Figure 8.18: Photograph of the 1 MΩ/□ detector under test mounted in the tracking
telescope.

garded as a noise channel. In the subsequent offline reconstruction process, we estimated
the PHs of pedestal-corrected signal waveforms by determining the maximum ADC count
above the baseline by fitting the leading-edge using a logistic function. The difference
between the constant offset and the maximum of the function is taken as the maximum
amplitude of the signal 6, which is propagated to the track reconstruction processing.

The DAQ system was triggered by NIM signals originating from a coincidence unit,
which in turn received signals from three scintillators (S1, S2, and S3) linked to Photo-
Multiplier Tubes (PMTs). Mounted on the overarching frame of the tracker, two scintil-
lators labeled S1 and S2 were positioned in front of the MMs, with a third scintillator S3
situated at the telescope’s end. Different modules, e.g., threshold discriminators, were
employed to pre-process the signals from the PMTs before going to a coincidence unit
that formed an AND gate. The coincidence unit would then send out a signal in case a
particle interacted with all three scintillators. These modules were housed, alongside the
CAEN SY5527 HV supply mainframe, in a rack placed next to the telescope.

6As pointed out in Sec. 2.3.4 this quantity is not synonymous with the total induced charge of the
signal due to the relatively short shaping time compared to the length of the signal, and as such is a
more convoluted indicator of the number and relative position of charge carriers involved in the event.
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Table 8.1: List of the operational drift and amplification fields for the MM detectors in
the test beam setup, along with their corresponding effective gain Geff.

Edrift [kV/cm] Eamp [kV/cm] Geff [103]
MM1 0.45 44.91 9.67± 0.31
MM2 0.55 45.75 13.34± 0.59
MM3 0.45 45.75 13.34± 0.59
MM4 0.45 44.91 9.67± 0.31

8.5.2 Signal shape comparison

A selection of pedestal-corrected signal waveforms are shown in Fig. 8.19 (left) for
1 MΩ/□ and in Fig. 8.20 (left) for 100 kΩ/□, for which the recorded PHs are plotted
in the respective right panels as a function of the strip index. This PH distribution has
been fitted using the function

f(x) = a
|x− x0|

(
erf
(
|x−x0|√

2σ

)
− 1
)
+
√

2
πσe

− (x−x0)
2

2σ2

σ2
, (8.5.1)

where the amplitude a, position x0 and width σ are the free parameters. The result
superimposed on the measured peak amplitudes is shown in Fig. 8.20 (right) and Fig.
8.20 (right) for the 1 MΩ/□ and 100 kΩ/□, respectively. Despite having comparable
diffusion in the drift region, the lower surface resistivity case shows a significantly wider
spread of the signal over the local set of strips. This is reflected in the value of the
estimated for σ, which is around a factor four higher in the case of the 100 kΩ/□.
Another quantity indicating that the spreading of the signal is indeed driven by surface
resistivities is the cluster size distribution in the readout, as shown in Fig. 8.217.

As for the simulated response, the recorded waveforms of the events were averaged
to get the mean current response of the x-strips. In accordance with the convention of
Sec. 8.4, electrodes i ∈ {1, 2, . . . , 9} are arranged in ascending order along the positive
x-axis. The electrode with the maximum amplitude, i.e., the leading strip, is labeled as
electrode 5. Signals are then averaged around electrode 5, including the eight closest
neighboring electrodes. The maximum amplitude for the leading strip for each event is
shown in Fig. 8.22, where a noise spike can be observed at low ADC counts. To filter
out these noise hits, a fixed THL of 100 ADCs is employed for each readout channel.
In addition, to avoid the saturation of the ADCs for large signal amplitudes that are
observed during the operation of the APV25 ASIC, we require the maximum ACD count
to be below 1800 in order not to distort the average signal shape. However, the APV
is non-linear below zero and saturates the signal below -200 ADC counts, resulting in
the negative polarity of the signal being distorted for large signals. To mitigate poten-
tial edge effects, we exclusively consider events situated within the central region of the

