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Abstract

The development and improvement of deep learning techniques over
the past decades have created new opportunities for algorithmic
methods in high-energy physics. Particularly, deep learning has led
to significant advances in the performance achieved of algorithms
for the flavour identification of jets, the structures formed by the
fragmentation of a quark or a gluon when produced in a collider
such as the CERN Large Hadron Collider.

In this doctoral thesis, we focus on deep learning methods to en-
hance the performance of jet flavour identification algorithms at the
CMS experiment. We aim to extend their capabilities by improving
model robustness against changes that may be applied to the vari-
ables used by the algorithms. Additionally, by extending their initial
tasks, we enable new opportunities for future research. First, we ex-
plore the Transformer architectures in the context of creating deep
neural networks that preserve the structure of jets. We establish two
models whose performance and computational cost set a new state-
of-the-art in the field. Second, we introduce a data-agnostic training
method based on adversarial attacks, improving the model’s robust-
ness against changes in the distribution of input variables. Enhanc-
ing robustness is necessary to improve our models’ performance after
calibration. Finally, we successfully extend the algorithms’ tasks to
identify hadronic taus and to estimate jet energy corrections and res-
olutions. Additionally, we introduce the identification of strange jets,
a first for an experiment at the LHC.

Ultimately, this doctoral work results in the creation of a new
class of models with improved architecture, training methods, and
an expanded scope of what an artificial neural network may achieve.

v



The final model produced, named UParT, serves as the state-of-the-
art in jet identification for the CMS experiment at the LHC. With
the identification of jets originating from strange quarks being a first
for the LHC, new analyses targeting final states containing this type
of jet can now be pursued once the new model is calibrated.
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Samenvatting

De ontwikkeling en verbetering van deep learning-technieken in de
afgelopen decennia hebben nieuwe mogelijkheden gecreëerd voor al-
goritmische methoden in de hoge-energiefysica. In het bijzonder heeft
deep learning geleid tot een aanzienlijke vooruitgang in de prestaties
van algoritmen voor de smaakidentificatie van jets, de structuren
die worden gevormd door de fragmentatie van een quark of gluon
wanneer deze worden geproduceerd in een deeltjesversneller zoals de
CERN Large Hadron Collider.

In dit doctoraat richten we ons op deep learning-methoden om
de prestaties van algoritmen voor de smaakidentificatie van jets te
verbeterenbij het CMS experiment. We streven ernaar hun mogeli-
jkheden uit te breiden door de robuustheid van de modellen te ver-
groten tegen veranderingen toegepast op de variabelen die door de
algoritmen worden gebruikt. Daarnaast creëren we door het uit-
breiden van hun initiële taken nieuwe perspectieven voor toekomstig
onderzoek. Eerst onderzoeken we de Transformer-architecturen in
de context van de creatie van diepe neurale netwerken die de struc-
tuur van jets behouden. We ontwikkelen twee modellen waarvan de
prestaties en computationele kost een nieuwe state-of-the-art in het
veld vestigen. Vervolgens introduceren we een data-agnostische train-
ingsmethode gebaseerd op adversariële aanvallen, die de robuustheid
van het model verbetert tegen veranderingen in de distributie van
input variabelen. Het vergroten van de robuustheid is noodzakelijk
om de prestaties van onze modellen na kalibratie te optimaliseren.
Ten slotte breiden we de taken van de algoritmen met succes uit om
hadronische tau leptonen te identificeren en om jet-energiecorrecties
en resoluties te schatten. Ook introduceren we de identificatie van
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strange jets, een primeur voor een experiment bij de LHC.
Het resultaat van dit doctoraat is de creatie van een nieuwe

klasse van modellen met verbeterde architectuur, trainingsmethoden,
en een uitgebreidere omvang van wat een kunstmatig neuraal netwerk
kan bereiken. Het finale model, genaamd UParT, vertegenwoordigt
de state-of-the-art in jet-identificatie voor het CMS experiment bij de
LHC. Met de identificatie van jets afkomstig van strange quarks, een
primeur voor de LHC, kunnen nu nieuwe analyses worden uitgevoerd
die zich richten op eindtoestanden met dit type jet, zodra het nieuwe
model is gekalibreerd.
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Chapter 1

Introduction

The discovery of the Higgs boson in 2012 by the CMS and ATLAS ex-
periments [1,2] at the LHC marked a significant advancement in par-
ticle physics by completing the Standard Model of particle physics.
This scalar boson arises from the mechanism explaining the origin
of particle mass, predicted almost 50 years earlier [3, 4], for which
François Englert and Peter Higgs were awarded the Nobel Prize in
2013. This discovery is the latest in a series of successes of the Stan-
dard Model in describing the fundamental interactions. Since then,
the high-energy collisions at the LHC have been thoroughly exam-
ined, and the Standard Model has consistently demonstrated its ro-
bustness by accurately predicting observed phenomena. However,
the Standard Model cannot account for all physical phenomena, as it
fails to incorporate certain key properties such as the mass of neutri-
nos, nor does it provide a description of gravitation as a fundamental
force. Consequently, research in particle physics continues, with the
objective of further refining the precision of our measurements. In
doing so, we increase our sensitivity to any potential deviations from
the Standard Model’s predictions, which, based on current measure-
ments, are expected to be extremely small.

In this context, the development and application of algorithms
that enhance the efficiency and robustness of our predictions is cru-
cial. In this thesis, we will focus particularly on jets, the products of
quark and gluon hadronization, and how the use of Deep Learning
can improve the identification and energy prediction of these jets.
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CHAPTER 1. INTRODUCTION

Deep Learning is a subfield of Machine Learning that focuses on ar-
tificial neural networks, with the first model developed in 1957 by
Frank Rosenblatt [5]. This field has seen significant growth due to
advances in training methods, notably by Geoffrey Hinton, whose
work on machine learning [6] earned him numerous distinctions, in-
cluding the Turing Award in 2018 and the Nobel Prize in Physics in
2024 along with John Hopfield [7]. The evolution of learning tech-
niques, combined with recent discoveries in the structure of artificial
networks and increased tensor computation capacity, has led to the
adoption of Deep Learning in many academic and industrial fields
since the 2010s. In this context, we will explore in this thesis some
of the latest Deep Learning advancements in jet algorithms and their
implications for the evolution of the tasks assigned to them.

1.1 The Standard Model

The Standard Model of particle physics [3, 4, 8–12] is the most ad-
vanced theory to date for describing the fundamental interactions
between the elementary constituents of matter. Developed in the
early 1970s, this theoretical framework unifies three of the four fun-
damental forces of nature: electromagnetism, the weak interaction,
and the strong interaction, leaving gravity outside its scope. It is
based on the classification of elementary particles into two main cat-
egories: the twelve fermions, with spin 1

2 , which are the building
blocks of matter and the four gauge bosons, with spin 1, which me-
diate the fundamental interactions. Additionally, there is the famous
Brout-Englert-Higgs boson, more commonly known as the Higgs bo-
son, which relates to the mechanism of how elementary particles get
their mass. This model has been remarkably successful in making ex-
perimental predictions. It allows for the measurement and prediction
of interactions and physical properties of its fundamental elements,
whose nature and physical properties, such as the mass, can vary
greatly from one element to another.

Despite its success in predicting most of the properties of the
observed fundamental particles, the Standard Model fails to explain
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1.1. THE STANDARD MODEL

certain physical phenomena, such as neutrino oscillations and their
masses, the existence of dark matter and dark energy, or the matter-
antimatter asymmetry in the Universe.

The fermions

In the context of the Standard Model, fermions are elementary par-
ticles characterised by a half-integer spin. As solutions of the Dirac
Equation (1.1), they obey Fermi-Dirac statistics and adhere to the
Pauli exclusion principle. In quantum field theory (QFT), fermions
are described by spinor fields, which are solutions to the Dirac equa-
tion [11]. Thus, each fermion has an antiparticle with identical mass
but opposite charges related to the fundamental forces:

(iγµ∂µ −m)ψ = 0 (1.1)

where the spinor field ψ represents the quantum state of the
fermion, m is the mass of the fermion, ∂µ is the partial derivative
with respect to the coordinate xµ, and γµ are the Dirac matrices.

Fermions can be divided into two subsets: quarks and leptons.
For each of these subsets, the six constituents are subdivided into
three generations, each consisting of two fermions, as illustrated in
Figure 1.1.

Leptons are a subcategory of fermions that do not interact via
the strong interaction. There are six leptons: the electron (e), the
muon (µ), the tau (τ), and their associated neutrinos (νe), (νµ), (ντ ).
Each lepton has an associated lepton quantum number conserved in
interactions. Neutrinos are electrically neutral particles that only
interact via the weak interaction, and they interact so weakly that
they are particularly difficult to detect. The detectors used in par-
ticle colliders, such as the one employed in this doctoral thesis, are
incapable of directly detecting and reconstructing neutrinos from in-
teractions. Charged leptons, such as the electron, interact via the
electromagnetic or weak interaction. They carry an electric charge
of −qe = −1.602× 10−19 C.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Summary table of the Standard Model of particle physics with the quarks
(purple), the leptons (green), the gauge bosons (red) and the Higgs boson (yellow) [13].

Quarks are the fundamental constituents of hadronic matter.
They are divided into three generations, coming with increasing
masses: the up (u) and down (d) quarks form the first generation
and are the main constituents of the stable hadronic matter of the
Universe, such as the protons and neutrons in atomic nuclei. The
charm (c) and strange (s) quarks form the second family, and the
top (t) and bottom (b) quarks form the third. Quarks carry a colour
charge, making them subject to the strong interaction, which is
mediated by gluons. They also interact via the weak interaction and,
due to their non-zero fractional electric charge, respectively 2

3qe and
−1
3 qe for the up-like (u, c, t) and down-like (d, s, b) quarks, through

the electromagnetic interaction. It should be noted that the masses
of the quarks in the last generation are particularly high. The top
quark has a measured mass of around ∼173 GeV [14–16], the largest
of all fundamental particles, resulting in a very short lifetime of
about 5× 10−25 s. This short lifetime allows the top quark to decay
before it hadronises, a phenomenon related to the strong interaction
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1.1. THE STANDARD MODEL

we will describe later. The bottom quark, on the other hand, with
a mass of approximately 4.18 GeV [14, 17, 18], remains significantly
heavy compared to the other fermions, even though its mass is more
than 40 times smaller than the top quark mass.

Gauge theory and fundamental interactions

While fermions describe the constituents of the Universe, gauge
bosons are the mediators of the fundamental forces that allow these
constituents to interact with each other [11, 12, 19]. The Standard
Model describes three fundamental interactions: the electromagnetic
interaction, the weak interaction, and the strong interaction.

Electric and magnetic phenomena are unified in the theory of
electromagnetism which describes a force that that affects particles
with an electric charge, and its gauge boson is the photon γ, a vector
boson with zero electric charge and no mass. Being stable and mass-
less, the photon allows electromagnetism to be a long-range. Electro-
magnetism is described by Quantum Electrodynamics (QED). The
weak interaction affects all particles in the Standard Model. Its gauge
bosons are the charged W± bosons and the neutral Z boson. Unlike
the photon, these three gauge bosons are massive, with a mass of
∼80.38 GeV [14] and ∼91.19 GeV [14], respectively, and have a very
short lifetime (cτ ∼ 10−16 m), thus limiting the range of this interac-
tion. This short distance can be compared to the charge radius of a
proton or an atomic nucleus. The latter has a value of ∼ 1−10×10−15

m, which is one to two orders of magnitude larger. This highlights the
short-range nature of the weak interaction compared to the strong
interaction, which holds nuclei together.

The strong interaction affects particles with a colour charge,
with quarks being the only fermions carrying it. This force is medi-
ated by gluons, the gauge bosons associated with the strong interac-
tion. There are eight gluons, each carrying a double colour charge.
Gluons are massless and have no electric charge. Due to their dou-
ble colour charge, gluons can interact not only with quarks but also
with themselves. The theory describing this interaction is Quantum
Chromodynamics (QCD). QCD explains how quarks and gluons are
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CHAPTER 1. INTRODUCTION

confined into hadrons. QCD is also characterised by asymptotic free-
dom of its interaction strength, where the coupling constant decreases
as the energy increases. The coupling constant is too high in low-
energy regimes, < 1 GeV, and therefore, in this regime, the QCD
theory cannot be developed using a perturbative approach. Due to
its high coupling and the gluon self-interaction, the strong force is
constrained to be a short-range interaction within hadrons and the
nuclei of atoms. Colour confinement prohibits the existence of iso-
lated fermions with a non-zero colour charge. This forces quarks and
gluons to combine into bound states with a neutral colour charge.
Most of the colour-neutral states observed are hadrons, which are
combinations of quarks. Hadrons can be divided into two groups:
mesons, which are quark-antiquark bound states, such as pions, and
baryons, which are three-quark states, such as protons and neutrons.
Finally, it should be noted that QFT also allows for more exotic
states such as tetraquarks, pentaquarks, or sexaquarks (four, five or
six quarks bound together), as well as glueballs (no valence quarks,
only gluons).

The properties of QCD applied to a final-state quark generate
a very specific signature. First, the incoming or outgoing partons
(quarks or gluons) in a pp collision are colour charged, and their
evolution involves a cascade of QCD radiations. These radiations
are also called initial state radiation (ISR) if originating from an ini-
tial colliding parton or final state radiation (FSR) if originating from
an outgoing parton. The cascade process of the radiation, also called
parton showering, occurs in the perturbative regime of QCD, above a
certain ΛQCD energy scale, about which the coupling strength of the
strong interaction αs is lower than 1, and QDC can be treated per-
turbatively. The value of ΛQCD depends on theoretical assumptions
and is of the order of magnitude of 100 MeV. The parton showering is
defined by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [20–22] that depict the perturbative evolution of the cas-
cade of QCD radiation. The DGLAP equations describe the proba-
bility of an initial parton, referred to as ‘mother’, to split into ‘daugh-
ter’ partons over time. The energy scale of the initial parton, Q2, is
then split into the ‘daughter’ partons. A ‘daughter’ parton will also
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1.1. THE STANDARD MODEL

evolve perturbatively if its energy scale remains higher than ΛQCD
and obey the DGLAP equations. Therefore, the cascade of QCD
radiations continues until reaching the non-perturbative energy scale
ΛQCD.

When reaching the non-perturbative energy scale, perturbative
QCD cannot be used, and the description of the partons’ behaviour at
the scale depends on phenomenological models. In the context of this
thesis, the phenomenological model used is the Lund string model
[23–25]. After the parton showering described above, the resulting
partons do not form a color-neutral state. However, the principle of
colour confinement prevents this. The strong interaction potential
can be characterised by its potential energy and visualised as a glu-
ons’ tube binding the quarks into a colour-neutral state. This poten-
tial energy is defined as V (d) = kd where d is the distance between two
partons and k the parameter characterising the strong force confine-
ment, of order of magnitude 1 GeV/fm. As the quarks move apart,
the tube lengthens and the gluon field acquires more energy. When
the energy becomes large enough to form a new quark-antiquark pair,
the tube can ‘break’ and create the pair, as illustrated in Figure 1.2.
This process leads to the creation of new pairs and potential energy
tubes binding them together. The phenomenon continues until the
quarks’ energy regime becomes low enough that the production of
new pairs is no longer favoured, and the potential energy tubes even-
tually bind all quarks into colour-neutral states. This final stage is
called hadronisation.

Therefore, a quark or gluon in the final state will never be
observed alone and isolated. Instead, we will observe the final state of
the production cascade caused by colour confinement, which results
in a narrow cone of hadrons, possibly also containing leptons, that are
detectable by our detector subsystems. This cone, originating from
a quark or gluon, is called a jet and will be the primary subject of
study discussed in this thesis, whether in terms of its reconstruction
by the detector or, more importantly, how we can algorithmically
identify certain essential properties, such as the quark or gluon of
origin or its energy.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of the colour confinement. When quarks separate, the potential
energy in the string increases linearly with the separation. When the stored energy exceeds

2×mq , a new qq̄ pair can be created [26].

The formulation of the Standard Model is carried out using
QFT. The formalism of QFT aims to represent the dynamics of par-
ticles and their interactions via their quantum fields, denoted ϕ(x),
in the space-time coordinates x. The behaviour of these particles can
be determined from the action S by applying the principle of least
action:

S =

∫
d4x LSM(ψ(x), ∂µψ(x)) (1.2)

where the Lagrangian density of the Standard Model is repre-
sented by LSM. Lagrangian density from here on will be mentioned
as Lagrangian. To begin describing and formulating the Lagrangian
of the Standard Model, let us begin by examining some of the fun-
damental properties governing QFT, starting with the Lagrangian of
a free fermion defined by the spinor ϕ and mass m:

L = ψ̄(x)(iγµ∂µ −m)ψ(x) (1.3)

with the Dirac adjoint ψ̄(x) = ψ†(x)γ0, where γµ are the Dirac
matrices, and ∂µ is the partial derivative with respect to the space-
time coordinates.

One of the most important theorems in QFT is Noether’s theo-
rem on global symmetries [27]. This theorem states that if a La-
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1.1. THE STANDARD MODEL

grangian is invariant under a global symmetry, then there exists
an associated conserved current and charge. To illustrate this phe-
nomenon, we can observe that the Lagrangian of a free fermion pos-
sesses a global U(1) symmetry defined by an arbitrary phase θ of
the form: ψ(x) → ψ′(x) = e−iθψ(x). In this case, the conserved cur-
rent and charge will be the electromagnetic current and the electric
charge, leading to the formulation of QED. To reconstruct the inter-
action term of QED while maintaining the global gauge symmetry,
the system’s symmetry must be extended to include a local symme-
try. This extension arises from gauge theory principles and ensures
the consistency of the theory under local transformations. Thus, we
impose invariance under a local U(1) gauge transformation, defined
by ψ(x)→ ψ′(x) = e−iθ(x)ψ(x). The Dirac adjoint also transforms as
ψ̄(x)→ ψ̄′(x) = eiθ(x)ψ̄(x), allowing us to observe how the Lagrangian
in Equation (1.3) changes under a local U(1) symmetry:

L = eiθ(x)ψ̄(x)(iγµ∂µ −m)e−iθ(x)ψ(x)

= ψ̄(x)iγµ∂µψ(x) + ψ̄(x)(−(i)2γµ∂µθ(x))ψ(x)− ψ̄(x)mψ(x)
= ψ̄(x)(iγµ∂µ + γµ∂µθ(x)−m)ψ(x)

(1.4)

Under the effect of the local U(1) symmetry, an additional term
is introduced into our Lagrangian: ψ̄(x)(γµ∂µθ(x))ψ(x). We can
now apply the gauge principle to introduce the gauge field associ-
ated with our symmetry, allowing us to cancel out this additional
term for local transformations. In the context of the U(1) symme-
try, this additional gauge field Aµ(x) transforms under the symmetry
as: Aµ(x) → A′

µ(x) = Aµ(x) − ∂µθ(x). In the framework of QED,
this gauge field corresponds to the gauge boson and mediator of the
electromagnetic interaction, the photon. By adding this gauge field
to our Lagrangian, we obtain the formulation that is invariant under
the local U(1) symmetry:

L = ψ̄(x)(iγµ∂µ + γµAµ(x)−m)ψ(x)

= ψ̄(x)(iγµDµ −m)ψ(x)
(1.5)
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where we have introduced the covariant derivative Dµ = ∂µ −
iAµ(x). Finally, we add the kinetic term of our gauge field. This term
must also be gauge-invariant. In the context of the U(1) symmetry,
the kinetic term is constructed from the field strength tensor Fµν =

∂µAν(x)− ∂νAµ(x):

L = ψ̄(x) (iγµDµ −m)ψ(x)− 1

4
FµνF

µν (1.6)

With this final term, we have completed the Lagrangian of QED
under the gauge theory applied to the U(1) symmetry. All the gauge
bosons of the Standard Model are obtained through the same princi-
ple. In the context of the Standard Model, the Lagrangian is derived
from the group symmetry: SU(3)C × SU(2)L × U(1)Υ. The SU(3)C
symmetry and its Lie algebra generate the strong interaction and its
gauge bosons, the gluons. The electroweak interaction is described by
the SU(2)L × U(1)Υ symmetry. This symmetry will, at a low-energy
regime, break to form the weak interaction with its gauge bosons W±

and Z, as well as electromagnetism with its gauge boson, the photon.

The Brout-Englert-Higgs mechanism

The last component of the Standard Model Lagrangian is the Brout-
Englert-Higgs mechanism, which explains the origin of the mass of
the massive gauge boson and fermions as well as the origin of the
Higgs boson. This scalar boson, whose theoretical existence was pro-
posed in 1964 by Robert Brout, François Englert, and Peter Higgs
[3,4], was the last component of the Standard Model to be discovered
in 2012 at the LHC [1, 2]. With a mass of approximately 125 GeV,
its existence was predicted to solve the problem of the mass term for
gauge bosons and fermions in the Standard Model Lagrangian under
the gauge invariance of the SU(3)C × SU(2)L × U(1)Υ symmetry.

By introducing a scalar doublet ϕ endowed with a potential
V (ϕ) = −µ2ϕ†ϕ + 1

2λ(ϕ
†ϕ)2, the potential is minimised under the

relation ϕ†ϕ = µ2

λ . Thus, unlike other fields in the Standard Model,
the value of the Higgs boson field ϕ that minimises its potential,
illustrated in Figure 1.3, is not null and has a value of v ≈ 246 GeV,
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also known as the vacuum expectation value.
Through spontaneous symmetry breaking, three Nambu-

Goldstone bosons are created from the three generators of the
symmetry that were broken. These bosons, associating with the
weak isospins SU(2)L gauge bosons W 1

µ , W 2
µ , W 3

µ , and the hyper-
charge U(1)Υ gauge boson Bµ, allow us to obtain the gauge bosons
of the weak interaction and electromagnetism. To do this, they must
first be represented in their mass eigenstates using the mixing angle:
the electroweak Weinberg angle θEW = arctan

(
gΥ
gW

)
, where the weak

isospin and hypercharge coupling strength are noted as gW and gΥ,
respectively. We can then represent the gauge bosons in their mass
eigenstates:

Aµ = sin θEWW
3
µ + cos θEWBµ

Zµ = cos θEWW
3
µ − sin θEWBµ

W±
µ =

√
1/2

(
W 1
µ ∓ iW 2

µ

) (1.7)

Thus, we can reconstruct the gauge bosons and their masses
acquired through the Brout-Englert-Higgs mechanism. Furthermore,
fermions acquire their masses through this mechanism via the
Yukawa coupling: −λψψ̄ϕψ, where the Yukawa coupling strength
λψ can be developed into λψ =

√
2
v Mψ where Mψ is the mass of the

fermion ψ.
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Figure 1.3: Illustration of the Higgs boson potential [28].

1.2 The Large Hadron Collider

The Large Hadron Collider (LHC) [29] is a particle collider located at
the European Organization for Nuclear Research (CERN) in Geneva.
It is a circular collider built underground, with a circumference of
26.7 km, housed in the same tunnel as its predecessor, the Large
Electron Positron Collider (LEP) [30], making them the two largest
colliders ever built. The LHC primarily operates proton-proton (pp)
collisions but can also accelerate heavy ions for lead-proton or lead-
lead collisions. In the context of this thesis, we will focus solely on
the main type of collision operated by the LHC, namely pp collisions.
The LHC has been operational since 2010, and its operations can be
distinguished into three Runs, each separated by a long shutdown,
during which upgrades to the collider and detectors are implemented.
Run 1 of pp collisions occurred between 2010 and 2012, with a center-
of-mass energy of 7 TeV for 2010-2011 and 8 TeV for 2012. Run 2 of
pp collisions occurred between 2015 and 2018 with a center-of-mass
energy of 13 TeV. Finally, Run 3 of pp collisions began in 2022 and
will continue until the end of 2025, with a center-of-mass energy of

12
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13.6 TeV.

The LHC benefits from its implementation within the complex
of accelerators present at CERN to accelerate the proton beams that
the LHC will use, as outlined in Figure 1.4. Protons are obtained
from gaseous hydrogen subjected to an electromagnetic field, which
separates the proton from its electron. The proton beam at the LHC
consists of protons bunched together. This allows interactions be-
tween the two beams to occur at discrete intervals of approximately
25 ns. The resulting proton bunches are guided by an electric field to
the first injector, LINAC4 [31], which replaced the previously used
LINAC2. LINAC4 employs radiofrequency (RF) cavities to acceler-
ate the protons by producing an oscillating magnetic field at 352.2
MHz. These RF cavities, synchronised with the incoming protons,
accelerate them until they reach the desired energy of 160 MeV for
LINAC4. By synchronization with the protons’ arrival, the RF cav-
ities ensure that protons at the correct energy no longer experience
any further acceleration. After being accelerated by LINAC4, the
proton bunches continue their injection into circular accelerators,
first, the Proton Synchrotron Booster (PSB), where they reach an
energy of 2 GeV. The Proton Synchrotron (PS) will then increase
the proton beam energy to 26 GeV before injecting the beam in the
Super Proton Synchrotron (SPS), which will accelerate the beam en-
ergy up to 450 GeV. After this series of injection accelerators, the
proton beams are injected into the LHC.

Once injected into one of the two LHC trajectories on which
the protons are accelerated in opposite directions, the particle beams
continue to accelerate until they reach an energy of 6.8 TeV, or a
collision energy of 13.6 TeV in the centre-of-mass when the beams
intersect. To bend the particles on circular trajectories, dipole mag-
nets are used to curve the trajectory in line with the curvature of the
pipeline. To bend the highly energetic proton beams of the LHC,
1232 dipoles operating at a magnetic field of 8.3 T are positioned
along the length of the accelerator and are maintained at a temper-
ature of approximately 2 K to function via superconductivity. Ad-
ditionally, 392 quadrupoles focus the proton bunches to ensure they
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Figure 1.4: Schematics of the CERN accelerators complex illustrating the LHC and the
injection accelerators [32].

are sufficiently compact at the crossing points where the two pro-
ton beams merge. Around these crossing points, of which there are
four in the LHC, collisions occur and are recorded by four experi-
ments: ALICE, LHCb, ATLAS, and CMS, each designed to measure
the results of these collisions. To ensure that the experiments col-
lect enough data, the LHC aims to optimise the number of potential
collisions per unit of time and area, also known as luminosity. For
pp collisions, the Equation (1.8) defines the instantaneous luminosity
delivered by the LHC during operation.

L =
N2nbf

4πσxσy
(1.8)

where N is the number of protons per bunch, approximately
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Figure 1.5: Peak luminosity versus day delivered to CMS during stable beams and for pp
collisions [33]. The luminosity is show for Run 1, Run 2 and Run 3. The data-taking is
separated per year: 2010 (green), 2011 (red), 2012 (blue), 2015 (purple), 2016 (orange),

2017 (light blue), 2018 (navy blue), 2022 (brown), and 2023 (light purple).

1011 in the LHC, and nb is the number of bunches in each beam,
around 2800 for the LHC. The factor f is the bunch crossing fre-
quency at the interaction point, which is 40 MHz at the LHC, and
σxσy represents the bunch width in the plane transverse to the cross-
ing axis. The LHC is capable of delivering an instantaneous luminos-
ity superior to 2× 1034 cm−2s−1 since Run 3 as illustrated in Figure
1.5. The most commonly used unit for determining luminosity is the
barn (b), which has a value of 1 × 10−24 cm−2. The instantaneous
luminosity is defined in units of Hz/µb. The acquired luminosity is
most often integrated over the data-taking time, as illustrated in Fig-
ure 1.6 for the CMS 2022-2024 pp data taking, resulting in a variable
called the integrated luminosity, Lint:

Lint =

∫
L dt (1.9)

The integrated luminosity recorded by the CMS detector during
the entirety of Run 2 is 150.78 fb−1 [33]. The integrated luminosity
recorded by the CMS detector during Run 3 up to October 8, 2024,
amounts to 175.57 fb−1 [33].
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Figure 1.6: Cumulative delivered and recorded luminosity versus time for 2022-2024 [33]
(pp data only). The integrated luminosity is illustrated in blue and the recorded.

1.3 The Compact Muon Solenoid experiment

Among the four experiments installed around the interaction points
of the LHC is the Compact Muon Solenoid (CMS) experiment [34].
Located at the LHC point 5, in the commune of Cessy in France, the
CMS experiment is one of the two general-purpose detectors, along
with the ATLAS experiment [35]. The detector is 21 m long, 15 m
of diameter, and weighs 14,000 tonnes.

One of the main components of the CMS detector is its solenoid
magnet, which bends charged particles with its powerful 3.8 T mag-
netic field. The innermost part of the CMS experiment is the tracker,
installed around the beam pipe, followed by the electromagnetic and
hadronic calorimeters, respectively. The tracker and the electromag-
netic and hadronic calorimeters of the CMS detector are embedded
in the solenoid magnet, which is one of the main design differences
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between the CMS and ATLAS experiments. This design difference
allows the CMS experiment to be more compact. Another charac-
teristic of the CMS detector are the muon chambers, located outside
the solenoid magnet, which enable the detector to achieve excellent
reconstruction and identification of produced muons.

