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Give a man a fish and you feed him for a day. 
Teach a man to fish and you feed him for a lifetime. 

 

                     Chinese Proverb 

 
 
 
 



 
 



 
 

0 Acknowledgments 

 
Finally! 
 

It is hard to believe, but you are holding my PhD thesis in your hands. The writing was 
a difficult mission, certainly in combination with a new job and two kids. However, as 
long as there are enough people around you who support you, it is possible. 
 

Writing a thesis is perhaps a lonely occupation but a PhD is not something you do on 
your own. That is why, I would like to express a special word of gratitude to the 
following people for their support and friendship I encountered during my PhD.  
 

Firstly, I want to thank Stefaan Tavernier for accepting me as PhD student within the 
PET group. I am even more grateful to Peter Bruyndonckx. He is the person who 
taught me how “to fish” in this PET world. Thanks a lot for your never ending 
patience, fruitful discussions and the proof-reading of this thesis. I highly appreciate 
your way of working; the autonomy and responsibility you gave me. I also want to 
thank Christian Wastiels. Together we solved a lot of electronic and mechanic scanner 
problems, often with a lot of fun. I enjoyed this a lot.  
 

A big thanks is also in order to Marleen Goeman for her efficient administrative 
management. I also wish to thank all members of the PET-team. It was very pleasant 
to work with you: Jun Dang, Jan Debruyne, Olivier Devroede, Magalie Krieguer, 
Mateusz Wedrowski & Li Zhi.  
 

In addition, there are of course several other ‘academic’ friends who deserve some 
special attention; Daan, Eileen, Kevin, Severin, Sofie, ... many thanks for the pleasant 
lunches at the VUB cafeteria. Jan, I do not know if you have to congratulate me or I 
have to congratulate you for the four years office’s sharing, but it was definitely an 
enrichment.  
 

I would like to thank my parents and brothers, relatives and friends. Thank you for 
your encouragements and the good time I spent with you. Besides, here is the answer 
on your question: 

“Wanneer ga je je thesis afwerken?” - ‘t Is af!’ 
 

Last but not least, Sarah, no words can express my gratitude. Your support and 
encouragements were in the end what made this PhD possible, you brought me all I 
needed, give me the time and love which were indispensable. Together with Kobe and 
Wout you give me a lot of happiness during these challenging years. I am also happy 
we can finally live a normal life, all together and continue with the renovation of our 
house. 
 

Thanks to all of you! 





 

 9 

 
 
 
 
 
 
 

Table of contents 

0 Acknowledgments 7 

0 Introduction 11 

1 The role of PET within the spectrum of medical imaging 13 

1.1 Biomedical imaging modalities......................................................................13 
1.1.1 External sources ................................................................................................13 

1.1.2 Internal sources .................................................................................................14 

1.2 The Crystal Clear Collaboration...................................................................16 
1.2.1 Small animal PET – The ClearPET-project.....................................................16 

1.2.2 Positron Emission Mammography – The ClearPEM-project............................17 

1.2.3 A functional PET system for the human brain – The BrainPET-project ........18 

2 From positron emitter to PET image 21 

2.1 From positrons to annihilation photons, the tracer .......................................21 
2.1.1 The fundamental physical resolution limits of PET .........................................23 

2.2 Detection of annihilation photons by scintillators .........................................25 
2.2.1 Event types in annihilation coincidence detection ............................................25 

2.2.2 The interaction modes of photons in matter.....................................................28 

2.2.3 The scintillation process....................................................................................29 

2.2.4 Requirements for scintillators in PET scanners................................................30 

2.2.5 Properties of commercial available scintillators ................................................32 

2.3 Photo detectors for the conversion of scintillation photons in an electrical 
signal ............................................................................................................34 
2.3.1 Photo multiplier tube........................................................................................34 

2.3.2 Avalanche photodiode .......................................................................................35 

2.3.3 Properties of avalanche photodiodes .................................................................38 

2.4 PET performances ........................................................................................42 
2.4.1 Sensitivity .........................................................................................................42 

2.4.2 Energy resolution ..............................................................................................43 

2.4.3 Spatial resolution ..............................................................................................44 

2.5 Image reconstruction.....................................................................................47 
 
 



 

 

10 Table of contents 
 

3 Study of spatial resolution in block detectors 51 

3.1 Front-end detector designs ........................................................................... 53 
3.1.1 The S8550 avalanche photo diode..................................................................... 53 

3.1.2 Monolithic block geometries ............................................................................. 54 

3.2 A bench set-up for the acquisition of training data ...................................... 56 
3.3 Positioning algorithms.................................................................................. 60 

3.3.1 Neural networks with Levenberg-Marquardt training ...................................... 60 

3.3.2 Neural network with algebraic training ............................................................ 63 

3.3.3 Support vector machines................................................................................... 63 

3.4 Evaluation of the positioning algorithms on a 20x10x10mm3 LSO block ...... 66 
3.4.1 Levenberg-Marquardt NN (LM-NN) ................................................................ 66 

3.4.2 Algebraic trained NN (Alg-NN)........................................................................ 70 

3.4.3 Support vector machines (SVM)....................................................................... 71 

3.4.4 Discussion and conclusion................................................................................. 73 

3.5 Evaluation of alternative detector geometries with a LM-NN....................... 75 
3.5.1 20mm thick LSO block ..................................................................................... 75 

3.5.2 Trapezoidal LSO block ..................................................................................... 76 

4 Evaluation of block detectors on the PET prototype demonstrator 77 

4.1 New front-end electronics for APD readout.................................................. 78 
4.1.1 Pre-amplifier board (P-AMP)........................................................................... 79 

4.1.2 Amplifier board (AMP) .................................................................................... 79 

4.1.3 Digital board (DIG).......................................................................................... 80 

4.1.4 Test pulse evaluation ........................................................................................ 80 

4.2 Data acquisition system of the demonstrator................................................ 83 
4.3 Detector movement for a full-ring simulation ............................................... 85 
4.4 An automated method of training data acquisition ...................................... 89 
4.5 Influence of the acquisition parameters on the neural network performance . 95 

5 Two-dimensional reconstructed images on the PET prototype demonstrator 105 

5.1 Scanning process ........................................................................................ 105 
5.2 Influence of angular source step a on angular sampling.............................. 108 
5.3 Position estimation of non-perpendicular incident photons with 

perpendicular trained NN........................................................................... 111 
5.4 Point sources at different radial distances .................................................. 116 
5.5 Tomographic images of combined point sources and a Derenzo phantom... 118 

6 Conclusion 125 

7 Future outlook 129 

8 Bibliography 131 

9 List of abbreviations 139 



 

 11

 
 
 
 
 
 
 

0 Introduction  
 
Positron emission tomography (PET) is a nuclear medicine imaging technique based on 
the detection of gamma rays emitted by positron-emitting short lived isotopes. It is one 
of the noninvasive technologies that can routinely and quantitatively measure 
metabolic, biochemical, and functional activity in living tissue. It assesses changes in 
the function, circulation, and metabolism of body organs. PET is an important 
modality because PET images can demonstrate pathologic changes in the human body 
even before they are seen on the other imaging modalities. As the methods and 
technology of PET imaging have advanced, they have been applied not only to human 
clinical imaging, but to small research animals as well using dedicated apparatus. Small 
animal PET allows the study of pharmacological effects of certain drugs over a long 
period of time in a limited number of animals. It also allows the validation of newly 
developed radio tracers and it plays a growing role in research on diseases and genome. 
However, imaging small objects pushes the spatial resolution and sensitivity limits of 
current PET technology.  
 
This thesis consists in a study at the level of PET detector blocks based on monolithic 
crystals in combination with a machine learning positioning algorithm. These detector 
blocks, when compared with pixilated ones, feature a simpler design, lower cost, larger 
sensitive volume, better energy resolution and comparable or better spatial resolution.  
The use of machine learning algorithms allows a positioning estimation that does not 
suffer much from parallax errors. The study is part of one of the Crystal Clear Projects. 
The aim of this collaboration is to build new generation PET scanners with high 
resolution and high sensitivity. The block approach in combination with a Neural 
network positioning algorithm will be used on a research prototype for human brain 
PET/MRI imaging. 
 
The first chapter of this thesis depicts the role of PET within the spectrum of medical 
imaging. It also outlines the different projects within the Crystal Clear Collaboration. 
In the second chapter, the process flow from tracer admission till image reconstruction 
is considered. It describes the fundamentals of PET, PET’s detection principles and the 
parameters that determine the quality of PET images.  
The spatial resolution obtained with a monolithic LSO block in combination with one 
of the three analyzed machine learning positioning algorithms is evaluated in chapter 3. 
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Levenberg-Marquardt and algebraic neural networks as well as support vector machines 
were considered. The data needed for the evaluation was acquired on a bench set-up 
with three different block geometries, a rectangular 20x10x10mm3, a bigger 
20x10x20mm3 rectangular block and a trapezoidal 20x15.4(11.5)x20mm3 block. 
Based on the results of chapter 3, the best -block geometry/positioning algorithm-
combination was used on the PET prototype demonstrator. In chapter 4, this prototype 
demonstrator and an automated method of training data acquisition are reported. In 
addition the influence of the acquisition parameters on the neural network performance 
was investigated. In the last chapter some two-dimensional reconstructed images of 
point sources with different diameters and a home made Derenzo phantom were 
analyzed. Finally, the main conclusions from this thesis are summarized in a last 
section. 
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Chapter 1  

1 The role of PET within the spectrum of medical imaging 
 
 

1.1 Biomedical imaging modalities 
  Medical imaging refers to the techniques and processes used to create images of the 
human body for clinical purposes (medical procedures seeking to reveal diagnose or 
examine a disease) or medical science (including the study of anatomy and 
functionality). Medical imaging techniques can be classified according to a number of 
criteria. A particular classification scheme could use appearance, e.g. tomographic 
versus non-tomographic images and would group computed tomography (CT) and 
magnetic resonance imaging (MRI) because of the similarity in image presentation. 
Another would classify the techniques according to the underlying physics. This is the 
classification scheme which is used here. Its basis will be the origin and nature of the 
information carrier e.g. sound waves in ultrasound, X-rays in CT and gamma rays in 
nuclear medicine [1]. The scheme has two branches relating to the source of information 
carriers: external or internal (Figure 1.1). 
 

1.1.1 External sources 

  When the source is external, the body structures modulate the information through 
interactions with the carriers. In X-ray radiography or CT, an external point source of 
X-rays is used. The X-rays are partially absorbed when the rays pass through the body. 
The rays that are neither absorbed nor scattered move in straight lines between the 
point source and the detector, thus creating a shadow image of the bodily structures.  
In ultrasound, an external source of pulsed sound waves is used. Interfaces between 
different tissues will partially reflect the sound waves. By measuring the time span 
between the outgoing and incoming sound pulse, images can be reconstructed. 
In endoscopy, an external light source illuminates internal organs through a glass fiber. 
An ocular or small camera is used to observe the reflected light and hence the organ.  
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1.1.2 Internal sources 

  The body naturally and continuously radiates heat: its source is internal. In order to 
image the information carriers, some optics for infrared radiation is needed: a 
thermographic camera.  
Electroencephalography is the neurophysiologic measurement of the electrical activity of 
the brain. The resulting traces are known as an electroencephalogram (EEG) and 

represent an electrical signal from a large number of neurons. An electrocardiogram 
(ECG) is a graphic produced by an electrocardiograph, which records the electrical 
activity of the heart over time. In both techniques, EEC and ECG, the information 
arises from an internal change of electrical activity.  
In MRI, the information carriers are radio waves emitted by hydrogen nuclei in the 
body. Although the body has plenty of hydrogen nuclei, e.g. in water molecules, the 
nuclei do not naturally emit radio waves. In order for them to do so, they have to be 

External 
source 

Transmission 

CT 

Projection 
radiography 

Reflection, 
Refraction 

Endoscopy 
Photography 
Videography 

Ultrasound 

X-rays 

Imaging 
modalities 

Internal 
source 

External 
excitation 

MRI 

Internal 
tracer 

Natural 
source 

Thermography 

SPECT 

PET 

ECG, EEG 

Figure 1.1: A classification of the medical imaging modalities according to their underlying 
physics 
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Anatomic Physiologic Metabolic Molecular 

X-ray CT PET/SPECT 

MRI 

fMRI 

ultrasound 

Figure 1.2: This overview illustrates the most common used medical imaging techniques. It 
covers the entities that can be detected which range from structure, physiology,
metabolism/biochemistry, molecular pathway and molecular targets/receptor/binding sites 

first put in a magnetic field and then excited by means of well-chosen radio wave pulses 
at specific frequencies. The nuclei then ‘answer’ on their turn by emitting radio waves 
of similar frequencies. In MRI, the internal sources are always present but they only 
emit information when excited to do so. 
In nuclear imaging, PET and SPECT, the internal information carriers are gamma rays 
emitted by injected radioisotopes bound to molecules with known biological properties. 
They are chosen in such a way that their radioactive decay allows for external detection 
and that their space/time distribution reflects clinical information.  
 
The techniques which rely on ionizing radiation such as X-rays, SPECT and PET 
subject the patient to a radiation dose that carries a small but finite potential 
detriment. This places a limit on their usage, particularly in the cases of pregnant 
women and children. Ultrasound and MRI do not carry these risks. Nevertheless, 
nuclear medicine techniques like SPECT and PET, yield metabolic, physiologic and 
pathologic information of the body. They are dependent upon the development of a 
radiopharmaceutical which offers specific uptake into the organ of interest. By 
measuring the sites of uptake and the rates of uptake/disappearance, information about 
organ function can be obtained. 
Since the other techniques yield images of physical structural parameters, they are 
largely concerned with the anatomy of the patient. More specialist techniques such as 
Doppler ultrasound and functional magnetic resonance imaging (fRMI) have begun to 
extend their range into physiology also. Although the signal-to-noise ratio (SNR) is 
weak and quantitative data remains difficult to remain. To clearly make the distinction 
with fMRI that can now provide some functional information but not at the molecular 
level, PET and SPECT should be classified as molecular imaging techniques instead of 
functional techniques (Figure 1.2). However, MRI/ultrasound versus PET/SPECT are 
rather of complementary nature, instead of being in competition. 
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1.2 The Crystal Clear Collaboration 
  The Crystal Clear Collaboration (CCC) is an international collaboration grouping 
several research institutes and universities, working together to develop new generations 
of scanners for positron emission tomography (Table 1.1) 
 
 

Table 1.1 Formal members of the Crystal Clear Collaboration 

Institute-Company Location 
CERN 
CERMEP 
CIEMAT 
Forschungszentrum Jülich (FZJ) 
Institute for Physical Research 
Institute of Nuclear Problems 
LIP 
Samsung Medical Center 
Université Claude Bernard 
Université de Lausanne, 
Universiteit Gent 
Vrije Universiteit Brussel, IIHE 

Geneva (Switzerland) 
Lyon (France) 
Madrid (Spain) 
Jülich (Germany) 
Ashtarak (Armenia) 
Minsk (Belarus) 
Lisbon (Portugal) 
Seoul (Korea) 
Lyon (France) 
Lausanne (Switserland) 
Ghent (Belgium) 
Brussels (Belgium) 

 

This collaboration, created in 1990, was at first mainly interested in scintillators for 
high-energy physics which would be suitable for use at the LHC collider. Later, the 
interest of the collaboration moved to nuclear medicine and more particular to PET 
instrumentation development. It was felt that the experience available in the 
collaboration on scintillation materials and photo detectors would allow a useful 
contribution to this field.  

1.2.1 Small animal PET – The ClearPET-project 

  Small animal (rats and mice) PET imaging is being used increasingly as a basic 
measurement tool in modern biomedical research. Applications of this technology occur 
in development and evaluation of therapeutic efficacy in small animal models of human 
disease, visualization and quantification of the site and amount of gene expression, and 
in many other settings, e.g. visualization and quantification of the movement of various 
cell types within the body [2]. Newly developed drugs are tested in animal first, both for 
their biological utility and for their toxicity. Due to the non invasive character of PET, 
it is possible to study the progress of a disease and its treatment efficiency over time, 
by performing repeated scans in the same animal. Despite these successes, at least two 
important technical issues remained to be addressed. First, the intrinsic spatial 
resolution of contemporary clinical PET scanners is not sufficient to allow definitive 
visualization of organ substructures in the mouse. Second, in addition to improved 
spatial resolution, the sensitivity of small animal PET scanners must also be increased 
if pharmacologic effects are to be avoided. Improved sensitivity has also been identified 
as an important goal for the image reconstruction. Thus, sensitivity, as well as 
resolution, should be maximized.  
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Digital X-ray Mammogram FDG-PET Mammogram 

End 90’s, these specific needs related to the small animal PET area, motivated the 
ClearPET project in the development of small animal PET devices. Together with a 
number of guest laboratories, the institutes provide expertise in different domains of 
physics instrumentation, biology and medicine. Their research activities have led to the 
design and construction of five prototypes of a new generation of PET scanners for 
small animals, which provide depth-of-interaction (DOI) information [3, 4]. The 
detector heads are based on an 8 x 8 matrix of scintillation crystal elements, read out 
by a multi-anode photomultiplier tube. Each element consists of a phosphor sandwich, 
or phoswich, made up of two layers of crystals with different decay times. One layer is 
formed from cerium-doped lutetium yttrium orthosilicate (LYSO) scintillator material; 
the other contains cerium-doped lutetium yttrium aluminate perovskite (LuYAP) 
scintillator, specially developed by the Crystal Clear collaboration and now 
commercially available from several companies.  
Two versions of the scanner are being commercially produced, differing only in the 
mechanics of the gantry. The ClearPET Neuro is optimized for small primates and 
features a gantry that can be tilted to allow the animal to be imaged in a sitting 
position, while the ClearPET Rodent is optimized for rats and mice. These machines 
are now commercialized by the German company Raytest GmbH under the name 
ClearPETTM [5]. 

1.2.2 Positron Emission Mammography – The ClearPEM-project 

  The early detection of breast cancer is becoming a priority in healthcare policy of an 
increasing number of countries. A very large number of women (about one woman in 
eight) will develop a breast cancer, which is the second leading cause of cancer death. 
On the other hand, early detection leads to very high cure rate [6]. By the end of the 
1970s, the introduction of breast cancer screening by mammography was an important 
advancement in medical imaging. Permitting early detection of this illness, several 
randomized, controlled screening studies have shown an overall decrease in breast 
cancer mortality of up to 30%. Unfortunately, the specificity of conventional X-ray 
mammography is rather low. In particular for women with dense breast (about 40% of 
the cases), until 50% of the tumors are not detected by conventional X-ray 
mammography. Specifying the nature (malign or benign) of tumors using this method is 
also problematic and this results in a high number of false positive results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3: Digital X-ray and PET (10 mCi FDG, 4 
min acquisition time) mammograms. (Courtesy of L.P. 

Adler, Cancer Centre, Philadelphia.) 
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A large number of unnecessary biopsies or even auxiliary dissections are therefore 
performed which have a high cost for the society, not considering the psychological 
aspect on the women. On the other hand, metabolic techniques using 18F–fluoro-deoxy-
glucose (FDG) have demonstrated an excellent sensitivity to malignant tissues (nearly 
100%) due to the much higher glucose consumption of cancerous cells as compared to 
normal tissue.  
The cancer detection capability of PET is clearly illustrated in Figure 1.3 comparing X-
ray and PET images of the same breast. To respond to the demand for a highly specific 
device the Crystal Clear Collaboration started in 2002 the design and construction of a 
dedicated positron emission mammogram, the ClearPEM project [7]. The ClearPEM 
scanner is developed with three main guidelines: low random background; high 
sensitivity; and spatial resolution smaller than 2mm. The first requirement arises from 
the fact that the scanner must cope with a large single photon rate due to the close 
presence of the heart. In order to increase the sensitivity the ClearPEM imaging system 
exploits Compton interactions in the detector, in which case the reconstruction of the 
scattering topology is required. Finally, in order to deliver the required spatial 
resolution allover the field-of-view without compromising the sensitivity by restricting 
the angle of the accepted lines-of-response, the detector is able to measure the DOI of 
the incoming photons. The basic detector module is composed by a matrix of 32 2x2x20 
mm3 LYSO:Ce pixels, readout at both ends by Hamamatsu S8550 APD arrays for DOI 
capability. Twenty-four of these basic detector modules are mechanically fixed and 
electrically connected to front and back electronics PCBs forming a super module. Four 
super modules are mounted in a detector head. In total the ClearPEM scanner has 192 
detector modules and 6144 crystals. 

1.2.3 A functional PET system for the human brain – The BrainPET-project 

  During the last two decades, functional brain imaging using PET has advanced 
constantly, and steadily gained importance in the clinical and research arenas [8]. 
Nevertheless, emerging clinical and research applications of functional brain imaging 
promise even greater levels of accuracy and precision and therefore, impose more 
constraints with respect to the intrinsic performance of the PET tomograph. 
Continuous efforts to integrate recent research findings for the design of different 
geometries and various detector read out technologies of PET scanners have become the 
goal of both the academic community and nuclear medicine industry. Also the software- 
and hardware-based correlation between anatomical (X-ray CT, MRI) and physiological 
(PET) information is a promising research field and now offers unique capabilities for 
the medical imaging community and biomedical researchers. One of the main 
advantages of dual-modality PET/CT imaging is that PET data are intrinsically 
aligned to anatomical information from the X-ray CT without the use of external 
markers or internal landmarks. However the combination of a PET scanner with an 
MRI scanner has a number of advantages compared to a PET/CT: the anatomy of soft 
tissue can be visualized better in MRI images and MRI scans do no impose an 
additional radiation dose to the patient. On the other hand, combining PET with MRI 
technology is scientifically more challenging owing to the strong magnetic fields. 
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Within the CCC BrainPET-project, prototype PET systems for the study of the human 
brain will be developed. Compared with the existing scanners on the market, a device 
with a better resolution and higher sensitivity will be provided. The result is a 
significant improvement of the lesions detection and an enhancement of the functional 
characteristics research of this critical organ. CIEMAT (Madrid, Spain) has already 
acquired the necessary funding for the construction of a complete Brain-PET prototype 
based on the detection of photons using monolithic scintillator blocks and localization 
using computer learning algorithms developed by our VUB-group. These machines will 
not only be basic research prototypes but fully functional systems. After completion the 
Spanish prototype will be used for clinical studies in the Hospital Puerta de Hierro 
(Madrid, Spain). 
The use of these block-systems in combination with several positioning algorithms is 
exactly the subject of this thesis. The prototype of CIEMAT will have 4 rings (12 cm 
axial field of view). The scanner will consist of rings made up of ~52 detector modules. 
This gives a scanner diameter of about 40 cm. The anticipated specifications are: 

 a detector module consists of 2 layers of trapezium shaped ~20x20x10mm3 LSO 
blocks  

 each layer is read out by 2 APDs, one on each side  
 a ring is made of 52 of these detector modules which correspond with a ring 

diameters of 40cm 
 a spatial resolution of ~1.2mm FWHM which remains rather uniform over the 

field of view 
 MRI insensitive technology. Although the CIEMAT system will not be 

integrated in an MRI scanner, the technology used will already be made MRI 
compatible. 
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Chapter 2  

2 From positron emitter to PET image 
 
 
PET imaging relies on the nature of the positron and positron decay. The theoretical 
physicist, P. Dirac, postulated the existence of positive electrons on the basis of the -
Dirac equations-[9] and Einstein's theory of relativity. In 1932, experimental physicist, 
C.D. Anderson, proved the correctness of Dirac's prediction by observing experimentally 
cosmic rays. He discovered particles with the mass of electrons but their path in a 
strong magnetic field indicated a positive charge. He called these particles positrons, or 
positive electrons [10]. 
Functional imaging with positron-emitting isotopes was first proposed in the early 
1950s as an imaging technique that could offer greater sensitivity than conventional 
nuclear medicine techniques with single photon-emitting isotopes. The SPECT 
collimator is eliminated and replaced by electronic collimation, a simultaneous detection 
of both back-to-back annihilation photons. 

2.1 From positrons to annihilation photons, the tracer 
A PET study involves injecting a compound, which is labeled with a positron-emitting 
radionuclide, into the patient. The radiolabeled compound is called a 
radiopharmaceutical, or more commonly, a tracer. The choice of tracer specifies the 
parameters which are examined. Examples are gene expression, glucose metabolism, 
protein syntheses, receptor affinity, … (Table 2.1). 
 