7In this figure, events were chosen based on the criterion that the maximum amplitudes of the leading
strip should fall within the range of 300 to 1800 ADC counts.
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Figure 8.19: Example of a recorded event with the 1 MΩ/□ DUT Left: Signal shapes
on the x-strip electrodes. For clarity, only a reduced number of channels are displayed
compared the total amount that were recorded over the threshold level. Right: Pulse
heights for triggered channels, fitted using the function 8.5.1.
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Figure 8.20: Single recorded event of the 100 kΩ/□ DUT. Left: Digitized induced signal
for seven x-strips, where the remaining of the fourty triggered channels are omitted form
this plot for clarity. Right: Pulse heights distribution over the triggered channels, fitted
with function 8.5.1.

DUTs based on their position information. Additionally, we selected events for which
the reconstructed position xr was located in the first half between the center electrode
of 5 (xs,5) and 6, i.e., xs,5 ≤ xr ≤ xs,5 + 125 µm. The resulting average signal shapes
for the 1 MΩ/□ are shown in Fig. 8.23, where the spreading of the characteristic signal
over neighboring channels can be observed. The uncertainties of the measurements are
driven by systematic errors pertaining to the zero-suppression cut, PH cuts, and response
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Figure 8.21: Left: Measured distribution of the cluster charge, i.e., the sum of the pulse
heights off all the strips in the neighboring strips. Right: Cluster size distributing for
both surface resistivities.

variations across the active are, e.g., due to gain non-uniformity. Compared with the 100
kΩ/□ prototype (Fig. 8.24), the 1 MΩ/□ one shows a slower reaction of the resistive
strip, resulting in a more delayed signal in the neighboring channels.

Even though the signal induced on the y-strips also includes a substantial contribution
from the delayed component, the change in surface resistivity affects the amplitude signal
distribution across the x and y-coordinate plane, resulting in a shift in the signal sharing
between them. The ratio of the cluster charge on two planes is qclu,x/qclu,y = 2.782±0.005
and 3.748 ± 0.002 for the 100 kΩ/□ and 1 MΩ/□ MM, respectively. To optimise the
design, numerical optimisation studies along the line of Chapter 4 could be conducted.

8.5.3 Comparison with simulation

In order to test the viability of the simulation method, we benchmark the calculation
results of Sec. 8.4 against the above measured current response.

For the purpose of comparison we need to account for the conversion chain from the
unamplified CR-RC shaped signal to the ADC counts after digitization. This was done
by scaling the amplitude of simulated responses to ensure that the pulse height of the
leading strip corresponds to that of the measured value. The calculated responses for the
1 MΩ/□ and 2 MΩ/□ resistive strip MM through the Monte Carlo simulation are overlaid
with the measured data in Fig. 8.23. While both simulation configuration provide a good
description of the signal, doubling the surface resistivity yields an appreciable difference
in the overall shape of the signal by changing the PH, peaking time and zero-crossing
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Figure 8.22: Distribution of the maximum pulse height found in the triggered x-strip
channels for the 1 MΩ/□ DUT.

time. For example, for electrode 7 (8) this results in an ≈ 15% (≈ 40%) reduction in
its mean maximum amplitude and an ≈ 15% (≈ 35%) increase in its zero-crossing time.
This provides an indication of the systematic uncertainty associated with the possible
values the surface resistivity can take after production. In addition, since variations up
to a factor two can be expected across the active are, it would be more accurate to an
appropriate mixing of the responses coming from the Monte Carlo calculations using
a range of surface resistivities. Nevertheless, the simulated current response for the 2
MΩ/□ shows the best agreement with the experimental data, falling within three sigma
of the measured values for most time bins. Computing the χ2/Ndof we obtain a value
of 14.5, 7.0, 2.6, 2.9, and 7.5 for strip number five to nine, respectively. The largest de-
viations can be observed for values below zero. This can be attributed to the nonlinear
response of the ASIC for the negative polarity which is not taken into account in our
model or the experimental errors.