The CMS coordinate system, illustrated in Figure 1.7, defines
the z-axis along the beam pipe, the x-axis pointing towards the centre
of the LHC ring, and the y-axis pointing towards the surface. The
transverse plane is one of the key elements, where the azimuthal angle
ϕ describes the opening in this plane from the x-axis. The polar angle
θ defines the angle between the transverse plane and the z-axis, with
the opening starting from the z-axis. However, the pseudorapidity
η is more commonly used and is defined via θ or the momentum
p = (px, py, pz):

η = − ln

(
tan

θ

2

)
=

1

2
ln

(
|p|+ pz
|p| − pz

)
(1.10)

We will use η to describe the trajectory of a particle relative
to the z-axis. If η = 0, the particle has a trajectory perpendicular
to the beam axis and moves in the transverse plane. In contrast,
as η increases, the particle approaches the beam axis, with η = ∞
corresponding to a trajectory parallel to the z-axis. Note that in
the limit of ultra-relativistic particles, pseudorapidity is equivalent
to rapidity y = 1

2 ln
(
E+pz
E−pz

)
. Furthermore, unlike ∆θ intervals, the

∆y interval is invariant under boosts along the z-axis, and the ∆η is
invariant under the same boosts for massless particles.

The z-axis of our reference frame is aligned with the beam axes,
and due to momentum conservation, the sum of the momenta of the
particles produced in the transverse plane should be zero if we are
able to detect each one of them. Thus, another variable used in
collider physics is the transverse momentum, denoted pT:

pT =
√
p2x + p2y = p sin θ (1.11)
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Figure 1.7: The CMS coordinate system [36].

1.3.1 The Silicon Tracker

The CMS silicon tracker [37–39] is the detector component closest to
the beam pipe. It aims to track the paths of charged particles pro-
duced in collisions. A charged particle with charge q and momentum
p in the magnetic field B generated by the CMS solenoid will follow
a curved path with a radius of curvature r = p

Bq , allowing the mea-
surement of the momentum via a measurement of the radius of the
track. The particle trajectories also enable vertexing, which aims to
identify the primary collision point. Beyond this primary vertexing,
secondary vertexing can also be performed to reconstruct the vertex
of certain particles whose lifetime leads to creating a secondary ver-
tex displaced from the primary collision vertex. The silicon tracker
illustrated schematically in Figure 1.8 consists of a barrel and two
endcaps, providing coverage up to |η| < 2.5.

In its current configuration, the CMS silicon tracker has been
upgraded with an upgraded pixel system [39,41] installed during the
year-end technical stop of the LHC in 2016/2017. This upgrade, also
referred as the Phase-1 upgrade is illustrated in in Figure 1.9. Since
then, the tracker barrel, with a radius of 1.2 m and a length of 5.6
m, is composed of four pixel layers, with the innermost layer located
29 mm from the beam pipe [39]. These pixel layers consist of silicon
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Figure 1.8: Schematic view of a quarter of the Phase-1 CMS tracking system [40]. The
pixel modules are shown in green, while the strip modules are depicted in red and blue.

sensors, with pixel sizes of 150 × 100 µm, providing high granularity
and ensuring a transverse hit resolution of 10 µm and a longitudinal
resolution of 20-40 µm [39]. In addition to these four barrel layers,
each endcap has two pixel layers. In total, the pixel detector consists
of approximately 120 million pixels, covering an active tracking area
of 1.2 m2. Located beyond the pixel layers are the silicon strip sensor
layers, which have lower granularity and offer a resolution of around
20-40 µm [42]. The barrel has ten layers of silicon strips, while the
endcaps have twelve layers. Approximately 9.8 million strips make
up the tracker, with the active area of the silicon strip detectors
covering approximately 198 m2, larger than the active area of the
inner pixel detector. The CMS tracker is thus capable of measuring
the momentum of charged particles with a resolution of about 1-
2%, while primary vertices can be reconstructed with a resolution of
about 10 µm in each of the three spatial dimensions [43].
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Figure 1.9: Schematic view of the pixel detector with the current Phase-1 upgrade
configuration [39].

1.3.2 The Electromagnetic Calorimeter

Beyond the CMS silicon tracker, the particles cross the Electromag-
netic Calorimeter (ECAL) of the CMS experiment [44, 45]. The
ECAL is designed to measure the energy of particles that interact
primarily electromagnetically with the medium, namely the elec-
trons/positrons and photons produced in the collisions. The CMS
ECAL is a homogeneous calorimeter composed of lead tungstate
(PbWO4) crystals with a radiation length of approximately 0.89 cm.
Thus, the crystals require only a length of about O(20 cm) to contain
the entire energy deposition of a high-energy photon or electron, al-
lowing for a compact design that fits within the solenoid magnet. The
Molière radius of lead tungstate is 2.2 cm, leading to the trapezoidal
shape of the crystal faces. The calorimeter is divided into a barrel
covering |η| < 1.479 and two endcaps covering 1.479 < |η| < 3.0, illus-
trated in Figure 1.10, and consists of 75,848 crystals in total. These
crystals have a length of 22 to 23 cm, with a surface area varying
from 2.2 × 2.2 cm2 to 2.9 × 2.9 cm2 for the side facing inward in the
barrel and endcaps, respectively. The outer surface has dimensions of
2.6 × 2.6 cm2 in the barrel and 3.0 × 3.0 cm2 in the endcaps. Finally,
preshower detectors are installed in the region 1.536 < |η| < 2.6, in
front of the previously described device to separate high-energy single
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photons from photon pairs with small angular separation, primarily
originating from the decay of a neutral pion π0. The energy resolu-
tion of the CMS ECAL is about 2% in the barrel and 3-5% in the
endcaps [46].

Figure 1.10: The schematics of the CMS ECAL [47]. An ECAL barrel module is
highlighted in green, the two ECAL endcaps in blue and the two preshowers in red.

1.3.3 The Hadronic Calorimeter

The CMS Hadronic Calorimeter (HCAL) [48–50] is designed to mea-
sure the energy of neutral and charged hadrons produced during col-
lisions. The HCAL is divided into several components: two endcaps
(HE) and a barrel (HB) placed inside the magnet coil. Addition-
ally, two further components, the forward calorimeter (HF) and an
outer calorimeter (HO), complete the system. Unlike the ECAL,
the CMS HCAL is a heterogeneous sampling calorimeter composed
of alternating layers of absorbers and active media. The HB has a
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coverage region of |η| < 1.3 and is made of 5 cm brass layers as ab-
sorbers. The active medium is composed of plastic scintillator tiles.
In total, the HB consists of 17 layers for a total of 5.8 nuclear inter-
action lengths. The HE uses 8 cm brass layers to cover the region
1.3 < |η| < 3.0. The HE consists of 19 layers, providing 10 nuclear
interaction lengths. Together, the HB and HE contain 2304 mod-
ules. The HO employs the magnet coil as the absorber and plastic
scintillator layers as the active medium. The final component, the
HF scintillator, is located 11 m away, covering 2.9 < |η| < 5.0 and
is a Cherenkov calorimeter. It uses steel as the absorber material
and quartz fibres to collect Cherenkov radiation signals. The energy
resolution depends on pseudorapidity. As a reference, the energy
resolution for a pion in the barrel is approximately 120%√

E
[50].

Figure 1.11: Quadrant schematics of the CMS HCAL [50]. The four components, HB,
HE, HO, and HF HCAL modules, are labelled in the figure.
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1.3.4 The Muon Chambers

Beyond the solenoid magnet of the CMS experiment lies the muon
system [51, 52], which enables the identification and reconstruction
of the produced muons. Only muons and neutrinos typically pass
through the CMS solenoid magnet because they interact weakly with
matter. However, neutrinos interact so weakly that they cannot be
identified or reconstructed by the detector, leaving only muons to
interact in the muon system. Figure 1.12 illustrates a schematic of
the muon system.

Figure 1.12: Quadrant of the CMS experiment highlighting in beige the DTs, in green the
CSCs, in blue the RPCs and in red the GEMs [53].

This system is divided into two parts: the section covering the
barrel, with pseudorapidity |η| < 1.2, and the two endcaps, which
cover pseudorapidity values of 0.9 < |η| < 2.4. Detection in the
barrel uses drift tubes (DTs), while the endcaps use cathode strip
chambers (CSCs), better suited to the radiation and data acquisition
constraints in this region of the detector. In addition to these com-
ponents, resistive plate chambers (RPCs) are placed throughout the
barrel and endcaps to improve the temporal resolution of the muon
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system. Moreover, gaseous electron multiplier (GEM) detectors were
added at the end of Run 2 in the region closest to the centre, covering
1.6 < |η| < 2.2 [53]. Thanks to its muon system, the CMS experiment
has a muon reconstruction efficiency of approximately 95-99%, and
the resolution on their transverse momentum varies between around
2% in the barrel and less than 10% in the endcaps.

1.3.5 The Trigger System

During data taking, the LHC produces bunch crossings at a frequency
of 40 MHz, and in each crossing, several pp collision occur. For the
2023 Run 3 data-taking, the mean number of pp interactions per
crossing was 52 [33]. However, the majority of interactions result-
ing from these collisions are inelastic, involving a small momentum
exchange. In contrast, the primary interest of the CMS experiment
lies in collisions with large momentum exchanges, enabling research
into heavy physical objects such as the Higgs boson, Z boson, and
top quark. Moreover, considering that the data produced per bunch
crossing is around 1 MB and the immense number of pp collisions re-
sults in a data production rate of 40 MHz, we would need to process
40 TB/s of data at high granularity. This constraint is several or-
ders of magnitude beyond the bandwidth and hardware capabilities
that the data acquisition system can support, making it necessary to
apply selections to filter the data. This collision selection/filtering
system, which is the focus of this section, is called the trigger system
and consists of two levels of selection, illustrated by the schematic
view of the Run 2 trigger system in Figure 1.13. Note the Run 3
trigger system follows the same data-taking scenario with increased
rates [54].

The first, called the level-1 trigger (L1) [55], consists of hard-
ware systems such as field-programmable gate arrays (FPGAs),
which use non-granular data from the calorimeters and muon
chambers with a latency of around 3.8 µs and allow the selection of
events at a rate of 110 kHz under Run 3 conditions [54] for the next
stage. The second stage, called the high-level trigger (HLT) [56],
consists of a hardware farm composed of heterogeneous elements,
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Figure 1.13: Schematic view of the Run 2 data flow for the 2018 data-taking scenario [54].

including CPUs and GPUs, for Run 3 [54]. At this stage, the full
granularity of the event is used for processing, with a simplified
and faster reconstruction compared to the final level, also known
as offline reconstruction, allowing the selection of events at a rate
of approximately 7 kHz. Of this rate, 2 kHz will be promptly
reconstructed within 48 hours of acquisition, while 3 kHz will be
reconstructed later towards the end of the data-taking year using a
‘data parking’ system [54].

1.4 The reconstruction of the physics objects

1.4.1 Tracking

The tracks left by charged particles in the silicon tracker are one
of the primary signatures at the CMS experiment. Tracking in the
CMS experiment is performed using a combinatorial method based on
Kalman filters, updated for Run 3 to function optimally by exploit-
ing parallelisation and vectorisation of multi-core CPU architectures
[57]. This update allows for the same level of performance as the
original Combinatorial Kalman Filter (CKF) algorithm [43,58] while
improving computational efficiency.

Track fitting starts with initial seeds corresponding to a number
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of compatible hits. The fitting algorithm then extrapolates the tra-
jectory to the next layers from the initial seed tracks and attempts to
find compatible hits in these layers with the seed tracks. Once a hit is
found, the trajectory of the associated seed track is updated by incor-
porating the new hit. If multiple hits are compatible, the algorithm
produces an updated track version for each possible association, and
the fitting continues. After adjusting all tracks with all layers, a final
fit is performed, accounting for the non-uniformity of the magnetic
field B and a better description of the interaction with the tracker
material. After fitting, the tracks are classified using a deep neural
network developed to assess track quality and reject fakes that may
be produced, as well as duplicates that share too many common hits
[59]. Once the fitting and the track classification are completed, the
algorithm extrapolates the momentum, direction, and origin of each
track. The used hits are removed from the available hits, and a new
fit with different seeding conditions can be performed. These steps
are repeated with various seeding conditions to accurately fit tracks
under different conditions. Twelve iterations are performed, starting
with pixel quadruplets to fit high pT tracks, and the final two proce-
dures take into account the muon system to specifically reconstruct
this type of particle.

1.4.2 Vertexing at CMS

The number of pp collisions per bunch crossing, in the Run 3 con-
dition, is around 52 [33], leading to numerous low-energy collisions
that are not part of the physics and interactions we wish to study.
These secondary collisions, also known as pileup, contaminate the
reconstruction of our event and require several treatments. The first
step is reconstructing the interaction point of each pp collision, also
known as the primary vertex (PV). To reconstruct these, PV can-
didates are determined via a clustering algorithm, the deterministic
annealing algorithm, using the longitudinal coordinate of the point
of closest approach of each track to the beam spot [60]. After iden-
tifying the potential PVs, they are fitted using the Adaptive Vertex
Fitter (AVF) algorithm [60].
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In addition to vertexing PVs, CMS employs an algorithm to re-
construct the vertices from the decay of particles with a sufficiently
long lifetime to decay after travelling a certain distance. This step al-
lows for the reconstruction of what we call Secondary Vertices (SVs),
a critical component of heavy-flavour jets, as these contain heavy
hadrons that will decay after travelling a distance of approximately
∼ 0.5 mm, sufficient to reconstruct a secondary vertex. The algo-
rithm used for secondary vertex reconstruction at CMS is the Inclu-
sive Vertex Finder (IVF) algorithm [61]. The IVF algorithm employs
all the tracks to find significantly displaced seed tracks. Other tracks
are associated with the seeds based on their angular difference and
distance of closest approach extrapolated by their trajectory, with
certain quality cuts applied. During this association, the IVF al-
gorithm also ensures that tracks associated with the potential SV
are closer to the SV candidate than any PV candidate. Finally, the
tracks associated with each SV seed are fitted to determine the ver-
tex position, its distance from the PV, and the kinematic properties
of the reconstructed vertex.

1.4.3 The Particle-Flow algorithm

In the CMS experiment, the Particle-Flow (PF) algorithm is a parti-
cle reconstruction method that combines information from different
subdetectors to identify and measure the individual particles pro-
duced during collisions. Depending on the nature of the particles,
their interactions with the various subdetectors differ, as illustrated
in Figure 1.14. Photons, being neutral, leave no trace in the tracker
but deposit their energy in the ECAL, where they are detected. Elec-
trons/positrons, on the other hand, are charged and leave signatures
in the tracker and the ECAL. Hadrons, originating from the hadroni-
sation of quarks, can also be classified as neutral or charged. Neutral
hadrons leave no trace in the tracker and deposit most of their en-
ergy in the HCAL. Charged hadrons, in contrast, will leave a trace
in the tracker before undergoing the same energy deposition process
in the HCAL, with possibly some energy initially deposited in the
ECAL. Finally, being charged and weakly interacting, muons leave
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tracks in the tracker and the muon system. Thus, we observe that
the nature of the particles defines distinct signatures, which the PF
algorithm leverages to reconstruct particles more efficiently than the
reconstruction provided by each individual subdetector.

1m 2m 3m 4m 5m 6m 7m0m

Transverse slice
through CMS
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Electromagnetic
Calorimeter
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Electron
Charged Hadron (e.g. Pion)

Muon
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Neutral Hadron (e.g. Neutron)

Figure 1.14: Schematic view of the Run 2 data flow for the 2018 data-taking scenario [54].

From the reconstructed tracks and calorimeter clusters of the
CMS detector, also called PF elements within the PF algorithm,
particle candidates can be reconstructed by linking information from
different subdetectors. The algorithm associates the calorimeters and
the tracker by extrapolating the track trajectory from the outermost
hit while accounting for interactions with the traversed material. If
an ECAL or HCAL cluster is compatible with the uncertainties in the
η, ϕ plane, they are considered linked. If multiple links exist between
several tracks and the same clusters, or vice versa, the separation in
η, ϕ is used to decide which final association will be considered. An
additional link with potential clusters produced by bremsstrahlung
radiation is made for electrons. Similarly, the link between ECAL
and HCAL clusters is also established based on their positions in the
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η, ϕ plane. As before, if multiple links are made, an arbitration is
performed, and the link with the smallest distance in the η, ϕ plane
is associated. The linked PF elements thus form PF blocks, which
are then processed to reconstruct the final particles. The algorithm
starts by reconstructing muons, which are the easiest to identify due
to the muon system. Then, isolated electrons and photons are pro-
cessed. Finally, charged hadrons are processed, followed by neutral
and non-isolated photons. It should be noted that at each step, the
PF elements and PF blocks used for identifying and reconstructing
particles of a certain type are removed from the collection used for
the next step.

The PF algorithm performs the reconstruction and identifica-
tion of muons using PF blocks reconstructed from tracks originating
from one of the previously mentioned track muon seeding iterations.
For a well-isolated muon, such as one originating from the decay of a
Z or W boson, identification is done by checking the total transverse
momentum contained in the tracks and the energy deposited in the
calorimeter clusters within a radius of ∆R = 0.3 [62]. A correction
factor accounting for pileup is also added. If the measured quantity is
less than 10% of that of the isolated muon candidate, corresponding
to a reconstruction efficiency of 98%, the PF block will be consid-
ered a muon. For non-isolated muons, which may originate from the
leptonic decay of heavy hadrons in a jet from a b or c quark, such iso-
lation criteria cannot be applied because other particles will surround
the low transverse momentum muon. Further procedures based on
the granularity and resolution of the tracker, muon chambers, and
calorimeters [62] exist.

Electrons and isolated photons are processed simultaneously.
Indeed, electrons radiate photons through bremsstrahlung, and pho-
tons can convert into an e+e− pair, making their identification sim-
ilar. First, the reconstruction of tracks from electrons is performed
using a different tracking algorithm from the Kalman filter, called
the Gaussian-sum filter (GSF) [63], which accounts for the energy
loss of the electron in the tracker. PF blocks containing a GSF track
are labelled as electron candidates. The energy of these electron can-
didates is calculated from the momentum of the GSF track and the
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associated ECAL cluster. Similarly, a PF block with no tracks but
only a deposit in the ECAL is considered a photon candidate. A
check is then performed in the HCAL to ensure no significant as-
sociated deposit is present, as photons and electrons are expected
to deposit all or most of their energy in the ECAL. Finally, a fi-
nal selection using various quality criteria is applied to the electron
candidates, using a boosted decision tree algorithm, to improve the
efficiency of their selection.

The final reconstruction step involves the reconstruction of
charged and neutral hadrons, which constitute most of the particles
produced in a pp collision, as well as non-isolated photons. A PF
block associated with an HCAL cluster without a track is labelled as
a neutral hadron, and its energy is reconstructed from the deposit
of the HCAL cluster. PF block containing a track and an HCAL
cluster is considered a charged hadron. If an additional deposit is
found in the ECAL, a fit between the track’s momentum and the
energy deposited in the ECAL and HCAL is performed to ensure
the correct association of PF elements, and a fit of the energy from
the clusters and the track’s momentum is then used to obtain a
more precise estimate of the charged hadron’s energy. If this is not
the case, the problematic PF element is removed and reclassified as
a neutral hadron or a photon. A PF block consisting of an ECAL
cluster without a track is considered a photon, and its energy is
determined from the deposit of the respective cluster. If any PF
blocks consisting solely of tracks remain, they are reconstructed as
charged hadrons. It should be noted that the PF algorithm does
not identify the type of charged hadron, and all are reconstructed
under the assumption of being a charged pion. Therefore, it is not
possible, for example, to differentiate pions π± from kaons K±.
Finally, outside the tracker acceptance of |η| < 2.5, no tracks can
be reconstructed. Hence, the PF algorithm does not distinguish
between neutral and charged hadrons in this region.

Next, all the objects reconstructed by the PF algorithm are
gathered into a specific pfCandidate collection within the CMS Soft-
ware (CMSSW) [64]. A second collection corresponding to the tracks
not associated by the PF algorithm, which are stored in the so-called
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lostTracks collection if their pT is above 0.95 GeV or they are associ-
ated with a secondary vertex or a Ks or Λ0 reconstructed decay.

1.4.4 Jet reconstruction

As mentioned earlier, quarks produced during collisions will hadro-
nise into a set of colour-neutral particles in a cascade known as a
jet, whose classification and the reconstruction of certain variables
we will explore in this thesis using Deep Learning algorithms. Thus,
jets are the key objects in this thesis.

Among the particles comprising a jet, we find neutral and
charged hadrons produced during hadronisation, as well as photons,
electrons, and muons, which can, for example, be the product of the
decay of certain hadrons such as neutral pions, whose lifetime causes
them to decay almost instantly at the PV (cτ ∼ 2.4 × 10−5 mm),
primarily into a pair of photons. Figure 1.15 illustrates the formation
of a jet during a pp collision and what the CMS detector will be
able to observe in comparison with the initial quark alone. During
pp collisions, multiple jets are often formed, making it necessary to
design an algorithm capable of clustering the reconstructed particles
into a jet. Once this is done, corrections are necessary to obtain the
best estimate of its properties, such as its energy. These corrections
include, for instance, the subtraction of particles associated with
the reconstructed jet originating from pileup, as well as corrections
accounting for detection inefficiencies and uncertainties.

Jet clustering is handled by the anti-kt algorithm [66]. It is
a jet recombination method that is both infrared and collinear safe
(IRC safe). This means that if a low-energy radiation, known as soft
radiation, or a collinear splitting from the original quark or gluon,
also called a parton, occurs, the jet clustering remains unaffected.
The algorithm requires the definition of a radius R, a parameter that
defines the jet cone in the (y, ϕ) plane. The choice of radius is an
important element that needs to be adjusted to the experimental and
pileup conditions. It should also be noted that a larger radius can
be chosen to reconstruct more complex jet structures, such as the
decay of a boosted particle into two quarks, X → qq̄′. In the context
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Figure 1.15: Sketch of a jet formation in a pp collision. After the hard process, the quark
or gluon produced undergoes fragmentation before hadronising [65]. Note the

hadronization product can decay later and induce new particles.

of the CMS experiment, the radius R is typically set to 0.4 for most
reconstructed jets. These reconstructed jets are thus referred to as
AK4 jets or resolved jets. Based on the choice of radius R, the anti-
kt algorithm defines the following variables for each pair (i, j) of PF
candidates:

dij = min
(
k−2
t,i , k

−2
t,j

) ∆2

R2

diB = k−2
t,i

(1.12)

where kt,i represents the transverse momentum, and ∆ is the
angular separation given by ∆y2ij +∆ϕ2ij.

For each pair, if the calculated distance dij is smaller than
diB and djB, then the two PF candidates are associated, forming
a pseudo-jet, which replaces the two PF candidates in the algorithm,
resulting in the final reconstructed jets as illustrated in Figure 1.16.
The recombination algorithm continues until no further associations
are possible. After obtaining our jets, we still need to manage pileup
using a mitigation method. The one employed by the CMS experi-
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ment in Run 3 is the pileup per particle identification (PUPPI) al-
gorithm [67]. This technique assigns a weight to each particle in
the event based on its likely origin, such as the primary interac-
tion or pileup. The weight indicates how much each particle can
contribute to the jet, for example, in measuring its transverse mo-
mentum. Therefore, particles originating from pileup are expected
to contribute less to the jet properties.

Figure 1.16: Illustration of the anti-kt clustering algorithm (left) and Cambridge/Aachen
clustering algorithm [68, 69] (right) using sample parton-level event with ‘soft ghosts’
[66]. We can see that the anti-kt algorithm clearly defines conical jet contours, and the

shape and boundaries of the jets are not significantly affected by ‘soft ghosts,’ unlike in the
case of the Cambridge/Aachen algorithm.

Jet energy corrections

Once our jet is reconstructed and pileup mitigation applied, sev-
eral corrections or predictions can be made regarding its properties.
The first is the correction of its momentum relative to the gener-
ated quark. Multiple factors contribute to the discrepancy between
the momentum of the reconstructed jet and the original quark, such
as detector response, mismodelling of simulations compared to data,
or residual pileup contributions not eliminated by the PUPPI algo-
rithm. The applied corrections, called jet energy corrections (JEC),
are provided in several steps [70,71]. The first one aims to correct the
remaining pileup contribution after mitigation. This involves deriv-
ing the correction from simulated dijet events, with or without back-
ground contribution. The next two corrections aim to adjust the de-

33



CHAPTER 1. INTRODUCTION

tector response by comparing reconstructed jets with generator-level
jets matched via ∆R. Generator-level physics objects are described
by the generator only. They do not account for the detector interac-
tion and efficiencies. In the context of a generator-level jet, the jet is
reconstructed with the anti-kt algorithm. It consist of the generator-
level information of the jet constituents, excluding the pileup contri-
bution. These first three corrections are usually called level 1, level
2, and level 3 corrections (L1, L2, and L3). Finally, corrections are
derived between simulations and data using dijet, Z+jets, or γ+jets
processes, accounting for differences between data and simulations.
This final correction is commonly referred to as residual correction.
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Deep Learning

This chapter is the introductory chapter on the elements of machine
learning and mathematics for the thesis. We will discuss the theoret-
ical elements of machine learning and deep learning that allow us to
deepen our understanding of the algorithms we will use later. This
chapter aims to enable the reader to understand and become familiar
with the key elements of deep learning and their origins. Specifically,
we will first establish the fundamentals of ML and statistics in Section
2.1. This section gives an overview of the machine learning landscape
and the mathematical elements used to evaluate the performance of
an algorithm. Then, we will detail the fundamental elements struc-
turing our deep learning algorithms in Section 2.2. We will approach
chronologically the different elements of deep learning, which will be
addressed in this thesis, as well as their structures and fundamental
properties. Finally, we will detail the fundamental principles of ar-
tificial neural network training in Section 2.3. We aim to describe
how an artificial neural network optimises itself for a given task.
More particularly, we will discuss the evolution of training methods
from the first primitive neural networks to modern techniques used
to train the algorithms mentioned in this thesis. The list of methods
described here is not exhaustive of the modern landscape of train-
ing methods but covers the elements mainly used in deep learning
applied to high-energy physics.
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2.1 Machine Learning and fundamentals

Machine Learning (ML) is a subfield of Artificial Intelligence (AI)
that encompasses algorithms and statistical methods enabling a sys-
tem to optimise itself to perform tasks based on data without hu-
man intervention during the learning process. More specifically, once
the algorithmic logic, objectives, and rules for learning and perfor-
mance evaluation are established, the machine learning algorithm can
autonomously perform statistical learning. This involves predicting
values based on the received data, with the goal of minimising the
average predictive error as much as possible.

We categorise Machine Learning algorithms according to the
training paradigm used. Supervised learning employs labelled data,
where each input sample is associated with the values we wish to pre-
dict. The objective is to learn a function that maps inputs to outputs,
allowing the prediction of labels for new data after the learning phase.
For example, image classification is a typical task of supervised learn-
ing. Unsupervised learning, on the other hand, uses unlabelled data.
The goal is to uncover hidden structures or patterns within the data,
such as clustering or dimensionality reduction. A classic example is
the k-means clustering algorithm [72]. Semi-supervised learning is
an intermediate paradigm: it exploits a small set of labelled data
and a large set of unlabelled data to build more robust models. This
paradigm aims to enhance the model’s performance by leveraging the
abundance of unlabelled data while utilising the limited but valuable
information from the labelled data to obtain an adequate sample for
learning how to identify labels [73]. This approach is particularly
useful when data labelling is costly or labour-intensive.

In recent years, ML has effectively solved complex tasks such as
computer vision (CV) [74, 75], natural language processing [76–78],
autonomous driving [79], and even the discovery of new antibiotics
[80]. In high-energy physics, machine learning is employed for nu-
merous tasks such as quark-gluon (QG) jet tagging [81–83], using a
variety of ML techniques ranging from likelihood ratios to artificial
neural networks. Similarly, Boosted Decision Trees (BDTs), another
family of machine learning algorithms, have been used for particle
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identification [84], and efficient versions of graph neural networks
have enabled the creation of an ML version of the particle-flow al-
gorithm [85]. Machine Learning has contributed not only to the
improvement of our tools for describing physical objects but also to
numerous analyses, such as enhancing signal sensitivity in searches
for Higgs boson production associated with a top quark pair at the
CMS experiment [84,86], and providing evidence for single top quark
production at the Tevatron [87].

Define and evaluate a Machine Learning algorithm

Many ML problems are formulated to minimise a loss function over
a set of training examples. Loss functions quantify the non-precision
of the predictions, denoted by ŷ, of the model being trained and the
actual values the algorithm wants to predict, denoted by y. One
of the most commonly used cost functions is the Mean Squared Er-
ror (MSE) for regression problems (predicting a continuous value),
defined by Equation (2.1). For classification problems (predicting
a class for the object), a commonly used cost function is the cross-
entropy (CE). The CE for binary classification is defined by Equation
(2.2).