Table 2.1 Examples of positron emitting radionuclides and there applications 

Radionuclide Tracer Application Half-life 

FDG Glucose metabolism 18F 
Fluoro-DOPA Receptor affinity 

110min 

H2O Hemodynamic appl. 15O 

O2 Substrate metabolism 
123sec 

11C-cocaine Drugs study 11C 

11C-ephedrine Neurotransmitter appl. 
20.4min 

82Rb 82Rb Myocardial studies 76sec 
22Na e+-emitter used for detector testing 2.602y 
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In radioactive decay by positron emission, a proton p in the nucleus is transformed into 
a neutron n  and a positively charged electron +e  (Equation (2.1)). The positively 
charged electron -or positron- and an electron neutrino ev  are ejected from the nucleus. 
Schematically, the process is  

 +p n+e + (+energy)ev
b+

  (2.1) 

The radionuclides that decay via positron emission are proton-rich and move closer to 
their stable state while giving off a positive charge. Positrons are emitted with a kinetic 
energy greater than zero, and are slowed down through multiple Coulomb interactions 
in biological tissue [11]. Energy loss continues until the positron reaches thermal 
equilibrium with the surrounding medium. After coming to rest, the electron annihilates 
with an electron. More accurately, the positron and an electron momentarily form an 
atom called a positronium, which has the positron as it nucleus and a lifetime of about 
10-10sec [12]. The positron then combines with the negative electron in an annihilation 
reaction, in which their masses are converted into energy (Figure 2.1). The mass-energy 
equivalent of each particle is 511keV. This energy appears in the form of two 511keV 
annihilation photons, which leave the site of the annihilation in opposite directions. The 
back-to-back emission of annihilation photons is required for conservation of momentum 
for a stationary electron-positron pair. That’s why positron emitters are useful in 
nuclear medicine because two photons are generated per nuclear decay event. The 
precise directional relationship between the annihilation photons permits the use of 
coincidence-counting techniques. The combined detection of two annihilation photons is 
called a coincidence, and the line joining the event locations is called a line-of-response 
(LOR). The activities measured along these LORs are close approximations to line 
integrals, which adequately sample the activity distribution. Several mathematical 
algorithms exist to reconstruct the tracer distribution from these line integrals. (see 
paragraph 2.5) 
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Figure 2.1: Schematic representation of positron emission and the physical aspects of 
positron-electron annihilation, i.e. positron range and the non-colinearity of the 511 
keV annihilation photons (see paragraph 2.1.1) 
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2.1.1 The fundamental physical resolution limits of PET 

Two factors relating to the basic physics of positron emission and annihilation process 
degrade the intrinsic spatial resolution of a PET system. An ideal tomograph should 
accurately measure the activity distribution in the body, i.e. the positron emission 
points. Actually, a tomograph can only detect the annihilation point. The distance the 
positron travels after being emitted from the nucleus and before annihilation is called 
the positron range. This range effect degrades the spatial resolution, introducing a 
blurring in the image. The positron range depends on the electron density of the 
medium (in denser material, the positron travels a shorter distance, reducing the 
uncertainty). Also the energy of the emitted positron, which depends on the particular 
nuclide, influences the positron range. The maximum energies EMAX of the radionuclides 
used for nuclear medicine are in the range of 0.5 to 5MeV. However, positrons are 
emitted with a spectrum of energies. Only a small fraction has the full amount of 
energy available from the decay. The range distributions obtained per radionuclide are 
centered on the positron point source with long exponential tails rather than Gaussian 
shaped, thus making conventional full width at half maximum (FWHM) measures 
uncertain (Figure 2.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
             [13] 
 

The full width at 20% of the maximum amplitude (FW20M) of the annihilation 
distributions yields more appropriate values for root mean square addition of spatial 
resolution loss components [13]. The contribution of this effect to the total spatial 
resolution is reported in Table 2.2 for several nuclides. A second factor involved in the 
degradation of PET’s resolution is that the annihilation photons almost never are 
emitted at exactly 180° directions from each other. This effect, which is due to small 
residual momentum of the positron when it reaches the end of its range, is known as 
non-colinearity. In general, the annihilation occurs when the positron has reached 
thermal equilibrium with an electron not at rest. In fact, electrons constitute a 
statistical system of particles (Fermi gas) with an isotropic distribution of momentum 
in space. 
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Figure 2.2: Projected annihilation point spread probability distributions normalized to 
1.0 at zero distance.     
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Table 2.2 Spatial resolution loss due to the tissue- and radionuclide-dependence [13] 

Radionuclide +-EMAX 
Compact bone 

FW20M 
Soft tissue 
FW20M 

Adipose tissue 
FW20M 

Lung tissue 
FW20M 

18F 0.635MeV 0.42mm 0.54mm 0.58mm 1.52mm 
15O 1.72MeV 1.08mm 1.87mm 2.31mm 5.30mm 
11C 0.960MeV 0.62mm 0.96mm 1.15mm 2.69mm 
13N 1.19MeV 0.72mm 1.26mm 1.55mm 3.50mm 

82Rb 3.35MeV 2.68mm 4.10mm 4.30mm 10.50mm 

 
An approximated calculation of the deviation from the colinearity of the emitted 
photons can be made by just considering the thermal motion of the particles and the 
conservation of the Fermi momentum. The distribution of the angular deviation, 
projected on a plane, was measured to be Gaussian with FWHM ~ 0.5° [11]. The effect 
on the spatial distribution, expressed in terms of FWHM in the centre of a detector 
ring of diameter D can be parameterized as:  

 180°

D
x =0.0022 x D

4
qD » D  (2.2) 

 

with both 180°D  and D measured in meters. By setting Δθ to a value of 0.5° (8.7mrad), 
this means a contribution to the spatial resolution of 2.2 mm FWHM per meter of 
detector separation. The range effect and the non-colinearity, as described above, are 
fundamental physical resolution limits in PET. Their effects degrade the spatial 
resolution, causing a blurring in the reconstructed image. This is especially evident for 
isotopes with a high EMAX (i.e., a long positron range) and for whole-body PET systems, 
where the detector separation is greater than on dedicated brain or animal scanners. 
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2.2 Detection of annihilation photons by scintillators 

2.2.1 Event types in annihilation coincidence detection 

The colinearity of the two annihilation photons allows the so-called electronic 
collimation of the photons by coincidence detection. An annihilation event is assumed 
to have occurred when a pair of photons is recorded within a specified coincidence time 
window, which typically is around 10 nanoseconds. Unfortunately, three different types 
of coincidences detection can occur: true, random and scattered coincidences. 
If the two photons detected within the time window arise from the same annihilation 
event and the volume connecting both detectors encloses the annihilation point, a true 
coincidence is measured (Figure 2.3.a). Only these true coincidences allow the 
measurement of the tracer distribution. On the other hand, the detection of random 
and scattered coincidences results in inaccurate LOR counting, generating noise in the 
reconstructed image. 
Random coincidences occur when annihilation photons from two unrelated positron 
annihilation events are detected, within the coincidence time window and are recorded 
as a single coincidence event (Figure 2.3.b). This will yield wrong information about the 
position of the annihilation. The random coincidence counting rate in a detector pair is 
given by: 
 random window single,1 single,2N = x N x ND  (2.3) 
 

where single,1N  and single,2N  are the single event rates detected in each detector 
individually and windowD  is the length of the coincidence time window. Since single,1N  and 

single,2N  are directly proportional to the tracer activity, the random rates will increase 
with the square of the activity and decrease as 1/ 2r  for a full detector ring with radius 
r, whereas the true coincidences rate only will increase linearly with the activity and 
decrease as 1/r. The amount of randoms can be reduced by reducing the coincidence 
time window windowD  at the cost of efficiency. If the width of the windowD  is chosen too 
small, valid data will be lost, and if the width is too large, the number of random 
coincidences will be increased with no increase in the number of true events. The 
required length for windowD  depends on the timing properties of the detector.  
Random coincidences occur more or less uniformly across the field of view (FOV) of the 
scanner, causing a loss of image contrast as well as inaccuracies in quantification of the 
activity within the object of study. The amount of randoms can be estimated directly 
from (2.3) and subtracted by monitoring the single count rate in the individual 
detectors, given the width of the coincidence time window windowD . Randoms can also be 
estimated by adding a second delayed coincidence circuit. To ensure that no true 
coincidence is recorded, the time window from one detector is delayed with a time much 
bigger than the time resolution of the system. Each coincidence measured in this 
delayed time window must be a random coincidence This does not require any 
knowledge of the coincidence time window windowD , but is not as statistically accurate as 
the direct method. If trueN  is the number of true coincidence events recorded, scatterN  
the number of scatter coincidences and randomN  is the number of random coincidences 
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subtracted from the total, the uncertainty in the remaining (true plus scatter) 
coincidences is [12]  

 ( ) ( ) ( )
true scatter true scatter randomN +N N +N 2 x Ns = +  (2.4) 

Thus, even if accurate corrections can be made, the random coincidence rate should be 
minimized to avoid increasing the statistical noise level of the image. By using 
absorptive septa to restrict the active-containing region sampled by the coincidence 
detectors, the randoms-to-true count rate ratio can be reduced substantially. By using 
faster detectors with better timing properties, the randoms-to-true count rate ratio can 
be reduced further. 
A second category of non-valid prompt coincidences are the scatter coincidences. These 
occur when one or both of the photons from an annihilation event are deviating from 
their original path by Compton scattering (Figure 2.3.c). The scattering event occurs 
within the patient, but it also can occur within components of the scanner and result in 
mispositioned events. The scatter count rate as well as the true count rate is 
proportional to the activity present and therefore the scatter-to-true count rate ratio is 
independent of the activity. Because true and scatter each result from single 
annihilation events, the scatter-to-true count rate ratio is also independent of the 
coincidence timing window. 
Like randoms, scatter results in generally diffuse background counts in reconstructed 
PET images, reducing contrast and distorting the relationship between image intensity 
and activity concentration. Scattered photons can, in principle, be identified from the 
energy lost in the scattering process and rejected by applying a simple energy threshold. 
However, as seen later, the energy resolution of current PET detectors is unable to 
accurately distinguish scattered from non-scattered photons above a certain energy 
threshold that may be as low as 350keV. Thus, in addition to a lower energy threshold, 
sophisticated scatter correction models have been developed to remove the residual 
scatter bias. The scatter background cannot be measured directly and must, instead, be 
estimated from the data. In a typical clinical imaging situation, even after applying an 
energy threshold, the fraction of the total events in the image that are scattered (SF) is 
8%–10% in two dimensions (2D) and up to 45% or greater in three dimensions (3D) 
[14]. The 2D multiring PET scanners incorporate septa, lead or tungsten annular 
shields mounted between the detector rings. The purpose of the septa is to shield the 
detectors from photons that scattered out of the transverse plane. Only LORs in-plane 
or with small angles of incidence are measurable. The remaining LORs intersect the 
septa and the photons never reach the detectors. When the septa are retracted (3D 
PET), the number of active LORs is greatly increased, thereby improving the 
sensitivity. 
In 2D PET, scatter correction is rather straightforward. Once the randoms correction 
has been applied, the peripheral “tails” in the projection-image count profiles, 
presumably due exclusively to scatter, are fit to a mathematical function and then 
subtracted (deconvolved) from the measured profile to yield scatter-corrected profiles 
for tomographic image reconstruction [15]. Scatter corrections for 3D PET include: dual 
energy window-based approaches; convolution/deconvolution- based approaches 
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(analogous to the correction in 2D PET); direct estimation of scatter distribution (by 
Monte Carlo simulation of the imaging system); and iterative reconstruction based 
scatter compensation approaches (also employing Monte Carlo simulation) [15]. The 
Monte Carlo simulation and subtraction of scatter are now practical and have been 
implemented in commercial PET scanners A last category of detected event is the 
single event detection as seen in Figure 2.3.d. These events are rejected electronically 
because second annihilation photon was not detected in the time window. 
Unfortunately, they will add extra dead time during which the scanner is not sensitive 
to possible upcoming coincidence events. The way to minimize their effect is to reject 
them as early as possible in the detection process, since this type of events compromise 
a substantial part of all the events. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: The four event types associated with PET. (a) True coincidence event, (b) 
random coincidence event and (c) scatter coincidences. Randoms and scatter coincidences 
yield incorrect LOR information and contribute to a relatively uniform background image 
that result in a loss of contrast. (d) The single event type detects only one of both 
annihilation photons and dominates the dead time losses of the scanner. 
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2.2.2 The interaction modes of photons in matter 

After the tracer injection, the next step in the PET process is the detection of both 
annihilation photons. The detector should be able to detect and process several millions 
of photon events per second and sort out a small percentage of desired true coincidences 
for further processing. This means the detection material should be dense enough so 
that a significant fraction of the annihilation photons will interact with it. The detector 
materials that best meet these criteria are the inorganic crystalline materials called 
scintillators. In order to detect the annihilation photons, they must interact with 
matter in which a fraction or all of its energy is passed to an electron. When an photon 
passes through a scintillator, three interactions modes are probable: photoelectric effect, 
Compton scattering and pair production [16]. 
The process of pair production involves the transformation of a photon into an electron-
positron pair. This effect only occurs for photons with energy higher than 1022keV and 
is thus not relevant in the detection of 511kev annihilation photons.  
In photoelectric absorption the photon is fully absorbed by an atomic electron and all of 
its energy (minus the binding energy of the electron) is transferred to the electron that 
is ejected from the atom. When an annihilation photon undergoes a Compton 
interaction, the photon transfers only a part of its energy to the electron. Both the 
photon and electron then travel away from the scattering point with directions 
determined by the amount of energy transferred in the collision. 
 
 
 
 
 
 
 
 
 
 
 
 

The relative probability of these three interaction mechanisms depends on the energy of 
the photon, but also on the atomic number effZ  and the density r  of the interaction 
medium (see Figure 2.4). The atomic cross-section for photoelectric effect is 

proportional to n m
eff.Z /Egr  where n and m are both function of the energy: n is about 4 

at 100keV and gradually rises to 4.6 at 3MeV, whereas m decreases slowly from 3 at 
100keV to 1 at 5MeV [11]. The ratio of the photoelectric cross-section over the total 
cross-section is defined as the photo fraction. This parameter is often used to 
characterize a scintillator. The cross-section for Compton scattering is proportional to 

eff.Z /Ar  where A is the mass number. effZ /A  is almost constant, at 0.45 0.05, for all 
elements except hydrogen. A high density r  favors the interaction of photon in the 
crystal, whilst a higher effZ  value increases the number of photoelectric occurrences 
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Figure 2.4: Predominating interaction versus photon energy for
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with respect to Compton scattering. Therefore, high effZ  crystals are to be preferred. 
The effective atomic number effZ  is defined as [12]: 
 

 x x x i ix
neff 1 1 2 2 n n

i i
i=1

m .Z
Z = Z + Z + + Z   with =

m .Z
iw w w w

å
  (2.5) 

 

where iw  is a weighting factor proportional to the fractional number of electrons per 
gram for element i, im  represents the number of atoms of element i present in the 
absorber. The power x is dependent on the energy of the photon. For photons in the 
100-600kev range, x is typically between 3 and 3.5. 

2.2.3 The scintillation process 

The electron energy states of an isolated atom or molecule consists of a series of discrete 
energy levels defined by Schrödinger’s equation. In an inorganic crystal lattice the outer 
electron energy levels are perturbed by mutual interactions between the atoms. The 
result is a broadening of the allowed energy levels into energy bands. In the lower band, 
called the valence band, the electrons are bound at lattice sites. In the upper band, 
called the conduction band, the electrons are free to migrate throughout the crystal. 
The energy band that separates the valence band and conduction band is called the 
forbidden band or band gap (Figure 2.5). 
When a scintillator is irradiated a large number of electron-hole (e-h) pairs are formed. 
The electrons will be excited to the conduction band and can therefore migrate freely 
throughout the crystal. The electrons will eventually recombine with a hole in the 
valence band and de-excite back to the valence band, causing either a luminescent 
decay or a non-radioactive decay (quenching).  
Inorganic scintillators are of two types. Activated scintillators such as NaI(Tl) or 
LSO(Ce) become radioluminescent through the introduction of a small amount of 
impurity dopant into the pure single host crystal. These impurities locally create 
activator levels. The second type is self-activated scintillators such as BGO, where the 
activator atoms are a major constituent of the crystal. The role of these activators is to 
produce quantum energy levels (ground and excited states) within the forbidden gap 
(see Figure 2.5). 
When the electron-hole pairs are formed, the holes will migrate to the activator ground 
sites and ionize them, the electrons will be attracted to these charged activator sites 
and neutralize them. The activator site will have its own excited energy states within 
the forbidden gap. If the formed activator site is an excited configuration with an 
allowed transition to the ground state, it will rapidly de-excite with a high probability 
of emission of a light quantum or scintillation photon.  
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2.2.4 Requirements for scintillators in PET scanners 

An ideal scintillator would have a combination of several physical and scintillation 
properties as summarized in Table 2.3. As mentioned before, scintillator materials 
should have both a high effective atomic number effZ  and high density r . 
Parameters like decay time t  and light yield (LY) are also important physical 
properties of the absorber. When scintillators are struck by ionizing particle, they emit 
a small flash of light. The scintillation pulse can be described as: 

 d r

t t
- -

0

d r

N
N(t)= e  - e

-
t t

t t

æ ö÷ç ÷ç ÷ç ÷÷çè ø
 (2.6) 

with 0N  the total number of emitted scintillation photons, r d and t t  respectively the 
rise time and the decay time of the scintillation process. Often the rise time rt  is very 
short and can be neglected, such that N(t) can be approximated by a single exponential 
decay function. In many scintillators however, the decay cannot be described by a 
single exponential, but exhibit a more complex decay process which requires a more 
accurate description using a two component exponential: 

 d df s

t t
- -

N(t)= e + eA Bt t  (2.7) 

where 
f sd d and t t denote respectively the fast and the slow decay constants since for 

many scintillators, one component is usually much faster than the other (i.e. BaF2, 

f sd d=0.6ns and =620nst t ). A short decay time is highly recommended for PET 

applications. The rapid collection of the scintillation photons reduces the dead time of 
the scanner and increases the maximum data rate. 
The light yield (LY) of a crystal refers to its efficiency for converting ionization energy 
into light photons. Usually, it is expressed as the number of photons Nph produced per 
unit energy. A greater LY implies a better energy resolution as well as a more accurate 
spatial resolution. In both cases, a major source of noise in the measurement (leading to 
errors in positioning or energy) is the statistical fluctuation in the number of 

Figure 2.5: Radioluminescent decay with activator levels through introduction of small amount 
of impurities e.g. 2 5Lu SiO :Ce .    denotes the ionization of the activator ground state.  and 
indicate respectively the excitation and de-excitation of an electron. 
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scintillation photons detected. These fluctuations are governed by Poisson counting 
statistics and reduce as 1/Nph. The LY and the decay time also affect the time 
resolution. A fast, bright scintillator will produce a signal with less timing variation 
than a slow, dim scintillator. This improves the time resolution of the scanner and 
allows a minimization of the coincidence time window windowD  which results in a 
reduction of the random coincidences [12]. To understand this fact, consider a typical 
light pulse emitted by a scintillator, see Figure 2.6. The arrival time of a signal is taken 
to be the time at which it passes a preset threshold. Because of noise and statistical 
fluctuations, two identical signals will not always be triggered at the same point. This 
time variation is referred as time jitter. Beside the statistical fluctuations, the time 
jitter is also inversely proportional with the slope of the signal leading edge.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The light yield, depends on the overall efficiency of the scintillation process h . This 
process can be characterized as the product of three factors [17]: 
 = .S.Qh b  (2.8) 
where b  is the number of e-h pairs produced in the conduction and valence bands 
respectively due to the absorption of radiation in the crystal, S is the transport 
efficiency of the e-h pairs to the luminescent centre (activator ion), and Q is the 
quantum efficiency for the luminescent centre (probability of a radiative transition to 
the ground state). Q is not unity because other competitive non-radiative processes can 
convert the energy to elastic vibrations, e.g. phonons, quantized modes of vibration 
occurring in a crystal lattice. The de-excitation of captured electron and holes, which 
result in radiationless transitions, is called quenching. This mechanism is determined by 
many factors such as other impurity atom dopants, structural defects during crystal 
growth, etc.  
To collect as many light quanta as possible, each crystal is covered by reflective 
material at all surfaces except at the entrance window of the photo detector. 
Unfortunately, not all of the emitted fluorescence photons reach the sensitive area of 
the photo detector. 
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Table 2.3 Properties of ideal scintillation crystal for PET [17] 

Crystal property Purpose 

High density r  High photon detection efficiency 
High effective atomic number effZ  High photo fraction 

Short decay time t  
Good coincidence timing, less random events, 
low dead time 

High light yield (LY) Good signal-to-noise ratio 
Emission wavelength near 400 nm Match spectral response of photo detector 
Compatible refraction index Good transmission at crystal-detector surface 
Transparent at emission wavelength Light can travel unimpeded to photo detector 
Radiation hard Stable crystal performance 
Non hygroscopic Simplifies packaging 
Rugged Allows fabrication of smaller crystal elements 

Economic growth process Reasonable cost 
 

There are absorptive losses in the crystal due to self-absorption in the scintillator. 
Secondly, there are losses at the non-perfect reflective surfaces of the detector, with 
further losses of light quanta at the coupling between the crystal and the photo 
detector. Refraction causes light quanta to be lost or reflected back into the crystal for 
angles of incidence greater than the critical angle cq  given by Snell’s law 

1
c 1 0sin (n /n )q -=  with 0 1n  and n  the refractive index of respectively medium0 and 

medium1. Since the index of refraction of typical glass window is 1.5, scintillators which 
approximate this refraction index give a better coupling. Such matching is more closely 
achieved with some detector materials, e.g., LSO (n=1.82), than others, e.g., BGO 
(n=2.15). 

2.2.5 Properties of commercial available scintillators 

In the early stage of PET, NaI(Tl) was used for its very high light yield. But negative 
properties such as low density, low photo fraction and long absorption length make the 
crystal not optimal for photon detection. Beside, NaI(Tl) is hygroscopic, which requires 
that the crystals be hermetically sealed, usually in a thin aluminum container, to 
prevent the entrance of moisture. Moisture causes the crystal to develop yellow spots, 
which causes uneven light transmission. 
Accordingly to these suboptimal properties, NaI(Tl) was gradually replaced by BGO 
that showed excellent stopping power thanks to its high density r  and high effective 
atomic value effZ  of 75. For example, the photoelectric cross-section at 511keV for BGO 
is 5.8 times higher than for NaI(Tl) [11]. The disadvantages of BGO, relative to other 
detector materials, include its low light yield,  20% relative to NaI(Tl), as a result of 
which it exhibits an inferior energy resolution at 511keV of only 18% compared to 8% 
for NaI(Tl). Also the long decay time ( =300nst ) contribute to a further reduction in 
the energy resolution of BGO detectors. For scintillators with slow fluorescent emission 
characteristics, there is always a trade-off between energy resolution and dead time. 
Reducing the pulse integration time improves the dead time (and consequently the 
count rate performance), but results in a decrease in the amplitude of the signal, 
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thereby reducing the energy resolution. Nevertheless, these properties combined with 
the widespread availability of BGO have rendered it the most widely used scintillator 
for commercial PET scanners.  
With a density r  of 7.4 g/cm3, a photo fraction of 33%, a fast decay time of 42.3 ns 
and a fluorescence peak around 420nm, LSO is one of the most suitable scintillator 
materials for PET. Also the large brightness of 27000ph/MeV and the short absorption 
length of 1.13cm are strongly appreciated. A disadvantage of LSO is the presence of a 
naturally long-lived isotope of lutetium 176Lu. It has been estimated that 2.59% of the 
lutetium in LSO is 176Lu, which has a half-life of approximately 3.1010 years. This 
isotope emits b -particles with an endpoint energy of 565keV and g -rays of 202keV 
(84% of disintegrations) and 307keV (93% of disintegrations). The expected background 
count rate due to 176Lu is about 300 counts s  per cm3 [18]. Since in PET coincidence 
counting is used, this background does not have a large effect on the spectrum. 
However, when the counting rate is low, background subtraction could become 
important. Although not hydroscopic, LSO fluoresces when exposed to ambient light, 
and therefore must be encased in a light-tight package. Nevertheless due to the best 
combination of properties for PET of any scintillator known today, LSO becomes the 
leading contender in this domain. 
 

Table 2.4: Main characteristics of commonly used scintillators in PET [3, 10, 11] 

 NaI(Tl) BGO LSO LuAP 

Chemical formula NaI:Tl Bi4Ge3012 Lu2SiO5:Ce LuAlO3:Ce 
Density r  [g/cm3] 3.67 7.13 7.4 8.34 

Effective atomic number effZ  50 75 66 65 

511keV Photo fraction [%] 18 41 33 32 
Decay time t  [ns]  230 300 42 17 
Light yield (LY)[ph/MeV] 38000 8200 27000 11400 
Refractive index 1.85 2.15 1.82 1.97 
Peak emission [nm] 415 480 420 365 
Mean free path [cm] 2.91 1.04 1.14 1.05 
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2.3 Photo detectors for the conversion of scintillation 
photons in an electrical signal 

The last step in the detection process prior to image reconstruction is the conversion of 
the light signal received from the scintillation crystal to a measurable electrical pulse by 
a photo detector. The working horse for the detection of photons is the photomultiplier 
tube (PMT) which has been a commercial product since 1936. It is an elaborated device 
but still, after 70 years, impressive improvements have recently been achieved [19]. 
PMTs however have a severe draw back. They are sensitive to magnetic fields which 
make them unworkable in combination with MRI. Also their large size along with the 
large dead space between individual PMT initiated the search for alternative devices. 
Photon sensitive semiconductor devices like avalanche photodiodes (APD) and recently 
Geiger-mode avalanche photodiodes (GM-APD) have been developed and have already 
replaced PMTs in many fields of research and will gain more ground in the near future. 
Geiger-mode avalanche photodiodes have an especially high potential because they have 
high gain and need no or only a simple amplifier and they can be produced with a 
standard and cost effective CMOS technique. 

2.3.1 Photo multiplier tube 

Already 73 years ago (1936) the photomultiplier tube (PMTs) was invented. This was 
only 8 years after Einstein proposed the concept of the work function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
      
    (figure from [20]) 

 
 
 
On commercial PET scanners, the light collected from the scintillator is converted into 
a measurable electrical voltage pulse by photomultiplier tubes (PMTs). PMTs convert 
the scintillation light into a very weak picoampere electrical signal at the photocathode. 
The charge produced on the photocathode as the result of interaction with incident 
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light is not sufficient to operate electronic circuitry. For this reason the PMT is 
equipped with a charge multiplication system through an efficient low noise avalanche 
cascade process. They consist of a vacuum tube with a series of dynodes (electrodes) 
maintained under the control of a voltage divider (tube operating voltage between 
1000V and 3000V). Photo electrons emitted from the photocathode are accelerated 
using an electric field produced by focusing electrodes to collide with the first dynode 
and produce emission of secondary electrons. From this dynode, the secondary electrons 
are accelerated in the direction of a second dynode from where an even greater number 
of electrons are ejected (Figure 2.7). This process repeats until high gain, up to 107, is 
achieved. The electric charge, collected from the anode is proportional to the light 
received by the PMT. This is useful in discriminating out lower-energy scattered 
coincidences in which one or both annihilation photons has undergone Compton 
scattering. The high gain, stability, and low noise of the PMT have rendered it the 
standard scintillation light amplifier. 