The zero-crossing times of the signals were estimated by employing an linear inter-
polation between the closest sampling point around zero, and looking at the intersection
point. The binned distributions of both simulated and measured values are presented in
Fig. 8.25. It is observed that, on average, the simulated values using 2 MΩ/□ resistive
strips tend to underestimate the zero-crossing time. In addition to the systematic im-
pact of surface resistivity, using the precise delta response function of the ASIC – either
computed using a general-purpose circuit simulation program or measured by injection
of charge pulses on at the input terminal – could provide a better matching of the two
distributions. However, further investigation is needed to explore this possibility.
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Figure 8.23: Induced currents of nine neighboring x-strips in the two-dimensional read-
out of a 1 MΩ/□ resistive strip bulk MicroMegas. Following the convention of Fig. 8.1,
the result for electrode 1 and 9 are given by the upper left and bottom right panel, respec-
tively. The electrode indices of the remaining panels follow the reading direction. The
response is averaged over incident muon tracks reconstructed to be between electrodes
5 and 6 in the first half. The results from the Monte Carlo (MC) calculations for R =1
MΩ/□ and R = 2 MΩ/□ are superimposed on the experimental data.
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Figure 8.24: Induced currents of nine neighboring x-strips in the two-dimensional readout
of a 100 kΩ/□ resistive strip bulk MicroMegas. The response is averaged over incident
muon tracks reconstructed to be between electrodes 5 and 6 in the first half.
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Figure 8.25: Measured and simulated (2 MΩ/□) zero-crossing times for three neighboring
strips indicated by the full and dashed lines, respectively.

8.6 Summary

To enhance the operational stability of the MM design, the ATLAS MMs installed in the
NSW were fitted with an innovative AC-coupled one-dimensional readout structure that
incorporates resistive strips with a surface resistivity of ≈ 300 kΩ/□. The formation of
the signals on the readout electrodes contains a sizable contribution from the delayed
component in addition to the fast prompt component of the signal. The role of the
delayed component was found to be especially prominent with the addition of a second
set of readout strips, which sample the ‘spreading’ of the signal along the length of the
resistive elements. We successfully observed this phenomenon for two different surface
resistivities using the APV25 ASIC. We found that the signals induced in the 100 kΩ/□
setting are faster and more attenuated than those observed in the 1 MΩ/□ configuration,
reflected in an increased cluster size for the former.

Similar findings were also noted in the simulation outcomes. During the computa-
tion of the time-dependent weighting potential via the FEM, particular care was taken
to ensure the mesh structure and height were accurately implemented, in addition to
faithfully representing the boundary conditions of the system to reflect the length of the
resistive strips. Additionally, the influence of a resistor at the end of the resistive strips
was evaluated, which showed to have a negligible effect on the localized signal develop-
ment.
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The two sets of results were compared using the overall signal shape and zero-crossing
times. Within the systematic uncertainty of the calculation – mainly driven by the
uncertainties regarding the precise surface resistivity value – the simulation results are
in agreement with the experimental data.
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Chapter 9

Summary

Incorporating resistive elements into contemporary detector designs has become increas-
ingly prevalent in research and development (R&D) projects in order to meet the stringent
requirements set by current and upcoming particle physics experiments. In this thesis,
a numerical framework for calculating induced signals numerically in resistive detector
layouts was implemented in Garfield++, which enables the application of the extended
form of the Ramo-Shockley theorem for conductive media to arbitrary grounded elec-
trodes and resistive media arrangements. The dynamic weighting potential is the key
quantity in these calculations, capturing both the direct induction of current on metal
electrodes from the motion of free charge carriers in the detector (prompt component)
and the time-dependent reaction from the resistive elements (delayed component). Mak-
ing use of the established finite element method, solutions for the weighting potential for
geometries that could not be solved using analytical methods were found. To allow for
the applicability of this approach to a wide range of scenarios, different techniques were
explored:

• The weighting potential could be obtained for systems containing electrodes that
are connected to external impedance elements, instead of being perfectly grounded,
by representing the elements either physically or via a lumped element circuit.