MSE =
1

2
(ŷ − y)2 (2.1)

CE = −(y log(ŷ) + (1− y) log(1− ŷ)) (2.2)

From these cost functions, we can define a training strategy. In
the context of Deep Learning, this will be covered in Section 2.3. To
train a machine learning algorithm effectively and improve its gener-
alization capability, it’s customary to use three distinct datasets: the
training set, the validation set, and the test set [88,89]. The training
set is used to adjust the algorithm’s parameters. The ML algorithm
learns from this set by adjusting its parameters to minimise errors
in this data. The validation set is used to evaluate the model during
training and to fine-tune its hyperparameters. This set helps prevent
overfitting by providing an intermediate evaluation that the model
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has not seen during training. Finally, the test set is used to esti-
mate the model’s generalisation error after complete training. This
set is never used during training or validation, providing an unbiased
estimate of the model’s generalization ability.

Splitting the data in this way is crucial for several reasons.
Firstly, it helps prevent overfitting. By using a validation set, we
can detect overfitting and choose the model snapshot where it per-
forms best. This prevents us from keeping only the last step of the
model, which may be overly optimised only towards the training set
and fail to generalise to new data. Lastly, the test set provides an
unbiased evaluation of the model’s performance on unseen and inde-
pendent identically distributed (iid) data. This gives us an indication
of the model’s real-world performance. It’s possible to have multiple
test sets to evaluate the model’s performance in different scenarios
and distinguish its performance in each individual configuration.

After training the algorithm, we evaluate its performance to
quantify its effectiveness. In the case of a classification task, the con-
cepts of true positive (TP) and true negative (TN) define the correct
outcomes predicted by the model. A true positive occurs when the
model correctly predicts a class (e.g., the nature of a jet) when that
class is indeed present. A true negative (TN) is an instance where
the model correctly predicts the absence of that class. Conversely,
a false positive (FP) occurs when the model predicts the presence
of the class when it is absent (Type I error), while a false negative
occurs when the model predicts the absence of the class when it is
present (Type II error). Type I (false positive) and Type II (false neg-
ative) errors are critical as they impact the reliability of the model’s
predictions. A Type I error represents contamination in predicting
the class, whereas a Type II error represents a failure to detect an
existing class.

From these concepts, we can derive several metrics to evaluate
the quality of the algorithm’s classification. Precision is defined as
the ratio of TP to the total predicted positives such as in Equation
(2.3). However, precision alone may not be sufficient when adjust-
ing the precision rate based on a prediction threshold. To further
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refine our understanding of our algorithms, we use Receiver Operat-
ing Characteristic (ROC) curves. ROC curves plot the TP rate (1
- Type II error) against the FP rate (Type I error) for different de-
cision thresholds, allowing visualization of the model’s performance
at various thresholds. The area under the ROC curve (ROC AUC)
quantifies this performance by calculating the integral under the ROC
curve, with 1 indicating perfect performance and 0.5 indicating ran-
dom guessing. Conventionally and for visibility in jet tagging, we
invert the axes compared to classical ROC curves. The power of re-
jection at a given efficiency is the inverse of the false positive rate
measured at a TP threshold. This metric provides insight into the
model’s ability to reject contaminating classes at a typically consid-
ered rate correctly. Figure 2.1 illustrates the ROC curve and the
related metrics.

Precision =
TP

TP + FP
(2.3)
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Figure 2.1: Illustration of the ROC curve for jet tagging. The ROC AUC score is indicated
in the label, and the area is highlighted in green.
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2.2 Neural Network structures

This Section discusses the fundamental components of the neural
networks that we will use to develop the algorithms employed later.
We will detail the fundamental principles in chronological order to
highlight the advances that Deep Learning has experienced over time,
which have led to recent developments in flavour tagging.

2.2.1 The Perceptron and Multi-Layer Perceptron

The origin of artificial neural networks dates back to the 1950s when
neuroscientists and mathematicians endeavoured to create a mathe-
matical and algorithmic foundation that mimicked the fundamental
principles of biological neurons as conceptualised at the time. The
first machine learning algorithm considered an artificial neural net-
work is the Perceptron [5], initially simulated and then described
by Rosenblatt in 1957 and 1958, respectively. The perceptron algo-
rithm performs binary classification using a set of n input variables x̄
= (x1, ..., xn) and an output variable o. These variables are combined
linearly with n weights W̄ = (W1, ...,Wn) (also called synaptic coeffi-
cients) and a bias (also called threshold) b according to the following
equation:

o(x̄, W̄ , b) =

{
1 if

∑n
i=1Wixi + b ≥ 0

0 otherwise
(2.4)

The parameters Wi and b are the trainable variables of the algo-
rithm that allow the perceptron to be adjusted in order to optimise
problem-solving. The output value of the perceptron o, whose struc-
ture is illustrated in Figure 2.2, corresponds to the Heaviside function
and enables the algorithm to predict the class, either 1 or 0. This
output value can then be compared to the actual class y. By extend-
ing this example to a labelled data sample comprising M elements
D = {(x̄1, y1), ..., (x̄M , yM )}, we can derive metrics to measure the
quality of our prediction such as the precision or the ROC AUC.

Like any machine learning algorithm, we can derive a learning
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rule to adjust the model parameters on our data sample. In the
context of the perceptron, Rosenblatt starts his perceptron with all
weights having an initial value of 0. Then, for each labelled data
point, we can update the value of our weights relative to the cost
function L = 1

2(y
m − o(x̄m, W̄ )), via Equation (2.5).

Wi = Wi + λxmi (y
m − o(x̄m,Wi)) (2.5)

Where xm and ym represent the input variables and the actual
class of the m-th element of sample D. Additionally, we have added
the bias to the list of weights as the last element Wn+1 = b and in-
cluded a term for the bias in the input variables xn+1 = 1 to match
the initial Equation (2.4). The value λ corresponds to the learning
rate, a parameter that controls the magnitude of the weight changes
with respect to the additional term. The term (ym − o(x̄m,Wi)) in-
dicates the quality of the prediction; if we predict the correct class,
the algorithm does not need to adjust its weights, and the value of
this term is zero.

In the decade following its creation, several mathematical prop-
erties were derived from the perceptron and its training method. No-
tably, the proof of convergence for the algorithm in Equation (2.5)
was published in 1962 [90]. However, in 1969, Minsky and Papert
derived the limitations of simple perceptrons [91]. These, constrained
by their linear structure, are indeed incapable of solving non-linearly
separable problems. In other words, if a hyperplane separates our
two classes, then Novikoff’s convergence theorem [90] guarantees the
perceptron’s convergence. Beyond the limitations of the simple per-
ceptron, Minsky and Papert also contributed by demonstrating that
classification tasks require non-linear transformations, which can be
achieved by extending the perceptron’s definition. Indeed, by chang-
ing the perceptron’s output function from the simple Heaviside func-
tion to non-linear functions and extending the perceptron from a sin-
gle layer to multiple layers, it was shown that we can overcome the
difficulties encountered in certain non-linear problems. This revela-
tion of what we call deep neural networks (DNNs), and more specifi-
cally, the multi-layer perceptron (MLP), established the fundamental
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Figure 2.2: Schematic structure of the perceptron algorithm with 4 input features xi in
blue, a bias in orange and one output y in green.

principles that led to the improvement of neural networks and their
learning techniques in the 1980s and 1990s, forming the foundations
of contemporary deep learning techniques. A multi-layer perceptron
consisting of two hidden layers is illustrated in Figure 2.3 and corre-
sponds to Equation (2.6).

o1j(x̄, W̄
1) = a1(

∑
i

xiW
1
ij + b1j)

o2j(ō
1, W̄ 2) = a2(

∑
i

o1iW
2
ij + b2j)

o3j(ō
2, W̄ 3) = a3(

∑
i

o2iW
3
ij + b3j)

(2.6)
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In a MLP, each layer of neurons performs a linear transforma-
tion followed by a non-linear activation. In our example, each layer
j receives as input the outputs of the previous layer i. For the first
layer, the inputs x̄ are transformed into outputs ō1 according to the
first of Equation (2.6). Here, xi represents the inputs, W 1

ij are the
weights of the first layer, b1j is the associated bias, and a1 is the acti-
vation function. The second layer takes the outputs of the first layer,
ō1, and transforms them into outputs according to the second equa-
tion. Similarly, the third layer transforms the outputs of the second
layer, ō2, into final outputs ō3 according to the last equation. Each
linear transformation is followed by a non-linear activation, enabling
the MLP to model non-linear relationships within the system.

The sigmoid and softmax functions, defined in Equation (2.7),
are frequently used to characterise probability distributions. The
softmax function is particularly employed in multi-class classification
tasks to transform the N output discriminants into a probability
distribution over N choices. Among the commonly used activation
functions, we can mention the Rectified Linear Units (ReLU) [92]
and its derivatives GELU [93] and SiLU [94], whose Equation (2.8)
illustrate the functions.

σ(x) =
1

1 + e−x

SoftMax(x) =
exi∑
j e

xj

(2.7)

ReLU(x) = max(0, x)

GELU(x) = x · Φ(x), Φ(x) =
1

2
· (1 + (erf(

x√
2
)))

SiLU(x) = x · σ(x)

(2.8)

The evolution of the perceptron and MLP over the years has
also led to the advent of new training methods, such as the pocket
algorithm [95], allowing the perceptron to be trained on non-linearly
separable data with a tolerated error rate, and the Least-Mean-
Square (LMS) algorithm, which minimises the MSE using the gradi-
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Figure 2.3: Schematic structure of the multilayer perceptron algorithm with 4 input
features xi in blue, one hidden layer consisting of 4 neurons hi in purple and an output

layer consisting of 4 neurons o1 in green. Bias are included in the MLP and are illustrated
via the orange cells.

ent descent method [96, 97]. However, the methods employed were
computationally expensive, and despite the development of certain
algorithms, training MLPs was complicated, with intermediate lay-
ers posing a challenge for parameter adjustment. It was not until the
introduction of backpropagation in 1986 [6] that an efficient learn-
ing method was available. Backpropagation is a supervised learning
method to train MLPs. It involves adjusting the weights W̄ of the
connections between neurons to minimise the error between the net-
work’s predicted output ō and the desired actual output. The process
occurs in two phases: the forward pass and the backward pass. In the
forward pass, the input x̄ is propagated through the network layer
by layer to the output ō. The error is then calculated using a cost
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function, such as the mean squared error. In the backward pass, this
error is backpropagated through the network using the derivative of
the cost function with respect to the weights calculated via the chain
rule. The weights are updated using the gradient descent algorithm,
which allows the error to be gradually reduced with each training
iteration. More formally, for each layer l, the error δl is calculated,
and the weights W̄ l are updated according to the rule ∆W̄ l = −η ∂L

∂W̄ l ,
where η is the learning rate and L is the cost function. Backpropa-
gation, formalised by Rumelhart, Hinton, and Williams in 1986 [6],
revolutionised deep learning by enabling the efficient training of deep
neural networks.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep neural
networks primarily used for image processing and visual recognition
tasks. Their usage was popularised in the 1990s [98] with the advent
of backpropagation, which allowed CNNs to update weights through
gradient-based methods directly from the images used for training.

Y (i, j) = (X · F )(i, j) =
M−1∑
m=0

N−1∑
n=0

X(i+m, j + n) · F (m,n) (2.9)

CNNs exploit the local spatial structures of input data through
convolutional layers. Convolutional layers are the fundamental build-
ing blocks of CNNs. A convolutional layer applies filters F (or ker-
nels) to the input to produce feature maps. Each filter performs a
convolution operation on the input, detecting local patterns such as
edges, textures, or simple objects. For instance, in image recognition,
a two-dimensional kernel K characterised by a height and width di-
mension (M,N) represents a window capable of scanning the input
in two dimensions. The 2-dimensional discrete convolution operation
for an input X and a filter F is defined by Equation (2.9), where i, j
represent the 2D coordinate of the output obtained by the convolu-
tion of the image with the kernel F and m,n represent the kernel
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steps characterised by the chosen window size M,N of our kernel fil-
ter F . Beyond the equation, we can also adjust the window sliding,
also called stride. Returning to our image example, when we move
our window pixel by pixel to observe, we perform a stride of 1. How-
ever, we could also move the window by a larger number of pixels,
thereby increasing the stride value. A larger stride reduces the num-
ber of scans performed by the kernel and, thus, the computational
complexity of our neuron.

In the context of jet tagging, despite some approaches using the
2D convolution paradigm [99, 100], most of the application requires
a 1D convolution. The discrete 1-dimensional convolution operation,
which reflects the type of operation one could apply on a jet’s con-
stituents tensor, is then defined as follows:

Y (i) = (X · F )(i) =
M−1∑
m=0

X(i+m)F (m) (2.10)

where i is the 1D coordinate of the image output, m the kernel
step of the 1D kernel F of dimension M .

The advantages of convolution are numerous. Firstly, it allows
the kernel size to capture local dependencies between neighbouring
elements. Additionally, the number of parameters is significantly
reduced, as illustrated by Figure 2.4, decreasing the model’s size
and complexity. Typically, to process 300×300 pixels of an image
with 3 RGB channels using a hidden layer of an MLP composed
of 100 outputs would require 27.27 million parameters, whereas a
convolutional neural layer would require only 7600 parameters, ac-
counting for an added bias for each output neuron. CNNs quickly
demonstrated their superior capability over MLPs for image process-
ing [101, 102]. Finally, note that an input image of size (H,W ), to
which we apply a 2-dimensional convolutional neuron with a kernel
size of (M,N) and a stride S, will produce an output of dimension
((H −M)/S + 1, (W − N)/S + 1). Therefore, stride values greater
than one will reduce the image resolution and act like downsampling.
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Figure 2.4: Schematic of a 2D CNN [103] where the input image in blue, of dimension
h×w is convoluted with the kernel F in green of dimension 3× 3 for obtaining the output

Y in purple. No striding is applied, and therefore, Y is of dimension h− 2× w − 2.

2.2.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is an artificial neural network
that processes sequential data. Unlike traditional neural networks,
where connections between units are unidirectional, RNNs have loops
that allow information to persist from one sequence element to the
next. By reintroducing the output of neurons into the construction
of the variables for the next element of the sequence, this architec-
ture retains a memory of previous states, making them particularly
suitable for tasks such as speech recognition [104] and machine trans-
lation [105]. Most modern properties of RNNs were theorised by the
Lenz-Ising model in 1925 [106] and were adapted for neural learning
through the work on backpropagation [6].

Among the early recurrent neural networks, we can cite the
Elman network as an example [107]. Often referred to as a simple
recurrent network, this network has a simple structure, which is as
follows:
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ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by)
(2.11)

Where xt, ht, and yt represent the input vector, hidden state,
and output vector for the t-th element of the sequence. σh and σy
are the activation functions of our neural network, and the tensors
Wh, Uh, Wy represent the weights, while bh and by are the biases if
we choose to incorporate them. We clearly observe the recurrence
relation introduced in Equation (2.11) where our hidden state ht
is constructed via the input vector xt but also the previous hidden
state in the sequence ht−1. Thus, the recurrent neural network can
build relationships between different sequence elements with a causal-
ity relationship, allowing information from the previous sequence to
persist.

Figure 2.5: Schematic of a LSTM from [108]

Among the several types of recurrent neural networks with dis-
tinct structures and recurrence mechanisms, we will focus on a spe-
cific RNN structure, the Long Short-Term Memory (LSTM) architec-
ture [109]. LSTMs are common and highly efficient RNNs that have
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been used in applications in HEP [110]. The Long Short-Term Mem-
ory (LSTM) is a specific architecture of recurrent neural networks
(RNN) designed to overcome the limitations of traditional RNNs,
notably the vanishing or exploding gradient problems [109]. The
vanishing gradient problem occurs when the gradients of certain lay-
ers in a neural network, usually the earlier ones, become very small
during backpropagation. This phenomenon can make it difficult to
learn these layers due to negligible updates incapable of converging
to the desired optimum. On the contrary, gradient explosion happens
when gradients become excessively large, leading to unstable weight
updates and often resulting in infinite values propagating throughout
the model, rendering it unusable. LSTMs introduce memory cells and
gating mechanisms via a system of input gate, output gate, and for-
get gate to regulate the flow of information. These gates, illustrated
in Figure 2.5, allow the network to retain or forget information over
long periods, making LSTMs particularly effective for tasks involving
long-term temporal dependencies compared to previous RNNs. The
LSTM operates recurrently, and we can define its operation for each
element of the sequence as follows:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σc(Wcxt + Ucht−1 + bc)

ct = ft · ct−1 + it · c̃t
ht = ot · σh(ct)

(2.12)

Where xt is the input variable vector at step t of the sequence,
ht−1 is the hidden state, also called the output variable, at step t−1,
and ct−1 is the memory cell state at step t − 1. The variables ft, it,
and ot are the outputs of the forget gate, input gate, and output gate
at step t, while c̃t is the activation gate. σg, σc, and σh represent the
activation functions for the gates, memory cells, and output variables,
respectively, the sigmoid function for the first and hyperbolic tangent
for the latter two. The weight matrices for the inputs Wk, for the
hidden states Uk, and the bias bk are used in the different gates and
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memory cells and represent the learning parameters of the LSTM.

2.2.4 Attention Neural Networks

An attention neural network, often called an ‘attention mechanism,’
is a component used in various neural networks, particularly in natu-
ral language processing (NLP). The primary purpose of an attention
mechanism is to dynamically focus on different parts of the input
data when producing an output. This is particularly useful in tasks
where the relevance of different input parts varies depending on the
context. Unlike previous architectures, specifically recurrent models
that use fixed-size windows or recurrent connections, the attention
mechanism dynamically assigns weights to individual elements based
on their relevance, capturing complex dependencies across the entire
sequence structure. Furthermore, many modern architectures such
as Transformer models [111] offer a structure that is not sequential
but parallel, allowing the outputs of each element of the sequence to
be computed simultaneously, thus facilitating and accelerating both
training and inference compared to RNNs.

Attention mechanisms assign different weights to various ele-
ments of the input data, hence determining the influence of each
element on the output. Focusing on the relevant parts of the in-
put data based on the current context, attention mechanisms help
the model to better capture dependencies and relationships within
the data. There are various types of attention mechanisms, the most
common being additive attention [112], multiplicative attention [113],
and scaled-dot product attention [111]. The latter is the key compo-
nent of Transformer models, which have since demonstrated state-of-
the-art performance across a wide range of tasks such as NLP [76,77]
and CV [74, 75]. Transformer models can be defined as a class of
deep neural networks characterized by the usage of a specific atten-
tion mechanism, the scaled-dot product attention, first introduced
by Vaswani et al. in 2017 [111].

The scaled-dot product attention (SDPA) mechanism uses three
inputs: a query matrix Q, a key matrix K, and a value matrix V . The
query matrix represents the elements for which attention weights are
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calculated, while the key and value matrices represent all sequence
elements. After being injected into linear layers, the query tensor
Q of dimension (B,N, dk), the key tensor K of dimension (B,L, dk),
and the value tensor V of dimension (B,L, d′k) are introduced into
the scaled-dot product attention through Equation (2.13). The input
tensors Q, K, and V are obtained via linear layers, facilitating the
transformation and projection of the input tensors into the attention
space.

Attention(Q,K, V ) = SoftMax
(
QKT

√
dk

)
V. (2.13)

The attention mechanism in this work is employed in a specific
configuration where the query, key, and value tensors are identical.
This particular case is commonly referred to as self-attention. Self-
attention allows each element of the sequence to focus on other ele-
ments of the same sequence, which is particularly useful for capturing
long-range dependencies. It should also be noted that the term

√
dk

used in the denominator of the matrix product QKT helps control
the range of values before applying the softmax function. This allows
us to stabilise training and improve model convergence [111].

The SDPA, depicted on the left in Figure 2.6, is extended to
enhance the model’s discriminative power by allowing it to focus
on multiple attention subspaces in parallel. This extension, called
Multi-Head Attention (MHA), facilitates the capture of diverse and
complementary high-level features from the input by independently
projecting the query, key, and value matrices for each of the h at-
tention heads. Each attention head performs an SDPA operation,
producing distinct representations. These head representations are
then concatenated and passed through a linear layer to integrate the
information across the heads, as illustrated on the right in Figure 2.6.
The MHA layer can be mathematically represented by the following
equations:

MHA(Q,K, V ) = Concat(h1, ..., hn)WO,

hi = Attention(QWQ,i, KWK,i, V W V,i)
(2.14)
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Figure 2.6: Schematics of the SDPA (left) and MHA (right) from [111]

were for n attention head, each head hi is built through the
SDPA mechanism. The output tensor produced by each head is
concatenated, and the information is mixed across all the features of
the head through a shared linear layer defined by the weights WO.

Compared to traditional recurrent models such as RNNs
(LSTMs in particular), the attention mechanism and Transformers
allow for more efficient parallelization. They are less prone to
vanishing or exploding gradient problems, making them particularly
suitable for tasks requiring contextual modelling and long sequences.

2.2.5 Normalization layers and internal covariate shift

Normalization layers were introduced to improve the stability and
speed of convergence of deep neural networks [114, 115]. Training
deep networks can be sensitive to the distribution of activations in
each layer, which can vary from one element to another during learn-
ing. This phenomenon, also known as internal covariate shift [114],
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slows down training because each layer must continuously adapt to
changes in the distribution of its inputs. To counteract this, normal-
ization techniques aim to fix the distribution of activations during
training, allowing networks to converge faster and more stably, as
illustrated by Figure 2.7. Normalization techniques have also proven
effective in improving the robustness of neural networks to weight
initialization and can act as a regularization term [114]. In the con-
text of our algorithms, the normalizations applied all start with the
same formulation:

y =
x− E(x)√
V ar(x) + ϵ

· γ + β (2.15)

where γ and β are trainable variables for creating an afine trans-
formation of the normalised values and ϵ is a small value for numerical
stability.

Figure 2.7: Comparison of the validation error over the training step for training of LSTM
models using different normalization approaches [115]. We can see that the convergence

of the training of the LSTM models on the CNN corpus dataset is faster with
normalization than with the bare version of LSTM.

Among the most frequently used normalization methods, batch
normalization [114] normalises the activations of a layer using the
statistics (mean and variance) calculated on each mini-batch during
training. In the context of batch normalization, the parameters γ
and β are vectors of dimension d representing the number of features
describing each constituent of our jet. The means E(x) and variance
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V ar(x) are measured for each feature across all constituents in the
considered minibatch.

In contrast, layer normalization [115] proposes a different ap-
proach based on the same equation. Instead of normalising the acti-
vations based on the mini-batch, it normalises the activations of each
neuron individually using the statistics of all activations in the same
layer. This method is particularly useful in architectures such as re-
current or attention networks where calculating statistics on entire
mini-batches can be problematic.

Figure 2.8: Illustration of layer normalization and batch normalization where the values B,
N, and C represent the batch axis (or jets), the jet constituents axis, and the variables axis,
respectively. On the left, in red, is the variable for which normalization is applied; in the

center are the variables considered for measuring the mean and variance for layer
normalization; and on the right are those considered for batch normalization.

2.2.6 Dropout

Dropout [116] is a regularization method used in DL to prevent
overfitting. During each training step, a subset of neurons passing
through dropout is temporarily deactivated by being set to a default
value of zero during the forward pass. These neurons no longer con-
tribute to the prediction for the given step and do not contribute
to learning during backpropagation, as illustrated in Figure 2.9. The
elements are deactivated based on a Bernoulli distribution with a pre-
defined rate, also called dropout rate, and usually ranging between
10% and 50%. During model evaluation, dropout is turned off, al-
lowing the neural network to utilise all information to make the most

55



CHAPTER 2. DEEP LEARNING

accurate prediction possible.
This procedure forces the network to learn more robust and

general data representations, avoiding excessive dependence on spe-
cific neurons where overfitting effects might occur. During back-
propagation, neurons can form co-adaptations that work well on the
training dataset but perform poorly on evaluation data and in later
use [116]. Dropout breaks these co-adaptations, thus requiring each
neuron to participate more evenly in the decision-making process,
improving the model’s ability to generalise to unseen data. Dropout
has proven to be an effective regularization method and generalizable
across various domains, being state-of-the-art in many applications
such as computer vision, document classification, and speech recog-
nition [116].

Figure 2.9: Illustration of the dropout mechanism [117]. During training, the dropout will
randomly select some neurons to turn off with a fixed dropout rate.
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2.3 Optimizers for Neural Networks training
This Section is dedicated to the description of the training methods
used in modern Deep Learning. We will begin with its foundational
elements, namely backpropagation and stochastic approximations, in
Section 2.3.1, before outlining step by step the evolution of learning
algorithms, also known as optimizers, in the following Sections.

2.3.1 Stochastic Approximations and Backpropagation

Modern learning methods for artificial neural networks all inherit
from stochastic approximations. Stochastic approximations are a
family of iterative approximation methods used to solve problems
where the exact solution is difficult to obtain, often due to random
variables. Introduced by Herbert Robbins and Sutton Monro in 1951
[118], these techniques work by gradually adjusting an initial estimate
using randomly sampled data, following an iterative process that
converges to an optimal solution or an acceptable approximation.
After initial attempts at learning via stochastic approximation in
the 1950s [5, 118, 119], the development of backpropagation in 1986
[6] demonstrated the effectiveness of this learning method for MLP
neural networks using the stochastic gradient descent (SGD) method.

The preliminary step of backpropagation, also known as the
forward pass, is achieved after computing the output of our neural
network and evaluating the quality of our prediction with our cost
function L. This function L must be differentiable and continuous
to ensure the proper functioning of backpropagation. Finally, the
cost function must be defined such that its minimum corresponds to
a perfect prediction by the model. In other words, it must penalise
prediction errors so that reducing its value improves the accuracy of
the model’s prediction.

Backpropagation is based on the chain rule and allows us to
find, for each layer and trainable parameter of the neural network, a
partial derivative with respect to the cost function L. These partial
derivatives will then be used to establish a training method to update
the weights and biases of the neural network to find the minimum of
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L. To illustrate the functioning of backpropagation, we will consider
an MLP containing N layers, with the last layer containing a single
neuron that produces the prediction ŷ = on. Once the cost function
L is calculated, we can compute the gradient for the last layer n via
Equation (2.16), where x̂n represents the neuron’s response before
the activation function, in other words: x̂nj =

∑
i o
n−1
i Wn

ij + bnj . After
obtaining this first partial derivative, we can reuse the chain rule
to obtain the partial derivative with respect to the output neuron’s
weights as illustrated by Equation (2.17).

∂L
∂x̂n

=
∂L
∂on
· ∂o

n

∂x̂n
(2.16)

∂L
∂Wn

ij

=
∂L
∂x̂n
· ∂x̂

n

∂Wn
ij

=
∂L
∂x̂n
· ∂

∂Wn
ij

(
∑
i

on−1
i Wn

ij + bnj )

=
∂L
∂x̂n
· on−1
i

(2.17)

After obtaining the partial derivatives of the last layer and its
weights, we can now generalise the rule for any layer by applying the
chain rule to the partial derivatives. By using the recurrence relation
between each layer 2.18, we can obtain the partial derivatives for the
n − l-th layer in the backpropagation pass, that is, the output layer
on−l, defined by the system of Equations (2.19).

ok = ak(x̂k)

x̂kj =
∑
i

okiW
k
ij + bkj

(2.18)

∂L
∂x̂n−l

=
∂L
∂on−l

· ∂o
n−l

∂x̂n−l

=
∂L
∂on
· ∂o

n

∂x̂n
· ∂x̂n

∂on−1
...
∂on−l+1

∂x̂n−l+1
· ∂x̂

n−l+1

∂on−1
· ∂o

n−l

∂x̂n−l

∂L
∂Ŵn−l

=
∂L
∂x̂n−l

· ∂x̂
n−l

∂Wn−l

(2.19)
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From Equation (2.18), we can obtain the values of the partial
derivatives, ∂ok

x̂k
= ȧk(x̂k) and ∂xk

ok−1 = W k, where ȧk represents the first
derivative of the activation function ak. By combining this result with
Equation (2.19), we obtain the following relationships:

∂L
∂x̂n−l

=
∂L
∂on
· ȧn(x̂n) ·Wn...ȧn−l+1(x̂n−l+1) ·Wn−l+1 · ȧn−l(x̂n−l)

∂L
∂Ŵn−l

=
∂L
∂x̂n−l

· ∂x̂
n−l

∂Wn−l

=
∂L
∂x̂n−l

· on−l

(2.20)

2.3.2 Stochastic gradient descent

By applying backpropagation throughout the entire artificial neural
network, we can establish a relationship between our cost function
and all the weights and biases. This allows us to define a learning rule.
The first method popularised with the advent of backpropagation
was Stochastic Gradient Descent, whose version adapted for machine
learning was first introduced in 1952 [119]. The version adapted
for backpropagation, aiming to minimise the cost function L, is as
follows:

Wt = Wt−1 − λ ·
∂L

∂Wt−1
(2.21)

Where λ is the learning rate and Wt and Wt−1 represent the
parameters of our model at training steps t and t− 1, respectively.