2.3.2 Avalanche photodiode 

Silicon PIN photodiode 
An alternative to PMTs are the photon detectors based on the silicon photodiode. 
Semiconductor photodiodes are based on the p-n junction, which have a rather simple 
structure and is produced by standard semiconductor processes: boron diffusion on one 
side and phosphor diffusion on the other side of a high purity silicon wafer and at the 
ends contacts are made by aluminum deposition (Figure 2.8 right). By changing the 
thickness of the outer p-layer, substrate n-layer and bottom n+-layer as well as the 
doping concentration, the characteristics of the photodiode can be controlled. 
The formation of a pn-junction creates a special zone at the interface between the two 
materials, called the depletion zone. Due to the difference in concentration of electrons 
and holes between the two sides of the junction, holes from the p-region diffuse towards 
the n-region and similarly a diffusion of the electrons towards the p-region occurs until 
equilibrium is attained. This creates an electric field gradient across the junction which 
eventually halts the diffusion process leaving a region of immobile space charge. 
Photodiodes are usually reverse biased with relatively large biasing voltages, because 
this lowers the diode capacitance C. The capacitance is proportional to the active area 
A and inversely proportional to the depletion zone width d. Since the depletion zone 
width is proportional to the product of the resistivity r  of the substrate material and 
the reverse voltage VR, the following relation can be made [21]: 

 ( )( )
1 1
to-

2 3
RC A V +0.5 r

-
µ  (2.9) 

However, there is a trade off between low capacitance and increased dark current (see 
below). 
 
When light strikes the photodiode, electrons within the crystal structure become 
stimulated [21]. If the light energy is greater than the band gap energy Eg, electrons are 
pulled up into the conduction band, leaving holes in their place in the valence band 
(Figure 2.8 left). The holes have the properties of a net positive charge. Under the 
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applied electric field in the depletion zone, the electrons drift towards the cathode and 
the holes drift towards the anode, constituting an electric photocurrent that can be 
measured. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Avalanche photodiode 
In common photodiodes, the electric field is not large enough to cause avalanche 
breakdown. Further development and improvement of semiconductor photo detectors 
has resulted in the avalanche photodiodes (APD). These devices produce an internal 
amplification of the induced charge. An APD is also a p-n junction diode, but compared 
with p-i-n diodes, APDs are operated under much higher reverse bias. 
 
 
 
 
 
 
 
 
 
 
 
 
The physics of operation is based on the impact ionization of Si atoms by the 
photoelectrons generated in the depletion region. These devices must be operated at a 
bias sufficient to accelerate the photoelectron to energies capable of ionizing a Si atom 
[11]. When electron-hole pairs are generated inside the depletion layer of an APD with 
a reverse voltage applied to the pn-junction, the electrons drift towards the n+ side 
while the holes drift towards the p+ side due to the electric field developed across the 
junction, see Figure 2.9. The drift speed of these electron hole pairs depends on the 
electric field strength. When the electric field is increased to a certain level, the carriers 
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Figure 2.9: Schematic diagram of an avalanche process showing how the 
generated carriers are multiplied inside the APD. (Based on Hamamatsu figure) 

Figure 2.8: (left) Energy levels of a photodiode to illustrate the working principle of a 
photodiode. (right) Cross-sectional representation of a reverse biased photodiode with 
drifting electron and hole which are formed by an incident photon. (Based on Hamamatsu figures) 
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are more likely to collide with the crystal lattice so that their drift speed becomes 
saturated at an average speed. This phenomenon begins to occur when the electric field 
is typically in the vicinity of 104 V/cm, and the saturated drift speed at this point about 
107 cm/s [22]. If the reverse voltage is increased even further, some of the carriers which 
escaped collision with the crystal lattice will have a great deal of energy. When these 
carriers undergo subsequent collisions with the crystal lattice, ionization in which 
electron-hole pairs are newly generated takes place. The electron-hole pairs then create 
additional pairs in a process just like a chain reaction. This phenomenon is referred to 
as avalanche multiplication of the photocurrent. It begins to take place when the 
electric field strength reaches typically 2x105 V/cm. In general, the electric field is high 
enough for an avalanche only in a small part of the depletion region (avalanche region 
on Figure 2.9). Since the internal gain generally produces less noise than an equivalent 
external amplifier, APDs are useful for very low light conditions in which minimization 
of the noise is critical 
APDs for PET applications have many advantages compared to conventional 
photomultiplier tubes because of their compactness, low-power consumption, 
ruggedness, insensitivity to magnetic field and high quantum efficiency (see below) for 
blue-UV light. APDs can also be produced as an array, greatly facilitating compact 
read-out systems. The limitations of APDs are that they have to operate at moderate 
multiplication between 50 and 200. A gain of 104 is possible but at values higher than a 
few hundreds, the environment (e.g. temperature and voltage supply) needs to be very 
stable [23]. Consequently, low noise amplifiers are needed.  
 
Geiger-mode avalanche photodiode 
When an APD is operated at a bias voltage higher than the breakdown voltage any 
photon or thermally liberated electron will start an avalanche which persists until the 
voltage is lowered actively or when the voltage drops on a properly chosen serial 
resistivity. The output signal is proportional to the overvoltage and the capacitance of 
the APD [23]. Clearly there is a long dead time of microseconds after each breakdown. 
This problem was overcome by subdividing the large area into many APD-cells and 
connect them all in parallel via an individual quenching resistor. The resulting device is 
called a Geiger-mode avalanche photodiode (GM-APD). The first devices of this type 
were developed in the late 1990s in Russia. GM-APDs have properties similar to PMTs 
and therefore some people call them Silicon Photomultiplier, SiPM. A photon impinging 
on one of the cells can create free carriers that give rise to a Geiger-type discharge. 
Since every cell is connected to the bias voltage via an individual integrated resistor, 
this discharge is quenched when the cell’s voltage drops below the breakdown voltage. 
After a short recovery time, the time needed for recharging, the cell is ready to detect 
the next photon. The cell is a binary device since the signal from a cell always has the 
same shape and amplitude. The discharge currents from all cells are added on a 
common load resistor, therefore the output signal of a G-APD is the sum of the signals 
from all the cells firing at the same time. The high density of cells (100–10000mm-2) 
makes the response of a G-APD linear over a wide range of light intensities. Saturation 
effects do not set in until the flux of photons is comparable to the number of cells per 
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unit area [24]. The gain is in the range of 105-107. There is no or at most a simple 
amplifier required, pickup noise is no more a concern and shielding is not needed [19]. 
Unfortunately, since thermally liberated electrons can trigger an avalanche, the APDs 
operated in Geiger mode have a high dark count rate of 1MHz per mm2. The 
probability for accidental coincidences in PET would be high. This can be significantly 
reduced by operating them at low temperatures. A temperature of –50°C, easily 
achievable with Peltier elements, would be enough to reduce the dark count rate by 3 
orders of magnitude [23]. However GM-APDs are still in a development stage, they 
already are very promising candidates for next generations PET modalities.  

2.3.3 Properties of avalanche photodiodes 

Quantum efficiency 
The quantum efficiency (QE) h  (or photon detection efficiency) of a radiation detector 
is defined as the probability that a photon incident on the detector will generate a 
charge carrier pair that may contribute to a current flow through the detector. If z  
represents the percentage of generated charge carriers that contributes to the current, 
we may write the quantum efficiency as follows [25]: 
 M- ( ).d = (1-R). .(1-e )m lh z  (2.10) 
with R the reflectivity of the entrance face, ( )m l  the absorption coefficient of the 
detector and dM the length of the conversion layer. The absorption coefficient ( )m l  is 
the inverse of the mean free path of the photon and is a strong function of the 
wavelength. In consequence, also the QE h  is a strong function of the wavelength as 
shown in Figure 2.10 for the Hamamatsu S8550 APD. 
At a wavelength of 420nm (LSO wavelength) and for an equal number of incident 
photons the number of created primary electron-hole pairs in an APD is 2 to 3 times 
larger than the created primary photo-electrons in the PMT. This is due to the high 
QE of APDs for the LSO scintillation light which is 60-70% compared to a QE of 20-
30% for a PMT. 
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Figure 2.10: Wavelength dependence of the quantum 
efficiency h  (QE) for the S8550 Hamamatsu APD. The QE 
for LSO scintillation light is typical 60-70% 
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Gain 
APDs exhibit internal gain such that a single photon may produce hundreds of charge 
carrier pairs. As mentioned before, in an APD the field in the junction region is so high 
that the charge carriers can gain enough energy between collisions to produce further 
ionization and so produce an avalanche process which provides charge gain. In silicon 
the avalanche is mostly caused by electrons. In an APD the ionization coefficient for 
electrons will increase roughly in proportion to the electric field strength. Unfortunately 
the ionization rate has also inverse temperature dependence. As temperature increases, 
ionization rate decreases due to thermal agitation. The number of scattering collisions is 
increased and reduces the high-energy tail of the carrier energy distribution and 
accordingly the probability of ionization. 
In silicon, the ionization coefficient ha  for hole-induced ionization is less than the 
coefficient ea  for electrons, but it is nonetheless significant and the ionization ratio 
k= ha / ea  increases toward unity with increasing field strength. The ionization ratio k 
represents the relative effectiveness of holes and electrons to ionize new carriers and is 
an important factor in determining the gain as well as the gain stability. The ideal 
APD would be one in which only one type of carrier is capable of having ionizing 
collisions, for instance electrons. Under the influence of the electric field within the 
depletion zone, the electrons drift toward the n+ layer, gaining sufficient energy for 
ionization (see Figure 2.9). Thus as the multiplication process continues, the number of 
electrons would grow exponentially but remain finite. Using the ionization rates ea , ha  
and the depletion width dM, calculation of the position-dependent multiplication factor 
M is given by [26]: 

 
( )( )
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M M
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exp - (x')- (x') dx'
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a a

a a a

ò

ò ò
 (2.11) 

When ea  and ha  are about the same order of magnitude, both holes and electrons may 
ionize new carrier pairs, the multiplication exhibits positive feedback and the possibility 
of infinite gain. The voltage at which the APD enters in this mode is called the 
breakdown voltage. As electron and holes have opposite paths in the depletion zone, 
new electrons are created along the paths of ionizing holes at location such that these 
electrons will have time along their travel towards their respective electrode to ionize in 
their turn and create new electron–hole pairs from which holes will be accelerated in the 
opposite direction acquiring enough energy to create new electron-hole pairs, and so 
one, and so one. This leads to an incontrollable avalanche of charges causing the 
breakdown of the device. To eliminate all of the positive feedback, APD materials and 
bias voltages are chosen such that k1.  
 
Noise 
EXCESS NOISE FACTOR 

One of the most important parameters of the APDs is their excess noise factor. The 
excess noise is due to the statistical nature of the multiplication process, which causes 
additional fluctuation of the measured signal. When the reverse voltage is constant, the 
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gain becomes constant. However, the ionization of individual carriers is not uniform so 
that multiplication noise known as excess noise is added during the multiplication 
process [22]. The energy resolution obtained with APDs is mainly limited by three 
factors: the statistical contribution associated with the number of primary electron–hole 
pairs, the non-uniform avalanche gain process across the diode detection area and the 
noise of the preamplifier system [27]. The variance 2

sts  associated to the statistical 
factor can be expressed as 

 
2

2 2 M
st N 2
= +N

M

s
s s  (2.12) 

where N is the number of primary electron-hole pairs generated in the APD and 2
Ns  the 

correspondent variance, M is the APD gain and 2
Ms  the variance of the gain. In this 

equation, the first term describes the statistical fluctuation of the primary electrons and 
the second one the fluctuations of the avalanche gain in the APD. Defining the excess 
noise factor as 

 
2
M
2

F=1+
M

s
 (2.13) 

Equation (2.12) can be rewritten as 

 2 2
st N= +N(F-1)s s  (2.14) 

In particular, for light pulse detection, the variance of primary electrons is described by 
Poisson statistics consequently 2

N=Ns . This way, the statistical limitation of the energy 
resolution is given by 

 2
st NFs =  (2.15) 

The rms statistical noise sts  for an APD is thus given by NF , whereas for PMT 

readout it is given by 'N , where 'N  is the number of primary photoelectrons 
generated in the PMT. For the same number of photons incident, N will be 2 to 3 times 
larger than 'N  since the differences in quantum efficiency (see above). Unfortunately, 
this positive effect is cancelled by the excess noise caused by the multiplication process 
in the APD. Therefore the statistical SNR will be comparable reading signals with 
APDs or with PMTs [28]. 
 
DARK CURRENT 

The dark current ID is a current which arises when an inverse voltage is applied on the 
APD even in the absence of incident photons. It can be divided in two branches: a 
surface current IDs and a current IDb generated in the bulk region of APD. The surface 
leakage current IDs flowing between the pn-junction and the Si-layer does not go into 
the avalanche region and can be described by a resistor connected in parallel to the 
APD. The surface current IDs increases linearly with the applied bias. On the other 
hand, the bulk current IDb arises from electron-hole pairs created by thermal excitation 
inside the depletion zone. IDb is fully amplified with the avalanche gain M: 

 D Ds DbI =I +MI  (2.16) 

In an APD, the thermal generation probability P for excitation of an electron-hole pair 
across the band gap e  varies as b- /(k T)P=e e  [29]. Accordingly, IDb and also the dark 
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current ID will increase with increasing temperature T. The random arrival of these 
charges which cause fluctuations in an otherwise steady current is called shot noise. 
 
EQUIVALENT NOISE CHARGE 

As mentioned before, APDs have a moderated gain of 102-103, compared to the PMT 
gain of the order of 106. To overcome this lack, a charge sensitive preamplifier is used. 
For the best results, the preamplifier should be located as close as physical possible to 
the APD. This maximizes the electronic SNR by amplifying the signal before additional 
noise or signal distortion can occur. It is more common to express the electronic noise, 
generated by the APD and the preamplifier, as the equivalent noise charge (ENC). The 
ENC corresponds to the number of primary charge carriers required at the entrance of 
the APD to achieve a SNR of 1 at the output of the preamplifier. The ENC at the 
input of the APD, when it is followed by a charge sensitive preamplifier and a shaping 
stage, is given by [30]: 
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with: 
CD, Ct: detector and preamplifier capacitance 
F: excess noise factor 
gm: transconductance of the preamplifier (gm= out inI / VD D ) 
IDb: bulk dark current 
M: APD multiplication gain 
T: absolute temperature (K) 
t : shaping time  
qe, kB: electron charge, Boltzmann constant 
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æ ö÷ç ÷ç ÷çè øò ò  with h(t) the impulse response 

function depending on the shaping time. Both a1 and a2 are dimensionless coefficients of 
the order of 1 for the commonly used shaping functions. 
 
The first term in Equation (2.17) is proportional with the shot noise due to the dark 
current ID, an APD characteristic. Generally, the dark current is modeled as being 
composed of two part, see Equation (2.16). But since the contribution of the surface 
current IDs is not multiplied, it is much smaller than the bulk dark current and 
negligible in the expression for the noise. The second term of Equation (2.17) represents 
the amplifier noise. It is assumed that this noise is entirely due to the thermal noise in 
the conduction channel of the first FET transistor in the preamplifier, and that all 
other contributions to the amplifier noise are negligible [30]. 
Since both terms in ENC2 are respectively proportional to t  and 1/t , an adequate 
preamplifier with optimal shaping time and capacitance can be chosen to minimize the 
sum. 
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2.4 PET performances 
An extensive series of parameters have been developed over the years to characterize 
PET scanner performance, and detailed data acquisition and analysis protocols have 
been published for this purpose. The discussion below, however, addresses only several 
key parameters: sensitivity, energy- and spatial resolution. 

2.4.1 Sensitivity 

System sensitivity is an important parameter since it determines the image quality per 
unit scan time. Sensitivity refers to the relationship between recorded true coincidences 
and the activity of a positron-emitting source. The two major elements of sensitivity are 
the absorption efficiency of the detector material and its solid angle of coverage of the 
imaged object. The efficiency of the material is based mainly on the density and 
thickness of the scintillation crystal (see paragraph 2.2.4). Notice that the detector 
sensitivity is proportional to the square of the individual detector efficiency for 
coincidence detection in PET. Thus, a difference in efficiency of detection of 2 leads to 
a global sensitivity difference of 4. The second component of sensitivity is the geometric 
factor, i.e. the solid angle available to the radioactive sources, and this is dependent on 
the size, distance and number of detector arrays surrounding the imaging volume. 
In order to provide a physical measure to benchmark advances in PET camera 
performance, the concept of noise equivalent count rate (NECR) was introduced. The 
NECR is defined as: 

 
2 T

NECR=
T+R+S

 (2.18) 

where T is the true coincidence rate, R is the random coincidence rate, and S is the 
scatter coincidence rate (see paragraph 2.2.1). An NECR curve provides a statistic 
which shows the dependence of the increase in trues on increasing activity in the field of 
view, yet is penalized by scatter and randoms, which provide inaccurate positional 
information about the source distribution and therefore degrade image contrast and 
quality. Because the random event rates increase as the square of the activity 
(Equation (2.3)) but the true events increase linearly with the activity, at some point 
there will be more randoms than trues. Thus, eventually the NECR will decrease as 
activity is increased. This is reflected in Figure 2.11 which shows a NECR curve of an 
uniform water phantom for a rectangular scanner geometry [31]. 
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Figure 2.11: NECR curve for a simulated scanner geometry 
based on rectangular detector blocks with an uniform water 
phantom 
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2.4.2 Energy resolution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12 (left) shows an ideal spectrum of a 511keV gamma ray source placed in 
front of a detector. With energy less than 1022keV, pair production interactions do not 
occur. As already explained in 2.2.2, the principle interactions with the detector will be 
photoelectric absorption and Compton scattering. Most of the photoelectric interactions 
result in full absorption of the gamma ray energy E511keV. With an ideal detector, this 
would produce a single narrow line in the energy spectrum, known as the photo peak. 
In Compton scattering, only a part of the gamma ray energy is transferred to the 
detector, via the Compton recoil electron. If the scattered gamma ray also is absorbed 
in the detector, the event produces a pulse in the photo peak, whereas if the scattered 
gamma ray escapes, the energy deposition in the detector is less than E511keV. The 
amount of energy transferred to the recoil electron in Compton scattering is defined by 
[12] 

 511keV
re 511keV sc sc

511keV

E
E = E -E  with E =

E
1+ (1 cos )

0.511
q-

 (2.19) 

where Ere and Esc are respectively the energy transferred to the recoil electron and the 
scattered photon energy. The amount of energy transferred to the recoil electron ranges 
from nearly zero for 0q »  degrees up to some maximum value max

reE  that occurs in 180-
degree backscattering events. This distribution of pulse amplitudes ranging from nearly 
zero up to the maximum energy max

reE  forms the Compton region in the ideal energy 
spectrum. The sharp edge in the spectrum at max

reE is called the Compton edge. Another 
possibility is that a Compton scattered gamma ray may experience additional Compton 
scatter interactions in the detector. Multiple Compton scattering events produce the 
distribution of pulses with amplitudes in the valley between the Compton edge and the 
photo peak [12].  
In practice, the actual spectrum Figure 2.12 (right) measured with a LSO block coupled 
to an APD is quite different from the ideal one shown in Figure 2.12 (left). For 
instance, the spectrum is spread out. The photo peak is not a sharp line but a 
somewhat broadened peak and the Compton edge is rounded. This is caused by the 
imperfect energy resolution of the detector. The Compton region is cut due to the use 
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Figure 2.12: (left) Theoretical energy spectrum. (Right) Typical energy spectrum obtained by 
a LSO block coupled to an APD 
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of a hardware threshold. The relative variance 2
Es  in the pulse height distribution of 

the photo peak measured with the scintillator coupled to the APD can be expressed as 
[32]: 

 2 2 2 2
E intr st noise=s s s s+ +  (2.20) 

with 2
intrs  the intrinsic energy resolution of the scintillator, 2

sts  the statistical 
contribution, and 2

noises  the electronic noise. The intrinsic resolution of a crystal is 
mainly associated with the non-proportional response of the scintillator and various 
effects, such as inhomogeneities in the scintillator causing local variations of the light 
output and nonuniform reflectivity of the crystal covering [25]. The statistical 
fluctuation on the emitted scintillation photons contributes to 2

sts . It also depends on 
the statistical fluctuation of the APD gain, affected by the excess noise factor F (see 
Equation (2.15)). The electronic noise is not negligible in case an APD is used for the 
readout. It depends mainly on the dark current of the APD and the noise of the 
preamplifier (see Paragraph 2.3.3). 
The energy resolution is determined as the FWHM of the photo peak divided by the 
peak centroid, and is given by 

 EE
=2.35

E E

sD
 (2.21) 

2.4.3 Spatial resolution 

As mentioned before (paragraph 2.1.1), positron range and non-colinearity set an 
ultimate resolution limit that can be achieved in PET due to the physics of the positron 
decay. In addition to this limit, the design and properties of the detector used in the 
PET scanner, and the system geometry, will also contribute to the final image 
resolution.  
 

Intrinsic resolution 
The intrinsic spatial resolution depicts the resolution of a detector pair in the system. It 
is usually given in terms of the coincidence response function (CRF) for a source 
located at the midpoint between the two detectors. The CRF is the count rate profile 
obtained by passing a point source or a narrow line source transversally between the 
two detector modules, while recording the LORs during a fixed time tD  for each 
position (Figure 2.13). The intrinsic spatial resolution is then referred to in terms of 
FWHM and FWTM of the CRF (source midway both detectors). 
For discrete, pixilated detectors, the CRF is determined by the detector width w, 
degrading from w/2 midway between opposed coincidence detectors to w at the face of 
either detector. At midplane, the CRF is a triangle and becomes trapezoidal in shape, 
eventually becoming a rectangle of width w as the source is moved closer to one of the 
detectors (Figure 2.13). 
For continuous detectors with an empirically determined detector resolution wdet, the 
CRF degrades from wdet/ 2  midway between the opposed detectors to wdet at the face 
of either detector.  
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FWHM» wdet/ 2  

Figure 2.13: Coincidence response function (CRF) as a point source moved between two 
detectors. For pixilated detectors (left) the response function is determined by the width of the 
detector element, w. The intrinsic spatial resolution for a pixilated detector is w/2 FWHM 
(right) For continuous detectors  CRF is determined by the intrinsic detector resolution wdet. 

The intrinsic spatial resolution is wdet/ 2  FWHM. 
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System image resolution 
Since the annihilation photons have a relative long mean free path in scintillators, a 
non-negligible percentage of them do not interact at all with the scintillation crystal. In 
order to partially overcome this problem, the crystal thickness should be increased. 
However, the thick scintillation detectors (typically 2–3 cm) used for PET imaging lead 
to another geometric effect that degrades the spatial resolution. This effect, which is 
referred to as detector parallax or the depth of interaction effect, is caused by the fact 
that the annihilation photons can interact at any depth in the scintillator material 
(Figure 2.14). Although the effect can also occur in the axial direction in the scanner, 
the primary effect is an increased uncertainty on the LORs along the radial direction 
plane [12]. The loss in resolution is dependent on the crystal density, the crystal length 
and the diameter of the scanner. For a fixed diameter and a given scintillation material, 
resolution can be improved by shortening the crystal. However, this results in a loss of 
sensitive material. There is thus a trade-off between sensitivity and spatial resolution. 
Different methods have been presented to minimize the parallax effect. Depth-of-
interaction information can be obtained by the ‘‘phoswich’’ technique. Instead of a 
single 20mm long crystal, two 10mm crystals are used with two different time 
constants. The analysis of the signal shape should allow distinguishing in which of the 
two longitudinal segments the interaction occurred. An alternative technique is to 
collect the crystal light in the front and back faces and to use the relative amplitude of 
the two signals to estimate the longitudinal coordinate of the interaction point. 
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« 
Dx 

Figure 2.14: Illustration of the parallax effect. Because the depth at which 
the gamma rays interact within the scintillation crystal is unknown, the 
annihilation event for a pair of photons recorded in coincidence could have 
occurred anywhere within xD . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The final system resolution for a particular system design is a convolution of all the 
resolution response functions, including the positron range, photon non-colinearity, 
geometric factors, intrinsic spatial resolution, and physical factors. A reasonable 
accurate estimate of the reconstructed image resolution (FWHM) G  near the center of 
a PET camera can be made by using the formula [26]: 

 ( )2 2 2 2
intr eff=a. FWHM +(0.0022D) +P +bG  (2.22) 

with FWHMintr the intrinsic spatial resolution at the centre, D the detector ring 
diameter and Peff the effective positron range. Factor b is due to the crystal decoding 
process. In case of a one-to-one coupling, b will be zero. For block detectors, b has to be 
determined experimentally. The factor 1.1 a 1.3< <  relies on the reconstruction 
algorithm used. For example, using FBP with a ramp filter (see below), factor a is 
typically 1.25 [33].  
Actually, the full description of the spatial resolution involves two components: a 
transaxial component in the planes perpendicular to the scanner axis and an axial 
component parallel to the axis (slice thickness). In addition, for off-center positions, 
transaxial resolution is usually given in terms of a radial (along the radius) and a 
tangential (perpendicularly to the radius) component (Figure 2.14). Transaxial spatial 
resolution can be determined by imaging a point source. To give a measure of resolution 
uniformity, this can be done for different locations within the FOV. The axial 
resolution of a PET system is defined by the intrinsic resolution of the detectors and is 
determined by passing a point or line source axially through the image plane. 
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2.5 Image reconstruction 
Each pair of detectors in a scanner defines a possible emission path, represented by a 
line-of-response (LOR). Over the course of a PET scan, the system is counting how 
many times each pair of detectors is hit in coincidence. One way to represent the raw 
data is to group the LORs in a histogram depending of their position xr and angle f  
(see Figure 2.15). This type of histogram is called a sinogram. In consequence, each bin 
in the sinogram represents a LOR and the amount of each bin is the number of 
coincidences measured throughout this LOR. 
 