• Without the need to represent the full active area, the boundary conditions for
resistive elements stretching over a large detection area were accurately represented
in the calculation of the dynamic weighting potential using coordinate mapping.

• The impact of non-uniform conductive properties of resistive layers on the readout
response was incorporated by creating Perlin noise maps to represent the varying
surface resistivity. These maps were then used to compute the time-dependent
weighting potential, effectively capturing these non-uniformities of the resistive
layer, which affect the signal formation.

Over the course of this thesis, the application of the methodology evolved from accurately
replicating outcomes of toy model examples to being a part of more intricate simulations
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to describe the macroscopic response of a broad class of detector technologies.

The viability of this implementation was demonstrated through two comparisons with
experimental data. The first validation study was conducted using empirical data from
literature, focusing on the position interpolation correction map for a two-dimensional
position-sensitive readout in a MicroCAT Micro-Pattern Gaseous Detector (MPGD).
Using COMSOL® in conjunction with Garfield++, this map was generated using the
simulated total charge induced on the readout nodes by Townsend avalanches inside the
amplification gap. The result accurately captured the measured interpolation distortions
within the experimental uncertainty. Moreover, the findings were consistent with those
from an earlier published RC-circuit-based simulation study. The second comparison was
performed using a resistive strip bulk MicroMegas detector for which the spreading of
the signal in the resistive strips could be observed. Using nominal surface resistivities
of 100 kΩ/□ and 1 MΩ/□, the current response was measured using minimum ionizing
particles at the SPS H4 beam line at CERN. The shape of the signals induced on the
readout strips running normal to the resistive strips showed a clear dependence on the
value of the surface resistivity. In the case of the 100 kΩ/□, the bipolar signals waveforms
showed greater attenuated, shorter duration, and more rapid spreading over neighboring
channels – resulting in an increased cluster size – compared to the 1 MΩ/□ configuration.
Informed by measurements of the ion tail duration in a non-resistive MicroMegas device
for Ar/CO2 93/7%, a simulation of the induced signal was performed. A one-to-one
comparison between data and simulation of the average signal shapes for the nominal
surface resistivity showed that the simulation could reproduce the average signal shape
within the systematic uncertainty.

Another aspect of resistive elements is their adverse effect on the noise background
of a detector system. This is due to the generation of Johnson-Nyquist noise resulting
from the thermal fluctuations of charges within the material. A FEM-based approach
was developed for obtaining the noise power density spectrum for electrodes in resistive
readout structures by calculating the self-impedance of the electrodes. After benchmark-
ing the method against toy model examples, it was applied to the case of the resistive
plane MicroMegas. With this, the relation was found between surface resistivity values,
the peak time of the shaper, and equivalent noise charge. More specifically, as surface
resistivity values increase, the equivalent noise charge at the output terminal of an am-
plifier decreases.

Serving as a proof-of-principle demonstration of the suitability of the numerical
methodology for semiconductor sensors, the case of the 3D diamond detector was treated.
The weighting potential of the resistive pillar electrodes was compared with a toy model
representation using a perturbed transmission line, where the solutions converge at late
times. The TIMESPOT collaboration has previously employed the latter approach for
their ongoing R&D on 3D diamond detectors and are currently in the process of in-
corporating and assessing the numerical application of the extended form of the Ramo-
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Shockley theorem within their simulation efforts, using the presented solution of the
dynamic weighting potential.

To enhance the operational stability of the 10 × 10 cm2 100-channel precise timing
PICOSEC MicroMegas, the readout structure underwent a modification by incorporating
a resistive Diamond-Like Carbon (DLC) layer. To arrive at an informed decision regard-
ing the surface resistivity value R, two studies were conducted to prevent a substantial
timing performance deterioration resulting from the redesign:

• By performing induced current calculations with Garfield ++ for the approximately
≈ 1 cm2 square readout pads situated below the insulating Kapton® laminate
which separates the readout from the resistive anode, it was determined that the
leading-edge of the signal is virtually unaffected by the delayed component when
R > 100 kΩ/□.