We prefer the minibatch SGD method over its original version,
which iterates through each element of the training dataset one by
one due to its efficiency and speed. This approach improves conver-
gence and is more suitable for large datasets, making model train-
ing faster and more stable. Minibatch SGD updates the parame-
ters using a subset of the data, allowing control over the variance in
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parameter updates. This compromise maintains computational effi-
ciency compared to the full gradient descent method, which requires
computing the gradient for the entire dataset, incurring a significant
computational cost. Mathematically, the minibatch SGD algorithm
for updating the parameters Wt can be expressed as:

Wt = Wt−1 −
λ

n
·

n∑
i=1

∂L(xi,Wt−1)

∂Wt−1
(2.22)

2.3.3 Momentum optimizers

The success of backpropagation and SGD has led to numerous ad-
vances in the training of deep neural networks, leading to the de-
velopment of the first CV algorithms [101, 120, 121] and language
representation models [122], also known as word embeddings. How-
ever, simple SGD can converge slowly, especially in cost function
valleys where gradients can have small values. To accelerate conver-
gence, SGD optimization with momentum is often used [123, 124].
Momentum is a technique that accelerates the convergence of gradi-
ent descent by accumulating a portion of the gradient from previous
iterations, allowing the parameter updates of the neural network to
maintain their ‘inertia’ and avoid stagnation in regions of low gradi-
ent. The parameter update with momentum is given by the following
equations:

vt = βvt−1 + (1− β) · ∂L
∂Wt−1

Wt = Wt−1 − λ · vt
(2.23)

In Equation (2.23), vt represents the update velocity of the pa-
rameters at step t. The momentum coefficient, denoted as β, ranges
between 0 and 1 and controls the fraction of momentum retained as
well as the fraction updated via the gradient at step t.

A variant, based on Nesterov momentum [123], anticipates pa-
rameter updates by calculating the gradient not at the current posi-
tion of the parameters but at the expected position. This anticipation
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Figure 2.10: SGD momentum (left) and SGD Nesterov momentum (right) from [125]. The
red dot represents the current weight value. The Nesterov lookahead gradient is evaluated

at the shifted weights

allows the optimizer to correct its velocity if it is heading in a subop-
timal direction. Nesterov momentum, illustrated in comparison with
classical momentum in Figure 2.10, enables finer and often more ef-
fective adjustments, leading to faster and more stable convergence.
The updated equations for Nesterov momentum are:

W̃t−1 = Wt−1 − β · vt−1

vt = βvt−1 + (1− β) · ∂L
∂W̃t−1

Wt = Wt−1 − λ · vt

(2.24)

SGD with momentum and Nesterov momentum are powerful
techniques for improving the convergence speed of gradient descent
optimization. By anticipating updates, Nesterov momentum can of-
fer superior performance in certain machine-learning scenarios such
as CV [124].

2.3.4 Modern technique of learning

Following the success of SGD with momentum, several optimizer vari-
ations were created to improve the convergence of neural networks
facing increasingly complex problems and requiring adjustments to
optimise training convergence for non-convex problems [126,127]. In
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particular, the Adam optimizer (Adaptive Moment Estimation) [128]
is a widely used stochastic optimization method for training neural
networks due to its ability to adapt learning rates dynamically to con-
verge quickly. This simple and computationally efficient algorithm
allows the training of neural networks on large datasets with many
training parameters. This method has demonstrated its robustness
in training models for numerous complex problems such as CV [75],
NLP [76] and jet algorithm [129].

The Adam optimizer computes the moving averages of the first
and second moments of the gradients. The parameter update equa-
tions are given by:

mt = β1 ·mt−1 + (1− β1) ·
∂L

∂Wt−1

vt = β2 · vt−1 + (1− β2) ·
(

∂L
∂Wt−1

)2

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

Wt = Wt−1 − λ ·
m̂t√
v̂t + ϵ

(2.25)

The terms mt and vt are the exponential moving averages
(EMA) of the first and second moments of the gradients, respec-
tively. The coefficients β1 and β2 are the exponential decay rates for
the moments, which the authors suggest setting to 0.9 and 0.999.
The terms m̂t and v̂t are the bias-corrected moments, correcting
the initialization of EMA moment to vectors of zeros. ϵ is a reg-
ularization term to prevent division by zero, generally set to 10−8

as suggested by the authors. The parameter 1√
v̂t+ϵ

represents the
adaptive learning rate of the Adam algorithm.

Despite its success, the Adam optimizer faces difficulties with
certain complex problems. In particular, it has been shown that it
requires a warm-up period with a low learning rate to achieve satis-
factory convergence and generalization of neural network predictions
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[76, 111]. Studies have shown that the Adam optimizer suffers from
high variance in adaptive learning rates during the initial iterations of
training [130], primarily due to the term v̂t whose variance Var[ 1√

vt
]

can be undesirably large or even diverge under certain conditions.
Additionally, given that Var[λ · 1√

vt
] = λ2 · Var[ 1√

vt
], we can control

the impact of this high variance by adjusting the learning rate λ to
lower values during the initial iterations. This confirms the observa-
tions from empirical training.

To address this issue in the learning algorithm, we can use the
Rectified Adam (RAdam) optimizer, which introduces a variance rec-
tification. The training equations incorporating the rectification pa-
rameters are defined as follows:

ρ∞ =
2

1− β2
− 1

mt = β1 ·mt−1 + (1− β1) ·
∂L

∂Wt−1

vt = β2 · vt−1 + (1− β2) ·
(

∂L
∂Wt−1

)2

m̂t =
mt

1− βt1

ρt = ρ∞ −
2tβt2
1− βt2

(2.26)

In addition to the standard parameters of Adam, we introduce
ρt, the ‘length’ or the number of degrees of freedom of the adaptive
learning rate variance under the approximation of the EMA by a
simple moving average (SMA) [130], as well as the maximum ‘length’
ρ∞ obtained under the same approximation.

Using this length, we can obtain the following parameter update
rule:
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if ρt > 4 :

lt =

√
1− βt2√
vt + ϵ

rt =

√
(ρt − 4)(ρt − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρt

Wt = Wt−1 − λ · m̂t · rt · lt − λ · α ·Wt−1

else :

Wt = Wt−1 − λ · m̂t − λ · α ·Wt−1

(2.27)

where the parameter ρt sets a condition to use the adaptive
learning rate λt, which is corrected by the variance rectification term
rt. For values of ρt less than 4, which occurs in the initial iterations
of training, the variance of the system becomes too large, and we
update the algorithm without the rectified adaptive learning rate.
Finally, we also use a decoupled weight decay term [131] with a decay
parameter α to add a regularization parameter on the weights of our
neural network, hence improving its generalization.

One final optimization method we will use is the Lookahead op-
timizer [132]. Lookahead is an optimization method that enhances
the performance of other optimizers by combining them with a spe-
cific update strategy. The main idea behind Lookahead is to sepa-
rate the optimization into two distinct processes: we have two sets
of parameters, the slow weights ϕ and the fast weights θ. At each
training iteration, we use a standard optimizer such as SGD, Adam,
or RAdam to update the weights θ. Then, after k internal steps of
our standard optimizer, we update the slow weights ϕ by performing
a linear interpolation between the weight spaces of ϕ and θ. The fast
weights θ are then reset to the values of the slow weights ϕ.

The process of updating the slow weights is achieved through an
exponential moving average of the fast weights from the last iteration
k of the fast weights’ inner loop as follows:
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ϕt = ϕt−1 + α · (θt−1,k − ϕt−1)

= α · (θt−1,k + (1− α) · θt−2,k + ...+ (1− α)t−1 · θ0,k)
+ (1− α)t · ϕ0

(2.28)

The combination of slow and fast weights allows the Looka-
head optimizer to improve learning in regions with high curvature,
as illustrated in Figure 2.11, while reducing variance to enable faster
convergence of the neural network [132].

In this thesis, we will often use the combination of Lookahead
with RAdam, commonly referred to as Ranger [133]. This approach
leverages the improvements of RAdam over Adam in terms of ro-
bustness, particularly at the beginning of training, to avoid erratic
behaviours. Lookahead ensures stability and performance in model
convergence. By merging these two approaches, Ranger offers faster
and more stable convergence, reducing the risk of overfitting and
improving model generalization.
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Figure 2.11: Visualization of the lookahead optimizer [132] method (left) with k = 10. We
can observe after 20 training steps that the slow weights of the lookahead method (right
bottom) have been able to interpolate a region of higher accuracy, while SGD alone has

not yet explored this region (right top).
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Chapter 3

Heavy-flavour tagging with Deep
Learning

In this chapter, we will describe the application of deep learning to b
and c jet tagging, also known as heavy-flavour tagging. Specifically,
we will start by elaborating on the concept of jet representation as
a Particle Cloud in Section 3.1. We will discuss essential properties
and concepts to understand how modern jet tagging algorithms were
developed, focusing on the concepts of sets and graphs to handle the
observables we consider. Next, in Section 3.2, we will discuss the
architectures of neural networks used in the CMS experiment in the
context of flavour tagging. First, we will describe early algorithms
treating variables as vectors, inheriting from multivariate analysis
(MVA), sequence models recurrently processing the jet constituents
and the first algorithms considering the jet as a graph. We will then
establish the necessary connections between the Particle Cloud rep-
resentation and the most efficient modern model structures based on
the Transformer architecture. Here, we will describe DeepJet Trans-
former, the first Transformer-based model for jet tagging, and Parti-
cle Transformer, an advanced version introducing new edge variables.
In the context of my thesis, we will focus on resolved jets at the CMS
experiment. Thus, in Section 3.3, we will describe the jets used to
train our algorithms and how they are simulated. We will also de-
scribe the dataset used, the labelling procedure as well as the input
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features considered. We will then describe the training procedure
and environment used for performing the training of the models con-
sidered. Finally, in Section 3.4, we will discuss performance results
and conclude on the evolution of deep learning algorithms. We will
explore both the performance of the algorithm for identification and
the impact of the structure on computational complexity, as well as
the consequences of this on the inference of the models.

3.1 The particle cloud representation of a jet

Historically, the first models for jet tagging employed a simple rep-
resentation at the jet level. The jet was then perceived as a vec-
tor of information, where each variable represented a global variable
or a specific signature of a constituent [134]. This simplest possi-
ble representation was often fed into MLP models that processed
the information without extracting any structure from the jet and
its constituents. Other models, based on recurrent neural networks
[110, 135], recognised a structure in the jet based on the principle of
sequence. This principle requires an order among the elements or
selecting those meeting quality criteria [135] so that these can be it-
erated in a sequence in a similar way to the evolution of a time series.
The sequential representation of the jet is, therefore, hierarchical and
considers that a natural order emerges from the jet’s structure, allow-
ing elements to be processed one by one, analogous to a time series
or the order of words in the syntax of a sentence. Finally, a simple
set representation based on the principle of DeepSets [136] was also
developed [137], which, with simple linear layers and sum pooling,
produces a network competitive with recurrent networks.

Since the introduction of ParticleNet [129], the concept of the
Particle Cloud has become the state-of-the-art representation of jet
structure. A Particle Cloud represents the jet as an unordered set
of jet constituents. Elements of differing nature, such as charged
particles, neutral particles, or SVs, appear in different quantities for
each jet. Therefore, the jet can be considered as a set S, follow-
ing a partition between the elements of each nature. For example,

68



3.1. THE PARTICLE CLOUD REPRESENTATION OF A JET

S = {X1, X2, X3} represents our jet such that every element con-
sidered is associated with one of the partition subsets Xi. Under
this representation, we want to preserve the key property of our un-
ordered set of particles: the conservation of the unordered structure
via invariance under the permutation of the jet constituents.

In the context of a tensor representation of the jet constituents
consisting of N constituents and feature dimension d, let P denote
an N ×N permutation matrix on the constituents and PN the set of
all N ×N permutations. To discuss permutation invariance, we will
need the following definitions:

Definition 3.1.1 (Permutation invariance) A function f : RN,d →
Rd, is permutation-invariant if:

f(PX) = f(X), ∀ X ∈ RN,d, P ∈ PN

Definition 3.1.2 (Permutation equivariance) A function g : RN,d →
RN,k, is permutation-equivariant if:

g(PX) = Pg(X), ∀ X ∈ RN,d, P ∈ PN

In our situation, given that we have a set composed of a par-
tition of different types of components, we will require our neural
networks to perform an initial embedding step, which consists of a
trivial feature engineering aiming to project the input tensor to the
feature dimension of the model, that is permutation-equivariant for
each partition of the set before aggregating the representations of
each partition into a single tensor. This allows us to create a rep-
resentation of the same dimension between constituents of different
natures and to associate them to obtain a tensor representing the
complete set of constituents of our jet. This tensor will then be in-
troduced into the core of the neural network. This embedding task
is often accomplished by simple layers such as MLPs [138,139] whose
equivariance is trivial and well-known [136,140,141].

The scaled dot-product attention mechanism [111] is the key
component of the neural network we will develop in this doctoral
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research. Being composed of linear transformations and matrix mul-
tiplication, this mechanism preserves the equivariance of the rep-
resentation of our set and is, therefore, a candidate operation to
replace the linear layers of ParticleNet. The detailed demonstra-
tion of this property for all the blocks composing our two models
studied in this thesis is shown in Appendix A. This representation
concept was used to build the aforementioned models and relies on
constructing a permutation-invariant model with respect to the set
of jet constituents taken as inputs. This essential property is con-
trary to most Transformer models established around the principle
of causality. Furthermore, using positional embedding [76, 111] will
also be avoided as it introduces an obvious permutation non-invariant
function.

We can also draw an analogy between the Particle Cloud and
graph theory. We can consider our jet as a graph G = (N,E) where
N represents the set of nodes or constituents of the graph, and E ⊆
N×N represents the edges or properties defining the interconnection
between two nodes. In our case, N is equivalent to our set S, and the
edges E depend on the model considered. These edges, representing
pairwise variables, can be designed based on the architecture and
variables considered by the model. Typically, edges are dynamically
constructed with k nearest neighbours [129] as illustrated by Figure
3.1, based on the attention score of the model [138, 139], or using
inherent kinematic properties [139,142].

Deep neural networks applied to graphs, also known as Graph
Neural Networks (GNNs), share key properties with the Particle
Cloud, including permutation invariance over the group or partitions
[143]. These common properties, along with the extension of the jet
representation to the relations between the constituents, denoted as
A, lead to the final construction of the representation considered here.
A jet is thus an unordered structure of constituent elements math-
ematically represented as a graph G = (N,E) where N , the nodes,
represent our set S potentially divided into a partition Xi each rep-
resenting constituents of the same type such as particles carrying
electric charge or SVs. Additionally, we can consider additional vari-
ables as edges E, capturing pairwise relationships among elements in
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S, such as the invariant mass of two jet constituents or their angular
sepparation. Our graph can be complete if E contains an edge be-
tween every pair of elements, also known as a fully connected graph
or incomplete. The extreme case is E ⊆ ∅, containing no edges as in-
put variables, which is also associated with GNNs constructing edges
dynamically from node features N .

Figure 3.1: Illustration of a Graph Network for the ParticleNet/DGCNN architecture
[144]. The output of the EdgeConv layer noted x′

i is obtained by aggregating all the edges,
eij , from each connected node xi.
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3.2 Neural Network architectures for jet algo-
rithms

In this part of the chapter, we will start with briefly introducing
earlier algorithms used in CMS in Section 3.2.1 followed by a discus-
sion on newer Transformer models in Section 3.2.2, demonstrating
this new family of models preserves the structure representation of
the jet while introducing a feature engineering mechanism helping to
overcome the limitation of the previous state-of-the-art models.

3.2.1 Related work

The CSVv2 and DeepCSV algorithms

CSVv2 and DeepCSV are enhanced versions of the Combined Sec-
ondary Vertex (CSV) algorithm used in heavy-flavour tagging at the
CMS experiment [61, 134]. In the updated version CSVv2 [61], the
CSV algorithm combines multiple discriminant variables related to
SVs and displaced tracks associated with the jet. These variables
include information such as the mass and significance of the flight
distance in the transverse plane of SVs reconstructed by the inclu-
sive vertex finding algorithm [61], as well as features of significantly
displaced tracks like the significance of transverse displacement. Fi-
nally, CSVv2 is also the first algorithm to employ class rebalancing
via a 2D reweighting of the jet pT and η, allowing the training to
be performed on a dataset where classes have the same kinematic
distributions and thereby reducing training bias from the data used
to train the flavour tagging algorithm.

The CSVv2 algorithm categorises jets into three categories
based on available input variables: RecoVertex jets containing at
least one associated SV, PseudoVertex jets lacking SVs but having
at least two tracks with significant transverse displacement greater
than two and an invariant mass of at least 50 MeV, and NoVertex
jets not belonging to either of the other two categories. For each
category, the available variables vary, necessitating separate training
of the CSVv2 algorithm for each category. CSVv2 is the first flavour
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tagging algorithm using artificial neural networks at the CMS
experiment. It consists of a simple MLP containing one hidden
layer with dimensions equal to twice the number of input variables
and an output classification layer as illustrated in Figure 3.2. The
training of CSVv2 does not perform a single multiple classifications.
Instead, the training in each jet category is divided into two stages:
one performing binary classification of b jets vs c jets and another
of b jets vs light jets (udsg), respectively. A weighting of 1:3 for the
discriminants is then applied to obtain the final discriminant.

Figure 3.2: Illustration of the CSVv2 algorithm, all inputs are concatenated and fed into a
single dense hidden layer before the binary classification layer.

DeepCSV is the evolution of CSVv2 using deep learning. It
consists of a MLP neural network with four hidden layers, each con-
taining 100 neurons before the classification layer as illustrated in
Figure 3.3. The ReLU activation function [92] is applied between the
hidden layers and the softmax function is used in the prediction layer
to convert the output values into a probability distribution for each
considered class. DeepCSV was originally designed and trained using
the Keras/TensorFlow libraries [145, 146]. Unlike CSVv2, DeepCSV
is trained across all previously considered jet types, employing a sin-
gle multi-class classification training to identify jets according to the
following definitions: the b class containing a single b hadron, the
bb class containing two or more b hadrons, the c class containing
a single c hadron and no b hadrons, the cc class containing two or
more c hadrons and no b hadrons, and finally the light class for jets
not belonging to any of the previous classes.
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Figure 3.3: Illustration of the DeepCSV algorithm, all inputs are concatenated before
being fed into a series of dense hidden layers. The multi-label classification layer then

processes the outputs of the last layer.

DeepJet

The DeepJet algorithm [110] represents an advancement over the
CSV algorithms. DeepJet utilises a more sophisticated deep network
structure, illustrated in Figure 3.4, which includes fully connected
layers, convolutional layers, and recurrent layers (LSTM) [110]. This
combination allows the model to effectively capture local and sequen-
tial dependencies in the data, thus providing better discrimination.
Convolutional layers are particularly useful for extracting relevant
features from individual constituents, while LSTMs effectively model
sequential dependencies between these features for each component
category.

Figure 3.4: Illustration of the DeepJet algorithm, each constituents categories are
processed via convolution layers compressing the information before engineering an

output vector via LSTM layers independently. The outputs of the LSTM layers, combined
with global jet features, are concatenated and fed into MLP layers before classification.

In terms of input variables, DeepJet also advances by focus-
ing primarily on jet constituents, extending the variables to an even
broader range compared to DeepCSV [110]. Input variables include
detailed information on charged particle-flow candidates (such as
track quality, angular distance to the nearest SV, transverse dis-
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placement), neutral particle-flow candidates (such as the fraction of
jet transverse momentum carried, a neutral photon/hadron discrim-
inator), SVs (such as mass and displacement relative to the primary
vertex), as well as global jet features (such as total jet energy and
momentum). By considering jet constituents, DeepJet has a wider
array of variables to characterise the jet and, in conjunction with a
more advanced and deep structure, achieves better performance in
jet identification tasks. DeepJet is trained in a multi-classification
way to identify jets according to the following definitions: the b class
containing a single b hadron, the bb class containing two or more
b hadrons, the lepb class containing one b hadron decaying leptoni-
cally, the c class containing one or more c hadron and no b hadrons,
the uds class for jets containing no associated hadron but an u-d-s
parton associated and finally the g class for jets associated with a
gluon.

By extending the jet representation to focus on constituents,
DeepJet has made a major advancement in jet flavour tagging in the
CMS experiment. However, DeepJet independently processes tensors
of each constituent type and shares information only after process-
ing each sequence, making it impossible for the network to extract
interdependencies between constituents of different types. Moreover,
treating variables as sequences processed by LSTMs does not adhere
to the Particle Cloud representation and imposes an arbitrary hierar-
chy among elements. Finally, it is also noted that convolutional layers
produce a compressed representation, limiting the neural network’s
ability to extract maximum discrimination potential on the nature of
the jet. Thus, despite significant advances, DeepJet remains a model
that does not align with modern deep learning representations and
structure for jet algorithms.

ParticleNet

ParticleNet is a graph neural network based on the Dynamic Graph
Convolutional Neural Network (DGCNN) structure [144]. It is the
original model designed for jet tagging with the Particle Cloud rep-
resentation [129]. As a graph neural network, ParticleNet employs
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edges dynamically created by k nearest neighbours (k-nn) around
each constituent. Graph neural networks can be constructed with
permutation-equivariant layers applied on a graph. A generic con-
cept of GNN layers defined by Equation (3.1):

x′i = g(xi,□k
j=1h(xi, xij , Ai,ij)), (3.1)

where the output of a node i, is labelled as x′i. g and h rep-
resent the permutation-equivariant neural network layers and xi, xij
and Ai,ij represent the ith node, the jth neighbour of the ith node
and the edge features between them respectively. □k

j=1 represents
a permutation-invariant aggregation function, also named a pooling
function, allowing the network to lower the dimensionality back to
the tensor representation of the jet constituents.

In the context of the ParticleNet architecture, after embedding
features of different natures with basic MLPs for obtaining tensors
with adequate feature dimension, the model concatenates all the ten-
sors to create a single tensor representing the jet as a Particle Cloud.
Then, the neighbours are selected via pairwise coordinates. For the
first block, ηref and ϕref , respectively, the relative pseudorapidity and
the relative polar angle to the jet axis are employed. For the next
layers, the engineered node features are also used as coordinates for
the k-nn. With these coordinates, the network selects the k nearest
neighbours for each constituent i, noted (i1, ..., ik) and creates a local
feature engineering via dynamic edge convolution layer (EdgeConv)
[144] as follows:

x′i = □k
j=1h(xi, xij , θ) = □k

j=1f(xi, xij − xi, θ), (3.2)

where the output of a node i, labelled as x′i is obtained by pool-
ing the edge function h, a specific subclass of GNN layers, with an
operation □k

j=1, [143]. This type of function allows each node of
a graph to collect and assimilate information from its neighbours to
obtain a new, more refined representation of the node, which has ben-
efited from learning complex relationships between the graph nodes.
For the EdgeConv layer, shown in Figure 3.5, the pooling function is
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the mean among the k nearest neighbours considered, and the GNN
layer is a series of convolution layer, batch normalization layer and
the ReLU activation, denoted as the function f in Equation (3.2).
The EdgeConv layer combined the information of the input features
of node xi, the difference between the input features of the node and
its neighbour xij − xi, processed with weight and bias of the con-
volution kernels θ. To preserve the permutation equivariance of the
EdgeConv layer, the kernel size is set to one. The network then un-
dergoes a global average pooling among all the constituents before
being fed into a dense hidden layer and a final classification layer.

The global average pooling, taking the mean response over each
constituent’s features, is trivially permutation-invariant, making Par-
ticleNet the first model to preserve the Particle Cloud representation.
It is also the first network using a graph approach, taking the set of
constituents as nodes and building k edges for each via the dynamic
edge convolution mechanism. For AK4 jet tagging, the ParticleNet
architecture was first trained during Run 2 with an MLP embedding
layer of dimension 64, three EdgeConv blocks, each having three 1D-
convolution layers and considering k = 8 nearest neighbours and with
a feature size of 64-64-64, 96-96-96, 128-128-128 for respectively the
first, second, and last block.

The ParticleNet algorithm identifies the same truth classes as
DeepJet, except for the lepb class, which is not considered in Parti-
cleNet and also makes the distinction between the c class containing
one c hadron and no b hadrons and the cc class containing two or
more c hadrons and no b hadrons.

Extended ParticleNet

For the Run 3 conditions, ParticleNet has been retrained and ex-
tended to perform combined heavy-flavour and hadronic τh tagging
by including the tau truth classes for each decay mode and tau charge,
allowing charge assignment and a flavour-aware jet pT correction.
The samples utilised have also been extended to include additional
sources of τh jets as well as improving the pT and η distribution,
more particularly enriching the high pT (> 300 GeV) jet population
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Figure 3.5: Schematic of the EdgeConv block (left) and the Run 2 ParticleNet architecture
(right) [129].

to improve the tagging performance in this region. The inclusive loss
function is defined as:

L = CE(y, ytruth) + λ1 · log(cosh(z − ztruth))
+ λ2 · (ρ16(z16 − ztruth) + ρ84(z84 − ztruth))

with

ρq(x) =

{
qx if z > 0
(q − 1)x else

(3.3)

where ytruth and y are the truth class and the truth class pre-
diction, and ztruth and z are, respectively, the ratio between the
generator-level jet pT and the raw jet reco pT before applying JEC
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and the prediction of this pT correction ratio. In addition to the
regression of the jet energy response, a resolution estimation is pro-
vided in the form of quantile regression. Quantile regression con-
sists of estimating the relationship between the regressed quantity
and specific quantiles of the regression, providing a more comprehen-
sive view of the conditional distribution than mean regression. The
quantile regression of the q quantile is noted as ρq, and λ1 and λ2 are
hyperparameters giving the importance contribution of each loss to
the global target. In addition to the usual classification prediction,
this new version introduces a regressed correction ratio z serving as
a flavour-aware JEC before the JERC and jet energy resolution esti-
mation via the quantile regression terms z84 and z16. This approach
is undergoing validation, promising better correction, considering the
flavour and constituent composition of each jet [147].

The extended model consists of three EdgeConv blocks of larger
dimensions (224, 192, 160 each) to perform multiple tasks with ex-
tended k-nn considering 16-12-8 nearest neighbours to improve un-
derstanding at both a closer and wider neighbourhood extend. The
variables generated by each block are concatenated together before
using a global average pooling to aggregate the maximum knowl-
edge possible. The obtained context vector is then fed into a series
of MLPs of dimensions 192-160-128-96-64 before the final prediction
layer of dimension Nclass + 3, performing the classification and the
jet energy regression and the two quantile estimations.

3.2.2 Transformer models for jet tagging

Motivation

To develop a new structure, we build upon existing concepts to math-
ematically constrain the problems we aim to solve and establish a list
of existing mechanisms that can serve as a foundation mechanism.
The first principle we aim to preserve is the Particle Cloud representa-
tion of the jet, which provides the adequate constraints to establish a
simple structure adapted to the jet and has successfully provided the
jet representation of the current state-of-the-art. Therefore, we seek
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models applicable to graphs and invariant under permutation. We
require a structure inheriting from Equation (3.1). Secondly, despite
its success, we can highlight certain limitations affecting ParticleNet.
This model establishes the neighbourhood of each constituent based
on the angular coordinate differences or the Euclidean distance of
hidden states for deep layers. This k-nn calculation is computa-
tionally expensive and fixes the number of interactions considered,
demanding a balance between the number of neighbours considered
in the system and the computational cost we allow. Moreover, as the
aggregation function is the mean function, this model does not effec-
tively highlight the importance of certain interrelations, such as those
between constituents from the same SV, compared to others. Thus,
ParticleNet does not effectively emphasise the interactions between
constituents and using a module to construct the neighbourhood can
be costly.

We can eliminate recurrent models among existing structures
based on the first criterion. Despite their recent resurgence of inter-
est due to the advent of the state-space-models family [148], such as
the well-known Mamba [149,150] and other similar efforts [151,152],
which show promising performances in the field of Large Language
Models (LLMs), their recurrence does not respect the representa-
tion we desire. Due to the mathematical construction of state spaces
models that represent a dynamic system in terms of observed and la-
tent (state) variables, allowing the modelling of a process’s ‘temporal’
evolution using state and observation equations, it would be difficult
to create a trivial and efficient permutation-invariant version without
having to revisit the entire structure. Similarly, we cannot extend our
search to convolutional models [153], as these are not permutation-
invariant when considering a kernel size greater than one, resembling
a simple MLP on a set, where ParticleNet has already been shown to
outperform such models [129]. Finally, we also exclude other GNNs
based on convolutions or similar structures, such as Graph Convolu-
tional Networks (GCNs) [154] or Graph Attention Networks (GATs)
[155] due to their similarity to the ParticleNet structure and their
inability to address its limitations.