 
 
 
 
 
 
 
 
 
 
 
Since the number of coincidences detected for a LOR is proportional to the 
concentration of the tracer along the entire LOR, this number is also proportional to 
the sum or integral of the tracer concentration along the LOR. It is conventional to say 
that the sinogram contains projections rp (x )f  of the tracer concentration.  

The inverse problem of determining the unknown tracer distribution f(x,y) inside the 

scanner’s FOV from the measured projections rp (x )f  is called image reconstruction. To 

do so, there are two widely used methods. Analytic reconstruction methods and 
iterative reconstruction methods minimizing the error between the measured and 
estimated data.  
Analytic reconstruction methods are based on the central-section theorem and can be 
stated as follows, if an object described by f(x,y) has a two-dimensional Fourier 

transform x y 2DF( , ) = {f(x,y)}n n Á , and a projection, rp (x )f , then the one-dimensional 

Fourier transform of the projection 
rx 1D rP ( ) = {p (x )}f fn Á  is identical to a section of 

the two-dimensional Fourier transform through the origin at an angle f , such that 

r r r
yr

x x yP ( ) = F( , )f n
n n n . An illustration of the central-section theorem is given in Figure 

2.16. In consequence, if the projections in all direction ( 0< <f p ) are measured, the 
unknown tracer distribution can be calculated. 
A frequently used inverse method is the filtered-back projection (FBP) and is defined 
as: 
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Figure 2.15: A line-of-response defines a point is the sinogram  
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Equation (2.23) allows to determine the tracer distribution f(x,y) from the measured 

projections rp (x )f  in the following manner: 

1. Filtering 
The measured projection data rp (x )f  is Fourier transformed to 

rxP ( )f n  and in 

Fourier space multiplied by a filter defined by ( )x xr r
H = .n n  The result is inverse 

transformed to give the filtered projection  
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2. Back projection 

Back projection of the filtered projection *
rp (x )f  provides an estimate f̂(x,y) for the 

tracer distribution f(x,y) 

 *
r

0

ˆf(x,y) f(x,y)=  p (x )d
p

ff» ò  (2.25) 

The term ( )x xr r
H =n n  in the filtering step is known as the ramp filter and can be seen 

as compensating for the increased density of sampling points of the Fourier transform 

as xr
0.n   Due to the presence of a high-frequency statistical noise, it is usually 

desirable to roll-off the high frequency values of ( )xr
H n  with a windowing function 

( )xr
W n  such that ( )x x xr r r

H =W( ) .n n n  ( )xr
W n  is a function which avoids that the 

noise takes the upper hand by slowly suppressing higher frequencies and cut-off at 

certain frequency cn . A typical example of ( )xr
W n  is the Hamming window defined as: 
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Figure 2.16: Illustration of the two-dimensional central-section theorem. The Fourier 
transformation of a 1D projection is equivalent with the 1D section of the two-dimensional Fourier 
transform through the origin at an angle f  
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where cn  is a cut-off frequency usually chosen such that for 
rx cn n³ , the signal power 

r

2

xP ( )f n  is less than the statistical noise power, and a  controls the smoothness of the 

roll-off, a typical value of 0.5a = . Making ( )xr
W n  roll off to zero more quickly causes 

the reconstructed images to be less noisy and also smoother. The reduction in noise 
generally improves image quality, but the smoothing effect results in a loss of 

resolution. The shape of ( )xr
W n  can be modified to adjust the trade-off between noise 

and resolution, and for the Hamming window, this is done by adjusting a  and cn . 
 

The transform method discussed in the section above is based on inversion formulas 
that are converted to a discrete form. The inversion formulas are derived assuming 
noiseless and continuously sampled projections, which is not the case in practice. An 
alternative approach is to start with a model that takes into account the noise and the 
discrete nature of the projection data and reconstructed image. This is the approach 
taken by iterative algorithms, so named since they converge to an estimate of fj, which 

is a sampled version of f(x,y), by a series of successively more accurate estimates (k)
ĵf , 

where k is the number of the iteration. The advantages of this technique versus analytic 
reconstruction are a more accurate acquisition model, including the ability to 
incorporate a priori information or constraints on the estimated images. In theory all 
effects can be corrected for. But iterative methods are much slower than the analytical 
methods due to the slow convergence of the algorithm and high computational 
demands. 
Most of the algorithms start with the data collection process modeled as a set of 
equations of the form [34] 

 
N

i ij j
j=1

p = L .f   (i=1,...,M)å  (2.27) 

where N is the number of image pixels, M is the number of LOR measured, pi are the 
measured coincidences in the i-th projection bin, fj is the activity in the j-th pixel of the 
image matrix describing the activity distribution and Lij is an MxN projection matrix 
describing the probability of an emission according to projection i to be detected in 
pixel j. The goal then, is to recover an estimate of fj from the measured projection data 
pi. This means solving the set of linear M equations for the N unknown fj’s. Typical 
values are on the order of M ~ 50000 and N ~ 15000, so that direct methods of 
inverting Equation (2.27) are not practical, or even possible in some cases. Iterative 
algorithms use successive approximations to ever more accurately estimate the fj terms 
of Equation (2.27). The general procedure for iterative algorithms is as follows: 

1. Start with an initial estimate, (k=0)
ĵf , usually uniform for all j 

2. Calculate 
N(k) (k)

i ij jj=1
ˆp̂ = L .få  

3. The calculated (k)
ip̂  is compared to pi 
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4. If (k)
ip̂ is close enough to pi then * (k)

j j
ˆ ˆf =f  and the process is stopped 

5. The result of this comparison is used to compute correction factors that are 

then used to generate (k+1)
ĵf  from (k)

ĵf  

6. Step 2 is repeated with k k+1  
 

The intent is that the series of estimates ( (0)
ĵf , (1)

ĵf , (2)
ĵf , …, (k)

ĵf ) converges to a final 

estimate, *
ĵf , such that 

N* *
i ij jj=1

ˆp̂ = L .få  is the closest possible to pi.  

Different iterative algorithms differ in the way they define the object parameterization 
(pixels, voxels, …), system model (scanner geometry, detector response, attenuation 
and scatter correction, …), statistical model (algebraic reconstruction technique (ART), 
maximum likelihood expectation maximization (ML-EM), least square (LS)), cost 
function (distance between (k)

ip̂  and pi and how they calculate the correction factors 
used to update the image estimates), etc. 
The most widely used iterative reconstruction approaches are based on maximum 
likelihood (ML) methods [34]. Likelihood, is a general statistical measure that is 
maximized when the difference between the measured and estimated projections is 
minimized. The expectation-maximization (EM) algorithm is an iterative algorithm 
that maximizes likelihood under a Poisson data model. It implicitly treats the 
projection data as having a Poisson distribution determined by the counting statistics 
in each projection bin and thus takes into account the statistical noise in the data.  
The ML-EM algorithm for PET can be written as [34]: 

 
(k)
j ij i(k+1)

j (k)
iij ij j

i j

f̂ L p
f̂ =

ˆL L f
åå å

 (2.28) 

This equation shows how the image pixel intensity k+1
ĵf  at iteration k+1 is calculated 

based on the estimated image pixel intensity k
ĵf  at iteration k and the measured 

projection counts pi. With increasing iterations, ML-EM algorithms have been found to 
improve image quality and generally exhibit less noise than FBP, as well as improve 
lesion detection [35]. Notice that when the estimated projection data exactly equal the 

measured projection data pi that (substituting from Equation (2.27)) k+1 k
j j

ˆ ˆf f=  and the 
image does not change any more. However, this never occurs in practice because of 
noise in the data and inevitable errors and approximations in Lij. In addition, a further 
difficulty of iterative methods is to decide when an acceptable solution has been 
reached. As expected, with increasing iterations, the likelihood increases. However the 
image began to degenerate, becoming increasingly noisy [36]. It is therefore important 
to terminate the reconstruction before this degeneration begins, even though the 
likelihood function may not be a maximum. The origin of this effect lies in the fact that 
the measurements are Poisson random variables with noise, and that insistence on an 
exact fit to the data will result in an image dominated by this noise. 
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Chapter 3  

3 Study of spatial resolution in block detectors  
The image quality in high-resolution PET is mainly determined by two parameters: 
signal to noise ratio (SNR) and spatial resolution. In most of the existing scanners the 
511keV annihilation photons emitted by the administered tracers are detected by 
matrices of small individual scintillation crystals. The accuracy to localize the 
impinging photons depends obviously on the size of the individual crystals. Hence there 
is a tendency to make these crystals smaller and smaller to maximize the spatial 
resolution. However this also has some detrimental effects: 

 Increase fraction of dead space in the detector module (lower packing fraction) 
due to the presence of the material to optically separate the crystals. This 
reduces the sensitivity. 

 Degraded time resolution and energy resolution due to the worse collection of 
the scintillation light. 

 To maintain the better resolution outside the central part of the field of view, 
extra measures have to be taken to determine the depth of interaction (DOI) in 
order to minimize the parallax error of the 511 keV photons in the crystal 
matrix. 

The result is a worse signal to noise ratio (SNR) in the image given the same dose of 
radio tracer and scan time. To maintain the same image quality while improving the 
spatial resolution it is hence essential to improve the sensitivity. Indeed, the squared 
signal-to-noise ratio SNR2 is inversely proportional to the fourth power of the image 
pixel size [37]. Hence, when the image resolution is improved by a factor of 2, one needs 
16 times more coincidence events to achieve the same variance in the reconstructed 
image. 
The VUB research group has developed a new detector concept which allows to 
simultaneously enhance the spatial resolution and sensitivity of PET detectors 
compared to the current systems. To achieve this goal, we make use of undivided -or 
monolithic- LSO scintillator blocks. Most important is the larger amount of sensitive 
detector material for a similar volume due to the absence of inter-pixel material for 
optical separation. This results in an increased sensitivity. In addition the blocks can be 
made trapezoidal to create a gapless ring and further enhance the detection efficiency 
significantly. Another advantage is the enhanced energy resolution. The light piping 
effect seen in matrices of small individual scintillating crystals, results in a lower light 
output due to multiple reflections on the side surfaces. In a monolithic LSO block 
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energy resolutions of 11.5% have been achieved compared to 20–25% in the classical 
pixilated scanner designs [37, 38].  
The position information of the impinging 511 keV photon within the scintillator block 
is embedded in the shape of the scintillation light distribution. This principle of light 
spreading allows that the scintillator block can be larger than the sensitive area of the 
photo detector, avoiding the dead space due to the packaging of the photo detector. 
This again enhances the sensitivity.  
Parallax correction in pixilated detector systems is usually based on a measurement of 
the interaction depth of the photon, either in a discrete way (e.g. pulse shape analysis 
in phoswich configurations or pixel-encoding schemes using multiple crystal layers 
which are displaced relative to each other) or in a continuous way (e.g. using the ratio 
of the signal measured on the top and bottom side of the scintillator). 
Hence, the accuracy on the estimated true interaction position in the pixilated 
scintillator depends on the accuracy of the estimated position of the photon in the plane 
of the photo detector and on the accuracy of the DOI measurement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To overcome the parallax effect in our block approach, we will evaluate the photon 
incidence position instead of the interaction position within the block (Figure 3.1). 
Together with the incidence angle, we can define a correct LOR independent of the 
interaction depth. The advantage is that there is no need to measure the interaction 
depth separately, and hence, there is also no need for a separate DOI calibration of the 
detector module. However the relation between the measured scintillation light 
distribution and the incidence position depends on the incidence angle q . In a scanner 
geometry this incidence angle q  can easily be estimated from the two detectors firing in 
coincidence, i.e. estimate the incidence angles from the line joining the centers of the 
two detector modules. If necessary, this method can be refined by using the calculated 
entry points to derive an improved estimate of the angle of incidence, and repeating the 
position estimation using this improved estimate. 

Figure 3.1: Illustration of a parallax free positioning determination. The lines-of-response 
needed for image reconstruction are determined from the incidence 2D photon position 

 and the incidence angle q  instead of photon interaction position .  
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3.1 Front-end detector designs 

3.1.1 The S8550 avalanche photo diode 

 
 
 
 
 
 
 
 
 
 
 
All detector configurations used in this study are based on the S8550 Si APD array [39] 
from Hamamatsu. The S8550 APD is designed for short wavelength detection, featuring 
low noise and low terminal capacitance. It also offers uniform gain and small cross-talk 
between each element [39]. The array consists of 32 APD pixels arranged in a 4x8 
scheme (Figure 3.2). Two silicon wafer parts, each of them comprising 16 APDs, are 
housed in a ceramic package with a 0.5mm thick epoxy window completely covering the 
sensitive area. The common cathodes and the individual anodes of the 32 diodes are 
connected by a plastic grid array at the backside of the carrier plate [40]. The 
specifications of the device are listed in Table 3.1. 
 

Table 3.1: Technical data of the S8550 Hamamatsu APD array [39, 40] 

Parameter Value 

Device size 19.5x11.2mm2 (218.4mm2) 
Total active area 81.92mm2 
Number of pixels 32 
Element size 1.6x1.6mm2 (2.56mm2) 
Element pitch 2.3 mm 
Bias voltage range 100-400V 
Operating gain range M 1-100 
Spectral response range 320-1000nm 
Quantum efficiency at 420nm 60-70% 
Dark current per pixel (M=50) 10nA 
Terminal capacitance per pixel (M=50) 10-15pF 

 

The S8550 APD has a “reverse type” structure [41]. Consider the schematic cross-
section shown in Figure 3.3. These APDs are designed to have a high-field multiplying 
layer restricted to a narrow portion of the depletion layer, and a relatively low electric 
field in the rest of the depletion layer [42]. This design permits the use of a wide 
depletion layer, which reduces the capacitance per unit area, while still permitting 

Figure 3.2: S8550 Si APD and a 20x10x10mm3 LSO block 
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operation at quite low bias voltages (<500V). The multiplying p-n junction is located 
about 4 mm  below the p+-layer so that only primary photo-electrons generated by short-
wavelength light (i.e. strongly absorbed) are fully multiplied. Whereas for a pair 
generated within the wide drift region behind the multiplying region only the hole 
enters the multiplying region where it undergoes a much reduced amplification. This 
also means that, most of the dark current undergoes only hole multiplication, and so 
the contribution to the noise is reduced significantly [43]. The gain of the electrons and 
holes are related by [43]: 

 ( )h 1 eM =1 k M -1+  (3.1) 

where k1 is a weighted ratio of the ionization coefficients (close to, but slightly greater 
than k= ha / ea ). k1 is generally below 0.05, so that, for an electron gain of 100, the hole 
multiplication is at least a factor 20 less. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2 Monolithic block geometries 

Monolithic scintillator blocks provide an efficient way to significantly increase the 
sensitivity of high-resolution PET systems compared to the classically used matrix of 
small scintillation crystals coupled individually to the pixels of the APD array (Figure 
3.4.c). 
 
 
 
 
 
 
 
 
 
 
Three different continuous LSO block geometries were used in the evaluation study: a 
rectangular 20x10x10mm3 block, a thicker rectangular 20x10x20mm3 block and a 
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Figure 3.3: Schematic cross-section of a reverse type APD. The electric profile and 
the gain profile of the APD are also given. 
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Figure 3.4: (a) a 20x10x20mm3 LSO block with a double APD readout, (b) a trapezoidal 
20x15.4(11.5)x20mm3 LSO block which allows the construction of a gapless detector ring 
(c) a 4x8 crystal matrix of 2x2x10mm3 LSO pixels  
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trapezoidal 20x15.4(11.5)x20mm3 block. The increase in sensitivity is mainly due to the 
absence of optical separation material between the individual scintillation pixels. In 
addition, the fact that the scintillation light distribution contains information about the 
impact coordinates removes the constraint to restrict the scintillator to the sensitive 
areas of the photo detector, i.e. the exit surface of the LSO block can also cover the 
packaging of the photo detector used and hence increase the sensitive detection volume. 
A further increase in sensitivity is possible when trapezoidal scintillator blocks are used 
to avoid the wedge-shaped gaps when the scintillator blocks are placed in a ring  
Simulations, using the Monte-Carlo code GATE, also confirm the increase in sensitivity 
of a PET scanner using monolithic LSO blocks instead of small LSO pixels [31, 37]. The 
simulated scanner consisted of four rings with a diameter of 12.4 cm. Each ring had a 
thickness of 2 cm and contained 32 APDs. Three crystal configurations were simulated: 
a 4x8 matrix of 2x2x20mm3 pixels with a pitch of 2.3mm, a 20x11.5x20mm3 rectangular 
LSO block and a 20x15.4(11.5)x20mm3 trapezoidal LSO block. The energy window was 
set at 250–750 keV.  
 

Table 3.2 shows the sensitivity (%) for a point source at the center of the scanner. 
Replacing the individual LSO pixels with a rectangular monolithic block doubles the 
sensitivity of the scanner. Another 25% gain in sensitivity is achieved when the 
rectangular monolithic blocks are replaced by the trapezoidal blocks.  
 

Table 3.2 Active crystal volume and simulated sensitivity for a 4 ring PET-scanner 

 
crystal matrix 

8x4 matrix 2x2x20mm3 
rectangular block 
20x11.5x20mm3 

trapezoidal block 

20x15.4(11.5)x20mm3 

Volume (cc) 2560 4600 5380 
Sensitivity (%) 8 17 21.5 
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3.2 A bench set-up for the acquisition of training data 
When an annihilation photon interacts with the scintillator block, its entry point on the 
front surface of the crystal is estimated from the resulting distribution of the 
scintillation light measured by the APD array(s). In this study the entry point is 
extracted from the distribution using one of the three machine learning algorithm that 
will be introduced in Paragraph 3.3. The training process of these machine learning 
algorithms requires a reference set of samples that link the measured scintillation light 
distribution to the known photon incidence position. In order to acquire such training 
data a bench set-up was build up (Figure 3.5). The first tests were made at the VUB 
with a 20x10x10mm3 LSO block. In parallel, the construction of a second set-up and the 
acquisition of training data were done by collaborators of the Delft University of 
Technology in The Netherlands.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Training data for three different geometries were acquired on the Delft bench set-up, 
using a rectangular 20x10x10mm3 block, a thicker rectangular 20x10x20mm3 block and 
a trapezoidal 20x15.4(11.5)x20mm3 block (see Figure 3.2 and Figure 3.4). The LSO 
blocks were wrapped with Teflon on five sides (10mm thick block) or four sides (20mm 
thick blocks) to maximize the light output. The scintillation light distribution emerging 
at the bottom of the 10mm thick block is sampled by one S8550 Hamamatsu APD 
array. In case of the 20mm thick blocks, the top and bottom surface were read out by 
an APD. Each APD array is mounted on a printed circuit board (PCB) holding 32 
Cremat CR-110 preamplifiers [44]. The crystal, APDs and PCBs are placed in a light 
tight, cubic aluminum box, and form together the front-end detector module. A beam 
of 511 keV annihilation photons emitted by a Æ 0.5mm 22Na source irradiates the 
detector module. The beam is defined by a second detector in coincidence with the 
APD detector, consisting of a 50mm thick BGO crystal coupled to a PMT, with a 
Æ 5.0mm Pb-collimator (Pb thickness 60mm). The detector can be scanned through the 
beam using a motorized xzW -stage, controlled by PC. The pulses from the 
preamplifiers are fed into two/four 16-channel spectroscopy amplifiers (CAEN N568B) 
through twisted pair flat cables. For each channel, these amplifiers have a fast output 
branch, consisting of a fixed gain single differentiation stage with a time constant of 100 

x 
z 

Front-end detector module 
- preamplifier 
- 1 or 2 APD(s) 
- LSO block 

xzW -platform 

22Na source  

 500 mÆ m  

collimator BGO-crystal PMT 

Figure 3.5: Schematic representation of the bench set-up 
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ns, and a slow branch, providing a semi-Gaussian pulse shape with an adjustable gain 
and a shaping time of 0.1 sm , 0.2 sm , 1.0 sm  or 3.0 sm . The signals from the slow outputs 
are transferred to one/two 32-channel, 12-bit, peak sensing ADCs (CAEN V785). Time 
pick-off on the APD signals is performed on the analog sum of the fast outputs using a 
constant fraction discriminator (CFD, Ortec 934). The PMT anode signal is passed 
through an Ortec 474 timing filter amplifier. Time pick-off on the resulting PMT signal 
is again performed by a CFD (Ortec 934). A coincidence occurs when both CFD signals 
trigger within a time window of 2x10ns. In all experiments, the APD arrays were kept 
at room temperature, and the shaping time of the slow branch of the amplifiers was set 
at 0.2 sm . 
The resulting 1mm  FWHM electronically collimated 511 keV photon beam was 
stepped over the surface in 250 mm  intervals along the long (20mm) central axis of the 
monolithic LSO blocks. At each beam position a number of events were measured and 
the 32/64 APD pixel values were stored together with the incidence position (i.e. the 
center of the known beam position).  
The width of the photon beam and the position of the LSO block relative to the photon 
beam are determined by moving the photon beam over the edge of the block in 250 mm  
steps. Per position the number of events detected in a fixed period is recorded. The 
obtained sigmoid count rate profile is the result of a convolution between the photon 
beam profile and a step function representing the edge of the LSO block. Assuming the 
beam profile is Gaussian, the measured count rate profile is fitted with  
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with m the position of the crystal edge, s  the width of the photon beam, and A a 
scaling factor. Due to background events in the measurement, a constant term was 
added to the fit function. Figure 3.6 (left) shows the result of such a fit on a beam 
profile measurement. When the obtained sigmoid is halfway between its lower level and 
upper level, the center of the photon beam is exactly on the edge of the block. 
The edge of the block can also be estimated from symmetry considerations. Given the 
count rate profile of the whole block (see Figure 3.6 (right)) and knowing the length of 
the crystal block (20mm), both edges of the block should have the same count rate. 
Accordingly, the two positions, 20mm apart, having the same rate correspond to the 
edges of the block. 
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Figure 3.6: (left) Measured count rate profile over the edge of the scintillator block fitted with 
g(x) h(x)Ä , the convolution between a Gaussian and a step function. (right) Count rate over 
the entire block. The edges are found by symmetry, i.e. positions 20mm apart with equal rates. 
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Both methods, the convolved Gaussian and the symmetry approach, give equivalent 
results ( <D 0.2mm). Using the convoluted Gaussian approach, the FWHM beam width 
can be derived. The beam had an estimated diameter of ~1.3mm FWHM. 
 
Thus, training data for the positioning algorithms consists of light distribution profiles 
acquired by irradiating the crystal with a beam of annihilation photons at many 
different positions with known coordinates. As mentioned before the algorithms are 
trained to compute the photon incidence position instead of the interaction position in 
the block. Because the incidence position is independent of the interaction depth, it 
doesn’t suffer from parallax errors. However the relation between the measured 
scintillation light distribution and the incidence position depends on the incidence angle 
(Figure 3.1). Therefore different positioning algorithms have to be trained as a function 
of the incidence angle.  
 
 
 
 
 
 
 
 
 
 
In order to determine the best detector geometry/positioning algorithm combination, 
the intrinsic detector resolution of photons impinging at different angles e.g. 0°,  10°, 
 20° and  30° are evaluated. With the use of the bench set-up, the detector 
resolution is determined experimentally along the long axis of the scintillator. First, the 
beam was scanned along the central x-axis of the APD array, perpendicular to its 
surface, from one edge of the crystal to the other in steps of 250 mm  (see Figure 3.7 
(a)). Since we intend to use nearly symmetric 21.4x18.4x10mm3 LSO blocks read out by 
two APDs in a future implementation of this detector principle, it is sufficient to study 
the resolution along this axis. To study the influence of non perpendicular incidence 
photons, the detector box was also rotated over 10, 20 and 30 degree relative to the 
photon beam (see Figure 3.7 (b-d)).  
Since we only determine the interaction coordinate along the long side of the block, the 
light distribution along the pixels in an APD column yields little or no extra 
information. Hence, we can sum the signals of all pixels for every column, 

d

ijj=a
x i:A..Hå  (Figure 3.8). This significantly reduces the number of parameters to be 

determined and speeds up the learning process. Since the position only depends on the 
shape of the light distribution, the vector containing the 8 combined APD signals is 

also normalized by 
H

i jj=A
x / x i:A..Hå . This makes the input signal distribution 

energy independent, resulting in a further simplification of the problem. 