• Using a FEM simulation, the rate capability degradation was due to an ohmic
potential drop on the DLC was estimated for a pion flux of around 1 ·106 cm−2s−1.
For R = 20 MΩ/□ an estimated gain drop of around 20% was found.

Based on these findings and the required minimal protection from the destructive capa-
bilities of discharges, a surface resistivity of 20 MΩ/□ was selected for the DLC. Using
80 GeV/c muons at the SPS H4 beam line at CERN, it was shown that the performance
on the pad level was retained with a timing resolution below 25 ps.

As a final simulation study, the charge collection sharing between three-coordinate
layers comprised of strip electrodes in the novel non-resistive XYU-GEM was calcu-
lated numerically using Garfield++ using the basic form of the Ramo-Shockley theorem.
Various readout configurations within the parameter space were examined, leading to
the identification of a configuration where charge sharing was estimated to be uniform.
Although these insights guided the initial prototype development, practical constraints
during manufacturing resulted in the use of suboptimal parameters. Consequently, this
led to uneven charge sharing between the layers, an observation that was accurately repli-
cated through simulation. Nevertheless, the prototype’s capability to detect and localize
radiation was successfully demonstrated.

With a numerical approach for applying the exerted form of the Ramo-Shockley the-
orem for conductive media developed, implemented in Garfield++, and benchmarked, it
can be used in future detector R&D projects. The discussion in this work outlines exam-
ples highlighting the merits of this method across various resistive detector technologies.
For instance, these calculations can inform the design of resistive detectors by performing
simulation-based optimization studies of their layout tailored to specific physics applica-
tions. This can be used not only to determine, for example, the optimal surface resistivity
to share the signal over enough channels for enhanced spatial reconstruction but also to
explore different electrode shapes. In addition, it can be employed for the design of the
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readout electronics with which the detector would be equipped since it provides the in-
duced signals at its input terminal. Beyond detector geometry, current research focuses
on finding alternative gas mixtures with a low global warming potential for the resistive
pate chamber currently installed in the LHC experiments, which often operated with a
mixture containing C2H2F4 and SF6 [217]. Efforts in this doctoral project to simulate
resistive plate chambers are being expanded to identify suitable alternatives and validate
new cross-section data for candidate molecules such as R134a [218]. Finally, past simu-
lation efforts have elucidated puzzling experimental results and provides tools to form a
deeper understanding of the underlying physics of these devises. We hope this work can
be found useful in this ongoing effort.



Appendix A

FEM calculations of dynamic
weighting potentials

Given that one of the central methods of this dissertation is the calculation of the dynamic
weighting potential for electrodes in various resistive detector structures using the FEM,
this appendix will outline the procedure taken during these calculations in more detail.
More specifically, while the general approach is outlined in Sec. 2.5.2, we will go over
the practice steps needed to execute them in COMSOL®. As an example that covers
most techniques used throughout this work, we will take the time-dependent weighting
potentials of a pad electrode in the toy model representation of the amplification gap of
the 10× 10 cm2 resistive plane MicroMegas shown in Fig. 2.14. The result is compared
to the corresponding analytical solution in Fig. 2.23 of Sec. 2.5.2. While the structure
of this appendix follows the traditional COMSOL® workflow, it is advisable to have a
passing knowledge of the basic workings of this software tool. For this, we will refer to
Ref. [79]. The central aim is to obtain the weighting potential of a pad electrode in the
readout plane and make the exported solution compatible with the import function of
the ComponentCOMSOL class in Garfield++. Both the project file and an up-to-date
version of the contents of this appendix can be found on the Garfield++ webpage [38].

Method and modules

To import the model’s results into Garfield++, we need to calculate two sets of potentials:
(i) the static potential used to perform the calculation of the drift (and amplification)
of the charge carriers in the detector medium and (ii) the weighting potential of the
electrodes. Accordingly, using the Model Wizard, we can set up a three-dimensional model
that includes both the Electrostatics (es) and Electrical Currents (ec) physic interfaces
for the static potential and dynamic weighting potential, respectively. A Stationary and
Time Dependent study is needed to solve for both sets of potentials. At the time of
writing, the ComponentCOMSOL class of Garfield++ only supports importing three-
dimensional solutions that are solved using second-order tetrahedral mesh elements.
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Table A.1: List of parameters used in the FEM model.