In recent years, the development of deep learning has demon-
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strated significant success with Transformer models across various
tasks ranging from natural language processing [76,111] to computer
vision [75] or fraud detection [156]. Despite their computational com-
plexity, Transformer models, particularly their key mechanism, the
self-attention mechanism detailed in Section 2.2.4, benefit greatly
from their design, allowing the parallelism of self-attention, unlike
their predecessors such as RNNs [109]. Additionally, the advent of
increasingly powerful GPUs equipped with Tensor Cores, which ac-
celerate tensor product calculations, has made the Transformer mod-
els the most performant algorithms without sacrificing speed. Thus,
this family of neural networks represents an ideal field of study that
has not been extensively explored in particle physics applications,
and the potential for performance gains, combined with the rise of
increasingly large and cheap suitable computing power in the form of
GPUs [157], could lead to a new class of state-of-the-art deep learning
models for jets.

Transformers can be fully connected graph networks

To demonstrate the effectiveness of Transformer models for jets, let
us begin by developing the scaled-dot-product attention mechanism
and compare it with the GNN layer from Equation (3.1). Starting
from the initial MHA Equation (2.14) and isolating the attention
score A, we can perform the following development:

Q,K, V = WQxi,W
Kxi,W

V xi

A = SoftMax
(
QKT

√
dk

)
hi,att = □N

j=1hi(xi, xij , Ai,ij) = Attention(A, V ) = AV

hatt = Concat(h1,att, ..., hn,att)
gatt = hattW

O

x′i = gatt(hatt(xi, xij , Ai,ij)), gatt = hattW
O

(3.4)
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The SDPA mechanism can be defined as a permutation-
equivariant function hi,att, connecting each constituent to all other
constituents. This type of function, therefore, considers the jet as a
complete graph. The attention score A acts as a tensor on the edges,
dynamically constructed by the neural network, and simultaneously
contributes as an aggregation function via its matrix product with
the tensor V . This allows the neural network to optimise each
connection’s contribution, hence weighting each pair’s contribution
in constructing the output variables, highlighting the importance
of interrelations crucial for understanding the task, and reducing
the contribution of non-relevant pairs. Thus, Transformer models
are fully connected graph neural networks. Due to their efficiency
on GPUs and the effectiveness of the selection applied by the
attention mechanism, Transformer models are excellent candidates
to represent a new class of jet algorithm models.

The DeepJet Transformer architecture

The first algorithm based on the Transformer architecture applied
to jet tagging is the DeepJet Transformer algorithm [138]. DeepJet
Transformer is an evolution of the DeepJet algorithm, abandoning
convolutional and recurrent layers in favour of using the SDPA mech-
anism to construct a permutation-invariant representation of the jet
constituents.

The core component of the DeepJet Transformer algorithm, the
heavy-flavour Transformer block (HFT), is designed as follows: Ini-
tially, the inputs are processed through a basic MLP layer, succeeded
by a ReLU activation function. The output of the MLP layer is then
fed into a MHA layer, followed by a residual connection and layer
normalization. In addition to the MHA layer, a fully connected feed-
forward layer, akin to the original Transformer implementation, is
incorporated, followed by a final residual connection and layer nor-
malization. To preserve the particle cloud representation of the jet,
no positional encoding or causal masking, two usual techniques used
in Transformer models [76,111], are employed.

Usual MLPs are used as embedding layers to represent the same
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input feature’s dimension for each nature of constituents. The pool-
ing operation of the model is performed via a single-head attention
pooling mechanism, designed by the Equation (3.5) between the con-
stituent tensor, noted X and a learnable projection of the constituent
tensor via a linear layer into a vector of dimension equal to the num-
ber of constituents, noted Z.

Attention Pooling(Z,X) = SoftMax
(
ZT

)
X (3.5)

Figure 3.6: Illustration of the DeepJet Transformer algorithm. The algorithm considers
charged particle-flow candidates, neutral particle-flow candidates, and SVs as inputs. After
the embedding layer, the jet-constituent tensor is fed into the three HFT layers before the

attention pooling. A series of MLPs processes the aggregated information before
classifying the jet flavour.

The DeepJet Transformer architecture, depicted in Figure 3.6,
is designed in the context of AK4 jet classification with the following
structure. Initially, features from the jet constituents pass through
an embedding layer. This embedding layer comprises an MLP with
three linear layers, ReLU activation functions, batch normalization,
and dropout. The hidden dimensions of these layers are 64, 128, and
128, respectively, and the dropout rate is set at 0.1. The output
tensors from the embedding are then concatenated into a single ten-
sor representing our jet and containing all the constituents. This jet
global tensor is subsequently processed through three HFT blocks of
dimension 128, each using eight attention heads for processing the
attention and using dropout. The representation engineered by our
HTF blocks is then aggregated to a jet-level representation through
attention pooling and fed to an additional MLP, similar to the em-
bedding block, of feature dimensions 128-128-128 before feeding it
into the classification layer. Unlike the FCC-ee version of DeepJet
Transformer [138], we chose not to employ jet-level input features
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such as kinematic properties of the jet or jet-level features related to
the tracks. The ParticleNet architecture employs only jet-constituent
variables, and by excluding jet-level inputs, we ensure the model com-
parison remains unbiased by additional information in favour of the
DeepJet Transformer architecture. The DeepJet Transformer algo-
rithm uses the same truth flavour targets as DeepJet for heavy-flavour
tagging.

The Particle Transformer architecture

The Particle Transformer [139] architecture (ParT) can be seen as
an evolution of the DeepJet Transformer, mainly improving the per-
formance via additional kinematic pairwise features [139,142,158]:

∆ =
√

(yi − yj)2 − (ϕi − ϕj)2

kT = min(pT,i, pT,j)∆

z =
min(pT,i, pT,j)

pT,i, pT,j

m2 = (Ei + Ej)
2 − |−→pi +−→pj |2

(3.6)

where the pairwise features between two constituents of sub-
script i and j are built via their four-momentum p = (E, px, py, pz),
their momentum −→p , rapidity y, and azimuthal angle ϕ. These new
pairwise features, introduced by Equation (3.6), are preprocessed
via a logarithm rescaling (ln∆, ln kT, ln z, lnm2) and then fed into
MLP layers producing a new edge tensor U which will be used in
the new attention mechanism named Particle Multi-Head Attention
(P -MHA), defined by Equation (3.7).

P -MHA(Q,K, V, U) = SoftMax
(
QKT

√
dk

+ U

)
V (3.7)

The P -MHA can be seen as a modification of the original atten-
tion mechanism used in Transformer models, including an additional
edge tensor U , based on kinematic pairwise features. This new mech-
anism, aware of additional information about the interrelation inside
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all pairs of constituents, allows the model to engineer better atten-
tion scores. Similar approaches were also studied in general GNN
research leading to the Graph Transformer subclass [159].

The embedding of ParT is nearly identical to the previous em-
bedding, with only the activation function now being the GELU [93]
function. Similarly, the Transformer block of ParT, also named the
Particle Attention block, is similar to the HFT block, only dropping
the initial MLP and including the new edge tensor U as an input for
the P-MHA layer. For aggregation, ParT uses a class token vector
xcls similar to the CaiT approach [160] along with the usual MHA as
follows:

Attention(QCLS , K, V ) = SoftMax
(
QCLSK

T

√
dk

)
V (3.8)

where QCLS represents the vector class token used as a query
and K,V are the usual key and value built from the jet constituent
tensor concatenated with the class token. This class attention mech-
anism is embed into a Class Attention block in a similar way to the
Particle Attention block, as illustrated in Figure 3.7.

For AK4 jet classification, the ParT architecture consists of
an embedding block consisting of three layers of feature dimensions
128-128-128, three Particle Attention blocks of feature dimension 128
and eight attention heads and one Class Attention block of the same
feature dimension and attention head. We have thus described all
the architectures discussed and developed during this thesis. The
demonstration of the permutation invariance of DeepJet Transformer
and ParT is available in Appendix A.
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Figure 3.7: Illustration of the ParT model (a), the P-MHA and Particle attention block (b)
and the class attention block (c) [139]

3.3 Training samples for jet tagging

This passage outlines the necessary elements for training our algo-
rithms. In Section 3.3.1, we will detail the dataset used, how we
obtain the jet labels, and the tools employed for training, from pre-
processing ROOT files to performance evaluation. Section 3.3.2 ex-
plains how we preprocess our dataset and the input features used.
Finally, Section 3.3.3 describes the training procedure employed and
the exact models trained in the context of this chapter.

3.3.1 Datasets and labelling

The training, validation and test datasets consist of simulated anti-
kT jets [66], with R = 0.4. The simulated jet sources are binned QCD
multĳet and semileptonic tt̄ events produced with PYTHIA8 [25] and
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POWHEGv2 [161] respectively. A gluon reduction of 50% is applied
on the QCD multijet events to avoid class imbalance. PYTHIA8
processes hadronization and showering of our samples. GEANT4
[162] is used to simulate the response of the CMS detector [163,
164]. The PUPPI algorithm handles pileup mitigation [67]. The
jet constituents are reconstructed using the particle-flow algorithm
[165]. To prevent any risk of overfitting, our samples for training
and validation are also processed via a merging scheme, producing
merged files containing 400,000 jets each. A detailed table of the
samples used is available in Appendix C under the label ‘Training
2023’.

Deep Learning algorithms have been introduced at different
times and by several groups. They have never been trained un-
der the same conditions. This has prevented a fair comparison of
the performance of each algorithm for AK4 jet flavour identification.
Therefore, we propose an identical training for all algorithms based
on jet constituents to enable this comparison and to measure the im-
pact of different architectures on performance and a benchmark of
their inference and training cost. We exclude DeepCSV and CSVv2
from this comparison as their maintenance has been discarded for
the CMS Run 3 data taking, and they are simple MLP models based
on jet level inputs and, for DeepCSV, a limited amount of tracks,
known from a while to be underperforming [61,110].

The samples used are processed using the updated versions of
DeepNTuples [166] as well as the b-hive framework [167]. DeepNTu-
ples is a ntupler framework that produces flat jet ROOT [168] files,
containing the variables and labels necessary for training as well as
analysing the performance of our algorithm, by using MiniAOD files
[169] as input. The b-hive framework, released in September 2023
by the CMS experiment, is a modern framework for deep learning
applications in particle physics. It particularly has been designed
for jet identification tasks at the CMS experiment in the context of
the research detailed in this chapter and the following ones. Un-
like its predecessor, the DeepJet/DeepJetCore framework [170, 171],
b-hive is a polyvalent tool built around workflow tasks via the law
library [172] and state-of-the-art Python libraries for processing any
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flat ROOT files such as DeepNTuples or NanoAOD [173] files. We use
the integrated data workflows to preprocess and build our dataset.
Designed around the PyTorch library [174, 175], we use this frame-
work for its modern dataloader and state-of-the-art training environ-
ment. Beyond its increased versatility, b-hive has also demonstrated
its usefulness thanks to its robustness and a significant improvement
in training speed, up to a +243% speed-up for Particle Transformer,
as illustrated in Figure 3.8.

Figure 3.8: Training speed comparison of the ParT architecture with a batch size value of
512. The b-hive framework already shows a 100% training speed improvement compared

to DeepJet/DeepJetCore [170, 171] thanks to the new data structure and fast I/O
compression algorithm. When using the new PyTorch GPU compilation [175], another

72% training speed improvement is obtained, leading to a total 243% speed-up compared
to the previous framework.
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Labelling

Jet labels are obtained via ghost association [61, 176]. The last iter-
ations of each b and c hadron before decaying have their momentum
scaled to a small value of 10−18 GeV, to transfer only the directional
information of these heavy-flavour hadrons during the clustering of
the generator-level jet (gen jet). These scaled-generated hadrons,
also called ghost hadrons, are included among the particles clustered
by the jet clustering algorithm in the reconstructed jets of our sim-
ulated data, allowing us to include information about heavy-quark
physics without modifying the kinematic properties of the gen jets.
We similarly treat the partons’ information to obtain ghost partons.
Our six labels are obtained via the following decisions:

- Jets containing at least one b hadron are labelled as b jet.

- b jets are split into three subcategories: b for jets containing a
single b ghost hadron, bb for jets containing at least 2 b ghost

hadrons and blep for single b ghost hadron decaying leptonically.

- Jets containing no b hadrons and at least one c ghost hadron
are labelled as c jet.

- Jets containing no b or c ghost hadrons, also named light jets
in opposition to the heavy-flavours b and c, are split into the
light quark label (uds) and gluon label (g). The flavour assigned
to those light jets is obtained via the leading pT, also called
the hardest, light-flavour ghost parton associated with it via our
clustering algorithm.

- If a jet contains no ghost hadron or parton, its flavour is unde-
fined and the jet is discarded.

Additionally, we apply an additional lepton veto. From the list
of generator-level leptons originating from a resonance such as the
decay of a Z, W, or H boson, for example, any reconstructed-level
jet having an angular distance ∆R < 0.2 with one of these leptons is
removed from the training. This additional cleaning is necessary to
avoid mislabelling the jet flavour and assigning a b/c/light label to
a jet originating for a lepton clustered by our clustering algorithm.

89



CHAPTER 3. HEAVY-FLAVOUR TAGGING WITH DEEP LEARNING

3.3.2 Input features and preprocessing

Heavy-flavour tagging in high-energy physics involves the identifica-
tion of signatures coming from b (c) hadrons contained in our jets.
Notably, b (c) hadrons have a longer lifetime than lighter ones due to
the weak decay associated with the b quark. The lifetime of a b (c)
hadron is of the order of 1.5 (0.5-1) 10−12 seconds, resulting in a dis-
placement of the order of mm to cm to the primary vertex of the jet
before the hadron decays [61]. This displacement allows for identify-
ing the displaced tracks originating from the decay and reconstruct-
ing the associated SV. The impact parameter of the tracks associated
with a jet, which quantifies the distance of closest approach of a track
to the primary vertex, is a key variable for identifying tracks origi-
nating from an SV. A reconstructed SV within a jet, formed by the
displaced tracks from the primary vertex, is another strong indicator
of a b (c) jet. This indicator is refined using variables associated with
the SV of b (c) hadrons, such as the corrected SV mass MSV, correct-
ing the invariant mass of the SVs, taking in account the particles not
associated with the SVs or not reconstructed, or the flight distance
and significance between the SV and the primary vertex [61]. Fi-
nally, the identification of a soft lepton, originating from the leptonic
decay of a b (c) hadron, corresponding to ∼20% (∼10%) of decays,
is also a signature that can be exploited for the identification of b (c)
jets. Most of the variables used for heavy-flavour tagging are con-
structed and refined around these properties. Figure 3.9 illustrates
some of the properties of the displaced tracks and secondary vertices
mentioned.

In this work, our inputs consist of the jet’s constituents. They
are split into three categories: the charged particle-flow candi-
dates (CPFs), the neutral particle-flow candidates (NPFs) and the
secondary vertices (SVs). Except for the 4-momentum of the jet-
constituents categories necessary for building the relevant pairwise
features of the Particle Transformer architecture, the features used
for the training are identical to the DeepJet training during Run 2
[110]. A detailed list of the simulated event samples used for this
training is available in Appendix B.
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The input tensors are constructed via the b-hive framework,
processed by the coffea library [177]. We consider up to 26 CPFs,
25 NPFs, and 5 SVs, obtaining a constituent count that is a mul-
tiple of 8 to optimise training speed [175]. When a jet consists of
fewer constituents than the maximum values, we use zero padding,
a method consisting of filling the entries beyond the number of con-
stituents with zero values, to fill in missing entries. If there are more
constituents than our fixed maximum, we eliminate candidates with
the lowest transverse impact parameter significance for CPFs and
the lowest transverse momentum for NPFs and SVs. The NumPy
libraries process the resulting data [178] before being stored using
the LZ4 compression algorithm [179], which allows for lossless com-
pression with fast compression and decompression speeds suitable for
deep learning training standards. The PyTorch library handles the
training pipeline management and training itself [174,175], enabling
the design of an efficient and optimised dataloader for reading and
transferring data to GPUs.

For generalization purposes of the model, a 2D reweighting by
jet η and jet pT is carried out to avoid any dependency of the training
on these two variables in the events used for training. During this
reweighting, the 2D spectrum of each truth flavour is reshaped to
obtain the same normalised distribution as the one of the b jet truth
flavour. After applying the reweighting to our merged samples, we
obtain the dataset used for training. Our dataset consists of approx-
imately 50M jets, with an 85% to 15% split between training and
validation. A test set consisting of 5M jet of the same composition
as the training and validation sets is used for the final evaluation
of the models. Figure 3.10 illustrates the effect of the reweighting
method on the involved kinematic properties of jets.
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Figure 3.9: Distribution of the 2D impact parameter of the CPFs (upper left), the ∆R
between the CPFs and closest SV (upper right), translated by a value -0.4, the SV

transverse flight distance (lower left) and the ratio between the SV energy and the jet
energy, after the reweighting.
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Figure 3.10: Distributions of the pT (upper) and η (lower) of the jets for the different
classes before (left) and after (right) applying the reweighting. We can observe that the

kinematic properties of the jets have a similar distribution after reweighting, as expected.
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3.3.3 Training procedure

The PyTorch library version 2.2.1 [175] was used as the deep learning
framework in this study for constructing the neural network model
and the training process. We leveraged the latest advancements in
learning to optimise GPU usage, including FP16 precision and com-
piling gradients into optimised kernels for the Tensor Cores of the
used NVidia A100 GPUs [180]. The applied optimizer is the Looka-
head optimizer [132], with hyperparameters k = 6 and α = 0.5, and
RAdam [130] as the base optimizer with an initial learning rate of
1 × 10−3, decay rates (β1, β2) set to (0.95, 0.999), and a decoupled
weight decay [131] of 0.01. The training was conducted over 30 epochs
with a batch size of 512, accompanied by a learning rate scheduler.
The scheduler used is the cosine scheduler [181] with a linear warmup
during the first 5% of the training steps, a minimum rate of 1× 10−5

and a single cosine cycle. For all algorithms, a snapshot of the model
is saved at the end of every epoch and the model with the best vali-
dation loss is kept as the final model version. The hyperparameters
mentioned here are adjusted from the default values recommended
by the authors of the associated components. For the parameters
where training performance showed sensitivity, we fine-tuned them
through a grid search.

The trained models are DeepJet, ParticleNet, DeepJet Trans-
former, and Particle Transformer. The DeepJet model is trained
with its default parameter sizes [110] to preserve its data compres-
sion properties through convolutional layers. It will serve as a base-
line for performance comparison. For the other models, a first and
main training is done to make the comparison as equal as possi-
ble. We set the feature dimensions to 128, the same embedding size
based on MLPs. Each model comprises three layers of its main block,
of dimension 128, followed by an aggregation in a single operation.
For ParticleNet, we consider k = 8 neighbours as suggested by the
authors in their applications to resolved jets at the CMS experi-
ment. For the Transformer models, we use h = 8 head dimensions,
the default value for most medium-sized Transformer applications
[75,76,138,139].
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Also, in order to evaluate the scaling of the performance with
the computation complexity of the architecture, we also trained Par-
ticleNet, DeepJet Transformer and Particle Transformer with six lay-
ers and the same hyperparameters as above for obtaining the perfor-
mance with larger models and a smaller training with three layers
and 96 as the feature dimension for obtaining the performance of a
smaller model.

Finally, we also evaluate the impact of the permutation invari-
ance of the Transformer models for jet tagging by training three vari-
ants of DeepJet Transformer, one using the causal mask, a second
using a state-of-the-art positional embedding, the Rotary Position
Embedding (ROPE) [182] and a last one combining both. We will
use it to evaluate the impact of a permutation-invariant architecture
on the performance as well as the robustness of the model against
random permutation.

3.4 Flavour tagging performances and model
complexity

In this part of the chapter, we will evaluate the performance of our
algorithms from the perspective of flavour identification in Section
3.4.1 and from the perspective of computational complexity in Sec-
tion 3.4.2.

3.4.1 Heavy-flavour tagging performance

The b-tagging performance of the different models is evaluated via
the following discriminator probb vs all = probb + probbb + problepb.
Since the c jets represent an intermediate regime between the b and
light jets, we separate their rejections to better understand our al-
gorithms’ rejection capacity for these two cases. To obtain a view of
the rejection capacity independent of any probability threshold, we
use the ROC curve of the b-tagging performance of our algorithms
as shown in Figure 3.11.
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Figure 3.11: ROC curves of the b-tagging performance of DeepJet (purple), ParticleNet
(red), DeepJet Transformer (orange) and Particle Transformer (blue). The dashed line

represents the udsg jet rejection, while the solid line represents the c jet rejection.

First, we can observe that the ROC curves have similar profiles.
We do not encounter models that perform better or worse depending
on the chosen misidentification rate, whether for c or udsg rejection.
This behaviour is expected from training under the same conditions.
We can observe that DeepJet, our baseline model, is, as expected, the
least performant model regarding both c and udsg rejection. Parti-
cleNet, the state-of-the-art, exhibits a similar rejection performance
for udsg jets than DeepJet Transformer, only falling behind at low
misidentification rates (< 0.01%). Still, DeepJet Transformer per-
forms better for c rejection, demonstrating that a Transformer archi-
tecture achieves new state-of-the-art performance, highlighting the
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potential of this type of architecture. Finally, Particle Transformer,
by using new pairwise variables as additional edge features, further
improves performance compared to DeepJet Transformer. This per-
formance improvement demonstrates the usefulness of such variables
and that Transformer models can be excellent Graph Transformer
models for jet algorithms. Tables 3.1 and 3.2 provide the b-tagging
efficiency for the loose, medium and tight working points (WPs) usu-
ally employed in CMS analyses, respectively 10/1/0.1% misidentifi-
cation for the b vs c and b vs udsg rejection separately.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 77.24% 55.20% 37.33%
ParticleNet 79.05% 58.20% 41.07%
DeepJet Transformer 80.45% 61.00% 44.27%
Particle Transformer 81.15% 63.31% 47.15%

Table 3.1: b vs c efficiency at the loose, medium and tight WP.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 93.26% 80.24% 62.38%
ParticleNet 93.60% 81.08% 64.65%
DeepJet Transformer 93.62% 80.99% 65.11%
Particle Transformer 94.18% 82.82% 68.11%

Table 3.2: b vs udsg efficiency at the loose, medium and tight WP.

In the context of c-tagging performance, we use two different
discriminators to maximise the discrimination power of our algo-
rithms, described by Equation (3.9). Similarly to the b-tagging per-
formance, we show in Figure 3.12 the c-tagging ROC curves, splitting
the misidentification between the b rejection and the udsg rejection.

probc vs b =
probc

probc + probb + probbb + problepb

probc vs udsg =
probc

probc + probuds + probg

(3.9)

For c-tagging performance, we can observe that, similarly to
b-tagging, DeepJet is the least performant model in terms of b and
udsg rejection. ParticleNet, the state-of-the-art model, exhibits lower
rejection performance than DeepJet Transformer for both b and udsg
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rejection. Finally, Particle Transformer further improves the perfor-
mance of DeepJet Transformer, surpassing the b and udsg rejection
performance. These results demonstrate the utility of Transformer
models for jet algorithms. Tables 3.3 and 3.4 provide the c-tagging
efficiency for loose, medium, and tight WP.
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Figure 3.12: ROC curves of the c-tagging performance of DeepJet (purple), ParticleNet
(red), DeepJet Transformer (orange) and Particle Transformer (blue). The dashed line

represents the udsg rejection, while the solid line represents the b rejection.
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Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 69.46% 20.10% 3.92%
ParticleNet 71.60% 21.01% 4.23%
DeepJet Transformer 73.25% 22.04% 4.41%
Particle Transformer 75.93% 23.66% 4.98%

Table 3.3: c vs b efficiency at the loose, medium and tight WP.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 58.26% 34.03% 18.51%
ParticleNet 59.41% 35.56% 20.22%
DeepJet Transformer 60.04% 36.79% 22.11%
Particle Transformer 61.51% 37.99% 23.11%

Table 3.4: c vs udsg efficiency at the loose, medium and tight WP.

3.4.2 Flavour-tagging complexity

Another important aspect of using any ML tool is the computational
complexity and the prediction time. Indeed, the creation and de-
velopment of complex models come with a computational cost that
can be significant. To evaluate this, we evaluate the inference cost
of the algorithms studied here. Using an environment replicating
the conditions of CMS software [64] (CMSSW), the software en-
vironment in which the algorithms will be used, we measure the
computational complexity expressed in floating-point operations per
second (FLOPs), the number of parameters (weights and biases),
and the prediction speed in iterations per second (it/s) employed
by each model. These values give us a general indication of how
much computation a model requires, how many neurons characterize
the model size and how fast the model can make predictions. Indeed,
FLOPs and prediction speed are excellent indicators of inference per-
formance, allowing us to measure both how costly the operations of
a model are and how optimised they are on the hardware and soft-
ware used. The number of parameters is another important factor,
representing the model’s parametrization capability at a chosen size.

The environment consists of a computing node of an Intel(R)
Xeon(R) CPU@2.20GHz, using two cores combined with 32 GB of
RAM. We use the ONNXRuntime [183, 184] library distribution for
optimising the inference on CPU after using the integrated PyTorch
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to ONNX model converter available in the PyTorch distribution [174].
We predict the jet probability with 16 constituents (eleven CPFs, four
NPFs and one SV), representing the average number of constituents
our training set had. This number is motivated to reflect what our
training dataset illustrates and to have a reference for measuring
complexity. When applying the algorithms to the data, the number
of constituents will vary, and depending on the phase space or the
energy of the jets considered, we will have to deal with different
numbers of constituents. This measure is, therefore, qualitative and
is only intended to highlight the qualities or defects of the different
architectures without reflecting a complete measure of the reality of
CMSSW, something impossible to do at present with the available
tools.

The results displayed in Table 3.5 indicate that our baseline
DeepJet is the simplest and fastest model, as expected. It is the only
model that compresses the data and processes of each constituent
type independently, leading to a model complexity of 2.60 MFLOPs
for 266.292 parameters. The measurements confirm that its appli-
cation aligns with its design objectives. Next, we can observe that
ParticleNet, despite having fewer than half the number of parameters
of Particle Transformer, 403.018 instead of 1.056.309, incurs a signif-
icantly higher computational cost of 56.41 MFLOPs instead of 23.06
MFLOPs for Particle Transformer, an increase of ∼ 145%. DeepJet
Transformer has fewer parameters than Particle Transformer for the
same size of a model with 871.243 parameters. This mostly comes
from the absence of pairwise features and the usage of a simple at-
tention pooling instead of the classification token [160]. The impact
is also noticeable on the computation complexity. DeepJet Trans-
former has a computation cost of 19.73 MFLOPs, reducing the cost
by ∼ 14% compared with Particle Transformer. This cost reduction
represents the impact of using pairwise features.

This is due to the complexity of the k-nn operations, which first
require the calculation of the pairwise distance with a complexity of
O(N2), where N is the number of constituents, followed by the selec-
tion of the k nearest neighbours with a complexity of O(N + k log k).
The cost of convolutions is also particularly high, with a convolu-
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tion of input dimension d and identical output dimension having a
complexity of O(Nkd2). On the other hand, the primary complex-
ity of our Transformer models is their attention mechanism. This
consists of linear layers with a complexity of O(Nd2) followed by the
SDPA mechanism with a complexity of O(N2d) [111]. The aggrega-
tion mechanism of both Transformer models is of the order O(Nd).
At the same time, Particle Transformer additionally includes a unique
computational cost due to the calculation of pairwise features with
a complexity of O(N(N − 1)/2) followed by linear layers of order
O(N(N − 1)h2), where h is the number of attention heads, which
is eight in our case. Thus, the cost of an EdgeConv layer of Par-
ticleNet, with the same dimension on the variables and the same
number of convolutions as our Transformer models with linear layers
for identical depth, is significantly higher as expected from the com-
plexity estimates, and this is reflected in the overall computational
complexity and model inference. These measurements highlight an-
other important advantage of Transformer models. Not only do they
perform better, but they also have a lower inference cost, reducing
the computational expense flavour-tagging algorithms produce.

However, we can observe that despite the very high computa-
tional complexity, the gap narrows when we measure the inference
on the CPU. This is due to two factors. First, the complexity of
the SDPA operation remains very high and unoptimised for compu-
tations outside of GPUs. Second, our Particle Transformer model
converted to ONNX must use custom and suboptimal operations to
create pairwise features because ONNX does not integrate efficient
versions. These two suboptimal elements thus impact the inference of
DeepJet Transformer and Particle Transformer, which remains faster
than ParticleNet.