Figure 3.7: Top views of a frond-end detector module in the bench set-up. Four block angles 
are evaluated: 0, 10, 20 and 30 degree. The beam is stepped over the whole surface of the block 
(from start position to end position in steps of 250 mm ) 
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Per incidence angle, the pre-processed data is then split into a training set and a 
validation set. The training set is used to train the positioning algorithms. For each 
event in the validation set, the positioning error, defined as the predicted photon 
position (using the trained positioning algorithm) minus the true beam position, is 
calculated. To obtain an estimate for the spatial resolution, the positioning errors are 
collected in histograms. The Full Width at Half Maximum (FWHM) and the Full 
Width at Tenth Maximum (FWTM) are used to characterize the spatial resolution.  
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Figure 3.8: Schematic representation of the data preprocessing used to simplify the training
parameters from 32 to 8 input variables. 
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3.3 Positioning algorithms 
The photon interaction position and DOI information is embedded in the scintillation 
light distribution sampled by the APD array. The block detector can be considered as a 
non-linear system mapping a beam position coordinate onto a set of APD responses. 
The role of the positioning algorithms is just to inverse this mapping i.e. matching the 
set of APD responses with an impact gamma position coordinate. To extract this 
position three machine learning algorithms were evaluated: 

 Neural network (NN) with Levenberg-Marquardt training 
 Neural network with algebraic training (algNN) 
 Support vector machines (SVM) 

The approach of using NNs for the positioning problem in PET detectors has already 
been proposed by some groups and shown to be promising [20, 45-48]. Two fundamental 
properties make neural networks a powerful tool widely used for function approximation 
[20]. The property of universal approximation implies that neural networks can 
approximate any smooth function within any required accuracy. Another important 
property of neural networks is the learning ability. The universal approximation 
property of neural networks states that a particular set of weight values will result in a 
network that can approximate the function with the required accuracy (see Paragraph 
3.3.1). However, these desired weights are unknown for most applications and must be 
learned by the neural network using training data.  
The novel algebraic neural network training technique was developed by Ferrari et al. 
[49-51]. This approach suggests an innovative framework for analyzing neural 
approximation properties and for training neural networks in a much simplified way. 
The training process and the network approximation properties are solved via linear 
algebra. Algebraic training is characterized by faster execution speeds than 
contemporary NNs.  
Finally, Support Vector Machines (SVM) algorithms combine the simplicity and 
computational efficiency of linear algorithms with the flexibility of non-linear systems. 
Their foundation in the principles of statistical learning theory makes them remarkably 
resistant to overfitting. A significant advantage of SVMs compared to NNs is that SVM 
regression always finds a global minimum, while NN can suffer from multiple local 
minima [52]. 
The aim of the following three subsections is to give a brief introduction of the 
parameters that characterize the different machine learning algorithms. It does not 
involve a study of the algorithms, but only the practical use of them. For more detail, 
references to the literature are made. 

3.3.1 Neural networks with Levenberg-Marquardt training 

Artificial neural networks are massively parallel computational units, based upon 
models of neurological structures and processing functions in the brain. They are used 
in a variety of applications because they can learn by example and provide excellent 
universal function approximation for multivariate input/output spaces [51]. They are 
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good at solving problems that involve complexity, non-linearity and uncertainty. 
Similar to biological systems, neural networks receive their abilities, such as adaptation 
and error tolerance from the interconnected structure of individual simple processing 
units called neurons. Generally, a neural network is a structure involving weighted 
interconnections among neurons, which are most often nonlinear scalar transformations. 
The processing ability of the network is stored in the inter-unit connection strengths, or 
synaptic weights, obtained by learning from a set of training patterns, termed as 
training set [20].  
A wide variety of network types exists, but one of the most popular and most widely 
used models is the feed forward neural network (FF). 
Figure 3.9 shows an example of a one-hidden-layer FF neural network with n inputs, 
x = 1 2 n{x , x , ,x }  that feed each of the s neurons comprising the hidden layer. The s 
outputs from this layer are then fed into the single output layer neuron, yielding the 
scalar output, ŷ . The layer of s neurons is called “hidden layer” because its outputs are 
not directly seen in the data. Each arrow in Figure 3.9 corresponds to a real-valued 
parameter, or a weight, of the network. The values of these parameters are tuned in the 
network training. Generally, a neuron is structured to process multiple inputs in a 
nonlinear way, producing a single output. Specifically, all inputs to a neuron are first 
augmented by multiplicative weights W. These weighted inputs are summed and then 
transformed via a nonlinear activation function, s . As indicated in Figure 3.9, the 
neurons in the hidden layer of the network are nonlinear. In our study, the single 
output neuron is linear, since no activation function is used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mathematically the functionality of a hidden neuron is described by: 

 
n

ij j i
j=1

w x +d  for each hidden neuron (i = 1..s)s
æ ö÷ç ÷ç ÷ç ÷çè ø
å  (3.3) 

where x is the input vector, n the dimension of the input vector x, s the number of 
neurons in the hidden layer, W the matrix of input-to-hidden layer weights and d the 

Figure 3.9: General structure of a feed forward neural network with one 
hidden layer 
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vector of hidden node biases. The network output is formed by another weighted 
summation of the outputs of the neurons in the hidden layer, vector v. This summation 
on the output is called the output layer. The output of this network is mathematically 
given by  

 [ ]
s n

T
i ij j i

i=1 j=1

ŷ( ) g( , ) + v w x +ds s
é ù
ê ú= = ⋅ = ê ú
ë û

å åx v W x dq q  (3.4) 

where v is a vector of the hidden-to-output layer weights, q  the parameter containing 

all the variables { , , }W d  v  of the network model, g(.,.) the network function and x is 
the input to the network (see below).  
 
The nonlinear activation function s  in the neuron is usually chosen to be a smooth 
differential function. In our study the standard sigmoid function was used [53]:  
 
 
 
 
 
 
 
 
 
 
 

Once the structure g(.,.) of the NN is chosen, e.g. number of layers and the number of 
neurons in the different layers, it can be trained using a set of data containing N input-
output pairs, N

i i i=1{ , y }x . Denote this network with ŷ=g( , )xq . Training the network 
means that all its parameters are adjusted incrementally until the training data satisfy 
the desired mapping as good as possible. That is, until ŷ( )q  matches the desired output 
y as closely as possible. The typical stop criterion, used in almost all supervised learning 
algorithms, consists of minimizing some measure of the error between the desired 
input/output and the actual network’s performance. A good estimate for parameter q  
is one that minimizes this MSE or RMSE (root mean square error). Given the training 
data N

i i i=1{ , y }x  the mean square error (MSE) is defined by 

 
N

2
N i i

i=1

1
V ( )= (y -g( , ))

N
å xq q  (3.5) 

The various training algorithms that apply to FF have one thing in common: they are 
iterative. Starting at the initial parameter vector 0q , the training algorithm iteratively 
decreases the MSE in Equation (3.5). Neural network minimization problems are often 
very ill-conditioned. This makes the minimization problem harder to solve and for such 
problems, the Levenberg-Marquardt algorithm is often a good choice because of its 
robustness and faster convergence [53]. In this study we used a neural network with two 
hidden layers, due to its faster convergence than 1 hidden layer [54]. Each hidden layer 
consists of five neurons. This choice was made via trial-and-error to achieve a good 
performance using a simple network topology.  

Figure 3.10: Graphical representation of the standard sigmoid function as the 
nonlinear activation function (x)s  
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3.3.2 Neural network with algebraic training 

The nonlinear behavior of neural networks results from the sigmoid activation function 
in the neurons of the hidden layer. It was suggested in [51] that the neural network 
training can be converted into a linear problem if the input-to-hidden weights W and 

biases d have been fixed previously (see Equation (3.4)). When wij and di are known, 
the output of the nonlinear hidden layer [ ]+s ⋅W x d  can be pre-computed for each 
event N

i i i=1{ , y }x  in the training set. Starting from Equation (3.4), the problem of finding 
the hidden-to-output weights v is now reduced to a simple linear algebra problem, 

 [ ]-1= +s ⋅v W x d  y  (3.6) 

When the matrix [ ]+s ⋅W x d  is not a square matrix (i.e. the number of training 
samples x is larger than the number of nodes s in the hidden layer), a solution can still 
be obtained using the pseudo-inverse  

 [ ] [ ]( ) [ ]
-1T T= + + + ys s s⋅ ⋅ ⋅v W x d W x d W x d  (3.7) 

However the question remains how to determine wij and di. One of the strategies to 
produce a well-conditioned sigmoid matrix [ ]S +sº ⋅W x d  consists of generating the 
input-to-hidden weights W between the jth-input and the ith-node, according to the 
following rule [50] 
 ij ijw =f.r  (3.8) 
where rij is randomly chosen from a normal distribution with zero mean and unit 
variance [ ]N 0,1  and f is a tunable scaling parameter. It turns out that the choice of the 
free parameter f is not very critical and is of the order of 10 [51]. Finally, the input 
bias, d, is computed to center each sigmoid at one of the training pairs, N

i i i=1{ , y }x  

 ( )T=-diag ⋅d X W  (3.9) 

where X is the matrix composed of all the input elements from the training set. 
Using the above procedure, the matrix S can be computed and consequently the linear 
problem of Equation (3.6) solved. In the rare case that the computation of the pseudo-
inverse leads to numerical instabilities, one just chooses new random wij and di’s. Due to 
the simplicity of the whole procedure, training of a neural network is fast, even for 
larger sized networks.  

3.3.3 Support vector machines 

Support vector machines (SVM) comprise another class of learning algorithms, 
motivated by results of the statistical learning theory introduced by Vapnik in the 
sixties. The basic idea in support vector regression (SVR) is to map the input data x 

into a higher dimensional feature space F via a nonlinear mapping function f . This 
approach reduces the learning step to a linear regression problem (in the higher 
dimensional feature space). This regression function is approximated by [55]:  

 
N

i ii=1
f( )= w (x )+bfåx  (3.10) 

where { }N

i i=1
(x )f  are the features of the training inputs, { }N

i i=1
w  determine the 

orientation of the hyperplane going through the features while the scalar b determines 
the offset of the hyperplane from the origin. 
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Standard SVR uses an -insensitivee  loss function. An example is shown in Figure 3.11. 
The aim in -SVRe  is to find a function f(xi) that has at most e  deviation from the 
outputs yi for all the training data N

i i i=1{ , y }x , and at the same time is as flat as 
possible. In other words, if the deviation between the actual and predicted value is less 
than ,e  the regression function is not considered to be in error. Figure 3.11 depicts the 
situation graphically, it can be visualize as a band or tube of size 2e  around the 
function f(x), any point outside this tube can be viewed as a training error [56].  
 
 
  
 
 
 
 
 
 
 
 
 
 
The coefficients { }N

i i=1
w  and b of Equation (3.10) can be estimated by minimizing the 

risk function ( )R ,xw  [56]: 
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The first term in Equation (3.11), 2(1/2). w  is used as a complexity measurement of 
function (3.10). Complexity in this case means a “flatter” function and one way to 
ensure this, is to minimize the norm, i.e. 2w  [56]. The regularization constant C, 
chosen a priori, is a constant determining the tradeoff between minimizing the training 
error and the model complexity. To account for training errors, slack variables 

i i and x x*  are introduced. The nonnegative error variables ( )
ix
*  were added in each 

constraint of (3.11) and then added as a weighted penalty term to cope with otherwise 
infeasible constraints of the optimization problem. The first variable ix  computes the 
error for underestimating the function. The second ix

*  computes the error for an 
overestimation. The slack variables are zero for points inside the tube and progressively 
increase for points outside the tube according to the loss function used [57].  
In practice, the optimization problem (3.11) is solved more easily in its dual 
formulation [56]. By introducing a dual set of variables, function f(x) of equation (3.10) 
becomes: 

+ee-

+e

e-

0
L

L

Figure 3.11: (left) Plot of ( )+bf⋅w x  versus y with the -insensitivee  tube. Points 
outside the tube are penalized. (right) A typical linear -insensitivee  loss function. 
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Based on the nature of the dual formulation, only a number of coefficients among ia  
and ia

*  are nonzero [58]. The set of training events xi associated with them and thus 
used in the approximation function ( )i if , ,a a*x  are called support vectors. 
For computational convenience, the form T

i(x ) ( )f f x  in Equation (3.12) is replaced by a 
kernel function ik(x , )x  [56]. Using a kernel function in the training algorithm, avoids 
computing T

i(x ) ( )f f x  explicitly which is computationally infeasible for features of 
higher order and higher dimensionality. The question that arises now is, which 
functions ik(x , )x  correspond to a dot product in some feature space F. In [56] it is 

proven that following kernels are suitable; the Gaussian kernel ( )2 2k(x,y)=exp - x-y 2s  

and the polynomial kernel T pk(x,y)=(x y+1) .  
Besides standard model selection issues, i.e. how to specify the trade-off between 
empirical error and model complexity (parameter C in Equation (3.11)), there also 
exists the problem of an optimal choice of .e  There exists, however, a method to 
construct SVR that automatically adjust e  and moreover also have a predetermined 
fraction n  of the training data as support vectors. The accuracy parameter e  becomes 
a variable of the optimization problem, including an extra term in the risk function 

( )R ,xw  which attempts to minimize e . Equation (3.11) becomes [59]: 

 ( ) ( )( )N2
i ii=1

1
R , +C + +N

2n x x x ne*= åw w  (3.13) 

The coefficients ia  and ia
*  in its dual formulation are computed by the following 

optimization problem [56]: 
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 (3.14) 

As mentioned before, the parameter C determines a trade-off between the flatness of 

( )i if , ,a a*x  and the tolerance of deviations while ν is the fraction of the set of training 
events which can be used in the expansion of ( )i if , ,a a*x . 
The SVM training was done using the -SVMn  algorithm implemented in LIBSVM [60]. 
In equation (3.12) a radial basis function (RBF) was used as a kernel function, i.e. 

( )2

i ik(x ,y)=exp - x -yg  where g  is the width of the RBF kernel. This parameter has to 

be optimized in parallel with the parameter C.  
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3.4 Evaluation of the positioning algorithms on a 
20x10x10mm3 LSO block 

To evaluate the machine learning algorithms, the spatial resolution of the detectors is 
estimated using data from one-dimensional scans. Since we intend to use nearly 
symmetric 21.4x18.4x10mm3 LSO blocks read out by two adjacent APDs in a future 
implementation of this detector principle (e.g. BrainPet system), it is sufficient to study 
the resolution along this axis. The beam is scanned along the central axis of the APD 
array from one edge of the crystal to the other as described in Paragraph 3.2. At each 
position, a fixed number of light distributions are recorded. The pre-processed data is 
then split into a training set and a validation set. The positions of the events in the 
validation set are estimated using the algorithms introduced above. For each event in 
the validation set, the positioning error, defined as the estimated minus the true 
coordinate, is calculated. To obtain an estimate for the spatial resolution, the 
positioning errors are collected in histograms. The Full Width at Half Maximum 
(FWHM) and the Full Width at Tenth Maximum (FWTM) of these histograms are 
used as an estimate for the spatial resolution. Histograms of the position errors of all 
the beam positions yield an average resolution over the complete detector. The position 
dependent spatial resolution is estimated using histograms corresponding to only small 
intervals of neighboring beam positions. The contribution of the finite photon beam size 
(~1mm FWHM) is not subtracted from the results. 

3.4.1 Levenberg-Marquardt NN (LM-NN) 

The NN training procedure is an iterative process that adjusts the parameters of the 
NN by comparing the predicted output of each event in the training set with its desired 
output. The way the parameters are adjusted depends on the training algorithm used. 
We used the Levenberg–Marquardt (LM-NN) method available in the Neural Network 
package of Mathematica [61]. However, when the NN is trained too long, it can lead to 
overfitting of the data in the training set. The NN starts to fit the noise structure of the 
particular training set and hence loses generality. To avoid this, the training set is split, 
once more, in a training set and a separate test set. After each training cycle, the total 
RMSE on all events in the test set is computed.  
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Figure 3.12: Typical RMSE minimization profiles during a NN training  
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While the total RMSE in the training set keeps diminishing as training progresses, the 
RMSE on the test events will come to a plateau or start to increase again. At this 
point, training is stopped. Figure 3.12 shows a typical decrease of the RMSE during the 
training process of the training set. In this example, the LM-NN parameters are found 
at the 17th training iteration. At which the RMSE of the test set starts to increase and 
the neural network loses its generality. 
 

Figure 3.13 shows the global positioning error profile for the 20x10x10mm3 LSO block 
obtained from the trained LM-NN using the separate validation data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14 shows the FWHM and FWTM of the global error profiles (or spatial 
resolution) for the 20x10x10mm3 LSO block as a function of the incidence angle and 
energy threshold. The FWHM is found by a Gaussian fit N[ 2,m s ] on the positioning 
error histogram. The FWHM is defined as 2.35 s . The FWTM is acquired by an 

interpolation function to calculate the width at the tenth of the maximum. For 
perpendicular incident photons, the measured FWHM detector resolution is 1.60mm 
and 1.75mm for an energy threshold of respectively 380 keV and 100 keV. When the 
photon incidence angle increases to 30°, the spatial resolution degrades slightly to 
1.85mm and 2.0mm FWHM. The FWTM of the photon position error distribution is 
between 4.05mm and 4.3mm depending on the energy threshold on the perpendicular 
incident photons and degrades to 5.0mm and 5.5mm at a 30° incidence angle.  

Figure 3.13: Histogram (a) illustrates the number of acquired events per beam position
in the validation set. Histogram (b) summarizes the estimated impinging photon 
position by the LM-NN applied on the same validation data set. The global error profile 
(true minus estimated position) is given in histogram (c). A Gaussian fit on this 
histogram provides the FWHM. 
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Summing the 32 APD signal values yields the energy deposited in the crystal. A typical 
energy spectrum is shown in Figure 3.15 (left). Figure 3.15 (right) shows the measured 
energy resolution as a function of the beam position. Energy spectra were recorded for 
photons impinging on the LSO block in 2-mm intervals. The energy resolution is rather 
uniform. On average, the energy resolution was 11.5%. Only a slight degradation was 
observed near the edge of the block.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The dashed lines in Figure 3.15 (left) denote the three different energy threshold 
applied in this study. Increasing the threshold from 100 keV to 250 keV or 380 keV 
reduces the detector sensitivity by respectively 11.8% and 26.4% [47]. However, the 
signal-to-noise ratio (SNR) per pixel improves by increasing threshold, resulting in a 
better estimate of the impinging position. 
 
Beside the global resolution, the local resolution and nonlinearity of LM trained NN for 
perpendicular incident photons are examined. This was accomplished by computing the 
positions of events impinging within 1mm intervals (i.e. combining events from four 
adjacent beam positions) and comparing them with their known incidence position. The 
FWHM and FWTM resolutions are again found by respectively a Gaussian and 

Figure 3.15: (left) The energy spectrum obtained with a 20x10x10mm3 LSO block has an 
average FWHM energy resolution of 11.5%. (right) FWHM energy resolution measured in 2 
mm intervals along the 20 mm side of the LSO block. The energy resolution is rather uniform 
except for a slight deterioration near the edges. 
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Figure 3.14: (left) the FWHM resolution and (right) the FWTM resolution achieved with 
Levenberg–Marquardt trained neural networks on a 20x10x10mm3 LSO block as a function of 
the photon incidence angle and energy threshold.  
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interpolation fit applied on the positioning error histogram. The spatial nonlinearity is 
defined as the deviation of the peak position of the local error profile from the true 
center of the photon beam. Figure 3.16 shows the FWHM resolution, FWTM resolution 
and nonlinearity for each of the twenty 1mm regions along the 20mm-long beam 
trajectory. The resolution remains fairly uniform across the set of measured positions. 
The FWHM fluctuation across the different regions is less than 0.3mm rms. However, a 
local deterioration of the resolution is observed when the photons impinge about 4-5mm 
from the edge. This phenomenon is also present in other positioning estimators for 
monolithic scintillators. The origin of this is still not understood [48, 62]. 
The nonlinearity of the trained neural networks is negligible except for photons 
impinging within 1mm from the edge. In this region the estimated positions are shifted 
towards the center of the block over a distance of ~1mm. The shifts can also be seen on 
histogram (b) in Figure 3.13. This behavior was also observed for the different block 
geometries and algorithms described above [37, 45, 47, 48, 63]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16: Local FWHM, FWTM resolutions and nonlinearity using LM trained neural network
for 1mm intervals along the 20mm side of the 20x10x10mm3 LSO block 

-1

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FWHM FWTM Nonlinearity

Beam position (mm) 

(m
m

) 



 

 

70 Chapter 3 
 

3.4.2 Algebraic trained NN (Alg-NN) 

In the algebraic training approach, only one parameter has to be fixed before training, 
i.e. the number of neurons in the hidden layer, see equation (3.8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17 shows the FWHM and FWTM resolutions obtained with an algebraic 
trained neural network as a function of the incidence angle and the number of neurons 
used in the hidden layer. An energy threshold of 100keV was applied. An algebraic 
trained NN can achieve a similar performance to a LM trained NN but requires a much 
larger number (>500) of neurons in the hidden layer. If the energy threshold is 
increased to 250keV or 380keV, the FWHM and FWTM resolutions improve to values 
very comparable to those obtained with LM trained neural networks. 

Figure 3.17: (lower 4 plots) the FWHM resolution and (upper 4 plots) the FWTM resolution 
achieved with algebraic trained neural networks on a 20x10x10mm3 LSO block as a function of 
the photon incidence angle and the number of neurons in the hidden layer. The energy threshold 
was 100keV. 
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3.4.3 Support vector machines (SVM) 

Before training the SVM using a training data set, we need to fix three parameters: C, 
n  and g  (see equation (3.14) for more information about parameters C and n . g  is 
the width of the RBF kernel). Our initial training data set consisted of 10000 events 
acquired at 80 beam positions along the 20 mm side of the LSO block. Figure 3.18 
shows the obtained FWHM resolution as a function of g  and C when we allow 5000 
training vectors to be used as support vectors, i.e. n =0.5. The resolution is not very 
sensitive to the choice of C while the value for g  should be larger than 20.  
The measured FWHM and FWTM detector resolution as a function of energy threshold 
and photon incidence angle are given in Figure 3.19. These results were obtained with 
C=11 and g =31. For perpendicular incident photons the SVM algorithm resulted in a 
1.69mm FWHM and 4.31mm FWTM resolution in case of a 100keV threshold. 
Increasing the energy threshold to 380keV has a minimal beneficial effect, i.e. 1.62mm 
FWHM and 4.08mm FWTM. The parallax correction at larger incidence angles is 
slightly inferior compared to what can be achieved using LM trained neural networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.18: FWHM resolution as a function of the parameters g  and C. The parameter g 
is the width of the RBF kernel while variable C determines the trade-off between the 
model complexity and the degree to which deviations larger than e are tolerated 
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Figure 3.19: (left) the FWHM resolution and (right) the FWTM resolution achieved with 
SVM on a 20x10x10mm3 LSO block as a function of the photon incidence angle and energy 
threshold. The -SVMn parameters were: n =0.5, C=11 and g =31 
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3.4.4 Discussion and conclusion 

The results obtained with the different positioning algorithms on the 20x10x10mm3 
LSO block at photon incidence angles of 0° and 30° and energy thresholds of 100keV 
and 380keV are summarized in Figure 3.20. The Levenberg-Marquardt neural network 
uses two hidden layers where each hidden layer consists of five neurons. For the 
algebraic trained NN, 500 neurons are used in the hidden layer. And finally, the results 
of the SVM approach were attained with C=11 and g =31. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All three algorithms can achieve similar resolutions but the LM trained neural networks 
do so most efficiently (a simpler network structure and hence a faster execution speed). 
For perpendicular incident photons they achieve a measured detector resolution of 
1.8mm FWHM and 4.3mm FWTM on a 20x10x10mm3 LSO block when a minimum 
threshold of 100 keV is applied, i.e. maximum sensitivity setting. Because the 511 keV 

Figure 3.20: Overview of the FWHM and FWTM detector resolutions achieved with the 
different positioning machine learning algorithms for the 20x10x10mm3 LSO block at 0° and 
30° photon incidence angles and energy thresholds of 100keV and 380keV. 
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photon beam size is about 1 mm FWHM, we expect that the true intrinsic detector 
resolution is closer to 1.4 mm FWHM.  
Increasing the threshold improves the resolution. At a 380 keV threshold, the measured 
detector resolution is 1.6 mm FWHM and 4.1 mm FWTM. The sensitivity is decreased 
to 73.6% in comparison to the sensitivity at 100keV threshold [47]. 
When neural networks are trained for different incidence angles, the resolution 
degradation due to photon penetration for non-perpendicular incident photons can be 
limited. At an incidence angle of 30° the measured detector resolution degrades to 
2.0mm FWHM and 5.5mm FWTM using a threshold of 100 keV. Again better 
performance can be achieved at the cost of a lower sensitivity by increasing the energy 
threshold. 
The analytic trained neural networks achieve similar resolutions but need a much larger 
neural network to do so, i.e at least 500 neurons in the hidden layer. Given the 
simplicity of the algebraic training algorithm, training a neural network with 500 
neurons is still much faster than LM training of a neural network with 2 hidden layers 
with 5 neurons each. However, the usage of such a large neural network will be slower 
in comparison to the small LM trained neural networks (Table 3.3). 
 