Name Expression Description
g 128 [µm] Thickness of the amplification gap
b 100 [µm] Thickness of the insulation layer

pitch 0.5 [mm] Pitch of the pads
wx 0.5 [mm] Width of the pads in the x-direction
wy 0.5 [mm] Width of the pads in the y-direction
dR 1 [pm] Thickness of the resistive layer
a 5 [mm] Size of the central area of interest
l a + 1.5 [mm] Size of the MM in the model in the xy-plane

fscaling 63.33 Coordinate scaling factor for outer region
R 1 [MΩ/□] Surface resistivity of resistive layer
σ (dRR)

−1 Surface resistivity of resistive layer
ε1 4 Relative permittivity of the insulator
ε3 1 Relative permittivity of the gas gap
VA 510 [V] Applied voltage to the resistive layer
trise 10−18 [s] Rise time of the voltage ramp function
dn 0.1 Step size for the time slices
N 8 Used indicate the last time slice

Detector geometry

The parallel plate structure depicted in Fig. 2.14 can be represented by two sets of
cuboid-shaped domains, one for the induction gap with a size presented in Table A.1 and
another for the amplification gap. As we will see later, there is no need to physically
represent the resistive layer using a thin volume. In addition, due to the impracticality of
solving the system for the full 10× 10 cm2 active area, we only fully resolve the detector
structure in an ‘active region’ of 5× 5 mm2. To later accurately represent the Dirichlet
boundary conditions at the edges of the resistive layer, this region is surrounded by a
border consisting of 16 domains with a width of 750 µm as shown in Fig. A.1, which will
later be coordinate mapped to yield the correct size. In the active region, a 9 × 9 grid
of square pad electrodes is added to the readout plane at the bottom of the insulating
layer.

Material properties

This toy model example contains three sets of materials:

• The gas gap with a unit relative permittivity ε3 and zero volume conductivity.

• The perfectly insulating layer characterised by ε1 and zero volume conductivity.

• The resistive layer with a volume conductivity given by σ.
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Figure A.1: Detector geometry in used for the FEM calculation.

While the former two are used for their respective domains, the latter is applied to
the interfacing surface between the amplification gap and the insulating layer using the
Boundary geometry entry level.

Boundary conditions and coordinate mapping

In order to make our small geometry equivalent to one with the fully sized resistive layer,
we need to perform coordinate mapping on the outer region of the model. For this, we use
three instances of Scaling System function that can be found under Coordinate Systems
in the Definitions option. To perform a linear coordinate stretching, we can multiply the
x-coordinate with the scaling factor fscaling for the four domains positioned left and right
of the active region, while the same can be done for the y-coordinate for those above and
below it. The remaining eight domains positioned at the corners require the coordinate
scaling to be applied to both coordinates. This will result in the representation of the
device’s entire active region when solving the system’s field equations without the need
to use a large number of mesh elements.

To obtain a unique solution to the field equations of the Electrostatics and Electrical
Currents systems we need to provide two sets of boundary conditions. Starting with the
static potential, we can apply the Dirichlet conditions

ϕ(x)|z=g = 0 , ϕ(x)|z=−b = 0 , ϕ(x)|z=0 = VA , (A.0.1)
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to the ‘mesh’ cathode (using the Ground function), readout plane, and the resistive layer
(using the Electric Potential function), respectively. To the remaining boundaries we
apply the Neumann boundary condition

n̂ · j(x) = 0 , (A.0.2)

with n̂ the normal to the boundary. This condition on the vanishing of the flux through
the surface can be achieved by using the Electric Insulation option.