The training of the DeepJet Transformer models, including the
non-permutation invariant components, have been evaluated with
the default ordering of the jet constituents in Figure 3.13. We can
observe the performances of the algorithms are similar, indicating
the impact of the causal mask and ROPE [182] components are not
impacting the tagging performance when both the training and test
datasets follow the same ordering. However, when applying random
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Model Num. params Forward CPU Inference
DeepJet 266,292 2.60 MFLOPs 2492.38 ± 1.79 it/s
ParticleNet 403,018 56.41 MFLOPs 552.56 ± 0.37 it/s
DeepJet Transformer 871,243 19.73 MFLOPs 961.58 ± 0.94 it/s
Particle Transformer 1,056,309 23.06 MFLOPs 635.88 ± 0.70 it/s

Table 3.5: Model complexity comparison table. The forward computation complexity and
CPU inference speed are measured with a baseline resolved jet of 16 constituents. The

number of parameters corresponds to the number of weights and biases each model
contains.

permutation in the jet constituent order, the performance of the non-
permutation invariant models shows degradation. In contrast, the
predictions of the permutation invariant DeepJet Transformer model
remain unchanged as expected. Particularly, we can see in Figure
3.14 that the causal mask, in red, induced a more significant degra-
dation than the ROPE component, in orange. Combining the two
components, in purple, displays a larger performance degradation,
highlighting this model’s larger permutation sensitivity. This perfor-
mance degradation illustrates the necessity of building permutation
invariant models, ensuring the model’s performance is not degraded
when we do not use the non-permutation invariant components. The
permutation invariance also guarantees the robustness of the model
against any permutation that may occur, for example, by a change
in the reconstruction of the jet or a software modification.
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Figure 3.13: ROC curves performance of DeepJet Transformer (blue) and its extension
with non-permutation invariant component: causal (red), ROPE (orange) and causal +
ROPE (purple). The dashed line represents the udsg jet rejection, while the solid line
represents the c jet rejection. The performances are obtained on jets with the default

constituent’s ordering.
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Figure 3.14: ROC curves performance of DeepJet Transformer (blue) and its extension
with non-permutation invariant component: causal (red), ROPE (orange) and causal +
ROPE (purple). The dashed line represents the udsg jet rejection, while the solid line

represents the c jet rejection. The performances are obtained on jets with random
constituent’s ordering.
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The results of training smaller and larger models are combined
with the original models to obtain a comparison of the b-jet effi-
ciency percentage at the medium WP, denoted as beff @ medium
WP. The results are compiled in Figure 3.15, where we can observe
that the computational complexity of ParticleNet increases signifi-
cantly with model size due to its initial complexity. In contrast, the
Transformer models benefit from lower complexity due to their struc-
ture. We also notice that Transformer models seem to exhibit better
scaling in performance. The larger versions of DeepJet Transformer
and Particle Transformer, with 6 layers and 128 feature dimensions,
achieved better performance than the smaller models, whereas Par-
ticleNet did not. The benefits of better performance scaling com-
bined with lower complexity, which also results in shorter inference
times, provide additional arguments for using Transformer models
for heavy-flavour tagging. The difference in computational complex-
ity and inference time observed between DeepJet Transformer and
Particle Transformer is smaller than ParticleNet. The significant
performance improvement also originates from the new pairwise fea-
tures. As a result, ParT appears to have an excellent balance between
performance and computational cost.
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Figure 3.15: beff @ medium WP performance versus the computation complexity of
ParticleNet (red), DeepJet Transformer (orange) and Particle Transformer (blue).
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3.5 Summary and outlook

In this chapter, we have explored the application of deep learning
algorithms to jet tagging, with a particular focus on representing
jets as Particle Clouds. We introduced and compared the evolution
of the neural network architectures used in heavy-flavour tagging,
ranging from models based on fully connected and recurrent networks
to graph networks and Transformers.

The results obtained demonstrate the advantage of Transformer-
based models, not only in terms of classification performance but also
in terms of computational complexity and inference efficiency. The
DeepJet Transformer model, using the same set of input variables,
outperforms the state-of-the-art ParticleNet while offering signif-
icantly improved computational complexity and inference speed.
The Particle Transformer model, which differs from the DeepJet
Transformer by its innovative use of kinematic features between
pairs, significantly improves tagging performance in exchange for an
increased computational cost, which remains significantly lower than
that of ParticleNet. Measurements of model complexity also reveal
that, despite a higher number of parameters, Transformer-based
models remain faster and more resource-efficient than their prede-
cessors based on Dynamic Graph Convolutional Neural Networks.

Additional studies have also demonstrated the importance of
adhering to the representation of the jet as a Particle Cloud by show-
ing the performance loss that DeepJet Transformer experiences when
it includes non-permutation-invariant components typically used in
Transformer models applied to LLMs [76, 111, 182]. We have also
demonstrated that the ablation of these components does not re-
duce our model’s performance. These two results indicate that creat-
ing permutation-invariant models ensures the robustness and proper
functioning of the algorithms.

The study on model size scaling also highlighted the potential
of Transformer models, which offer a significantly higher complexity-
performance ratio. One can also notice in this analysis, that the Par-
ticleNet architecture did not improve substantially when its depth
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was increased, in contrast to DJT and ParT. These results, com-
bined with the observations made by H. Qu et al. regarding the
better scaling of Transformer models relative to dataset size [139],
further emphasise the advantages of these models in terms of versa-
tility for both training dataset size and model size. This ensures that
employing this type of architecture guarantees the best performance
compared to the other architectures discussed here, regardless of the
model size or the amount of data available.

These advancements pave the way for new research on the use
of Transformers for other tasks in particle physics, where the complex
structure and interactions of the data can benefit from the flexible
and powerful approach of Transformer neural networks. Moreover,
integrating these models into the analysis pipelines of experiments
such as CMS significantly enhances the precision and efficiency of
jet-flavour identification.

In conclusion, this study highlights the immense contribution
of deep learning models to jet tagging and lays the groundwork for
future developments aiming to fully exploit the capabilities of Trans-
former neural networks in high-energy physics. We have demon-
strated that an extensive understanding of the structure of the phys-
ical objects considered, combined with the development of efficient
neural network models that respect the properties of these objects,
can lead to significant advancements in their identification.

108



Chapter 4

Robust jet tagging algorithms via
adversarial training

In this chapter, we will address the robustness of our jet tagging al-
gorithms through the challenge of mismodelling and its impact on
performance. In Section 4.1, we will begin by briefly explaining the
context of mismodelling and how it is managed after training through
the calibration of algorithms. We will then discuss the perspective
of sensitivity to mismodelling from the viewpoint of neural networks
and the challenges involved in minimising the model’s sensitivity in
the context of better and better boundary decisions and how they
became more sensible to input changes. We will explain why we will
focus here on a particular method based on adversarial attacks, which
will be further explored in Section 4.2. In this section, we will review
the most commonly used adversarial attacks and their properties.
We will then delve into their application in flavour tagging, first by
discussing and analysing the results of a preliminary work previously
conducted. We will then explain the limitations of that work and
how, within the framework of the available resources, we co-developed
and subsequently developed two adversarial attacks [185, 186] and a
new adversarial training method that does not trade off performance
for robustness gain in jet flavour identification. In Section 4.3, we will
illustrate the achievable performance on our simulations and the link
between the gained robustness and the importance of input features
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through the lens of their gradients. Finally, in Section 4.4, we will
conclude the results and the achieved work, where we will summarise
the findings and highlight which training method with which type of
attack provides the best possible robustness, hence establishing the
current state-of-the-art in robustness for flavour tagging. We will
also emphasise the potential future prospects of such methods, par-
ticularly regarding the critical role that the importance of variables
can play in developing these techniques, as well as the limitations
these methods have in improving robustness against mismodelling in
our simulations.

4.1 The mismodelling challenge of flavour tag-
ging

In this part of the chapter, we will first address the issue of cali-
bration of the jet tagging algorithms from the usual perspective in
collider physics in Section 4.1.1. Then, we will draw an analogy with
the problem from a Deep Learning perspective in Section 4.1.2. We
will propose two dual viewpoints on generalisation and explain our
motivation for employing one of these methods in the context of this
work on the robustness of jet algorithms.

4.1.1 Callibration of jet tagging algorithms

In the previous chapter, we observed the performance of our algo-
rithms applied to Monte Carlo simulation samples. These simulation
samples describe the reality of detection conditions with relative ac-
curacy, as illustrated by Figure 4.1 for the 3D impact parameter
significance of the most displaced track and the DeepJet b vs all dis-
criminant. Indeed, the description of the physics of events remains
imperfect. When applying our jet identification algorithms to the
data recorded by the CMS experiment, we must apply corrections
to account for these differences between the simulated samples and
the recorded data [61]. Among the key mismodelling sources are the
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parton shower and fragmentation modelling and the simulation of
the detector component responses.

To measure the effectiveness of our algorithms, we measure the
identification and misidentification efficiency of our algorithms for
given discriminant threshold values, most often our defined WP as
follows:

ϵf =
Nf

pass

Nf
total

(4.1)

where Nf
pass and Nf

total represent the number of jets selected by
the algorithm at the given threshold and the total number of jets
for a given flavour f (b, c, or udsg), respectively. By applying the
measurement of these efficiencies on the MC simulation samples ϵfMC

and the recorded data ϵfdata, we can obtain calibration factors [61,188–
190], usually referred to as scale factors (SFs), defined by Equation
(4.2). These SFs will be applied to the simulation samples to improve
their description of data in analyses that employ jet identification.
An example of b-tagging SFs as a function of jet pT is shown in Figure
4.2.

SFf =
ϵfdata

ϵfMC

(4.2)

These calibration methods are applied to selection regions en-
riched in b, c, or udsg jets, most often from tt̄ events or QCD mul-
tijet events [61]. Several different methods exist for different phase
spaces. One example is the kinematic (kin) method that identifies
dileptonically decaying tt̄ events containing exclusively two b jets via
a BDT. We can measure the SFs using jets with a very high b jet
purity rate from these events. Other methods based on W+c events
[188], naturally enriched in c jets, are used for the calibration of c
identification.
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Figure 4.1: data/MC agreement plots of the t̄t eµ region for the Run 3 2022+2023 data
taking. The upper plot represents the data/MC agreement of the 3D impact parameter

significance of the most displaced track, and the lower plot is the data/MC agreement of
the DeepJet algorithm for the b vs all discriminant before calibration [187].
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Figure 4.2: Combined b-tagging SFs for the loose, medium, and tight WP of the
ParticleNet algorithm with their statistical and systematics uncertainties for the Run 3

2022 data taking [190].

4.1.2 The neural network perspective of mismodelling

The evolution of algorithms towards increasingly larger neural net-
work models, containing more input variables and trained with more
effective training methods to improve generalization, can lead to nu-
merous problems in their usage. Indeed, our growing models risk
facing the danger of training data memorization, a type of overfit-
ting where a model manages to encode the entire training dataset
into its latent variable space, resulting in poor generalization capac-
ity. The interrelation between generalization and memorization is a
crucial topic in deep learning, for which it has been demonstrated
that neither usual regularization methods nor model architectures
alone explain the generalization capacities of increasingly large mod-
els [191]. The contribution of implicit mechanisms from training and
gradient descent also plays a crucial role in these generalization ca-
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pacities.
More specifically, it has been demonstrated that training to

minimise a loss function is not sufficient for the model to correctly
generalise during its usage. Increasing model sizes, combined with
adaptive moment optimizers and complex non-convex learning tasks,
can reduce our models’ generalization capabilities [192,193]. The op-
timal and robust convergence of the training has become more and
more challenging, shaping the loss function with multiple local min-
ima. [192]. Thus, as we improve the accuracy of our models trained
on our MC simulations, we encounter a new challenge regarding their
application to real data. Our models have become much more pre-
cise, with increasingly refined and sensitive decision boundaries, mak-
ing them more susceptible to perturbations. We want to explore
methods to make our models more robust and enhance their gen-
eralization capability when applied to real data. More specifically,
we aim to develop a method independent of the actual data/MC
disagreement that allows for the design of generalised robustness de-
rived from mathematical principles and agnostic to mismodelling.
Among the methods to improve model generalization capacity, the
Sharpness-Aware Minimization (SAM) [193] method is well known.
This method consists of a two-step learning process that perturbs
the weights and biases of our model to construct a flatter minimum
of the loss function landscape, illustrated in Figure 4.3, leading to
better generalization. SAM methods have been applied successfully
to CV [193,194] and LLMs [195].

Beyond the discussion of generalization capacity, it is impor-
tant to note that our model is trained on simulations, leading to con-
vergence within a suboptimal phase space of input variables. This
suboptimality, combined with the model’s sensitivity to potential
mismodelling, underscores the need for calibration. The challenge
of modern jet algorithm training, therefore, is twofold: to improve
the model’s raw performance on simulated data and to mitigate the
influence of calibration factors on its performance in real-world anal-
yses. To address this, we propose a training strategy that focuses
on minimising the model’s sensitivity to variations in input features,
enhancing its robustness and reducing the impact of mismodelling.
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Figure 4.3: 2D projection of the loss landscape of a ResNet-50 model [121] trained with
SGD on the left and SAM on the right [193]. The sharpness of the model trained with

SAM is reduced, leading to a wider local minimum.

This method aims to optimise performance on simulation samples
while ensuring that the algorithm generalises effectively to real data,
thus reducing the need for extensive calibration adjustments.

4.2 Adversarial attacks for jet algorithms

In this part of the chapter, we will detail the principle of adversar-
ial attacks in Section 4.2.1 and provide some examples of methods
commonly used in research. We will then use these works, combined
with preliminary studies on their application to jet tagging, to design
new attacks and a new training strategy in Section 4.2.2.

4.2.1 Adversarial attacks and related works

Adversarial attacks are techniques used to deceive machine learning
models by introducing small intentional perturbations in the input
data designed to cause significant prediction errors in the model. For
example, an image correctly classified as a ‘panda’ can be subtly
modified to be misclassified as a ‘gibbon’ by the model, as illus-
trated in Figure 4.4. Adversarial attacks exploit vulnerabilities in
machine learning models, highlighting weaknesses in the robustness
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and security of the algorithms. Research on such attacks was his-
torically developed in CV [196–198] before becoming widespread in
other domains, including recently in LLMs [199, 200] and reinforce-
ment learning [201,202]. In the context of this thesis, we will mostly
focus on white-box adversarial attacks. These attacks have direct
access to the model under consideration and all its components, such
as weights, biases, graphs, cost functions, inputs, and targets. Con-
versely, black-box attacks do not have access to the internal informa-
tion of the model aside from its predictions. This attack must find
an indirect method to disrupt the predictions, such as by generating
adversarial examples from a surrogate model [203]. For lexical sim-
plicity in this section, when we refer to adversarial attacks without
specifying if they are white-box or black-box, hereafter, we will refer
to white-box attacks. In the later sections, black-box attacks will
be mentioned when used. The general operation of an adversarial
attack can be defined as follows:

xadv = x+□adv(L, θ, x, y, ϵ) (4.3)

where x and xadv represent the input variables and the input
variables distorted by the adversarial attack, and y the target pre-
diction. The adversarial attack is represented by □adv and depends
on the selected method. The cost function is shown as L, usually CE
or MSE, θ represents the model’s weights and biases, and ϵ is a mag-
nitude parameter of the attack that ensures the caused perturbation
is small. In most cases, adversarial methods are based on extending
gradient backpropagation to the input variables, which we denote as
∇xL(θ, x, y).

Along with the development of adversarial attacks, new train-
ing strategies designed to minimise these attacks were developed
[198, 204, 205]. These so-called adversarial training strategies aim to
expose the model to both the original (nominal) samples and their
adversarial versions during the training, thus exposing the model to
perturbed data and allowing it to minimise its sensitivity to attacks
and, therefore, building more robust models against perturbations
creating mismodelling.
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Figure 4.4: Illustration of an adversarial attack applied in CV [196]. The image is
modified with respect to its loss function for performing a distortion of its inputs, leading
to a mislabelling of the distorted image, which, however, remains completely discernible

and understandable to the human eye.

Among the commonly used attack methods, the most common
is the Fast Gradient Sign Method (FGSM) [196]. This attack involves
creating a perturbation from the gradient sign with respect to the
input features. The advantage of the FGSM method lies in its ability
to quickly generate attacks based on the gradient of the inputs, as
described by Equation (4.4). This attack can be viewed as the linear
approximation of maximising the cost function over the hyper ball
B(x,

√
Nϵ) centred on the input features and with a radius

√
Nϵ,

N being the number of input features: maxxadv∈B(x,
√
Nϵ) L(θ, xadv, y).

In its implementation, the computational complexity of the FGSM
method requires a complete forward-backward step to measure the
gradient and obtain the desired perturbation, the same cost as a
training step on the same samples.

xadv = x+ ϵ · sign∇xL(θ, x, y) (4.4)

A natural extension of the FGSM method is the iterative Pro-
jected Gradient Descent method (PGD)[197], also known as FGSMk.
This method involves iteratively crafting a final adversarial attack
xkadv by performing k FGSM attacks as illustrated by Equation (4.5).
Each iteration is controlled by an element-wise clipping CLIPx,δ,
ensuring that each element of the adversarial tensor created at
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step t remains within a value range of [x − δ, x + δ]. PGD attacks
can also be seen as a linear approximation of solving the prob-
lem maxxadv∈B(x,

√
Nϵ)L(θ, xadv, y). The PGD method significantly

increases computational complexity, requiring k forward-backward
steps to construct xkadv iteratively. With typical attacks using a k

parameter value around 20 [198], the PGD method is significantly
more costly than its simplified FGSM variant.

x0adv = x

xtadv = xt−1
adv + ϵ · adv∇xL(θ, xt−1

adv , y) (4.5)

While the previous methods proposed attacks that modify all
input features simultaneously, Papernot et al. introduced a method
that allows modifying the input variables one by one [206], known as
Jacobian-based Saliency Map Attacks (JMSA). This attack, based on
the gradient ∇xF (θ, x)l, where F represents the model’s prediction,
measures a saliency map S to determine which input variables con-
tribute the most to the prediction of the target class l. This attack
is no longer measured through its cost function L but solely through
the model’s gradient with respect to the prediction class l for which
the attack is determined. Based on this evaluation of each variable’s
importance, JMSA follows an iterative process, described by Equa-
tion (4.6), to deceive the model’s prediction. At each selection of the
most important variable, a value change ϵ is made to better align
with the targeted class l. The process is repeated until either the
model’s predicted class matches the targeted class l or the norm of
the change in input features δx = x− xadv exceeds a set threshold Γ.
In JMSA’s original application context, CV [206], the L0 norm is cho-
sen, counting the number of modified pixels. The JMSA paradigm
differs from FGSM and PGD methods, as it now seeks to minimise
the following problem: argmin||δx|| F (x+ δx) = l.
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xadv ← x

while F (xadv) ̸= l and ||δx|| < Γ:
Compute ∇xF (θ, xadv)l

Compute S(∇xF (θ, xadv)l, xadv, l)

imax = argmax
i
S(∇xF (θ, xadv)l, xadv, l)

xadv,imax = xadv,imax + sign(∇xF (θ, xadv)l[imax]) · ϵ
δx = x− xadv

(4.6)

The computational complexity limits of JMSA are similar to
the PGD method. Indeed, in the initial paper, applying this method
to the MNIST dataset [207], consisting of 28× 28 pixel handwritten
digit images, typically required modifying 4% of the pixels to change
the prediction, which equated to approximately 31 forward-backward
loops per images. This number of iterations is of the same order of
magnitude as the PGD method.

A final adversarial attack method is the Carlini & Wagner (CW)
attack [208]. The CW attack, considered as one of the most powerful
and resulting in minimal distortion, involves the minimization of a
cost function J defined by Equation (4.7):

J(θ, xadv, y) = λ · dist(x, xadv) + β ·G(θ, xadv, y) (4.7)

where G is a function aimed at maximising misclassification
such that G(θ, xadv, y) ≤ 0 when the jet is misclassified. The triv-
ial function using the cross-entropy loss, −CE + 1, has been tested
among those functions. Carlini & Wagner suggest other functions in
their paper [208], demonstrating that there is no optimal β factor,
and by extension, λ, that ensures optimal convergence while simul-
taneously reducing both the chosen distance dist and the function
−CE+1 [208]. The distance dist between the original input and the
adversarial input is minimised according to either the L0, L2, or L∞
norm to construct an attack that disrupts the prediction with the
smallest possible change in variables. Equation (4.9) describes the
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norms. We can notice the L0 norm is not a real norm as it does not
respect the homogenous property of a norm and we acknowledge the
usage of L0 norm is, therefore, a terminology abuse. The adversarial
example is then obtained iteratively in a manner analogous to the
PGD method via:

x0adv = x

xtadv = xt−1
adv + ϵ · adv∇xJ(θ, xt−1

adv , y) (4.8)

||x||L0
=
∑
n

|xi|0 with |0|0 = 0

||x||L2
=

√∑
n

|xi|2

||x||Linf = supn|xn|

(4.9)

The CW attack is computationally expensive due to its iter-
ative nature. The authors recommend using the L2 norm with a
maximum of 1000 iterations [208]. This can result in a significant
cost to construct an adversarial example for a single element.

4.2.2 Adversarial attacks applied to jets

The first use of adversarial attacks was conducted with FGSM at-
tacks on the DeepJet algorithm [185, 209]. These quickly demon-
strated that contrary to preliminary simplified observations [209],
such training applied to simulated jets produces an underperforming
classifier compared to the nominal model [185]. However, adversarial
training has shown its ability to improve robustness against adversar-
ial attacks by reducing their impact on jet misclassification. Figure
4.5 illustrates, for b vs udsg tagging, the trade-off between nomi-
nal performance and robustness. For this first approach, the cost
function used for adversarial training was cross-entropy, employing
adversarial inputs xadv instead of nominal inputs x:
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Ladv(x, xadv, y, θ)adv = CE(xadv, y, θ) (4.10)

Adversarial training is compared with nominal training, which
utilises only the nominal samples and the standard loss function, in
this case, the cross-entropy for classification:

L(x, y, θ)nom = CE(x, y, θ) (4.11)

Figure 4.5: ROC curve performance of the b vs udsg rejection of the DeepJet algorithm
trained in nominal mode (blue) or with FGSM attacks (orange) [185]. We can observe that
the FGSM adversarial training implies a tradeoff between the nominal performance (solid

lines) and robustness against the FGSM attacks (dashed lines).

These initial adversarial trainings highlight the limitations of
the employed techniques. First, the FGSM attack is not well-suited
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to the variables used and constructs rather artificial changes in the
variables. Indeed, this attack was developed for CV models [196],
where the entire input data consists of normalised values between
[0,1] of the RGB channels or a black-and-white channel, depending
on the considered type of image. For these, making a change of mag-
nitude ϵ to each variable makes sense and allows one to exploit only
the sign of the gradient on the inputs to indicate the direction of the
change. However, in the case of jet algorithms, we have a set of input
variables of different natures, each with its own distribution. Thus,
making a change of magnitude ϵ will not have the same implication
if, for example, we modify the transverse impact parameter value of
a CPF or its pseudorapidity relative to the jet axis. Moreover, even
though it might be tempting to explore other reference methods such
as PGD or CW attacks, we would then face limitations in the compu-
tational capacity and training time that we can allocate, which is on
the order of one week with the currently available resources. Indeed,
the training of Particle Transformer, the current state-of-the-art in
jet algorithms, requires a training time on the order of one day with
the setup described in Chapter 3. It should be noted that the men-
tioned trainings benefited from the latest advancements in improving
GPU usage through the b-hive framework [167], and without its use,
the training duration would have been extended by approximately
three to four days. Using the FGSM method requires an additional
forward-backward loop in addition to that used by nominal train-
ing, thus doubling the necessary computation time. If we were to
explore methods such as PGD or CW attacks, this would require, at
a minimum, a greater number of forward-backward loops to create
our adversarial inputs. Using PGD attacks with six iterations would
result in a training time on the order of one week, our maximum allo-
cated time, knowing that most applications of PGD in the literature
use between 20 and 40 iterations [198,210,211]. Since we would also
like to explore the use of larger models as well as more input vari-
ables, we cannot afford, under these conditions, to use such iterative
methods.

Furthermore, the training strategy employed, based solely on
cross-entropy on adversarial predictions, is another limiting factor of
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this training method. To minimise the impact of training on nomi-
nal performance, we would like the training to aim at both making
correct predictions for nominal and adversarial examples and min-
imising the change in prediction between them. To achieve this, a
new adversarial training strategy based on nominal and adversarial
examples is necessary to establish a new global cost function.

Finally, it is important to note a particular phenomenon for
fast adversarial training using attacks such as FGSM. Research has
shown particular sensitivity to Catastrophic Overfitting (CO), a phe-
nomenon where the model, instead of gaining robustness, experi-
ences a collapse in robustness to other types of attacks than the one
used in training, while accuracy against the training attacks reaches
nearly 100% [212,213]. This phenomenon, absent during the training
with the DeepJet model, emerged when we attempted this training
method on ParT. It is worth noting that the observed phenomenon
differed from that described in the context of CV models. Not only
did we face a drop in accuracy against other attacks, but we also
encountered general overfitting, leading to a decline in the model’s
nominal accuracy. This significant degradation rendered the ParT
models trained with FGSM attacks ineffective despite attempts to
adjust parameters such as the attack magnitude ϵ or the model’s
learning rate. In the context of more advanced models like ParT,
which have superior separation capability and a larger number of pa-
rameters, FGSM attacks become inappropriate for applications in jet
tagging algorithms.

The Normed Gradient Method (NGM)

A first suggested modification was to no longer rely solely on the sign
of the gradient for our attacks. Instead, we decided to work directly
with the gradient with respect to the input features, ∇xL(θ, x, y).
Thus, we allow the attacks to transition from a discrete variable
change defined by value changes of ±ϵ to a continuous range of values
over RN , where N is the number of input variables. To control the
range of gradient values that can vary from one jet to another, as well
as the potential evolution of the gradient throughout the training, we
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will use the unit vector uadv defined by the L2 norm as follows:

uadv =
∇xL(θ, x, y)

||∇xL(θ, x, y)||L2

(4.12)

We can interpret this vector as the direction on the hyperball
B(x,1) that applies the highest possible penalty to the chosen cost
function L. In other words, it is the direction to follow to maximise
the function L and thereby deceive the model.

Furthermore, since the cost function with respect to the input
features plays a crucial role, we decided to inject a rescaling factor
that encodes the information of the scales of each feature into the
attack magnitude parameter ϵ as:

ϵi = ϵ ·
√
V ar(x̃i) (4.13)

where ϵi is the attack magnitude of the i-th variable, whose vari-
ance is calculated from the values x̃i obtained from the central 90%
quantiles of the distribution. These values ϵi are measured among
the constituents of the same nature (CPFs, NPFs, SVs) and on ap-
proximately 5% of the training data before the training itself. The
parameter ϵ remains a free and adjustable parameter during training
to control the magnitude of the attacks.

Thus, we can define a new attack called the Normed Gradient
Method (NGM), leveraging the benefit of transitioning from a dis-
crete to a continuous variable change through the use of the unit
vector uadv, as well as the exploitation of per-features attack mag-
nitude parameter parameters ϵi. Analogous to the previously dis-
cussed attacks, the NGM attack seeks to solve the linear problem
maxxadv∈B(x,uadv·ϵi) L(θ, xadv, y), aimed at maximising the cost func-
tion on the surface of the hyperball B(x, uadv · ϵi) centered on the
input features x and with a radius of uadv · ϵi. It is important to note
that the attack magnitude uadv · ϵi can vary from one jet to another.
The following equation defines the new attack:
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xadv = x+ ϵi · uadv

xadv = x+ ϵ ·
√
V ar(x̃i) ·

∇xL(θ, x, y)
||∇xL(θ, x, y)||L2

(4.14)

The Rectified Normed Gradient Method (R-NGM)

The NGM method, although effective in preserving correlations
against adversarial attacks, is not entirely satisfactory within the
paradigm considered. Indeed, we could use the gradient with respect
to the input features as an indicator of feature importance. By
emphasising the connection between adversarial robustness and the
importance of input features, we observe that the gradient on the
input features, ∇xL(θ, x, y), or its unit version uadv, takes a form
analogous to methods used for evaluating input feature importance
[214–216].

Thus, we can consider that ∇xL(θ, x, y) linearly approximates
the contribution of each variable to the minimization (or maximiza-
tion in the case of an adversarial attack) of the cost function. As
a result, a high value represents a significant contribution, while a
low or near-zero value represents the opposite. It is important to
note that the gradient sign here is only relevant to indicate the direc-
tion in which the modification should occur. For two input features
xa and xb with gradient values of +A and −A, their importance is
similar; only the direction of change to apply our penalty will dif-
fer. Therefore, with this analogy, we decided to rectify the initially
designed NGM method by removing the

√
V ar(x̃i) terms. What re-

mains is the global control parameter for attack magnitude ϵ and
the unit vector uadv. Compared to the NGM attack, this new Rec-
tified Normed Gradient Method (R-NGM) attack seeks to solve the
problem maxxadv∈B(x,ϵ) L(θ, xadv, y), maximising the cost function on
the surface of the hyperball B(x, ϵ) centered on the input features
x and with a radius of ϵ, for which we consider the unitary vector
uadv as the direction of this best penalty in the first order regime.
Contrary to the NGM method, the magnitude of the attacks remains
the same for all jets, similar to the previous methods we discussed.
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The Rectified Normed Gradient Method attack is defined as follows:

xadv = x+ ϵ · uadv

xadv = x+ ϵ · ∇xL(θ, x, y)
||∇xL(θ, x, y)||L2

(4.15)

Analogy between adversarial attacks and attribution method

Adversarial training methods aim to minimise the impact that a
change in inputs can have on the prediction of a neural network.
We can establish a link between these methods and the evaluation
of the importance of input features. Among the most well-known
attribution methods is the Integrated Gradients method [214] (IG),
whose formulation is as follows:

IGθk(x) = (x− x′)×
∫ 1

α=0

∂θk(x
′ + α(x− x′))
∂x

dα (4.16)

where the attribution for the prediction of the k-th class, IGθk ,
depends on the input features x from an anchor point x′ and is inte-
grated from the prediction of the k-th class, denoted by θk.