Table 3.3: Training and execution speed of the different training algorithms 

 Training speed Execution speed 
LM-Neural network M M ++ 
Alg-Neural network ++ M M 

SVM + - 
 
The SVMs perform slightly better at the high sensitivity setting of the energy threshold 
(100 keV). At an energy threshold of 380keV they perform similarly. To obtain these 
results, a few thousand support vectors are required. The training speed is in between 
the algebraic training and the LM training of the neural networks. Again, given the 
large number of support vectors required, the usage of these SVMs is slower than the 
LM trained neural networks. 
Although the three algorithms have a similar performance, only the LM trained neural 
networks manage to achieve this with a simple architecture. This makes them for the 
moment the only candidates for on-line processing of events since these simple LM-NN 
can be implemented in hardware. 
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3.5 Evaluation of alternative detector geometries with a 
LM-NN 

3.5.1 20mm thick LSO block 

To increase the detection efficiency the thickness of the rectangular LSO block was 
doubled to 20mm and read out by two APDs on the top and bottom surface of the 
20x10x20mm3 LSO block (Figure 3.4 (a)). The probability, for a 511 keV photon 
perpendicularly incident on the crystal, to undergo any interaction (photoelectric or 
Compton) in a 20x10x10mm3 LSO block is ~58%. Increasing the crystal thickness to 20 
mm increases this probability to ~83% [63]. 
The data reduction introduced at the end of Paragraph 3.2 is still applied; the 2x32 
APD signals from the two APDs on the top and bottom surface of the 20x10x20mm3 
LSO block are reduced to 2x8 NN inputs. The FWHM and FWTM resolutions obtained 
with an LM trained NN are shown in Figure 3.21. The FWHM detector resolution only 
decreases slightly in function of the incident photon angle, starting from 2.07mm for 
perpendicular incident photons to 2.24mm FWHM for photons impinging at 30° with 
an energy threshold of 380keV. Nevertheless, the measured FWHM detector resolutions 
are worse compared to the thinner 20x10x10mm3 LSO block. Also the FWTM (4.97mm 
at 0° to 5.45mm for 30°) are inferior compared to the 20x10x10mm3 results. This could 
be due to the fact that the scintillation light is now spread over 64 APD pixels in stead 
of only 32 pixels. Hence the statistical fluctuation on the number of photons per pixel 
will be larger. In addition each of the 32 extra readout channels will also contribute 
electronic noise to the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To conclude, the detector resolutions achieved with a 20x10x20mm3 LSO block are 
worse in comparison to a thinner 20x10x10mm3 block. Consequently, a dual layer of 
10mm thick LSO blocks is preferred to increase the overall sensitivity. In addition, since 
the two layers operate independently, a multiple photon interaction involving both 
blocks can be detected. This opens the possibility to determine the first interaction 

Figure 3.21: (left) the FWHM resolution and (right) the FWTM resolution achieved with
Levenberg–Marquardt NN trained neural networks on a 20x10x20mm3 LSO block as a function of 
the photon incidence angle and energy threshold.  
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point on the basis of Compton kinematics. This is not possible in a single 20mm thick 
block where multiple scattered events cannot be discerned. 

3.5.2 Trapezoidal LSO block 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
The 20x15.4(11.5)x20mm3 trapezoidal LSO block has sloped sides on the short axis 
(Figure 3.4 (b)). When collecting training data for this block, the photon beam is also 
positioned on these slanted sides in order to obtain incidence positions for photons 
entering the crystal at those surfaces. Figure 3.22 shows the average FWHM resolution 
obtained using LM trained NNs along the short axis of a 20 mm thick rectangular LSO 
block and along the short axis of the trapezoidal LSO block. On the flat top surface the 
FWHM resolution is similar for both geometries. On the slanted sides of the trapezoidal 
block, the resolution degrades slightly towards the very end near the APD plane. The 
spatial nonlinearity also shows comparable properties. This could be due to the fact 
that photons impinging at the edges, interact very close to the bottom where the LSO 
block slightly overhangs the APD.  
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Figure 3.22: FWHM resolution and nonlinearity along the short side of a rectangular 
20x10x20mm3 LSO block and a 20x15.4(11.5)x20mm3 trapezoidal LSO block 
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Chapter 4  

4 Evaluation of block detectors on the PET prototype 
demonstrator 

Previous chapter demonstrates that a detector module based on a 20x10x10mm3 LSO 
block and APD readout, combined with a Levenberg-Marquardt neural network 
positioning algorithm can achieve a measured detector resolution better than 2mm 
FWHM for perpendicular incidence photons. When different LM-NNs are trained for 
several incidence angles, the resolution degradation due to photon penetration for non-
perpendicular incident photons can be limited. For an incidence photon angle of 30°, 
the measured detector resolution is still better than 2.1mm FWHM. 
However, the data acquired for this study was done on an “academic” bench set-up. 
For instance, the electronic collimation was done by a 35 mm thick BGO crystal 
coupled to a PMT, with a Æ 5mm Pb-collimator (see Figure 3.5) instead of two LSO-
APD detector modules. Also the use of the Cremat CR-110 preamplifiers (2.24x2.16cm) 
is not feasible in a real PET system due to their large dimensions and their big power 
dissipation (~100mW). To maximize the SNR, these preamplifiers are located at the 
output of the APD. Accordingly, Peltier elements are needed to keep the detector 
modules at room temperature. 
In order to evaluate the block detectors in a real compact PET environment, a 
prototype PET demonstrator was built. The demonstrator consists of only two 
20x10x10mm3 LSO detector modules. To simulate a full-ring scanner, the detector 
modules are mounted on separate rotating platforms which allow the movement of both 
detector modules, also relative to each other. 
In addition, since the detector characteristics may change in time, it is also appropriate 
to acquire new training data from time to time. The use of an auxiliary bench set-up for 
this calibration procedure implies the removal, calibration and re-mounting of all 
detector modules of the scanner. This would be a time consuming and tedious task. 
That’s why an automated acquisition method of training data for the positioning 
algorithm is investigated. The implementation and validation of this procedure is also 
done on the demonstrator set-up. 



 

 

78 Chapter 4 

 

4.1 New front-end electronics for APD readout 
As mentioned before, the CR-110 Cremat preamplifiers in the detector modules used on 
the bench set-up were bulky and produced too much heat. Therefore new front-end 
electronics were designed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The design consists of three boards: a preamplifier board (called P-AMP board), an 
amplifier board (called AMP board) and a digital board (called DIG board). The latter 
two boards were designed as NIM boards [64].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Scheme of the new front-end electronic built up of three parts: a pre-
amplifier -, amplifier - and digital board. 
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4.1.1 Pre-amplifier board (P-AMP) 

The pre-amplifier board and the amplifier board are linked by a flat cable (Figure 4.2 
(a)). The compact P-AMP board (11.4cmx8cm) houses the 20x10x10mm3 LSO block, 
the S8550 APD and a pre-amplifier chip. The chip was manufactured in CERN for 
silicon strip readout in the NA60 experiment [65].  
The design on the P-AMP board is such that the APD is directly coupled to the pre-
amplifier chip to minimize the noise (Figure 4.3). The preamplifier chip is a 
transimpedance pre-amplifier (current-to-voltage converter). In general a 
transimpedance pre-amplifier is faster than an integrating pre-amplifier because the 
integrating amplifier needs time to discharge.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Four test input connections are available on the P-AMP board (Figure 4.2 (b)). They 
can be used to calibrate the square root response of each of the 32 APD channels. 
Besides, they are useful to verify the gain uniformity over the 32 APD channels. 

4.1.2 Amplifier board (AMP) 

This board includes two stages of amplification, a discriminator and a shaper for each 
channel.  
 
 
 
 
 
 
 

Figure 4.3: Pre-amplifier board diagram. The current-to-voltage pre-
amplifier doubles the decay time due to its square root response function. 

Figure 4.4: Amplifier board diagram. Each channel passes through two 
amplification stages, a discriminator and a shaping circuit. 
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Each of the 32 channels passes through a two stage amplification which provides a total 
gain of 319. An individual trigger per channel is generated by a discriminator when the 
amplified APD pixel signal crosses the preset threshold level. The shaping time can be 
switched from 30ns to 100ns. And finally, offset adjustment is possible through a 
potentiometer which is mounted at the start of each amplification channel (Figure 4.5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.3 Digital board (DIG) 

This board includes an analog part as well as a digital part. The digital part involves a 
FPGA and a microcontroller. They perform threshold and test pulse generation in 
addition to system monitoring (Figure 4.6). A RS-232 interface provides the 
communication between the DIG board and computer. The analog part consists of an 
analog sum circuit that adds all 32 shaped APD signals into one sum signal. This sum 
and the corresponding trigger are sent out at the front of the DIG board. Also available 
at the front are the 32 analog shaped outputs which can be connected directly to a 
DAQ system using integrating or peak-sensing ADCs. 

4.1.4 Test pulse evaluation 

The test pulse is generated on the DIG board by the microcontroller and injected 
directly into the P-AMP chip. Figure 4.7 shows the test pulse outputs at different 
stages within the amplification process. M1-M4 indicates the reference points and can 
be found on Figure 4.2.b and Figure 4.5. 
 

Figure 4.5: The amplifier board. Each channel passes two amplification stages, a discriminator 
and a shaping circuit. The shaping time can be selected by use of switches. Offsets can be 
modified by use of potentiometers. 
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Figure 4.6: The digital board, incorporate analog circuits as well as a digital part. 

Figure 4.7: Test pulse output at different positions in the amplification process. The positions 
of M1-M4 can be found on Figure 4.2.b and Figure 4.5 
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The RMS noise without and with APD is measured and is 5mV and 7mV respectively. 
Since the preamplifier is not linear, the total system gain is also not linear. Due to the 
square root response of the P-AMP chip, larger inputs have lower gain compared to 
smaller inputs. Due to this dependency, it is not straight forward to calculate the 
equivalent noise charge (ENC). However, the RMS noise is defined at low inputs, i.e. 
high gain. The ENC can be estimated if the gain is assumed to be constant over a small 
input range. A small test pulse of 27.2 mV is injected and a shaped output peak value 
of 120mV is measured. The preamplifier chip is a transimpedance amplifier thus the 
voltage test pulse is converted to charge by a 100fF capacitor. So the gain is found by 
120mV/(27.2mV x 100fF)» 44mV/fC where F=C/V. The ENC can then be calculated 
as: 
 

 

-
without

-
withAPD

ENC =5mV/(44mV/fC) 0.144fC 700e

and

ENC =7mV/(44mV/fC) 0.159fC 1000e

» »

» »

 (4.1) 
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4.2 Data acquisition system of the demonstrator 
The data acquisition (DAQ) system is summarized in Figure 4.9. The demonstrator set-
up consists of two rotating platforms onto which two detector boxes are mounted (see 
Paragraph 4.3, Detector movement for a full-ring simulation). The detector modules 
contain a 20x10x10 mm3 Teflon wrapped LSO block mounted on a S8550 Hamamatsu 
APD array. As mentioned in previous section, the APD is coupled directly to the P-
AMP chip to minimize the noise. Through a flat cable the 32 pre-amplified analog APD 
channels are fed into the AMP board (Figure 4.9:1). After the 2 stage amplification and 
shaping, the 32 semi-Gaussian pulses are split to a sum module and to the peak sensing 
ADCs via a twisted pair flat cable (Figure 4.9:2 and Figure 4.8). In previous section an 
onboard summing circuit with trigger capability was described on the DIG board. 
Unfortunately this circuit did not function properly. Therefore we used an external 
summing module which was already designed for a previous DAQ set-up. A trigger 
signal in the form of a 10ns pulse is send out (Figure 4.9:4) when the analog sum of the 
32 APD signals (Figure 4.9:3) crosses a preset threshold level in the discriminator 
(Lecroy mod. 4608). If both triggers of the detector modules overlap, a 500ns gate 
activates the peak sensing ADCs (CERN AD811) digitizing the 2x32 APD channels 
from both detector modules (Figure 4.9:5). The interface between the ADCs and the 
computer is managed by a Wiener CC32 controller (Figure 4.9:6&7) and a Labview 
program running on the PC. Moreover, the program controls the whole set-up: motors 
and ADCs initialization, motor movement, spectrum analyses and software 
thresholding, event counting as well as event storage.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: CH1 and CH2 are the sum triggers of both detector modules with a time window of 
10ns each. If both triggers coincide, 500ns gates (CH3) activate the peak sensing ADCs 
digitizing the peak value per channel (CH4) within this 500ns. 
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4.3 Detector movement for a full-ring simulation 
Consider a full ring PET system consisting of 48 20x10x10mm3 LSO block detectors 
numbered from 1 to 48 as illustrated in Figure 4.10. A pair of detector modules 
operating in coincidence will acquire data from LORs lying within a diamond-shaped 
region in the sinogram, as clarified below. To recapitulate, a line-of-response or LOR is 
the line joining both incident photon positions measured in coincidence. And a sinogram 
is an ordered way of storing these LORs in function of their position xr (e.g. distance of 
LOR to the center of the scanner) and orientation f  (e.g. angle between LOR and x-
axis) (Figure 4.10 (left)). 
The origin of the diamond shaped segment is also demonstrated in Figure 4.10 (right). 
The LORs a1, b, a5 and c form the boundaries of the sinogram segment, defined by 
coincidences between detectors 1 and 25. All possible LORs measured between both 
detector modules, such as LOR d, can be stored within this segment.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 shows the central part of a sinogram where the sinogram is built up from 
the different segments associated with each possible detector combination. As 
demonstrated in Figure 4.10, the boundaries of the sinogram segment for detector 
combination 1-25 are a1, b, a5 and c. For detector combination 1-24, LORs c and c1 
outline the radial deviation. The angular limits are given by LORs a5 and e as seen on 
Figure 4.11 (left). Finally, combining all possible detector pairs results in a sinogram 
covering the whole FOV of the scanner. Typical, the radial distance xr will vary 
between -xmax and +xmax where xmax is given by the radius of the FOV while the angular 

ordinate f  is restricted from 0 to Pi radians. LORs with >f p  are convert to an angle 

smaller than p  through the transformation (xr,f ) (-xr,f p- ) 

Figure 4.10: (left) A full-ring PET system with 48 detector modules. A LOR can be 
characterized by the parameters xr and f  and organized into a sinogram. Each LOR (x0, 0f ) 
defines a point in the sinogram. (right) Illustration of a diamond-shaped sinogram segment for 
the two opposite detector modules 1 and 25. The points a1, b, a5 and c form the boundaries of 
the segment. All LORs measured in coincidence by both detector modules will be within this
diamond shape. 
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On the demonstrator setup, the sinogram is progressively assembled by collecting data 
from all possible detector combination in a step-and-shoot mode. However, only LORs 
within the field-of-view (FOV) are mandatory. Nevertheless, for a correct image 
reconstruction, all radial samples are required at each angular projection [66]. For a 
single diamond region, this condition is only satisfied for the radial sample at the center 
of the sinogram (i.e. the line a1-a5 in diamond 1-25 on Figure 4.11). For a FOV of 2cm, 
where the radial samples xr vary from -10mm to 10mm, data has to be acquired for all 
LOR within the rectangle on Figure 4.11. This means that all detector combinations 

with a detector difference of 
i jD -D 23, 24 and 25D =  have to be measured. In particular, 

full diamonds of the detector combinations 1-25 to 48-24 and half-diamonds of the 
detector combinations 1-24 to 48-23 and 1-26 to 48-25 are used for image 
reconstruction. 
 
To simulate a full-ring scanner, two detector modules, D0 and D1, were mounted on two 
rotating platforms (Figure 4.12). The bottom platform rotates D0 and D1 
simultaneously over 360°. The upper platform rotates detector D1 relative to D0. These 
two rotational movements allow the simulation of a full-ring system, i.e. acquire all 
necessary LORs. The diameter of the ring is 300mm. Each detector box contains a 
20x10x10 mm3 Teflon wrapped LSO block mounted on the S8850 APD array. The 
detector boxes also house the necessary front-end pre-amplifier electronics as described 
in section 4.1.1. 
The alignment of both detector modules was accomplished by a 20x10x300mm3 
aluminum bar placed on the z-stageW  as illustrated on Figure 4.12 (right). Centering 
both detector modules at each extremity of the bar, the alignment is assured. The 

Figure 4.11: Central part of a sinogram where each detector combination is associated with a 
corresponding diamond segment within the sinogram. LORs a1, b, c, a5 and c, a5, c1, e 
respectively give the boundaries of the diamond shaped segments for detector combination 1-25 
and 1-24. The rectangle encloses all LORs needed for a complete acquisition (all radial as well 
as angular samples) of a 2cm FOV. 
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z-stageW  comprises a compact linear stepping motor (DRL60, OrientalMotor) for axial 
displacement and a rotary stepping motor (DG60, OrientalMotor) for the rotation of 
the object under study. In fact, this angular motion is identical to the rotational 
movement of the lower demonstrator’s platform that rotates both detector modules 
simultaneous. But due to its higher accuracy, the angular motion of the z-stageW  is 
used to rotate the study object relative to both detectors instead of vice versa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As described above, one detector combination determines a diamond-shape segment in 
the sinogram. As the source rotates in a step-and-shoot mode, this diamond-shaped 
segment is displaced down the ordinate f  of the sinogram. The shift of the segment is 
defined by the angular step size a  of the z-W stage. This is demonstrated in Figure 
4.13. The shaded diamonds illustrate the different positions for the detector 
combination 1-25. The angular step a  is equal to one detector width such that there is 
no overlap between the different positions. However, it is apparent that not all radial 
samples are acquired at each projection as is required for a correct image 
reconstruction. To overcome this issue and to attain a larger FOV, different detector 
combinations have to be incorporate. Indeed, the number of positions taken by D1 
relative D0 determines the FOV. For example, Figure 4.13 shows the use of five 
detector combinations resulting in a FOV of approximately 40mm. To achieve a 
uniform acquisition over all radial samples only LORs within the dotted lines are 
accepted, leading to a parallelogram in the sinogram. Rotation of the source will again 
move this shape over all angular samples f  of the sinogram, needed for the image 
reconstruction. 

Figure 4.12: (left) PET prototype demonstrator consisting of two detector modules 
mounted on rotation platforms allowing the simulation of a full-ring system. 
(right) A 20x10x300mm3 aluminum bar used for the alignment of both detector modules. 
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Figure 4.13: The number of detector combinations at which data are acquired determines the 
diameter of the FOV. In this example, five detector combinations result in a FOV of 40mm. In 
order to obtain a uniform acquisition over all radial samples, only data within the dotted lines 
are accepted. For the five detector combinations 1-27 to 1-23, a parallelogram shaped segment 
is formed. As the source rotates, this segment is displaced down the ordinate f  of the sinogram 
and fills all angular samples needed for image reconstruction. 
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4.4 An automated method of training data acquisition 
The scan procedure described in previous paragraph results in the complete 
measurement of all possible projections within the FOV. Each recorded coincidence 
event consists of both actual detector positions, the angular position of the z-W stage 
and the 2x32 APD sampled light distribution of both LSO blocks. As introduced in 
Paragraph 3.4, neural networks trained at different angles can extract a nearly parallax-
free incidence photon position from this scintillation light distribution if the impinging 
photon angle is known. However, in a scanner geometry, like a full-ring design, the 
selection of the appropriate neural network can also be based on the detector 
combination involved in the coincidence detection. In fact, if the centers of the 
scintillator blocks firing in coincidence are used to estimate the incidence angle, the 
maximum uncertainty on the estimated incidence angle depends on the scintillator 
block size and ring diameter. The biggest discrepancy with the true incidence photon 
angle is  3.8 degrees for a PET-system with a ring diameter of 300mm using 
20x10x10mm3 LSO blocks. Larger ring diameters result in a lower uncertainty as the 
uncertainty is given by the width b of the LSO block and the radius R of the scanner  
 1tan [b/R]-D =  (4.2) 
 

To study the influence of a mismatch between the true incidence angle and the 
estimated incidence angle, neural networks trained at a specific angle are evaluated 
with data obtained at incidence angles 5 degrees below and above the incidence angle 
the neural networks were trained for (more information about NN positioning 
estimation, see Paragraph 3.4). The effects of these inappropriate angle selections are 
shown in Table 4.1. The FWHM degradation due to the incidence angle mismatch is on 
average 0.1mm and is smaller when the incidence angle is underestimated. A similar 
trend is observed for the FWTM with an average degradation of 0.3mm. Consequently, 
no big deterioration is observed between the positioning capabilities of neural networks 
trained with the true incidence angle and neural networks trained with an incidence 
angle mismatch of 5 degrees.  
 

Table 4.1: FWHM and FWTM resolutions for NNs evaluated with an incidence angle of  
-5°, 0° and 5° from the training incidence angle. The energy threshold was set at 100keV 

 Angular mismatch 

FWHM FWTM Training 
angle -5° 0° +5° -5° 0° +5° 

0°  1.8mm 2.0mm  4.3mm 5.0mm 
5° 2.0mm 1.9mm 2.1mm 4.7mm 4.8mm 5.2mm 
10° 2.0mm 2.0mm 2.2mm 4.9mm 5.0mm 5.3mm 
15° 2.0mm 2.0mm 2.2mm 5.2mm 5.2mm 5.5mm 
20° 2.1mm 2.1mm 2.2mm 5.3mm 5.1mm 5.6mm 
25° 2.1mm 2.1mm 2.3mm 5.4mm 5.3mm 5.8mm 
30° 2.2mm 2.0mm  5.7mm 5.5mm  
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Assuming a ring geometry with 20x10x10mm3 LSO blocks, an uncertainty on the 
estimated incidence angle less than  5 degree per block is already met if the ring 
radius is larger than 115mm and the center of the detector blocks are used to estimate 
the incidence angle. In consequence, on the demonstrator set-up only one neural 
network per detector combination has to be trained. 
The training process of the neural networks requires a set of samples that link the 
measured scintillation light distribution to the known photon incidence position. Like 
on the bench set-up, (see Paragraph 3.2), the acquisition of such a data set is done by 
placing a 250 mm  22Na point source (50 Cim ) very close to the detector module that 
must be trained, i.e. detector Dtrain. The impact position of the impinging photon is 
confined to a very small region through electronic collimation with the second detector 
Dopp (see Figure 4.14 left, dotted lines). The beam width scales with the ratio of the 
distance Dtrain-source and the distance source-Dopp. On the demonstrator set-up, this 
ratio was about 1/29 resulting in a beam width of less than 1mm FWHM. This photon 
beam is stepped over the surface of the LSO block in steps of 500 mm  in both x 
(coincidence interval, see Figure 4.14) and y direction (block height). At each position 
on this grid, 150 events were measured to train and evaluate the NN. For each 
coincidence, the source position and the 32 digitized APD pixel values of Dtrain are 
saved. The grid acquisition in 500 mm  steps is repeated for each detector combination 
within the FOV. The different detector combinations are obtained by rotating detector 
Dopp relative to Dtrain as illustrated on Figure 4.14 (left). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14: (left) Schematic representation of the demonstrator set-up for the automatic 
training data acquisition. The source is moving over a grid in steps of 500 mm  through the 
coincidence interval (x direction) and the 10mm block height (y direction). The different 
detector combinations are obtained by moving Dopp relative to Dtrain. (right) Illustration of the 
demonstrator set-up. In order to minimize the collimated beam width, the source platform shown 
on Figure 4.12 is replaced by a source holder. The beam width scales with the ratio of the 
distances Dtrain-source and source-Dopp if the dimensions of the point source are negligible. In our
setup, the ratio on the demonstrator is 1/29 which reduces the beam width to about 1mm 
FWHM.  
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The start and stop positions of the coincidence interval per detector combination are 
calculated relative to the measured start and stop positions of detector combination 1-
25. Only for this detector combination the edges of the block can be estimated from 
symmetry considerations. Given the mean count rate profile of the whole block (dashed 
line in Figure 4.15, right) and knowing the length of the crystal block (20mm), both 
edges of the block should have the same count rate. Accordingly, the two positions, 
20mm apart, having the same rate correspond to the edges of the block. Figure 4.15 
illustrates the count rate profiles acquired during the raster scan for the acquisition of 
training data for detector D0 and detector combination 1-25.  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
The start and stop positions of detector combinations 1-25 to 1-29 are calculated as 
follow: 

             
Nb

Nb

1-25 1

1-25 1

Start = start -20.Tan[(DetD -25). ]
48

Stop = stop -10.Tan[(DetD -25). ]
48

p

p  (4.3) 

and for detector combinations 1-21 to 1-25, the start and stop positions are computed 
with: 

             
Nb

Nb

1-25 1

1-25 1

Start = start +10.Tan[(25-DetD ). ]
48

Stop = stop +20.Tan[(25-DetD ). ]
48

p

p  (4.4) 

with start1-25 and stop1-25 respectively the start and stop positions for detector module 
D0 at detector combination 1-25. The factors 10 and 20 are clarified in Figure 4.16 and 
represent the distance between the front of the block and source or the distance 
between the backside of the block and source. 

Figure 4.15: (left) 3D representation of the measured count rate profiles during the raster 
scan of detector D0 for detector combination 1-25. (right) 2D plot of the same count rate 
profiles. The dashed line represents the mean value over all rates. The start and stop 
positions are the points, 20mm apart with an identical count rate.  
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Figure 4.17 summarizes the average count rate profiles for the different detector 
combinations 1-21 to 1-29 needed for the training of the NNs for detector module D0 for 
all incidence angles needed. The start and stop positions are shifted to the right for 
detector combinations 1-21 to 1-24 and shifted to the left for the combinations 1-26 to 
1-29. The calculation of the start and stop positions and the count rate profiles of the 
training data for detector module D1 are totally identical. 
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Figure 4.16: Schematic representation for the calculation of the start and stop positions for the 
different detector combinations relative to the detector combination 1-25.  
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Figure 4.17: Summary of the average count rate profiles for all acquired detector combinations 
1-21 to 1-29 needed for the training of detector module D0.  
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Similar to the bench approach, the acquired data is then split into a training set and a 
validation set. The training set is used to train a neural network in the Mathematica 
Neural Network package [61], where the known source position is used as an 
approximation of the impinging photon position. 
For each event in the validation set, the positioning error, defined as the difference 
between the estimated and the true position, is calculated. To obtain an estimate for 
the spatial resolution, these positioning errors are binned in a histogram. The FWHM 
and FWTM are again used to evaluate the spatial resolution. However, due to the 
statistical nature of the data sets and the random initialization of the NN prior to 
training, retraining the NN with a training set obtained in identical circumstances will 
result in a different NN with slightly different performances. Therefore, five different 
pairs of training sets and test sets were created. Each pair was used to train a NN. The 
resulting NNs were then evaluated using the same validation set. The averages of the 
FWHM and the FWTM of these five histograms are used as estimates for the spatial 
resolution. As an estimates of the uncertainty, the sample standard deviations of the 
mean FWHM and FWTM are used and are all smaller than 0.05mm.  
Figure 4.18 shows the FWHM and FWTM of the spatial resolution for both detector 
modules D0 and D1 on the demonstrator set-up trained with data acquired via a fully 
automatic acquisition process written in Labview. For a FOV diameter of 80mm, nine 
consecutive detector combinations have to be trained per detector module. For detector 
module D0, the combinations are 1-21, 1-22, 1-23, …, 1-29. The combinations 45-25, 46-
25, 47-25, 48-25, 1-25, …, 5-25 are acquired to train detector module D1. The 
corresponding incident photon angles per detector combination, defined as the line 
joining the centers of both detectors modules vary from -15degree to 15degree in steps 
of 3.75degree. 
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Figure 4.18: FWHM and FWTM resolutions achieved with Levenberg-Marquardt trained 
neural networks, in function of the different detector combinations of both detector
modules D0 and D1 involved on the demonstrator set-up.  