To solve for the dynamic weighting potential using the Electrical Currents module,
we impose the following Dirichlet boundary condition on the readout plane:

Ψk(x)|z=−b =

{
0 x /∈ Sk

Vw(t) x ∈ Sk
, (A.0.3)

with Sk being the surface of the pad under study and Vw(t) the ramping function shown in
Fig. 2.22. The ramping function Vw(t) can be implemented through the Electric Potential
boundary condition and the introduction of a Step function under the Definitions option
with the size of transition zone set to trise and the location to −trise/2. The surface
condition Electric Shielding can be applied to the resistive layer, i.e., the interfacing
surface between the amplification region and the insulating layer. The parameters for
this setting involve using relative permittivity and volume conductivity obtained From
Material, with the surface thickness set to equal dR. To ground the borders of the layer,
we use the one-edge version of the Ground condition. To satisfy the remaining boundary
conditions outlined in Sec. 2.3.4, we impose grounding Dirichlet boundary conditions on
the remaining outer surfaces.

Meshing

One should adhere to particular guidelines when it comes to meshing a geometry. One
such point that is of particular relevance here is that the quality of the solution is reduced
when using tetrahedral elements with needle-like corners. This leads us to avoid needing
to mesh the thin resistive layer and discourages us from using it as the element of choice
for the outer region of the model. Instead, we can use pentahedral elements without loss
of precision when performing the coordinate stretching. As a result, we mesh the active
region using tetrahedral elements and subsequently use the Swept function on the outer
domains to continue the mesh to the outer surfaces. Using the Distribution option, we
can increase the number of elements to five. The final mesh is shown in Fig. A.2.

Solving

We use the two study options chosen while preparing the model to solve for the static
and dynamic weighting potential. The former is relatively straightforward, where before
computing the solution, we select the Electrostatics in the physics and variables section of
the study. The time-dependent solver for the Electrical Currents interface requires us to
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Figure A.2: Meshing of the model using tetrahedral and pentahedral elements for the
inner part of interest and the outer scaling region, respectively.

define the set of time slices tn for which the solution will be evaluated and saved. Given
the typically rapid change of the weighting potential at early times and its gradually
slowing down as time progresses, we can reflect this by setting the output times to:

tn = en − 1 ns (A.0.4)

with n ∈ {0, dn, . . . , N − dn,N}, dn the step size, and N the maximum value of n.
Now, we can calculate the delayed weighting potential and utilize the plotting functions
available in COMSOL® to visualize it.

Data exporting

Specific export settings need to be used to extract the data for COMSOL® toolkit in
a way that makes it suitable to be imported into Garfield++. These settings depend
on the type of file that is being exported. In general, the ComponentCOMSOL class
needs four files to set up the simulation: mesh.mphtxt,Potential.txt, WPotential.txt, and
dielectrics.dat.

mesh.mphtxt: This file contains information on the types of mesh elements being
used, in which domain they are located, and in what position their nodes are placed.
While under Results/Export, there is the option to export the Mesh. However, it does
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not seem to provide adequate information for second-order elements. Instead, we need
to go to the Mesh object where between the options to define the mesh is an Export
option. On the following window, under output settings, there is the option to Export
second-order elements, which needs to be enabled. Following this, the mesh data can be
exported as a COMSOL Multiphysics text file.

Potential.txt: In the function of the Export section in Results, there is the Data
option. With this, the potential map containing the scalar field values on each mesh
node can be exported. To include the values on the second-order nodes, we need to go
into the advanced options in the settings window and set the resolution to Costume, at
which point the option to change the Lagrange-element node-point order from one to
two becomes available. With this, the data can be exported as a Text file.

WPotential.txt: Similar to the previous file, this file contains a list of weighting po-
tential values on the nodes of the elements, but now for all time slices (when setting
the time selection to All). Consequently, the same steps can be followed. However, the
exporting will require significantly more time, memory, and disk space due to the larger
number of potential maps being exported.

dielectrics.dat: The final file needs to be created manually, as it contains information
on the relative permittivity of the material of each domain. This allows Garfield++ to
know which domains need to be imported since only the one containing a medium in which
the electrons and ions (holes) drift are required during the calculation. These regions are
indicated by a unit relative permittivity. Since only domains containing tetrahedral el-
ements will be imported, it results in only the gas volume in the active region being used.