In the context of IG, for interpreting a multi-class classification
task, replacing the specific output of a class with the cost function,
such as CE, offers a more comprehensive view of feature importance.
Indeed, this approach simplifies and generalises the concept to all
classes. Moreover, the contribution of each feature will be evaluated
not only based on the prediction of the class to which the object
belongs but also across all prediction errors. Thus, this modification
of the attribution method is more representative of the overall be-
haviour of the model. We therefore define our attribution IGL based
on the cost function L as follows:

IGL(x) = (x− x′)×
∫ 1

α=0

∂L(θ, x′ + α(x− x′), y)
∂x

dα (4.17)
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From Equation (4.17), we can define the Riemann approxima-
tion, in m steps, for the integral analogously to the original method
[214]:

IGL(x) ≈ (x− x′)×
m∑
i=1

∂L(θ, x′ + i
m(x− x′), y)
∂x

× 1

m
(4.18)

The choice of anchor is an important aspect of this attribution
technique. Although the authors recommend selecting the least likely
example from the class we wish to study [214], we diverge from this
method. Indeed, this approach works only when we want to evaluate
the importance for a single predicted class. In our case, we aim to
evaluate the importance with respect to classification as a whole, and
there is no simulated jet that can serve as a ‘neutral’ anchor. Thus,
we adopt the second recommended option, which is to use a null
anchor. In the same way that a black image or a text with no words
is used, we choose the ‘empty’ jet, consisting only of values equal
to 0, as the anchor. Thus, after setting x′ = 0, we observe that by
simplifying the Riemann method to a single iteration, similar to our
adversarial attacks, we obtain the following equation:

IGL(x) ≈ x×∇xL(θ, x, y) (4.19)

We then observe the link between this feature importance eval-
uation method and our attacks. Under the same single-step approxi-
mation regime and using an appropriate anchor, we observe that the
FGSM, NGM, or R-NGM attacks are variants of the approximation
of IGL(x), modifying the factor x through the sign function or a
normalization factor

√
V ar(x̃i)

||∇xL(θ,x,y)||L2
or 1

||∇xL(θ,x,y)||L2
. Our attacks thus

exploit the importance of input features through their gradient to
generate perturbations that most effectively affect the cost function
and, therefore, the prediction.
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A trade-off adversarial training strategy for jet algorithms

Inspired by the TRadeoff-inspired Adversarial DEfense via
Surrogate-loss minimization (TRADES) method [198], we adapt the
training method by introducing a hybrid cost function. For each
epoch, 50% of the iterations are trained in nominal mode to ensure
the proper convergence of our model towards the performance opti-
mum on nominal samples. For the remaining 50%, the adversarial
mode, we employ a function that measures the trade-off between the
accuracy on adversarial examples, represented by the cross-entropy
evaluated with adversarial samples, and the minimization of the
difference between the probabilities predicted by the nominal and
adversarial examples. The choice to use the adversarial mode 50% of
the time is motivated by the training time limitations encountered.
This trade-off ensures that adversarial training is feasible within
the maximum time allotted. If the time constraint were to be
removed, then an optimization of the adversarial mode fraction, or
even fully adversarial training, should be considered. We choose the
Kullback–Leibler (KL) divergence for the second loss. This new cost
function, denoted as Ladv, is defined by the following equation:

Ladv(x, xadv, y, θ) =


CE(θ(x), y) if nominal mode
CE(θ(xadv), y) + λ ·KL(θ(x), θ(xadv))

otherwise
(4.20)

where the parameter λ is a free hyperparameter helping to con-
trol the trade-off. A grid search has been applied to find the best
value of λ. This grid search showed the training was not sensitive to
this hyperparameter until it reached high values of order O(50), for
which the model could not converge anymore. Therefore, we fixed
the value of λ to one.

Similarly, grid searches were performed to find the highest ϵ

value the NGM and R-NGM training could afford without degrading
the nominal performance of the model. A value of ϵ of 0.01 and 0.002
have been found for NGM and R-NGM, respectively.
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4.3 Adversarial performances
In this last part of the chapter, we will evaluate in Section 4.3.1 the
performance of our different training methods to assess the nomi-
nal performance and the robustness they provide. Then, in Section
4.3.2, we will address the issue of robustness from the perspective
of the gradient with respect to the input features and whether the
relationship between them and their importance on the prediction
can be measured and used as a metric. In this Section, we will also
address a problem arising from adversarial training methods, which
leads to gradient masking, and we will demonstrate that our training
methods have not been affected by this through adapted black-box
attacks.

4.3.1 Robustness of the taggers

To train and evaluate the performance of our adversarial training
strategies, we used the same setup and data as described in Section
3.3. The employed structure is that of ParT, which is the state-of-the-
art architecture in terms of performance. We trained three models
with three different training strategies. First, a nominal training
was performed to serve as a baseline, particularly for performance
evaluated on nominal samples. NGM and R-NGM training were also
conducted to evaluate the robustness achieved by the two methods
and to compare the robustness gain relative to nominal training.
No FGSM training is shown here due to the catastrophic overfitting
problem mentioned in the previous section.

The performances on the nominal test samples are illustrated
in Figure 4.6. The two adversarial models achieve the same nom-
inal performance as the baseline nominal training. This highlights
the first success of our method. We were able to build an adversar-
ial training strategy capable of achieving the same level of nominal
performance and thus potentially improving the robustness of our
algorithms without any loss of performance on our MC simulation
samples.

To rank the robustness of the different training strategies, the
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performance was also evaluated on three kinds of adversarial attacks,
the FGSM, NGM and R-NGM. The performance against the NGM
attacks is shown in Figure 4.7 and against R-NGM attacks in Figure
4.8. Finally, the robustness against the FGSM attacks is shown in
Figure 4.9. Only the performance of b-tagging is shown in this sec-
tion. The performance of c-tagging follows the same trend, and thus,
the same conclusion and the performance plots are available in the
Appendix D.

The performances of the R-NGM and NGM trainings are signif-
icantly better compared to the nominal training against the different
adversarial attacks. This confirms the benefit of adversarial train-
ing for enhancing the robustness of the algorithms against attacks of
different natures. Adversarial training using a specific attack guaran-
tees an improvement in robustness against the three types of attack
considered, indicating that the benefit appears to be generalised.

We can observe across all adversarial attacks that the R-NGM
training achieves the best robustness. This training even manages to
perform similarly with NGM training on NGM attacks, even surpass-
ing it in udsg rejection. Thus, adversarial training with the R-NGM
attack has demonstrated the greatest robustness, being able to first
converge and achieve the same level of performance as nominal train-
ing and also providing robustness against the three types of attacks
considered in this thesis. The R-NGM attack, based on the link
between the gradient on input features and their importance in con-
tributing to the prediction, has constructed the most relevant attack
for better robustness.
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13.6 TeVCMSSimulation Work in progress 13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on nominal
ParT NGM on nominal
ParT R-NGM on nominal
b vs c
b vs udsg

Figure 4.6: ROC curves performance on nominal samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

three models perform similarly when evaluated on nominal samples.
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13.6 TeVCMSSimulation Work in progress 13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on NGM
ParT NGM on NGM
ParT R-NGM on NGM
b vs c
b vs udsg

Figure 4.7: ROC curves performance on NGM samples of the b vs udsg (dashed lines) and
b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal mode

(red) or with NGM training (orange) and R-NGM (blue). We can observe that the two
adversarially trained models perform better than the nominal one. The R-NGM training
achieves a similar robustness against NGM attacks than the NGM training, even slightly

better for the b vs udsg rejection.
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13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on R-NGM
ParT NGM on R-NGM
ParT R-NGM on R-NGM
b vs c
b vs udsg

Figure 4.8: ROC curves performance on R-NGM samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

two adversarially trained models perform better than the nominal one. The R-NGM
training achieves better robustness than the NGM training.
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13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on FGSM
ParT NGM on FGSM
ParT R-NGM on FGSM
b vs c
b vs udsg

Figure 4.9: ROC curves performance on FGSM samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

two adversarially trained models perform better than the nominal one. The R-NGM
training achieves better robustness than the NGM training.

134



4.3. ADVERSARIAL PERFORMANCES

4.3.2 Measurement of the gradients and Gradient Mask-
ing

To better understand the behaviour of our adversarial strategies and
ensure the proper functioning of the obtained models, we measured
the mean gradient on our test dataset. Indeed, the purpose of adver-
sarial training is to make the model more robust to perturbations,
and we can establish a strong link with the gradient obtained on
our input variables and the input features importance[214–216]. We
evaluate their norm, here chosen as the L2 norm, denoted as ||∇Xi||2.
To ensure greater robustness, models subjected to white-box attacks
will reduce their sensitivity to input variables, naturally leading to a
decrease in the gradient compared to our nominal model [217,218].

Training strategy ||∇XCPF||2 ||∇XNPF||2 ||∇XSV||2
Nominal 0.05881 0.01032 0.00133
NGM 0.01098 0.01518 0.00059
R-NGM 0.00590 0.00057 0.00023

Table 4.1: Mean of the gradients for the CPFs, NPFs, and SVs elements evaluated on our
test dataset for the three training strategies considered.

We can observe in Table 4.1 that the mean L2 norm of our
gradients is indeed lower for our adversarial trainings, except for the
NGM method, where we observe that ||∇XNPF||2 is higher than the
value obtained from nominal training. This effect is likely due to
the specific ϵi per feature, which may not be well-suited for the NPF
features. Finally, we can observe that the gradients from R-NGM
are the lowest, which aligns with the robustness observed in the b-
and c-tagging performances.

However, before concluding that the link between low gradients
and reduced sensitivity to input feature changes demonstrates the
observed robustness gains, we must ensure that our model does not
suffer from gradient masking (GM). This is a phenomenon in which
adversarial training, particularly those based on single-step white-
box attacks like FGSM, produces gradients that are too small or
obscure the model’s actual sensitivity to certain variables [217, 219,
220]. These gradients can lead to inappropriate attacks, creating the
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false impression of robustness gains in our models when, in reality,
no such robustness has been achieved.

In our situation, the use of the gradient norm uadv for both the
NGM and R-NGM methods ensures that we produce attacks of the
same magnitude, intended to maintain the same maximum attack
power on the hyper ball B(x,1) under the linear approximation of the
gradients. Despite this, it is not guaranteed that such attacks cannot
suffer from some form of obfuscation during training.

To ensure that our models have not learned to defend against
white-box attacks by producing gradients that result in less effective
attacks, we will evaluate a black-box attack, which does not rely on
the weights and gradients of the model being tested for robustness.
The method employed is the transfer attack [203], which involves
using an external model to derive the gradients and the adversarial
samples and evaluate the performance obtained with our black-box
model being the NGM or R-NGM model. In our setup, we will use
our nominal training to derive the adversarial examples xadv and
evaluate their performance on our NGM and R-NGM models. The
attacks employed are the NGM and R-NGM attacks, illustrated in
Figures 4.10 and 4.11, respectively. We can observe that the reported
robustness against the black-box attack is not degraded and is even
better than the white-box version, as expected. Additionally, we see
that the robustness of both adversarial models is significantly better
than that of the nominal model, which served as our baseline in this
case.

Thus, we can conclude that our adversarial training did not suf-
fer from gradient masking that would artificially inflate performance
by giving a false sense of robustness. These two training methods
have strengthened our model, as evidenced by the results against
black-box attacks. For such attacks, the R-NGM adversarial training
method also demonstrated the best robustness, further solidifying its
status as the current state-of-the-art in adversarial training for jet
tagging. Additionally, the correlation between the L2 norm of the
gradients on input features ||∇XNPF||2, reported in Table 4.1 and
the robustness of the models, reported in Figures 4.10 and 4.11, was
observed. With the rejection of the gradient masking hypothesis, we
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 pT > 30 GeV, | | < 2.5
ParT Nominal on NGM wb
ParT NGM on NGM wb
ParT R-NGM on NGM wb
ParT NGM on NGM bb
ParT R-NGM on NGM bb
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b vs udsg

Figure 4.10: ROC curves performance on NGM white-box (wb) and black-box attacks
(bb). The performance of the nominal ParT model on wb attacks (blue), of the R-NGM

model on wb (orange) and bb (red) and the NGM model on wb (grey) and bb (purple) are
shown. The performance of the b vs udsg (dashed lines) and b vs c (solid lines) rejections

are shown.

can confidently conclude that the link between a low gradient norm
and robustness against input changes is valid. These observations,
combined with the success of the R-NGM method based on the link
between adversarial training and the importance of input features,
open new perspectives for the evaluation of robustness as well as po-
tential improvements in the training method and even the attacks
themselves.
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Figure 4.11: ROC curves performance on R-NGM white-box (wb) and black-box attacks
(bb). The performance of the nominal ParT model on wb attacks (blue), of the R-NGM

model on wb (orange) and bb (red) and the NGM model on wb (grey) and bb (purple) are
shown. The performance of the b vs udsg (dashed lines) and b vs c (solid lines) rejections

are shown.
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4.4 Summary and outlook

4.4.1 Adversarial training for robust jet tagging algo-
rithms

In this chapter, we explored the problem of applying jet identifi-
cation algorithms to data from the perspective of neural networks
and their training. After discussing the methods and challenges of
jet calibration, we addressed the generalization capabilities from the
neural network’s standpoint, where we initially introduced the idea
based on the principle of Sharpness-Aware Minimization [193], which
aims to find a minimum of the cost function that is less sensitive
to perturbations in the weights and biases of the neural network.
However, this method is not well-suited to the problem we are ad-
dressing here. Therefore, we shifted the focus towards the objective
of finding a flatter minimum, meaning one that is less sensitive to
perturbations, this time concerning perturbations in the input fea-
tures without introducing any information about the mismodelling
itself, to derive a method solely from our training data that allows
for improved generalised robustness.

Next, we introduced the concept of adversarial attacks, which
addresses the previously formulated objective by considering the per-
spective of perturbations on input features, such as maximising them
with respect to the gradient propagated to them. These methods
maximise the prediction penalty imposed on the model by inducing
minimal perturbations, with the magnitude being fixed. After in-
troducing the concept, we developed the most commonly employed
adversarial attack methods, focusing both on the development of the
perturbations and the mathematical problems that these perturba-
tions seek to maximise or minimise, as well as the impact on the
computational cost that they induce. Finally, we introduced an ini-
tial adversarial training attempt applied to jet flavour identification
based on the Fast Gradient Sign Method (FGSM) attack.

This training demonstrated that more robust models could be
obtained, particularly against FGSM attacks. However, this initial
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approach is not without limitations, primarily due to the reduced
nominal performance compared to standard training and the inherent
nature of FGSM attacks. The training method also highlighted cer-
tain constraints, suggesting that a more tailored cost function could
yield better results. From this starting point, we introduced the
Normed Gradient Method (NGM) attack and, later, its evolution,
the Rectified Normed Gradient Method(R-NGM). Inspired by the
relationship between the gradient on input features and feature im-
portance, these methods allowed us to establish a link between a
continuous attack based on a unit vector uadv, which captures the
significance of each variable of each constituent with respect to the
cost function, and thus the quality of the prediction. The training
was further enhanced by introducing a new hybrid cost function in-
spired by the TRADES method [198], which better balances nominal
and adversarial performance by requiring our models to minimise the
difference in predictions between nominal and adversarial examples.

We then evaluated the performance of our various training
strategies. First, this initial evaluation allowed us to observe that
we achieved the same nominal performance level for our adversarial
trainings as the nominal training, ensuring the best possible per-
formance on our unmodified MC simulation samples as intended.
Secondly, we noted that both adversarial training methods improved
the robustness of our models against the three types of white-box
attacks considered: FGSM, NGM, and R-NGM. This highlights
the enhancement in robustness of our models compared to the
nominal training. Furthermore, we observed that the highest level
of robustness was achieved by the R-NGM method for both b- and
c-tagging, as summarised in Figures 4.12 and 4.13.

We then investigated the relationship between the gradient on
the input features and the robustness obtained. First, we observed
that our adversarial methods resulted in significantly lower L2 norms
of the gradients ||∇Xi||2, except in the case of ||∇XNPF||2 for the
NGM method. Once again, the R-NGM method exhibited the lowest
gradients. On the one hand, adversarial training aims to reduce the
model’s sensitivity to variations in the input features. On the other
hand, a lower gradient norm indicates that small changes in the input
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have a reduced impact on the model’s prediction, which is a sign of
increased robustness. Therefore, these norms provided us with a new
metric for evaluating the evolution of robustness. Given the evident
link between our linear attack methods and the gradient, we also
aimed to avoid the phenomenon of gradient masking, which could
obscure the use of the gradient in white-box attacks and give us an
illusion of robustness. In the case of gradient masking, the model
would perform poorly against other types of attacks, such as black-
box attacks. To ensure that we were not in this regime, we evaluated
the robustness of our adversarial models through transfer attacks,
using our nominal training to derive the attacks. The performance
against these black-box attacks demonstrated excellent robustness
for both of our adversarial training methods, ensuring, as expected,
that the robustness and lower gradients were not due to gradient
masking. In the face of transfer attacks, the R-NGM training again
demonstrated the highest robustness.

Thus, we have successfully designed an adversarial training
method that ensures the construction of more robust models against
changes in input features while maintaining performance comparable
to nominal training on our MC simulation samples. This training
method aims to reduce the sensitivity to mismodelling in our MC
simulation samples in a mismodelling agnostic way, thereby limiting
its impact during calibration and, subsequently, in analyses. Ro-
bustness evaluations against both white-box and black-box attacks,
as well as gradient evaluations with respect to the input features, all
favoured the R-NGM training method, which currently represents
the state-of-the-art in adversarial training. This highlights the
crucial role that the gradient plays and its connection to input
feature importance in determining the model’s sensitivity. In the
following chapter, we will employ this training method to develop
the final model aimed at jet identification for the CMS experiment.
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Figure 4.12: ROC curves performance of the b vs udsg (dashed lines) and b vs c (solid
lines) rejection of the ParT algorithm trained in NGM mode and evaluated on nominal

(grey), NGM (dark purple) and R-NGM (orange) and the ParT algorithm trained in
R-NGM mode and evaluated on nominal (purple), NGM (red) and R-NGM (blue). The

R-NGM training achieves better robustness than the NGM training.
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Figure 4.13: ROC curves performance of the c vs udsg (dashed lines) and c vs b (solid
lines) rejection of the ParT algorithm trained in NGM mode and evaluated on nominal

(grey), NGM (dark purple) and R-NGM (orange) and the ParT algorithm trained in
R-NGM mode and evaluated on nominal (purple), NGM (red) and R-NGM (blue). The

R-NGM training achieves better robustness than the NGM training.
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4.4.2 Limitations of the method and outlook

Despite the R-NGM adversarial training method having demon-
strated significant improvements in robustness and established itself
as the state-of-the-art for training models against input feature
perturbations, we can draw some limitations of the actual methodol-
ogy. First, limitations lie in the method’s dependence on the linear
approximation of the gradients. While this approach has proven
effective, it may not fully capture the non-linearities in more intricate
models or scenarios where the input feature space is highly complex
and relies on feature interdependence. A future development idea
would be to extend the attack applied to the second order by using
or not using the Hessian matrix [221,222]. We could also enhance the
generalization capability of the model using other training methods,
such as Sharpness-Aware Minimization. However, the first private
efforts were conducted and have shown no substantial robustness
gain when using SAM.

Additionally, another significant limitation of the method lies
in its dependence on the intrinsic quality of the MC simulation sam-
ples. It is important to acknowledge that perfect robustness, capable
of accurately predicting the class of jets, cannot be achieved if crucial
variables exhibit distributions that significantly deviate from those
modelled in the simulation samples. The method’s objective has been
to maximise robustness without compromising nominal performance,
or in other words, to determine the maximum value of ϵ that can
be employed without sacrificing performance on the simulated jets.
If our simulated jets differ significantly due to substantial mismod-
elling effects, such as incorrect modelling of the hadronic shower or
the hadronization process, we may encounter jets whose constituent
nature varies significantly. This type of mismodelling cannot be cap-
tured by any adversarial attack.

Additionally, the current adversarial training paradigm might
be less effective in reducing mismodelling. Indeed, the current ob-
jective is to determine the maximum ϵ value that can be used for
a TRADES-type training [198] without sacrificing nominal perfor-
mance. However, this conservative approach could limit the robust-
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ness of our models and not be adapted to the training approach, as
the training strategy employed is primarily designed for problems in-
volving performance trade-offs. Modifying the training strategy with
a new cost function and allowing the choice of an ϵ value more ap-
propriate to the magnitude of changes induced by mismodelling on
crucial variables, such as impact parameter features, could poten-
tially further improve our adversarial training in the future.

Thus, even though the R-NGM method represents a significant
advancement in reducing sensitivity to input features and thereby en-
suring greater robustness of our models, it does not eliminate the need
for calibration. Calibration remains necessary, as certain types of
mismodelling cannot be properly addressed by the method proposed
here. Furthermore, we could envisage improvements to the method
to better capture nonlinear dependencies and ensure greater robust-
ness in the future. Adversarial training with R-NGM is, therefore, an
additional tool at our disposal. The very nature of R-NGM under-
scores the importance of focusing on the quality of jet simulation, as
a reduction of the mismodelling produced here could also contribute
to reducing the impact of calibration on final performance.
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Chapter 5

Unified jet tagging algorithm

In this chapter, we will discuss the final components that led to the
development of the latest model for jet identification in the CMS ex-
periment. This new model is a unified jet tagging algorithm based on
the Particle Transformer architecture. It is named Unified Particle
Transformer (UParT) and extends the usual heavy-flavour tagging
to the identification of hadronic taus as well as strange jets. Addi-
tionally, efforts have been made to incorporate energy regression and
estimate its resolution to derive a flavour-aware jet energy correction.
We will also employ adversarial training with R-NGM to achieve the
most robust model possible. Therefore, in Section 5.1, we will ad-
dress the elements necessary for extending the new classes and energy
regression. Section 5.2 will describe the model training setup, while
Section 5.3 will present and analyze the performance obtained on
simulation samples, compared with previous algorithms, and the ro-
bustness when applied to data. We will conclude by summarising
the results and evaluating the performance of this new algorithm in
Section 5.4.

5.1 Extending the jet tagging algorithm

In this first part of the chapter, we will address the components
involved in extending the jet tagging algorithms in the CMS experi-
ment. We will detail the extension to hadronic taus in Section 5.1.1,
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s jets in Section 5.1.2, and the regression of jet energy correction and
resolution in Section 5.1.3.

5.1.1 Hadronic tau identification

The identification of τ leptons plays a crucial role in many analyses,
such as studies of the Higgs boson through channels like H → τ+τ−

[223,224], searches for the production of Higgs boson pairs HH via a
bb̄τ+τ− final state [225,226], and Beyond the Standard Model (BSM)
searches [227, 228]. Approximately 35% of τ decays are leptonic, for
which the final state is straightforward, consisting of an isolated elec-
tron or muon that is easily identifiable, along with an imbalance in
the event’s momentum, measured by the missing transverse momen-
tum arising from the neutrinos in the leptonic decay channels.

The remaining 65% of τ decays are classified as hadronic decays,
producing a final state composed of charged hadrons, neutral pions,
and a neutrino ντ . These more complex final states, summarised in
Table 5.1, are more challenging to identify and require distinction
from jets originating from quarks or gluons, as well as from electrons
and muons [229]. Similarly to the effort on inclusive ParticleNet
mentioned in Section 3.2, these hadronic decays of τ leptons, denoted
as τh, are the physical objects of interest in the context of an extension
of jet flavour identification. We aim to extend the jet identification
to include these τh decays. Thus, we will introduce new classes to
our model’s predictions for τh and for muons and electrons. These
new classes are defined as follows:

• Muons are identified by matching the jet, within ∆R < 0.4, with
a generator-level muon originating from the decay of a H, Z, W
boson or a τ lepton, with a transverse momentum pT > 8 GeV.

• Electrons are identified by matching the jet, within ∆R < 0.4,
with a generator-level electron originating from the decay of a H,
Z, W boson or a τ lepton, with a transverse momentum pT > 8

GeV.

• τh are identified by matching the jet, within ∆R < 0.4, with a
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generator-level τh originating from the decay of a H, Z, W boson,
with a transverse momentum pT > 15 GeV.

The labels for quarks and gluons remain consistent with the
definitions established in the previous training setup described in
Section 3.3.1. The labelled τh are then divided into subclasses based
on the τh charge, the number of neutral pions, and the number of
charged hadrons, commonly called ‘prong.’ We consider the following
subclasses: one prong without a neutral pion, one prong with one
neutral pion, one prong with two neutral pions, three prongs without
any neutral pion, and three prongs with one neutral pion. These
five subclasses, which can be linked to the five main hadronic decay
channels noted in Table 5.1, are further separated based on the tau
charge, resulting in a total of ten τh classes that will be used for our
training. Additionally, we also consider the muon class and electron
class as defined above. This leads to a total of twelve additional
classes.

Decay mode Resonance B (%)
Leptonic decays 35.2 %
τ− → e−ν̄eντ 17.8
τ− → µ−ν̄µντ 17.4
Hadronic decays 64.8 %
τ− → h−ντ ρ(770 MeV) 11.5
τ− → h−π0ντ ρ(770 MeV) 25.9
τ− → h−π0π0ντ a1(1260 MeV) 9.5
τ− → h−h+h−ντ a1(1260 MeV) 9.8
τ− → h−h+h−π0ντ 4.8
Other 3.3

Table 5.1: Decay modes and their branching ratios (B) for τ decays [14]. h± represent a
charged hadron, also called prong

Historically used in the CMS experiment, the Hadron-Plus-
Strips (HPS) algorithm facilitates the categorization of the τh de-
cay channel and the reconstruction of the visible four-momentum
by combining information from charged hadrons and neutral pions
[230–232]. The HPS algorithm specifically targets the reconstruction
of neutral pion decays, which decay into a pair of photons, each subse-
quently decaying into an e+e− pair. HPS then associates the charged
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hadrons and neutral pions to assign a decay mode and reconstruct
the four-momentum. In our approach, we propose, through our sub-
classes, an alternative to the HPS label, allowing the assignment of
the decay mode and the charge.

To further motivate this approach, previous efforts to identify
τh using neural networks, referred to as DeepTau [229], have demon-
strated the utility of neural networks in such applications by im-
proving identification efficiency by approximately 10-30% depending
on the considered misidentification rate. Additionally, we have ex-
panded the number of input features to enable our neural networks
to effectively perform the task of identifying the newly introduced
classes or improve the heavy-flavour tagging performance thanks to
the tracker hit information [233]. These new variables are detailed
in Appendix B under the label ‘Training 2024.’

5.1.2 Strange jet identification

In the context of the effort to develop a unified jet tagger at the
CMS experiment, an initiative was launched to explore the potential
of s-tagging. Strange jets have received little attention at the phe-
nomenological level regarding their behaviour in current colliders and
detectors [234, 235]. This is mainly due to their primary signatures
originating from charged kaons, which the general-purpose detectors
at the LHC have difficulty exploiting, unlike certain previous detec-
tor designs [236]. However, exploring their potential could open up
new prospects in the future, such as measuring the |Vts| term of the
CKM matrix [237,238] via the t→ W+s channel [239], or the Yukawa
coupling of the s quark to the Brout-Englert-Higgs field [240]. This
research and development initiative was also motivated by the abil-
ity to separately identify the flavour of the partons involved in the
labelling process through ‘ghost association’, similar to the flavour
definitions in Section 3.3.1. This allows us to distinguish between
the uds classes and remain consistent with the definitions of heavy-
flavour, gluon, and tau jet. We have chosen the following separation:
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• Jets containing a strange parton as the hardest light-flavour
ghost parton are labelled s jets.

• Jets containing a down parton as the hardest light-flavour ghost
parton are labelled d jets.

• Jets containing an up parton as the hardest light-flavour ghost
parton are labelled u jets.

In our goal to integrate s-tagging capabilities within our exist-
ing classification tools, we can already rely on the properties that
differentiate heavy-flavour jets from light jets in the context of con-
ventional b/c-tagging, as well as tau-tagging and the discrimina-
tion between light-flavour (uds) jets and gluon jets (g), also known
as Quark/Gluon (QG) tagging [189, 241]. Thus, only the distinc-
tion between s jets from u and d jets remains to be explored. Re-
cent phenomenological studies have investigated these capabilities
[234, 235, 242], and we will explore here whether the key properties
identified are present or accessible to aim for the best possible clas-
sification.