 

 

94 Chapter 4 

 

For detector combination 1-25 acquiring almost perpendicular incident photons, the 
measured FWHM detector resolution for detector modules D0 and D1 are respectively 
2.17mm and 2.19mm. At the boundaries of the 80mm FOV (detector combinations 1-21 
& 1-29 and 45-25 & 5-25) the spatial resolution degrades slightly to an average of 
2.36mm FWHM for both detector modules. The FWTM resolution for D0 degrades from 
4.89mm to 5.5mm for respectively perpendicular incident photons to photons impinging 
at  15degree. For detector D1 the FWTM resolution degrades from 5.14mm to 5.68mm 
depending on the incidence photon angle. 
Hence these results show the possibility of an automatic acquisition of training data. In 
a real PET scanner this can be implemented in a fully automated procedure by slowly 
spiralling a point source close to the detectors and only saving coincidences with LORs 
within the FOV (Figure 4.19). Sorting the recorded coincidences per detector 
combination yields the required training data sets, similar to these obtained with the 
demonstrator setup. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.19: Illustration of the automated acquisition of training data 
on a full ring set-up using a spiralling point source moving close to the 
detector surface. 



 

 

 

Evaluation of block detectors on the PET prototype demonstrator 95

4.5 Influence of the acquisition parameters on the neural 
network performance 

Table 4.2 compares the FWHM and FWTM spatial resolutions achieved on the bench 
set-up and demonstrator set-up for perpendicular incident photons at an energy 
threshold of 380keV.  
 

Table 4.2 FWHM and FWTM spatial resolutions achieved on bench and demonstrator 
set-up for perpendicular incident photons at an energy threshold of 380keV  

 Bench set-up Demonstrator set-up 
FWHM 1.6mm 2.2mm 
FWTM 4.1mm 5.0mm 

 

In order to understand the differences between both set-ups, a Monte Carlo simulation 
of a 20x10x10mm3 LSO block detector module was implemented using GATE, a Geant4 
Monte-Carlo toolkit [67]. (The implementation was done by Li Zhi, a PhD student also 
working at IIHE-VUB). The code simulated an experimental set-up where a narrow 
photon beam is positioned on the front surface of a 20x10x10mm3 Teflon-coated LSO 
block. Upon interaction, the impinging 511 keV photons produce a number of optical 
photons with an average of 32000 ph/MeV [68]. Also the reflections at the edges of the 
Teflon wrapped block are simulated with a reflectivity factor of 95%. The output of 
such a simulation consists of the number of optical photons reaching each of the 32 
APD pixels. 
In order to study the influences of the different detector parameters on the spatial 
resolution, the simulated output per APD pixel was post-processed in Mathematica. 
The contributions of the quantum efficiency (QE), excess noise factor (F), gain (Gp) 
and pre-amplifier equivalent noise charge (ENC) are added to the simulated APD 
signals using the following formula for the equivalent optical photon noise (EOPN) per 
pixel: 
 

 
i

i i i

2

i
p

F ENC 1
EOPN  = N . +

N .QE N .QE.G Ng
g g g

æ ö÷ç ÷ç -÷ç ÷ç ÷è ø
 (4.5) 

with 
i

Ng  the number of optical photons impinging on pixel i. The first term under the 

square root in Equation (4.5) reflects the statistical fluctuation of the APD gain and 
the optical photon statistic. For the Hamamatsu S8550 the APD quantum efficiency 
QE is 70% and the excess noise factor F is about 1.75 [39]. As this term only depends 
on the APD characteristics, a similar influence in both set-ups is expected. The second 
term describes the electronic noise, generated by the APD and the preamplifier, 
through the equivalent noise charge measured at the input of the amplifier. It depends 
on the dark current of the APD pixel capacitance and the noise of the preamplifier. On 
the bench set-up, the APD signals are read out by Cremat CR-110 preamplifiers which 
resulted in a measured 600e- ENC. The demonstrator set-up is based on a noisier pre-
amplifier, i.e. the P-AMP chip introduced in Paragraph 4.1.1. As calculated in Equation 
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(4.1), the ENC of the APD plugged on the P-AMP chip is 1000e-. Because the 
statistical fluctuation on the number of optical photons hitting the APD pixel is already 
included in the Monte-Carlo data, this contribution to the EOPN has to be removed by 
adding the last term in Equation (4.5). 
 
The post-processing in Mathematica was achieved through the generation of a random 

sample of the underlying Gaussian distribution N(
i

Ng , 2
iEOPN ) with mean 

i
Ng  and 

variance 2
iEOPN  for each of the 32 APD pixels i. 

To study the influence of the different detector parameters on the intrinsic resolution, 
training data were simulated using the parameters that represent the experimental set-
up. After training, the NN was evaluated using simulated data generated with the same 
parameters except that the photon beam is assumed to be perfect now, i.e. a zero beam 
width. The resulting resolution will hence only reflect the influence of the detector 
components and the data acquisition method, i.e. it represents the intrinsic detector 
resolution. 
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Validation of Monte Carlo simulation 
To validate the simulation, the photon incidence positions were estimated from the 
data (experimental bench set-up or simulated) using a neural network. The following 
parameters are used in the bench set-up simulation: 
 

Table 4.3: Parameters used in the simulated bench set-up  
APD QE F APD Gain ENC Beam width Beam step 

70%@420nm 1.75 50 600e- 1mm FWHM 250 mm  
 
The local resolutions and nonlinearity for the perpendicular incident photons are 
determined. This was accomplished by computing the positions of events impinging 
within 1mm regions, (i.e. combining events from four adjacent beam positions) and 
comparing them with their known incidence position. The FWHM resolutions and 
nonlinearities are in good agreement (see Figure 4.20). The experimental FWTM 
resolution is slightly larger than the simulated one. This is probably due to the fact 
that the photon beam profile is not exactly a Gaussian profile, i.e. the tails of the 
experimental photon beam are larger compared to the simulated Gaussian distribution. 
The average simulated resolution over the complete block was 1.8mm FWHM and 
4.4mm FWTM at an energy threshold of 100keV. Besides, these resolutions still include 
the contribution of the 1mm beam width. 
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) 

Figure 4.20: Comparison of the experimental bench data set and simulated bench data set 
for perpendicular incident photons. The local FWHM and FWTM resolutions and 
nonlinearity are plotted as function of the photon incidence position on the LSO block.  
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Origin of nonlinearity 
The nonlinearity of the trained NNs is negligible except for photons impinging close to 
the edges (<2mm). In this region the estimated positions are shifted towards the center 
of the block. The origin is twofold. First, there is an intrinsic detector effect. When 
studying the resolution along the long side of the APD, the normalized signals from the 
four APD pixels in the same column are summed. This gives 8 input values to train the 
NN. Figure 4.21 illustrates per beam position the average responses of the normalized 
and summed APD channels of the training data set for perpendicular incident photons 
obtained on the experimental bench set-up. The analysis of the average APD responses 
per beam position indicates very similar trends for photons impinging within the 
first/last two millimeter from the crystal edge. In consequence the neural network 
which uses these APD responses as input for the position estimation will also project 
these different beam positions to similar positions introducing the nonlinear behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monte Carlo simulations which takes photon statistics and the optical photon transport 
into account, also point out that there is no big variation in APD responses within the 
first/last 2mm of the crystal edge. Figure 4.22 shows the average simulated response 
per beam position, after normalization and summation per column, for three 2mm 
intervals. The APD responses for the different beam positions in the central 2mm can 
clearly be differentiated. For beam positions in the outer interval, the light profiles are 
indiscernible. 
The second cause of the systematic shifts comes from the NN training itself. The NN 
training introduces a nonlinearity at the boundaries of the NN output domain. To 
illustrate this, a NN was trained for data restricted to the interior 10mm of the LSO 
block. When all data are taken, i.e. all beam positions between 0mm and 20mm, no 
nonlinearity is observed within the interior 10mm. If a NN is trained with the same 

Figure 4.21: Average APD responses per beam position for perpendicular incident 
photons acquired on the bench set-up in steps of 250 mm . The 32 normalized APD pixels 
are reduced to 8 inputs by summing the 4 pixels within a same column. 
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data set but only using events from beam positions restricted to the interval 6-15mm, 
nonlinearities are introduced at the boundaries of this interval as shown on Figure 4.23.  
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Figure 4.22: Average APD responses per beam position (250 mm  step size) for perpendicular 
incident photons obtained with a Monte Carlo simulation. The 32 normalized APD pixels 
are reduced to 8 inputs by summing the 4 pixels within a same column. Only three 2mm
intervals are shown, both 2mm extremities and the central 2mm. 
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Figure 4.23: Illustration of the extra nonlinearity introduced by the NN at the boundaries 
of the NN output domain. The local FWHM resolution and nonlinearity are plotted as 
function of the photon incidence position. 
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Influence of the beam step size and the beam width 
A photon beam steps over the block to acquire training data for the neural network. 
But at how many points on the LSO block surface the scintillation light distribution 
has to be acquired? And how narrow the beam has to be focused to minimize the 
uncertainty between the true photon impact point and the known beam position such 
that it does not deteriorate the intrinsic detector resolution? The effects of the step size 
and beam width on the intrinsic resolution are evaluated in two separate simulations. 
The default parameters of the simulation are given in Table 4.3. The influence of the 
beam step size is examined for a step size of 0.25mm, 0.5mm, 1mm, 1.5mm and 2mm. 
Figure 4.24 shows that the spatial resolution is rather independent of the beam step 
size. Measuring the scintillation light distribution every 1mm is sufficient to prevent 
any resolution loss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To study the beam width dependency, simulations with five different beam widths, 
from 0mm to 2mm FWHM in steps of 0.5mm, are evaluated. Figure 4.25 shows the 
spatial resolutions found for the different beam widths. The simulations show that the 
width of the photon beam during the training phase has a negligible influence on the 
spatial resolution if the beam width is less than 1mm FWHM.  
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Figure 4.24: Simulated intrinsic resolution as function of the photon beam step size 
used to collect training data. A beam width of 1mm FWHM and an ENC of 600e- was 
used in the simulation (ENC of the bench set-up front-end electronics). 
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Figure 4.25: Simulated intrinsic resolution as function of the photon beam width used 
to collect training data. The beam was stepped in 250 mm  over the length of the LSO 
block. An ENC of 600e- was assumed in the simulation 
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Influence of electronic noise level 
The front-end electronic contributes to the noise on the APD signals. The influence of 
the noise level on the spatial resolution was studied by varying the simulated ENC at 
the input of the preamplifier. The ENC was evaluated between 0e- and 1000e- in steps 
of 200e-. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The simulation predicts that the evaluation of a data set with a noise level of 600e- and 
a zero-beam width only adds 0.2mm to the FWHM and 0.6mm to the FWTM 
resolution compared with the evaluation of a perfect data set without noise and zero-
beam width. The extra deterioration of the intrinsic FWHM resolution for a 1000e- 
ENC is 1.7/1.3 = 1.3 times worse than the 600e- ENC FWHM resolution. The FWTM 
degrades about 4.1/3.5 = 1.2 times.  
 
Thus, three parameters were evaluated to understand the resolution differences found 
on the bench set-up and the demonstrator set-up. The influences of the beam step size 
and beam width differences are minimal as both set-ups has a beam step size below 
1mm and a beam width around 1mm FWHM. However, the differences in resolution as 
summarized in Table 4.2 can be attributed to the different ENC values. The simulation 
calculates a degradation of 30% and 17% for respectively the intrinsic FWHM and 
FWTM resolutions when the ENC varies from 600e- to 1000e-. 
The degradations measured between both experimental set-ups are in agreement. 
Indeed, the spatial resolution deterioration discerned between both set-ups can be 
explained as follow: 

 ( )
2

21.6 1 1.3 1.1 1 2.1- ⋅ ⋅ + =  (4.6) 

with 1.6 the Bench set-up resolution, 1 the estimated beam width profile, 1.3 the ENC 
contribution and 1.1 the effect of the beam step. Consequently the simulations confirm 
the implemented automated acquisition method of training data for the positioning 
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Figure 4.26: Simulated intrinsic resolution as function of the amplifier ENC. A 1mm 
FWHM photon beam was used to generate the training data. The beam was stepped 
in 250 mm  steps over the length of the LSO block 
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algorithm on the demonstrator set-up. The discrepancy in the intrinsic spatial 
resolutions of both set-ups is mainly due to the different ENC values. 
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Chapter 5  

5 Two-dimensional reconstructed images on the PET 
prototype demonstrator 

The automated acquisition method for training data on the prototype demonstrator for 
neural networks depicted in Chapter 4 demonstrates that an intrinsic spatial detector 
resolution of 2.2mm FWHM can be achieved for nearly perpendicular incident photons 
(Figure 4.18). At the boundaries of the examined 80mm FOV the intrinsic spatial 
resolution degrades slightly to 2.4mm FWHM. In addition, simulations point out that 
an optimization of the pre-amplifier ENC from 1000e- to 600e- can improve this FWHM 
intrinsic resolution with 0.4mm. 
In order to further evaluate these results on 20x10x10mm3 LSO blocks, the spatial 
resolution in reconstructed 2D images is examined. Per detector combination the 
correspondingly trained NN is used to define the LOR of each coincidence event 
acquired on the prototype demonstrator. 

5.1 Scanning process 
On the demonstrator the tomographic data is acquired in step-and-shoot mode since 
there is no position encoder on the stepper motor moving the source platform (see 
Figure 5.1.a). As described in the previous chapter, one detector combination 
determines a diamond-shaped segment in the sinogram. The rotation of the source 
platform displaces this diamond-shaped segment down the ordinate f  of the sinogram. 
The shift of the segment is defined by the angular step size a  of the z-W stage. 
The width of the FOV depends upon the number of detector combinations used. Since 
all radial samples of a projection are required at each projection angle to reconstruct an 
image, the minimal number of detector combinations is three. The parallelogram 
formed by detector combinations 1-24, 1-25 and 1-26 result in a FOV of 20mm (see 
Figure 5.1.b and c). Rotation of the source platform over 360° will sweep this 
parallelogram through all angular samples f  of the sinogram, needed for the image 
reconstruction. 
In the previous chapter nine different neural networks for detector combinations 1-21 to 
1-29 were trained. Accordingly, with these nine different detector combinations a FOV 
of maximum 80mm diameter can be evaluated on the demonstrator (Figure 5.1.c). 
Again, for each detector combination the source platform has to rotate over 360° for the 
acquisition of all angular samples. 
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Figure 5.1: (a) Illustration of the PET prototype demonstrator. The axial and angular movement of
the source platform is made by the z-stage.W  The different detector combinations are obtained by 
moving detector D1 relative to detector D0 by use of the upper scanner platform. 
(b) The diameter of the FOV depends on the number of detector combinations at which data is 
acquired. The FOV width achievable with three detector combinations is shown. 
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The acquisition of tomographic data is implemented in Labview. Due to the absence of 
position encoders the scan process starts with the movement of detector D1 and the 
source platform to their initial positions defined by respectively a mechanical and two 
optical end switches (see Figure 5.1.a). From this known initial position detector D1 
leaves the mechanical switch and moves to its start position, determined by the 
required FOV diameter, e.g. for a FOV diameter of 20mm detector D1 moves to 
position 26 as illustrated on Figure 5.1.b. The axial start position of the source platform 
is such that the object under study is centered along the 10mm side of the LSO block. 
For the given detector combination, e.g. 1-26, and the initial angular source position, 
coincidences are recorded for a fixed amount of time. Then the z-stageW  rotates over 
an angle a  to its next position and coincidence events are acquired again for the fixed 
amount of time. This last step is repeated until the z-stageW  has rotated over 2P rad. 
This rotation results in the movement of the diamond-shaped segment over all angular 
samples in 2P/a  steps. After the angular z-cycleW  is accomplished, detector D1 rotates 
to the next adjacent detector position and again the angular z-cycleW  is completed. 
This procedure is repeated for all detector positions within the FOV, e.g. positions 25 
and 24 in this example. Each saved coincidence event contains both detector positions 
D0 and D1, the angular source position and the 2x32 scintillation light distributions 
sampled by peak sensing ADCs. 
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5.2 Influence of angular source step a on angular sampling 

Figure 5.3 and Figure 5.4 illustrate the effect of the angular step a of the z-W stage on 
the diamond-shaped segment displacement within a sinogram. Figure 5.3 shows the 
sinograms for respectively detector combination 1-24, 1-25 and 1-26 as well as the 
global sinogram for a point source 10mm off center. In this example the angular step 
a  corresponds to one detector width such that there is no overlap of successive detector 
positions. As the demonstrator simulates a full ring of 48 detectors, one detector step 
equals 360°/48 = 7.5°. The dotted lines in sinograms 1-26, 1-25 and 1-24 delimit the 
maximal radial deviation of a LOR. The gaps in the sinograms between the different 
angular positions demonstrate that an angular step a  of 7.5° is insufficient to acquire 
all angular samples. The gaps between the segments are due to the wedge shaped voids 
between two consecutive detector positions (Figure 5.2). In addition, the gaps are 
enlarged by the non-linear effect of the NN positioning estimator. Indeed the non-linear 
effect reduces the radial and angular positions of the LORs at the extremities of the 
diamond-shaped sinogram segments. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
In order to avoid the gaps in the sinogram an overlapping scanning geometry was 
investigated. For this lay-out the angular step a was reduced to one fourth of the non-
overlapping approach as shown in Figure 5.2 (right). The gaps between the different 
angular positions as seen in Figure 5.3 disappear. The overlapping geometry allows the 
measurement of all LORs needed for a correct image reconstruction (Figure 5.4). 

Figure 5.2: Scheme of both tested geometries, i.e. a non-overlapping and an 
overlapping scanning geometry. The angular steps a  are respectively 7.5° and 
1.875°. The overlapping scanning geometry allows the acquisition of LORs that were 
missing mainly due to voids in the non-overlapping scanning geometry. 
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Figure 5.3: Sinograms per detector combination and the global sinogram for a point source
10mm off center. The acquisition is done with an angular source step a  of 7.5°. As the 
demonstrator simulates a full ring of 48 detectors, 360°/48 equals 7.5° which corresponds to
one detector width. The dotted lines in sinograms 1-26, 1-25 and 1-24 delimit the radial 
range measured by each detector combination. The gaps in the sinograms between the
different angular positions demonstrate that an angular step a  of 7.5° is insufficient to 
acquire all angular samples. 
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Figure 5.4 Sinograms per detector combination and the global sinogram for a point source 
10mm off center. The angular source step a  was set to 360°/192 = 1.875° which 
corresponds to a quarter of one detector width. The dotted lines in sinograms 1-26, 1-25 and 
1-24 delimit the radial range measured by each detector combination. The gaps between the 
different angular positions as seen in Figure 5.3 disappear. The overlapping geometry allows 
the measurement of all LORs needed for a correct image reconstruction. 
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5.3 Position estimation of non-perpendicular incident 
photons with perpendicular trained NN 

In Paragraph 4.4 the influence of a mismatch between the true and the estimated 
incidence angle was already examined. At incidence angles five degrees below and above 
the true incidence angle, the FWHM degradation due to this angle mismatch was on 
average 0.1mm. A similar trend was observed for the FWTM with an average 
deterioration of 0.3mm. In the present section the improvement in image resolution due 
to specifically trained NNs per detector combination is examined. To evaluate this 
improvement, a comparison with the usage of NNperp for each detector combination is 
made. NNperp is the NN trained for perpendicular incident photons.  
For a point source 35mm off center, all trained detector combinations, from 1-21 to 1-
29, are used to reconstruct the tomographic image. Prior to the analysis of the 
reconstructed image, the differences in local intrinsic detector resolution and 
nonlinearity achieved with a specifically trained NN and NNperp are evaluated (Figure 
5.5). The data set used for this evaluation is the data set acquired by detector 
combination 1-29 on the PET demonstrator. As mentioned before the specifically 
trained NN1-29 achieved a global intrinsic detector resolution of 2.3mm FWHM and 
5.3mm FWTM. The nonlinearity is negligible except for photons impinging close to the 
edges of the LSO block.  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Comparison of intrinsic local resolutions and nonlinearities achieved with a 

specifically trained neural network NN1-29 and Nperp, a NN only trained for perpendicular 

incident photons. The local FWHM and FWTM resolutions and nonlinearities are plotted as 
function of the photon incidence position on the LSO block. The results of NNperp at 5mm are 
removed from the plot due to the incorrect fit of the local resolution. Also the FWTM results 
of NN1-29 and NNperp at -2mm and 20mm are dropped for the same reason. 
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If NNperp is used to estimate the incident photon positions at detector combination 1-29 
the global intrinsic detector resolution degrades to 3.9mm FWHM and 8.1mm FWTM. 
The nonlinearities of the local resolutions worsen for all beam positions. At the edges, 
the large shifts towards the center of the block result in an artificial compression of the 
local intrinsic detector resolutions.  
 
The differences in position estimation per detector combination for specifically trained 
NNs versus NNperp are summarized in Figure 5.6. The data used in this evaluation is the 
tomographic data acquired for a point source 35mm off center. As NN1-25 and NNperp are 
one and the same trained NN, it is obvious that all data on the scatter plot of NN1-25 
versus NNperp are lying on the bisector as seen on Figure 5.6. All remaining plots show a 
strong linear dependency, however all with a small bias. The line of identity was shifted 
vertically by -0.4mm for 1-21 to 0.6mm at position 1-29. The positions of the different 
detector combinations 1-21 to 1-29 are illustrated on Figure 5.1.b. It also appears that 
the spread between the estimated positions of NN1-X and NNperp broaden in function of 
the step differences between the detector position X and 25. The spread vary from 
0.5mm FWHM for combination 1-24 (1 detector step) to 1.3mm FWHM for 
combination 1-29 (4 detector steps). 
A last tendency coming out these plots is the inability of NNperp to correctly estimate 
positions outside the trained 0-20mm interval where it was trained for. For detector 
combination 1-21 to 1-24, situated on the right-hand side of combination 1-25 the 
acquired incident photon interval varies from (as explained in Figure 4.16) 
 

 25-X0mm to 20+10.Tan[ . ] mm
48

æ öP ÷ç D ÷ç ÷çè ø
 (5.1) 

 

with 25-XD  the step difference between the detector combination 1-X and 1-25. Factors 
10 and 20 are respectively the thickness and the length of the LSO block and 48 the 
number of detectors within the simulated full ring. 
As demonstrated in Paragraph 4.5, the unavoidable non-linear effect on the specifically 
trained NN1-25 already starts for photons impinging within the first/last two millimeter 
from the crystal edge. This trend persists outside the trained interval. The estimated 
position for photons impinging beyond 18mm is shifted towards the center of the block 
as illustrated on Figure 5.6. in scatter plot NN1-22 versus NNperp.  
A similar results are found for detector combinations 1-26 to 1-29, located on the left 
side of detector combination 1-25. For these detector positions the possible incident 
photon interval is 
 

 X-25-10.Tan[ . ] mm to 20mm
48

æ öP ÷ç D ÷ç ÷çè ø
 (5.2) 

 

In this case, NNperp will estimate positions beneath 2mm towards 2mm as shown in 
scatter plot NN1-28 versus NNperp.. 
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Figure 5.6: Scatter plots per detector 
combination illustrate the relation of the 
estimated incident photon position using 
NN1-X versus NNperp respectively Tomographic 
data of a point source 35mm off center is 
used in this evaluation. 
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Consequently, all previous results confirm the benefits of specific trained NNs in order 
to acquire optimal parallax-free position estimations. The effect of non-specifically 
trained NNs on reconstructed images is illustrated in Figure 5.7 and Figure 5.8. Figure 
5.7 shows the substraction of sinogramspec with sinogramperp for a point source 35mm off 
center. The gray sinogramperp is the sinogram obtained from position estimation using 
only NNperp whereas sinogramspec (black points) is obtained by using specific trained 
NN1-X per detector combination. The gap in the middle of the plot corresponds with the 
band of diamond segments 1-25. As NNperp and NN1-25 are identical the differences at 
this detector combination of both sinograms equals zero. The bias and non-linearity 
seen in Figure 5.6 result in a reduction of the amplitude of the gray sinogramperp curve 
compared to the black sinogramspec. However the average radial resolutions over all 
angular projections of both sinograms are similar, with an average of 2.2mm FWHM 
and 5.0mm FWTM. Accordingly and as shown in Figure 5.8, the MLEM reconstructed 
images using one of both position estimation methods does not differ in their 
reconstructed image resolution. A FWHM of 2.1mm and a 3.9mm FWTM image 
resolution is achieved after 10 iterations. Nevertheless, as expected from the sinogram 
analysis, a displacement in the point source position occurs. The magnitude of the shift 
is 0.8mm. 
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Figure 5.7: Scatter plot obtained by subtraction of sinogramperp from sinogramspec for a 
250 mm 22Na point source 35mm off center. The gray sinogramperp is the sinogram obtained via 
position estimation using only NNperp whereas sinogramspec (black points) is achieved by using 
specific trained NN1-X per detector combination. The gap in the middle of the plot occurs 
because NNperp and NN1-25 are the same NN.  
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Figure 5.8: MLEM reconstructed image of a 35mm off center point source. (a) Reconstructed 
point source using specifically trained NN1-X positioned at 35 mm from the center while for (b) 
the reconstruction is done only with NNperp estimated positions. A FWHM of 2.1mm and a 
3.9mm FWTM resolution are achieved in both cases. However a displacement of 0.8mm 
appears between the reconstructed points, using the same data set but different trained NNs. 
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5.4 Point sources at different radial distances 
The transaxial resolution of a 22Na point source (250 mm diameter) was measured at 
different radial distances, from midpoint to 40mm off center in steps of 5mm (see 
Figure 5.9). Axially the point source was placed near the center of the FOV. The 
acquisition of the tomographic data is completed according to the scan process 
described in Paragraph 5.1. A two-dimensional (2-D) Maximum Likelihood Expectation 
Maximization (MLEM) algorithm is applied for the image reconstruction. The 
expectation maximization algorithm, introduced in Chapter 2, is an iterative algorithm 
that maximizes the likelihood under a Poisson data model. At each iteration, the 

current image estimate (k)
ĵf  is used to generate, by forward projection procedure, the 

projection data 
N(k) (k)

i ij jj=1
ˆp̂ = L .få  which is compared with the measurements pi. The 

measured coincidences in the i-the projection bin [36]. This comparison is used to 
compute correction factors to make (k)

ip̂  consistent with pi by modifying the image 
estimate (k)

ĵf  and generate a new estimate (k+1)
ĵf . In other words, the intent is that the 

series of estimates ( (0)
ĵf , (1)

ĵf , (2)
ĵf , …, (k)

ĵf ) converges to a final estimate, *
ĵf , such that 

N* *
i ij jj=1

ˆp̂ = L .få  is the closest possible to pi. However, research showed that if the 

iterations continue, the likelihood increases, whereas the image begins to degenerate, 
becoming increasingly noisy [36]. The origin of this effect lies in the fact that the 
measurements pi are Poisson random variables with noise, and that insistence on an 
exact fit to the data will result in an image dominated by noise. It is therefore 
important to terminate the reconstruction before this degeneration begins, even though 
the likelihood function may not be at maximum. However the choice of the stopping 
point is difficult, and research continues in order to define appropriate rules for use 
with real data [36]. 
Stefaan Vandenberghe from the Medical Imaging and Signal Processing (MEDISIP) 
research group at the Ghent University provided the iterative listmode MLEM 
reconstruction program used [69]. The MLEM algorithm stops after ten iterations and 
has an image pixel size of 0.5mm. 
Figure 5.9 illustrates the nine reconstructed 22Na point sources from midpoint to 40mm 
off center in steps of 5mm which characterize an 80mm FOV. No corrections such as 
normalization, scatter - or random correction were applied to the reconstructed images. 
 