The .dat file follows a particular structure that should be followed for the data to be
read correctly by Garfield++. Starting with the first three lines:

• The first line indicates the number of relative permittivities are used.

• The second line list the values of these relative permittivities.

• The third line indicates the total number of domains in the geometry.

This is followed by the list of domains, represented by their respective numbers, and
which relative permittivity it has, indicated by the index (starting at zero) of the entries
of the list defined in line two. The resulting file should look as follows:
2
1 4
18
1 1
2 0
3 1
4 0
5 1
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6 0
7 1
8 0
9 1
10 0
11 1
12 0
13 1
14 0
15 1
16 0
17 1
18 0

Here, we have two different relative permittivity values, one and two, and 18 domains in
the geometry. Further instructions on proceeding with the simulation in Garfield++ are
provided in Sec. 2.5.3.
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Appendix B

Overview of student’s contributions

In presenting the results within this thesis, it is important to acknowledge that these
achievements were not accomplished in isolation. The journey through this research has
been enriched and made possible through collaborations with a number of skilled and
knowledgeable individuals. However, in the interest of transparency and to provide a
clear understanding of my individual contributions, I would like to outline the specific
aspects of the work that can be directly attributable to my efforts. In the subsequent
sections, it should be noted that these accomplishments were overseen by Prof. Dr.
Jorgen D’Hondt, Dr. Eraldo Oliveri, Dr. Werner Riegler, Dr. Heinrich Schindler, and
Dr. Rob Veenhof. Additionally, the success of these efforts was made possible through
discussions and support from the members of the EP-DT-DD GDD team.

Chapter 2

• While most examples in the first half of the chapter can be found in the cited
literature, I give an alternative toy model derivation for the signal shape in a
MicroMegas amplification structure (Sec. 2.3.2).

• The discussion of Sec. 2.4 is based on the work of Dr. Werner Riegler, in particular
Ref. [61] which is presented in this work in more detail and extend by me with Eq.
(2.4.11).

• The development of the equations behind the numerical implementation was per-
formed in collaboration with Dr. Werner Riegler and Dr. Heinrich Schindler.
Both the actual implementation of the strategy and the subsequent benchmarking
against analytical examples was performed by me.

Chapter 3

• Together with Dr. Werner Riegler, the outlined strategy for calculating the ther-
mal noise power spectrum was developed, tested against toy model examples, and
applied to the case of a resistive plane MicroMegas.
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Chapter 4

• Sec. 4.1 is based on the cited work of P. Fischer, where a systematic study was
performed of the spatial resolution for a strip electrode readout with respect to
varying charge cloud widths, signal-to-noise ratios, and threshold levels. These
results were extended with Eq. (4.1.10) and the discussion on the weighted CoG
method.

• The XYU-GEM concept was proposed by Prof. Dr. Fabio Sauli. Together with
the co-authers of the related publication, in particular Karl Jonathan Floethner,
the prototype was designed and characterised in the laboratory, where the signal
sharing calculations were performed by me using Garfield++ and I contributed to
the data taking and analysis.

Chapter 5

• As a member of the PICOSEC MicroMegas collaboration, I actively participated in
data collection for various prototypes across three RD51 test beam campaigns. The
measurements discussed in this chapter stem from the collected data sets, which I
analyzed using analysis code created by the collaboration.

• The experimental measurements for Device A were conducted solely by me, while
the measurements for Device B were carried out together with Dr. Antonija Utro-
bicic.

• The discussed simulation work was the result of my individual efforts.

Chapter 6

• The comparison of the simulated correction map with data and published RC circuit
modeling results, including those for a non-uniform surface resistivity, were my
individual efforts.

Chapter 7

• The simulation of the signal formation on the resistive columns was developed in
collaboration with members of the TIMESPOT project.

Chapter 8

• The results presented in the chapter were achieved by me. The experimental data
was collected over two separate two-week periods. During one of these periods,
I collaborated with and supervised Marthe Azzi as part of the Summer Student
Program.
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