Figure 5.10 shows the radial and tangential resolution as a function of the radial source 
position. The radial and tangential resolutions remain constant around 2.0mm FWHM 
and 3.7mm FWTM when the source is moved from the CFOV to 40 mm off center. 
However, only the reconstructed point source at 0mm has a perfect round shape. This is 
probably due to the fact that for this CFOV position, all LORs can be measured by 
just one detector combination, i.e. the opposite detector combination 1-25. The slight 
asymmetry in the remaining positions is probably due to a non-perfect rotational 
movement of both detector modules and can also be enhanced by the non-linear effect 
of the neural network positioning algorithm. Nevertheless Figure 5.9 and Figure 5.10 
demonstrate the effectiveness of the PET prototype demonstrator set-up within an 
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80mm FOV. This confirms that the parallax distortion due to the large incident 
photons angles is countered owing to the use of LSO blocks and the neural network 
positioning algorithm approach. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: Illustration of the iterative listmode MLEM reconstructed 250mm 22Na point 
source at the radial distances 0mm to 40mm off center in steps of 5mm.  
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Figure 5.10: Radial and tangential 2D-MLEM reconstructed FWHM/FWTM resolution 

as a function of the radial position of the 250mm 22Na point source. 
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5.5 Tomographic images of combined point sources and a 
Derenzo phantom 

The performance of the prototype demonstrator has been studied in various analyses. 
For example in Paragraph 5.4, the spatial resolution was measured by imaging one 
point source at different positions. At the centre of the field of view the resolution is 
1.8mm FWHM, and it remains constant around 2.0mm FWHM for radial positions 
within 40mm from the scanner axis.  
 

Table 5.1 22Na point sources used on prototype demonstrator 

Diameter Activity on purchase 
Calculated 

Activity during test 
Ratio with max activity 

3.0mm 93.59 Cim  on 01/02/2002 19 Cim  0.5 

0.5mm 100 Cim  on 01/04/2002 22 Cim  0.58 

0.25mm 100 Cim  on 29/04/2004 38 Cim  1 

 
In the next approach, three 22Na point sources with different diameters and activities 
are scanned together. One scan was performed with the three sources arranged around 
the center. While in a second scan, two point sources were placed at 3.5mm and one 
point source at 1.5mm out center. The parameters of the three 22Na point sources are 
summarized in Table 5.1. The acquisition of the tomographic data is again completed 
according to the scan process described previously. A FOV of 40mm (-20mm to 20mm) 
is obtained with five detector combinations, i.e. from detector combination 1-23 until 
combination 1-27. The 2D MLEM algorithm is applied for the image reconstruction. 
Figure 5.11 illustrates the three reconstructed point sources through a density plot and 
a 3D plot, showing the acquired spatial resolutions and variation in source activity.  
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Figure 5.11: (left) A density plot of the three reconstructed point sources centered around
the scanner axis. (right) A 3D representation of the reconstructed point sources. It clearly
illustrates the differences in source activity. The table outlines the acquired FWHM and
FWTM resolutions for each point source. 

FWHM FWTM Source 
diameter radial tang. radial tang. 

0.25mm 1.8mm 2.1mm 3.3mm 3.8mm 
0.5mm 2.0mm 2.2mm 3.7mm 3.9mm 
3mm 3.1mm 3.2mm 5.7mm 5.9mm 
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The spatial resolution obtained for the 250 mm (=0.25mm) point source matches the 
prior results for a point source placed 10mm off centre. As illustrated on Figure 5.9 and 
Figure 5.10, a spatial resolution of 1.9mm/3.4mm and 2.2mm/4.0mm was attained for 
respectively the radial and tangential FWHM/FWTM resolutions. 
In order to compare the relative activities of the three sources, the volumes of the three 
Gaussian graphs are calculated. The ratio with the most active source is taken. Table 
5.2 summarizes the results with a good agreement between expected and measured 
ratios. This result demonstrates a uniform photon detection of the demonstrator within 
the FOV. 
 

Table 5.2: Ratio of expected and measured activities 

Diameter Expected activity ratio Measured activity ratio 
0.25mm 1 1 
0.5mm 0.58 0.56 
3mm 0.5 0.56 

 
 
Similarly, Figure 5.12 shows the result obtained with the three point sources spread 
over the maximal FOV of 80mm such that all trained detector combinations are used 
(detector combinations 1-21 to 1-29).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also in this study the spatial resolution of the 0.25mm point source is in agreement 
with the results obtained in Paragraph 5.4 for a single point source located 35mm off 
centre. Radial and tangential FWHM/FWTM resolutions of respectively 2.2mm/4.0mm 
and 2.0mm/3.6mm were achieved. 
 
 

mm 

FWHM FWTM Source 
diameter radial tang. radial tang. 
0.25mm 2.0mm 1.9mm 3.6mm 3.5mm 

0.5mm 2.2mm 1.9mm 4.1mm 3.4mm 
3mm 2.8mm 3.3mm 5.1mm 6.0mm 

 

m
m

 

Figure 5.12: A density plot of the three reconstructed point sources spread over a 
FOV of 80mm. The table outlines the acquired FWHM and FWTM resolutions for 
each point source. 
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Figure 5.14: Illustration of the FDG decay over time 

Another common way to characterize the spatial resolution of a PET scanner is to scan 
a Derenzo phantom. A home made Derenzo phantom was used, consisting of capillary 
tubes with diameters tubes 1.5, 2.0, 2.5 and 3.0mm, arranged like slices in a pie (Figure 
5.13). A centre to centre separation of twice the tubes diameter was taken. Rods of the 
phantom were filled with 5mCi FDG.  
 
 
 
 
 
 
 
 
 
 
 
 
 
FDG (Fluorodeoxyglucose) is one of the most commonly used positron emitter in PET. 
The fluorine in the FDG molecule is chosen to be the positron-emitting radioactive 
isotope fluorine-18. FDG, a glucose analogue, can be used for the assessment of glucose 
metabolism in the heart and the brain. It is also used for imaging tumors in oncology. 
FDG is taken up by cells and retained by tissues with high metabolic activity, such as 
most types of malignant tumors. As a result FDG-PET can be used for diagnosis, 
staging, and monitoring treatment of cancers [70]. 
 
Compared to 22Na, FDG has a much shorter half-life, i.e. 110min. To overcome the 
variation in FDG activity during a scan, a new scan procedure was implemented. The 
FDG activity over time is illustrated in Figure 5.14. After 1080min (18hours) only a 
0.1% fraction of the original activity remains. 
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Figure 5.13: Top and cross sectional view of the home made Derenzo
phantom. Diameters from 1.5mm to 3.0mm in steps of 0.5mm were
evaluated. 
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To measure the full 30mm diameter of the Derenzo phantom, 5 consecutive detector 
combinations are needed, i.e. detector combination 1-23 to 1-27. The angular source 
step a  was kept to 360°/192 = 1.875° which corresponds to a quarter of one detector 
width. Accordingly, in the step-and-shoot mode, 960 different steps have to be 
measured. 
Figure 5.15 shows the acquisition time per step such that each step is exposed to a 
same amount of FDG activity. In order to finish the scan within 6 hours, a start 
acquisition time of 7.5sec was taken. Taking into account the time needed for the 960 
angular source movements and the time necessary to move to the 4 adjacent detector 
positions, the acquisition time of the last 960th step was extended to 61.5sec. The total 
scan completed after 5h48min. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume a full ring PET scanner was available. In order to acquire all LORs measured 
in the prototype setup, the full ring scanner has only to rotate over 4 consecutive 
angular steps, i.e. positions 0°, 1.875°, 3.75° and 5.625°, reducing the total scan time to 
only 30sec (4x7.5sec). 
1.045.568 coincidences were acquired during the scan. In order to obtain a uniform 
acquisition over all radial samples, only LORs within interval -20mm – 20mm are 
accepted (as shown in Figure 5.1. (c)) This reduces the number of acquired coincidence 
with 8% to 966.559. 
Figure 5.16 and Figure 5.17 show the scanned Derenzo phantom reconstructed with the 
iterative listmode MLEM algorithm. Both plots give the FWHM/FWTM for each tube 
in the radial and tangential direction. An X denotes that it was impossible to define the 
resolution for the corresponding tube and direction. The first plot uses all 966.559 
coincidences to reconstruct a 2D image of the Derenzo phantom. The tubes with 
diameters as small as 2.0 mm are still distinguishable. However there are symmetry 
issues as well as some tubes missing in the image. During an examination of the 
Derenzo phantom after the scan, it appears that some air bubbles were trapped into the 
small tubes. These air bubbles fully clarify the missing tubes due to the lack of FDG in 
these regions.  

Figure 5.15: The acquisition time per step. Due to the short half-life of FDG the scan 
time per step is adjusted to ensure an equal amount of FDG exposure. 
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In all previous reconstructed images, no software energy cut was applied. The energy 
window corresponds to the hardware energy level of the discriminator fixed at 
approximately 300keV. 
However the asymmetry reduces when an energy cut is applied as illustrated in Figure 
5.17. The energy cut was such that only the photo peak remains. The FWTM 
resolutions slightly enhance but this at the expense of the sensitivity. The number of 
coincidences drops to 46% which results in 446.195 remaining coincidences.  
 
 
 

Figure 5.16: Reconstructed Derenzo phantom using all acquired 966.559 coincidences. The 
FWHM and FWTM resolutions are given for each cylinder in both directions. An X denotes 
that it was impossible to define the resolution for the corresponding tube and direction. 
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Figure 5.17: The FWHM and FWTM resolutions are given in both directions for each cylinder. 
An X denotes that it was impossible to define the resolution for the corresponding tube and 
direction. The reconstructed Derenzo phantom is based on only 446.195 coincidences. In order 
to enhance the FWTM resolutions, an energy cut was applied. Only coincidences within the 
photo peak are accepted.  
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6 Conclusion 
Dedicated PET scanners such as small animal PET, Positron Emission Mammography 
(PEM) or Brain PET scanners, all require high spatial resolution and high sensitivity. 
Most current designs use small scintillation crystals. The general approach to improve 
the spatial resolution in such designs is to decrease the crystal size. However, the 
decreased pixel size results in loss of sensitivity because of the increased dead space 
between the pixels. If the sensitivity of the PET scanner is insufficient, the obtained 
images have to be smoothed to reduce the image variance. Obviously, this results in a 
loss of image resolution and hence the potential of the system is not fully exploited. To 
obtain a maximum coincidence rate, the sensitivity of the detectors in the PET system 
has to be optimized. This can be achieved by increasing the thickness of the 
scintillators used to stop the 511 keV annihilation photons and by minimizing the dead 
spaces in the detector design. However, these design changes should not degrade the 
spatial resolution of the scanner.  
To achieve this goal we developed detectors based on monolithic scintillator blocks that 
are read out by avalanche photodiodes (APDs). This increases the sensitivity due to the 
absence of optical separation material between the individual scintillation pixels used in 
current PET designs. The position information within the scintillator block is embedded 
in the shape of the scintillation light distribution. This principle of light spreading 
allows the scintillator block to be larger than the sensitive area of the photo detector, 
avoiding dead space due to the packaging of the photo detector. This again enhances 
the sensitivity. In this perspective, the detector module had to be based on new 
technologies. For the scintillator part, Lutetium Orthosilicate (LSO) was chosen 
because of its high light yield, good stopping power and short decay time. The S8550 
APDs were chosen as photo detector. These presented a number of advantages relatives 
to position sensitive photomultiplier tubes (PSPMTs) in the applications of interest. 
 
In this thesis, the characteristics and implementation of the monolithic LSO scintillator 
blocks in combination with a machine learning positioning algorithm were evaluated, 
via simulations as well as experimentally on a bench set-up and on a prototype scanner. 
First three different positioning algorithms were tested experimentally on the bench set-
up. The intrinsic detector resolutions of photons impinging at different angles e.g. 0°, ± 
10°, ± 20°, ± 30° were studied. To this end, following positioning algorithms were 
evaluated: Levenberg-Marquardt Neural Networks (LM-NN), Neural Networks trained 
with an algebraic method (Alg-NN) and Support Vector Machines (SVM). The position 
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information is extracted from the measured scintillation light distribution generated in 
monolithic LSO blocks of various shapes and read out by the Hamamatsu S8550 APD 
array. 
The LM trained neural network has the best performance/algorithm complexity ratio of 
the three algorithms evaluated. For perpendicular incident photons the measured 
detector resolution on a 20x10x10mm3 LSO block is 1.75mm FWHM and 4.3mm 
FWTM when a minimum threshold of 100 keV is applied, i.e. maximum sensitivity 
setting. Increasing the threshold improves the resolution. At a 380 keV threshold, the 
measured detector resolution is 1.6mm FWHM and 4.05mm FWTM. When neural 
networks are trained for different incidence angles, the localization procedure is capable 
of limiting the resolution degradation due to photon penetration for non perpendicular 
incident photons. At an incidence angle of 30° the measured detector resolution 
degrades to 2.0mm FWHM and 5.5mm FWTM using a threshold of 100 keV. Again 
better performance can be achieved at the cost of a lower sensitivity by increasing the 
energy threshold. The algebraic trained NNs can perform similarly but need a much 
larger neural network to do so, i.e at least 500 neurons in the hidden layer. Given the 
simplicity of the algebraic training algorithm, training a neural network with 500 
neurons is still much faster than LM training of a neural network with 2 hidden layers 
with 5 neurons each. However, the computation of the incidence position using an 
algebraic trained NN with 500 neurons takes much longer. The SVM perform slightly 
better at the high sensitivity setting of the energy threshold (100 keV). To obtain this 
result, a few thousand support vectors are required which make this algorithm also 
rather slow to use on-line after it has been trained. The training speed is in between the 
LM training and the Alg-NN. 
The LM training of a NN to find the incidence position in a thicker 20x10x20mm3 LSO 
block performs worse in comparison to a thinner 20x10x10mm3 LSO block. 
Consequently, a dual layer of 10mm thick LSO blocks is preferred to increase the 
overall sensitivity. Finally a comparison of LM trained NNs to find the position along 
the short axis of a rectangular 20x10x20mm3 LSO block and a trapezoidal 
20x15.4(11.5)x20mm3 LSO block shows that the resolution for photons impinging on 
the flat top surface is similar for both algorithm. The detector resolution for photons 
impinging on the slanted sides of the trapezoidal block is also similar except at the very 
edge. 
 
The data acquired for previous positioning algorithm evaluations were done on an 
“academic” bench set-up. In order to evaluate the block detectors in a real compact 
PET environment, a prototype PET demonstrator was built. The demonstrator consists 
of only two 20x10x10mm3 LSO detector modules. To simulate a full-ring scanner, the 
detector modules are mounted on separate rotating platforms which allow the 
movement of both detector modules, also relative to each other. In addition, since the 
detector characteristics may change in time, it is also appropriate to acquire new 
training data from time to time. The use of an auxiliary bench set-up for this 
calibration procedure implies the removal, calibration and re-mounting of all detector 
modules of the scanner. This would be a time consuming and tedious task. That’s why 
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an automated acquisition method of training data for the positioning algorithm is 
investigated. The implementation and validation of this procedure was done on the 
demonstrator set-up. The results confirm the possibility of an automatic acquisition of 
training data. In a real PET scanner this can be implemented in a fully automated 
procedure by slowly spiralling a point source close to the detectors and only saving 
coincidences with LORs. Sorting the recorded coincidences per detector combination 
yields the required training data sets, similar to these obtained with the demonstrator 
setup. 
However, a slight deterioration of the spatial resolution between the bench set-up and 
the demonstrator set-up was noticed. In order to study the origin of this difference and 
which instrumentation parameters limit the performance of the whole system, a GATE 
based Monte Carlo simulation was developed. Training data were simulated using the 
parameters that represent the experimental set-ups. After training, the NN was 
evaluated using simulated data generated with the same parameters except that the 
photon beam is assumed to be perfect now, i.e. a zero beam width. The resulting 
resolution will hence only reflect the influence of the detector components and the data 
acquisition method, i.e. it represents the intrinsic detector resolution. 
The simulation was validated against the experimental bench set-up based on the 
20x10x10mm3 LSO block. The simulation shows that the photon beam used to generate 
a set of training events should have a width smaller than 1mm FWHM. It should also 
be stepped over the surface of the scintillator block with intervals not larger than 1mm. 
If these conditions are met, the resulting neural network will suffer no performance loss. 
However, the front-end amplifiers play the biggest role in the achievable resolution of 
the block detectors. Additional noise added by the front-end amplifiers degrades 
considerably the spatial resolution and causes the discrepancy between both 
experimental set-ups. In conclusion, improvements of the parameters in the existing set-
up for the acquisition of training data will not improve the spatial resolution any more 
except for the preamplifier noise. Introducing a front-end amplifier with a lower noise 
will still enhance the resolution.  
 
Finally; the spatial resolution in 2D reconstructed images of the monolithic front-end 
detectors in combination with the trained LM-NNs is also examined. The radial and 
tangential resolutions as function of the radial source position were tested. The radial 
and tangential resolutions remain constant around 2.0mm FWHM and 3.7mm FWTM 
in the 80mm FOV. Also uniform photon detection within the FOV was demonstrated. 
To conclude, a mini-Derenzo phantom filled with FDG showed very encouraging results 
and corresponds with the expectations according to the outcomes of the studied point 
sources. 
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7 Future outlook 
The results from both experimental set-ups and Monte Carlo simulations allow a 
thorough evaluation of the performance of the detector blocks, illustrating their 
potential for high-sensitivity PET imaging of, e.g. the human brain. As a result, the 
monolithic blocks will be used on a research prototype for human brain PET/MRI 
imaging – the BrainPET scanner. 
 
The BrainPET project is a joined effort of CIEMAT in collaboration with the VUB and 
Forschungzentrum Jülich. It will be a modular PET detector ring design capable of 
being inserted in existing clinical MRI scanners (Figure P1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to maximize the sensitive volume, detector blocks are based on trapezoidal 
LSO scintillator crystals readout by the Hamamatsu S8550 APDs. A detector block is 
formed by two independent sub-detectors, each one coupled to a pair of APD matrices, 
with overall external dimensions determined by considering a 40cm scanner diameter 
(Figure P2). The crystals are encapsulated in BaSO4 which acts both as an optical 
reflector and a mechanical stabilizer of the whole block. The pet insert consists of 4 
rings (ø=40 cm) with 52 detector modules each 

PET insert 

Figure P1: Illustration of the PET insert. PET only uses patient 
handling system of MR scanner. PET insert will be removed during 
MR imaging. 



 

 

130 Future outlook 

 

Opposite detectors 

Detectors to be trained 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A dedicated ASIC summing preamplifier has been developed. It will sum the 64 APD 
input signals to 16 differential output currents as the signals of the 8 pixels of each 
column and row provided by 2 APD arrays are summed internally by the preamplifier. 
Also the full sum of 64 channels will be provided, useful for the energy discrimination 
and normalization. The preamplifier has a RMS noise per sum channel of less than 
1000e- when no APD array is connected to the inputs. 
 
The incidence position on the detector surface will be derived from the sampled 
scintillation light distribution using Levenberg-Marquardt neural networks. In order to 
acquire the indispensable training data, the proposed automated “spiralling” technique 
will be used (Figure P3). A coincidence with an opposite block detector defines a 
narrow beam with known incidence position. This information together with the 
sampled light distribution is sufficient to train the NNs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P2: The proposed BrainPET trapezoidal detector block (left) 
and a full scanner composed of 4 rings of blocks (right). 

Figure P3: The “spiralling” method for the automatic acquisition of 
training data.  
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9 List of abbreviations 
 
ADC analog-to-digital convertor 
Alg-NN algebraic trained NN 
AMP amplifier board 
APD avalanche photo diode 
ART algebraic reconstruction technique  
BaSO4 barium sulfate 
BGO bismuth germanate 
CCC Crystal Clear Collaboration 
CERN Conseil Européen pour la Recherche Nucléaire 
CFD constant fraction discriminator 
CFOV Centre of FOV 
CIEMAT Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas 
CRF coincidence response function  
CT computed tomography 
DAQ data acquisition  
DIG digital board 
DOI depth-of-interaction 
ECG electrocardiogram 
EEG electroencephalogram 
e-h pair electron-hole pair 
ENC equivalent noise charge 
EOPN equivalent optical photon noise  
F excess noise factor 
FBP filtered-back projection  
FDG 18F–fluoro-deoxy-glucose 
FF feed forward neural network  
FOV field-of-view  
fRMI functional magnetic resonance imaging 
FW20M full width at 20% of the maximum amplitude 
FWHM full width at half maximum  
FWTM full width at tenth maximum 
FZJ Forschungszentrum Julich 
GATE Geant4 application for tomographic emission 
GM-APD geiger-mode avalanche photo diode 
Gp photon gain 
IIHE Interuniversity Institute for High Energies  
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LIP Laboratório de Instrumentação e Física Experimental de Partículas 
LM-NN Levenberg-Marquardt trained NN 
LOR line-of-response 
LS least square  
LSO lutetium orthosilicate 
LuAP lutetium aluminate perovskite 
LY light yield  
MEDISIP Imaging and Signal Processing 
ML-EM maximum likelihood expectation maximization  
MRI magnetic resonance imaging 
MSE mean square error 
NECR noise equivalent count rate 
NN neural network 
P-AMP preamplifier board 
Pb lead (plumbum) 
PCB printed circuit board 
PEM positron emission mamography 
PET positron emission tomography 
PMT photomultiplier tube 
PSPMT position sensitive photo multiplier tube 
QE quantum efficiency 
RMS root mean square 
RMSE root mean square error 
SiPM silicon photomultiplier 
SNR signal-to-noise-ratio 
SPECT single photon emission computed tomography 
SVM support vector machines 
SVR support vector regression 
VUB Vrije Universiteit Brussel 



 

Vrije Universiteit Brussel – Faculteit Wetenschappen 
Pleinlaan 2 – 1050 Brussel  
Contact: - http://we.vub.ac.be/- 

Promotoren :  
 

      Prof. Dr. Peter Bruyndonckx  
      Prof. Dr. Stefaan Tavernier 
 

Departement Natuurkunde 
Faculteit Wetenschappen 
Vrije Universiteit Brussel 

 
2009 

 
Proefschrift ingediend met het oog op het behalen van 
de academische graad Doctor in de Wetenschappen 


	test_Cover
	PhDthesis_CedricLemaitre
	test_Back.pdf