The identification and discrimination between u vs d (and by
extension, u vs s) is achievable due to the difference in the charge
of the initial quark, leading to variations in charge-related variables
weighted by pT [234], defined as:

Qp =
1

(pjet
T )p

∑
j∈jet

Qj(p
j
T)
p (5.1)

where pjet
T and pjT are the transverse momenta of the jet and

the j-th constituent, respectively, and Qj is the charge of the lat-
ter. The parameter p serves as a weighting factor for the variable.
In our approach, we do not explicitly define this variable; instead,
we provide our models with information related to the charges of the
components and their transverse momenta, allowing the model to ex-
tract the necessary relationships. Beyond this discriminating power
against u quarks alone, we also consider several properties stemming
from the higher ‘strangeness’ content of s jets compared to d jets with
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the same charge fraction. These properties and their distinguishing
power also assist in u vs s tagging.

Among the key properties, the leading pT constituent in s jets
is generally a strange hadron, primarily kaons [235]. In contrast, in
d jets, the hardest pT constituent is typically a light hadron, most
frequently a pion. This induces the following difference: the main
constituents of s jets tend to have a higher transverse momentum
than those of d jets, in line with the fact that kaons produced in pp

collisions tend to have a higher transverse momentum. This observa-
tion is consistent with the measured fragmentation functions [243].
In addition, the number of charged constituents is also lower for s
jets [235].
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Figure 5.1: Sketch of pions and kaons in a hadronic collider [234]. The solid lines indicate
charged particles, dashed neutral particles and dotted photons.

Among the main strange components observed in our jets, we
find the charged kaons K± and the two neutral kaons KL and KS.
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While there is no practical way to identify or distinguish K± from
charged pions π± in CMS, we can exploit certain properties of the
neutral kaons, particularly related to the KS and its decays. The
KS, with a decay length of approximately ∼3 cm [234], often decays
within the tracker into a pair of charged pions (∼70%) or neutral
pions (∼30%). As illustrated in Figure 5.1, we could detect pairs of
displaced pions. Although ∼30% of KS decays result in π0, which in
turn decay into a pair of photons, the larger abundance of neutral
pions in d jets leads to a higher abundance of photons in d jets com-
pared to s jets. This property can be combined with the fact that s
jets contain a larger energy fraction carried by neutral kaons. In com-
parison, d jets are more characterised by a higher fraction of neutral
pions decaying into photon pairs. This difference provides another
signature arising from the neutral component of the jets, resulting in
a higher energy deposition in the electromagnetic calorimeter for d
jets. In contrast, s jets will exhibit a larger deposition in the hadronic
calorimeter [234]. We can observe this effect via the following quan-
tity:

∆E = ENPF,ECAL − ENPF,HCAL (5.2)

which computes the energy difference of the neutral particles in
the ECAL and HCAL. Similarly to the case of Qp, we provide the
jet constituents’ input features necessary for building it to the neural
network. The neural network will then engineer the optimal selection
and maximum distinction power.

Thus, we have explored the main discriminative variables that
allow us to distinguish s jets from d and u jets. Figures 5.2 and 5.3
summarise the variables showing a distinction effect between s, d, and
u jets with the input features considered in our training, except for
∆E and Qp with p = 1 built from the input features for visualization
purposes. As we can observe, the distinguishing power is reduced
compared to properties derived from heavy-flavour jets. We can also
observe that s jets have more distinction power against u jets thanks
to the ∆E variable.
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Figure 5.2: Distribution of Qp, p=1, (above) and the relative η of the CPFs projected on
the jet momentum axis (below) for the u (red), d (orange) and s (blue) jets.
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5.1.3 Jet energy regression

In parallel with the extension of the classification task, we also ex-
pand the model’s predictions to simultaneously perform regression
and estimate the resolution of the jet transverse momentum pT sim-
ilar to the extended ParticleNet model. Our targets are correction
ratios similar to the L2L3 JECs [70,71]. For constructing those cor-
rections, we define our target prediction to be z =

pT, gen
pT

where pT
is the raw transverse momentum of our reconstructed jet, without
any correction applied and pT, gen is the transverse momentum of the
generator-level jet associated with. Similar to the ParticleNet jet en-
ergy regression, we aim to predict the jet correction to the generator
level, including or not the neutrino contribution, aiming to provide a
more adequate jet energy correction for heavy-flavour jets decaying
in a leptonic channel. To achieve this goal, we have designed a new
initial loss function to accommodate the new objectives:

Lincl = CE(y, ytruth) + λ1 · log[cosh(z − ztruth)]

+ λ1 · log[cosh(zν − ztruth,ν)] + λ2 · (ρ0.16(z16) + ρ0.84(z84))
(5.3)

ρυ(z) =

{
υz, if z > 0

(υ − 1)z, otherwise
(5.4)

where CE(y, ytruth) represents the cross-entropy typically used
for classification, with y and ytruth denoting the predicted class and
the true class, respectively. The terms z, zν , z16 and z84 represent
the predicted jet pT with and without the neutrino contribution and
the 16th and 84th regressed quantiles, respectively, while ztruth and
ztruth,ν represent the true value of the correction to be applied for
the jet pT with and without the neutrino contribution. The log cosh

loss function is used to perform the regression of this ratio. ρ0.16(z)
and ρ0.84(z) represent the quantile regression at the 16th and 84th
quantiles of the distribution of z, thus enabling the estimation of
the resolution σ under the assumption of a normal distribution for
the target jet energy correction ztruth. The quantile regression func-
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tion is defined by Equation (5.4). Two parameters, λ1 and λ2, are
introduced to control the magnitude of each loss function and, conse-
quently, their contribution, ensuring the optimal convergence of the
three tasks of classification, regression and resolution estimation.

5.2 Unified jet algorithm training

The training setup used for this inclusive training is a modified ver-
sion of the setup described in Section 3.3, incorporating the new
lepton classes as well as the target ztruth for regression and resolu-
tion estimation. The loss function has also been adjusted accordingly
to align with our objectives. We employ the state-of-the-art archi-
tecture model, Particle Transformer, utilising six Particle Attention
blocks and two Class Attention blocks. The feature dimension is set
to 128, and each SDPA uses eight heads. The output layer produces
Nclass +3 predictions, where Nclass corresponds to the number of pre-
dicted classes trained with cross-entropy, and the remaining three
predictions are used for regression and the estimation of the 16th
and 84th quantiles.

We use the inclusive loss function defined by Equation (5.3),
with the parameters λ1 and λ2 set to 1 after conducting a grid search
to determine the optimal values. This grid search led to the conclu-
sion that the magnitude adjustment parameters did not result in any
preferential outcomes, while extending the search to extreme values
on the order of O(10) and O(10−2) led to suboptimal regimes. The
training is performed adversarially to enhance the model’s robust-
ness. The adversarial training utilises the R-NGM attack, where the
gradients is derived with respect to the cross-entropy for simplicity.
The magnitude of the attacks, ϵ, was also optimised, with the optimal
value found to be 0.001 for obtaining the same nominal performance
as the nominal training. In adversarial mode, the final loss function
used for training is defined as follows:
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Ladv =


Lincl(y, ytruth, z, ztruth) if nominal mode
Lincl(yadv, ytruth, zadv, ztruth) + λ ·KL(y, yadv))

otherwise
(5.5)

To achieve the best possible training, we extended the data
sources processes to enrich our dataset with the leptons we aim to
identify and a better covering of the pT > 300 GeV regime. We also
decided to cover a broader range of processes and topologies, paying
particular attention to sources of jets with higher energies, specifi-
cally those with pT > 300 GeV and even very high pT > 1 TeV. The
maximum jet pT covered, previously set at 1 TeV, is now extended
to 2 TeV for improving both the jet classification and jet energy re-
gression in this phase space. The minimum jet pT value is conserved
at 15 GeV. The sample list can be found in Appendix C, in the sec-
tion titled Training 2024. In addition to the usual 2D reshaping, we
applied a maximum ratio of 2.5 concerning the b class to prevent our
dataset from having excessive class imbalance. The final training set
consists of approximately 30 million jets. The training was performed
over 30 epochs using the optimizer and hyperparameters described
in Section 3.3.

We also use the latest version of the PUPPI algorithm for pileup
mitigation optimised for τh tagging [244]. It has been observed that
previous versions of PUPPI resulted in an inefficiency in the recon-
struction of τh at low pT. The primary cause stems from a selection
criterion on the transverse momentum of charged particles not used in
any vertex fit. The reduction of this criterion from 20 GeV to 4 GeV
was selected for its ability to recover the efficiency loss without caus-
ing significant degradation in other jet-reconstructed variables [244].
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5.3 Performances

This section compares the performance of the new UParT tagger with
existing models for AK4 jet identification, including ParticleNet, Ro-
bustParT, and DeepJet. The ParticleNet model is the latest inclu-
sive version, as outlined in Section 3.2. RobustParT is the Particle
Transformer model trained with adversarial NGM but without the
trade-off loss function [198], as discussed in Section 3.3. DeepJet
[110] is re-trained to meet Run 3 requirements at the CMS experi-
ment, following the same setup as RobustParT. In Section 5.3.1, we
will compare the taggers’ performance in heavy-flavour tagging with
tau-tagging and regression evaluated for ParticleNet and UParT. s-
tagging performance will be assessed solely for UParT, as no previous
models have performed this task. Section 5.3.2 will evaluate the ro-
bustness of UParT’s training, confirming the anticipated robustness
gain from the R-NGM method.

5.3.1 Comparison with previous AK4 jet tagging algo-
rithms at the CMS experiment

Heavy-flavour tagging performance

The performance of heavy-flavour tagging will be evaluated using two
test datasets: the first consisting of fully hadronic tt̄ events, and the
second of QCD multijet events. The first dataset will allow us to as-
sess performance within the typically evaluated pT range of 20 to 300
GeV [61, 110]. In contrast, the second set will enable the evaluation
of jets with higher transverse momentum, using a minimum pT value
of 300 GeV. All algorithms will evaluate the b vs all performance as
previously defined, which corresponds to the following probabilities
for the inclusive models:

probParticleNet
b vs all =

probb
probg +

∑
q∈Quark probq

probUParT
b vs all =

probb + probbb + problepb
probg +

∑
q∈Quark probq

(5.6)
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where we exclude the probabilities related to τh, muons, and
electrons from the discriminant calculation to reconstruct the same
discriminant as previously employed. ParticleNet contains only one
b class while UParT considers the b, bb and lepb class defined in
Section 3.3. For charm tagging, the definitions of c vs b and c vs
udsg used earlier are maintained and require no modification.

We can observe in Figure 5.4 that UParT demonstrates superior
performance both in c and udsg rejection. For the udsg rejection, the
performance is equivalent to ParticleNet until tight rejection (< 1%
misidentification) for tt̄ events, while it also demonstrates superior
performance for QCD multijet events. Evaluated across two differ-
ent energy scales, UParT sets a new state-of-the-art performance for
b-tagging within the CMS experiment. The performance gain is par-
ticularly significant for c-jet rejection, both in tt̄ events and QCD
multijet events. The efficiency values at different WPs are reported
in Tables 5.2 and 5.3.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 79.90% - 71.89% 59.19% - 45.43% 41.47% - 24.04%
RobustParT 82.32% - 78.13% 63.79% - 56.47% 46.36% - 37.45%
ParticleNet 84.31% - 79.61% 66.18% - 58.02% 48.05% - 38.07%
UParT 85.02% - 80.79% 68.42% - 60.96% 51.82% - 42.17%

Table 5.2: b vs c efficiency at the loose, medium and tight WP. The t̄t (first value) and
QCD multijet (second value) events are evaluated.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 94.00% - 88.54% 84.40% - 71.82% 69.92% - 50.89%
RobustParT 94.77% - 90.82% 86.09% - 78.31% 73.93% - 62.68%
ParticleNet 95.49% - 92.87% 86.91% - 80.87% 73.45% - 63.37%
UParT 95.45% - 92.89% 86.82% - 81.50% 74.74% - 65.13%

Table 5.3: b vs udsg efficiency at the loose, medium and tight WP.The t̄t (first value) and
QCD multijet (second value) events are evaluated

For c-tagging performance, as illustrated in Figure 5.5, we can
observe that UParT also demonstrates superior performance com-
pared to previous taggers. However, the improvement gain is smaller
than observed across the ROC curves for b-tagging. Nevertheless, the
improvement remains significant, especially at high pT, as reported
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in the efficiency Tables 5.4 and 5.5.
Figures 5.6, 5.7 and 5.8 show the b jet efficiency of our taggers

as a function of the jet pT and jet η using QCD multijet samples
for loose, medium and tight WP, respectively. We can observe that
UParT consistently shows higher efficiency than the previous state-
of-the-art ParticleNet. We can also notice that ParticleNet performs
worse than RobustParT in the high jet pT region (> 300 GeV) for
the medium WP and both in the jet pT, except the first low pT bin,
and jet η for the tight WP. This confirms the performance of UParT,
while the previous state-of-the-art, ParticleNet, indicates anomalous
behaviour in the jet pT and jet η b jet efficiency compared to the
expected performance of ROC curves.

We have succeeded, with the aid of new input variables and
a six-layer model, in achieving the expected new best performance
by surpassing the previous state-of-the-art ParticleNet and the ear-
lier Particle Transformer model. In addition to the new classes and
the task of energy regression, we were able to create a model that
performs effectively in heavy-flavour tagging, achieving a new state-
of-the-art in comparison with previous models.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 72.79% - 58.49% 21.47% - 9.16% 4.11% - 0.81%
RobustParT 78.01% - 67.77% 25.01% - 14.03% 5.32% - 2.63%
ParticleNet 80.63% - 71.11% 25.90% - 14.12% 5.35% - 2.13%
UParT 82.00% - 73.05% 27.94% - 17.73% 6.08% - 4.14%

Table 5.4: c vs b efficiency at the loose, medium and tight WP.

Model Loose WP eff Medium WP eff Tight WP eff
DeepJet 58.97% - 41.99% 37.82% - 22.38% 23.91% - 12.45%
RobustParT 62.06% - 47.29% 41.34% - 29.04% 27.56% - 18.22%
ParticleNet 64.64% - 57.50% 44.45% - 36.81% 29.62% - 23.19%
UParT 64.28% - 59.05% 44.77% - 38.27% 30.85% - 24.92%

Table 5.5: c vs udsg efficiency at the loose, medium and tight WP.

161



CHAPTER 5. UNIFIED JET TAGGING ALGORITHM

0.0 0.2 0.4 0.6 0.8 1.0
b-jet tag efficiency

10 4

10 3

10 2

10 1

100

c/
ud

sg
-je

t m
is

id
en

tif
ic

at
io

n 
ef

fic
ie

nc
y

13.6 TeVCMSSimulation 13.6 TeVCMSSimulation Preliminary

          tt events
 pT > 30 GeV, | | < 2.5

UParT
ParticleNet
RobustParT
DeepJet
b vs c
b vs udsg

0.0 0.2 0.4 0.6 0.8 1.0
b-jet tag efficiency

10 4

10 3

10 2

10 1

100

c/
ud

sg
-je

t m
is

id
en

tif
ic

at
io

n 
ef

fic
ie

nc
y

13.6 TeVCMSSimulation 13.6 TeVCMSSimulation Preliminary

         QCD events
 pT > 300 GeV, | | < 2.5

UParT
ParticleNet
RobustParT
DeepJet
b vs c
b vs udsg

Figure 5.4: ROC curves of the b-tagging performance, evaluated on t̄t events (above) and
QCD multijet (below), of DeepJet (purple), RobustParT (orange), ParticleNet (red) and

UParT (blue). The dashed line represents the udsg jet rejection while the solid line
represents the c jet rejection [186].
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Figure 5.5: ROC curves of the c-tagging performance, evaluated on t̄t events (above) and
QCD multijet (below), of DeepJet (purple), RobustParT (orange), ParticleNet (red) and

UParT (blue). The dashed line represents the udsg jet rejection while the solid line
represents the b jet rejection [186].
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Figure 5.6: Performance of DeepJet (purple), RobustParT (orange), ParticleNet (red) and
UParT (blue) as a function of the jet pT (above) and jet η (below) for the loose WP (10%

light misidentification rate) using QCD multijet.
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Figure 5.7: Performance of DeepJet (purple), RobustParT (orange), ParticleNet (red) and
UParT (blue) as a function of the jet pT (above) and jet η (below) for the medium WP (1%

light misidentification rate) using QCD multijet.
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Figure 5.8: Performance of DeepJet (purple), RobustParT (orange), ParticleNet (red) and
UParT (blue) as a function of the jet pT (above) and jet η (below) for the tight WP (0.1%

light misidentification rate) using QCD multijet.
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τh jet tagging performance

The performance of τh-tagging is evaluated using Drell-Yan (DY)
events, where we utilise the maximum classification capability be-
tween τh and each other class, referred to as probτh vs X and defined
by Equation (5.7), where X represents the class against which we
want to distinguish τh. We compare the performance of our UParT
model against the ParticleNet model, the first and precursor of in-
clusive taggers.

probτh vs X =

∑
i∈τ probi∑

i∈τ probi + probX
(5.7)

As observed in Figure 5.9, ParticleNet and UParT exhibit sim-
ilar performances. ParticleNet performs better at higher misidentifi-
cation rates, whereas UParT excels at lower rates. This is likely due
to two factors identified after UParT’s training and implementation
in CMSSW. Firstly, ParticleNet employs a variable that matches its
constituents with the components of τh candidates reconstructed by
the HPS algorithm [231, 232]. Secondly, an error was introduced in
the construction of the LostTracks collection. This error originates
from improper access to the position indices of the LostTracks after
they have been sorted by transverse impact parameter significance
in our ntupler [166]. This error resulted in accessing incorrect mem-
ory, leading to the creation of erroneous variables. A cleaning of
the anomalous LostTracks has been applied during UParT’s train-
ing. Consequently, this issue on important variables, specifically for
τh-tagging performance, led UParT performance to be suboptimal
compared to ParticleNet, explaining the observed performances here.

A retraining of UParT, including the missing variables and re-
solving the encountered issues, would be feasible to improve the per-
formance of UParT in τh-tagging in a future version.
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Figure 5.9: ROC curves of the τh-tagging performance, evaluated on DY events, of
ParticleNet (red) and UParT (blue). The upper plot evaluates the performance against
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Strange jet tagging performance

The performance of s-tagging will be evaluated on tt̄ events and QCD
multijet events, shown in Figure 5.10, where we utilise the maximum
classification capability between s jets and each other class, similarly
to the τh performance evaluation. The discriminators of the s-tagging
performance are defined as:

probs vs X =
probs

probs + probX
(5.8)

Firstly, we observe that the most challenging discrimination is
indeed s vs d, followed by s vs u, which benefits from better sepa-
ration due to the difference in the charge fraction of the originating
quark, resulting in a variation in the Qp variable that the model has
successfully captured. UParT can produce a low-efficiency s-tagger,
achieving an efficiency of 19.72% and 24.59% on tt̄ samples at the
loose WP, as reported in Table 5.6. The performance against heavy-
flavour and gluon jets is as expected, showing good rejection power
for these classes.

Rejection Loose WP eff Medium WP eff Tight WP eff
s vs d 19.72% - 19.96% 2.66% - 2.54% 0.37% - 0.25%
s vs u 24.59% - 32.32% 5.43% - 6.62% 0.98% - 1.44%

Table 5.6: s-tagging efficiency of UParT at the loose, medium and tight WP for the t̄t (first
value) and QCD multijet (second value) for the u and d rejections.

Given the performances obtained, our model exhibits two
performance regimes in s-tagging. The first regime, against first-
generation quarks u and d, allows for the first time to individually
isolate s jets with a low efficiency, approximately 20% for a misidenti-
fication rate of 10%. On the other hand, we have the regime against
heavy quarks b and c and gluon jets. The distinction against these
is well-known in the CMS experiment, and the rejection at a 10%
misidentification rate exceeds 50% for each class. Thus, analogous
to the evaluation of c-tagging performance, we define the following
discriminants to separate the classification into s vs ud and s vs bcg:
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probs vs ud =
probs

probs + probu + probd

probs vs bcg =
probs

probs + probb + probbb + problepb + probd + probg

(5.9)

The results obtained by these two regimes are summarised in
Table 5.7 and Figure 5.11. We observe that we have indeed estab-
lished two distinct regimes as expected, with the ability to perform
s-tagging with an efficiency of 22.28% for the loose WP of the ud re-
jection. Thus, we have successfully demonstrated that the training of
UParT has successfully constructed an s-tagger, which should allow
us to establish its calibration and explore its capabilities in analyses.

Rejection Loose WP eff Medium WP eff Tight WP eff
s vs ud 22.28% - 24.47% 3.54% - 3.54% 0.49% - 0.39%
s vs bcg 70.73% - 62.27% 21.30% - 17.00% 4.11% - 2.89%

Table 5.7: s-tagging efficiency of UParT at the loose, medium and tight WP for the t̄t (first
value) and QCD multijet (second value) for ud and bcg rejections.
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Jet energy regression performance

We evaluate the performance of the regression task using tt̄ events
samples. We first assessed the performance of the regression of the
ParticleNet and UParT algorithms by evaluating the median of the
regressed response for the regression without and with the neutrino
respectivelly: Median

( regrpT
·puncor

T

pptcl
T

)
and Median

( regrpT,ν ·puncor
T

pptcl,ν
T

)
. The

predicted regressions without and with neutrinos are the regrpT and
regrpT,ν and puncor

T is the uncorrected transverse momentum of the
reconstructed jet. The uncorrected transverse momentum of the
generator-level jet associated with the reconstructed jet, including
or not the neutrino contribution, are the terms pptcl

T and pptcl,ν
T . The

closer the median value of the response is to 1, the more accurately
the model predicts the correction that needs to be applied to recover
the transverse momentum that the jet possesses at the generator
level. We illustrate the estimated resolution similarly through the
median of the quantile regression.

Figures 5.13 and 5.14 represent the median of the regressed
response, not including and including the neutrino contribution, re-
spectively. We split the median response into the b, c, uds and g jet
flavour categories to evaluate the performance of our regression ob-
tained on the usual flavour labels used in heavy-flavour tagging. We
can observe an improvement in the response, particularly for high val-
ues of |η|. This effect likely originates from the update of the PUPPI
algorithm [147] and the changes in the Run 2 conditions between the
simulation samples on which ParticleNet was trained while UParT
was trained with the latest samples and conditions available. Ad-
ditionally, regarding the resolution estimation, illustrated in Figure
5.15, UParT and ParticleNet exhibit a similar quantile regression re-
sponse per jet. Thus, combining the new algorithm and using Run 3
MC utilising the latest version of PUPPI for training improves the jet
energy response without affecting the quantile regression response.

It should be noted that the initial results of the ParticleNet
regression were analyzed [147] and indicate an improvement in reso-
lution of approximately 15% compared to the usual jet energy cor-
rection. These preliminary results, combined with the achieved im-
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provement in the regression task by UParT, suggest that our jet
algorithms’ flavour-aware jet energy regression provides a consistent
and promising energy correction [147]. This result underscores the
value of extending our unified tagger through regression.

The quality of the regression for τh jets is illustrated in Figure
5.12, where UParT and ParticleNet perform similarly. It is worth
noting that the regression of ParticleNet appears to have peaked at a
response of 1, indicating that its quality remains better at correcting
the momentum of the associated tau at the generator level. Thus, by
highlighting once again the loss of performance in UParT, as detailed
earlier, we observe that this also impacts the energy correction of
τh, clearly illustrating the relationship and ‘flavour-aware’ nature of
these corrections.

Figure 5.12: Regressed response for τh of ParticleNet (red) and UParT (black).
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Figure 5.13: Median of the regressed response for b (upper left), c (upper right), uds
(lower left) and g (lower right) jets. The performance of ParticleNet (red) and UParT

(blue) are evaluated for different values of |η| of the jet.
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Figure 5.14: Median of the regressed response with neutrino contribution for b (upper
left), c (upper right), uds (lower left) and g (lower right) jets. The performance of

ParticleNet (red) and UParT (blue) are evaluated for different values of |η| of the jet.
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5.3.2 Robustness of the Unified Particle Transformer

To evaluate the robustness of our model against attacks, we trained
a nominal model in parallel under the same conditions as those de-
scribed in Section 5.2, without R-NGM training. We evaluate the
jets against NGM, R-NGM attacks, and the nominal performance.
The magnitude of the attacks, ϵ, is set to 0.002 for R-NGM attacks
and 0.01 for NGM attacks. We evaluate the usual white-box attacks
and use the transfer attack method for R-NGM with our nominal
model to obtain a black-box attack, validating the absence of gra-
dient masking. In this section, we report the results obtained for
b-tagging and c-tagging.

Figures 5.16 and 5.17 illustrate the performance against the
various white-box attacks and the nominal performance. We observe
that the results are consistent with the detailed discussion in Chap-
ter 4, with our R-NGM model demonstrating improved robustness
against attacks. Also, the R-NGM model achieves the same nominal
performance as the nominal one when evaluated on nominal samples.
The robustness against black-box attacks is illustrated in Figure 5.18
and shows the robustness gain against this type of attack, ensuring
that the robustness is not due to a gradient masking phenomenon.

Thus, the R-NGM training of UParT meets expectations re-
garding increased robustness against adversarial attacks, confirming
that the model is less sensitive to changes in the input features.

178



5.3. PERFORMANCES

0.0 0.2 0.4 0.6 0.8 1.0
b-jet tag efficiency

10 4

10 3

10 2

10 1

100

c/
ud

sg
-je

t m
is

id
en

tif
ic

at
io

n 
ef

fic
ie

nc
y

13.6 TeVCMSSimulation 13.6 TeVCMSSimulation Work in progress

         tt events
 pT > 30 GeV, | | < 2.5

UParT R-NGM on nominal
UParT nominal on nominal
UParT R-NGM on NGM
UParT nominal on NGM
UParT R-NGM on R-NGM
UParT nominal on R-NGM
b vs c
b vs udsg

0.0 0.2 0.4 0.6 0.8 1.0
b-jet tag efficiency

10 4

10 3

10 2

10 1

100

c/
ud

sg
-je

t m
is

id
en

tif
ic

at
io

n 
ef

fic
ie

nc
y

13.6 TeVCMSSimulation 13.6 TeVCMSSimulation Work in progress

         QCD events
 pT > 300 GeV, | | < 2.5

UParT R-NGM on nominal
UParT nominal on nominal
UParT R-NGM on NGM
UParT nominal on NGM
UParT R-NGM on R-NGM
UParT nominal on R-NGM
b vs c
b vs udsg

Figure 5.16: ROC curves of the b-tagging white-box adversarial performance of UParT,
evaluated on t̄t events (above) and QCD multijet (below). The dashed line represents the

udsg jet rejection while the solid line represents the c jet rejection.
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5.4 Conclusion and outlook

5.4.1 Results

In this chapter, we have shown how we established a new
Transformer-based algorithm that extends the application of
resolved jet algorithms from heavy-flavour identification only to in-
clude the identification of τh and s jets, as well as energy correction
regression and the estimation of its resolution.

We have established how to extend the definition of our classes
to enable us to obtain the new targets necessary to perform our tasks.
Additionally, we benefited from the update of the PUPPI algorithm
for better efficiency in the reconstruction of τh jets at low pT [244].
We also extended the input variables to improve the performance of
heavy-flavour tagging, τh tagging. We demonstrated that the cur-
rent set of variables has sufficient discriminative power to separate
s jets from u and d jets. In training, we benefited from the efforts
made in the previous chapters, particularly regarding the training
framework and the establishment of adversarial training to train our
UParT model, ensuring the best robustness given the available com-
putational capacity and time.

The results are conclusive: UParT establishes the best perfor-
mance in heavy-flavour tagging, becoming the state-of-the-art for this
task and deep learning-based regression, opening the door to the po-
tential future use of flavour-aware jet energy correction. Regarding
τh tagging and jet energy regression, we achieved similar or slightly
lower performance than the previous state-of-the-art algorithm, Par-
ticleNet. Subsequent studies explained the source of this underper-
formance, caused by the absence of a crucial variable and a software
error that led to key variables for τh being incorrectly constructed,
thus reducing identification capability. Finally, we also evaluated
that our UParT model created a tagger capable of identifying s jets
in the CMS experiment, which has never been achieved before in
the CMS collaboration. Our s-tagger can distinguish s jets from ud

jets with an efficiency of approximately 22% for 10% misidentifica-
tion, ensuring sufficient separation for future calibration. Finally, we
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demonstrated that the expected robustness of the model against ad-
versarial attacks was achieved, ensuring lower sensitivity of the model
to changes in input features.

Figure 5.19 shows the evolution of flavour tagging algorithms
in the CMS experiment. This review of b-taggers from Run 1 to Run
3 highlights the efforts made and the performance gains achieved by
the different algorithms. Between the initial Run 2 and the current
Run 3 taggers, the light jet rejection for b-tagging was improved
by a factor of 59, while the c jet rejection by a factor of 6.9. This
improvement in rejection highlights the significant improvements in
flavour tagging algorithms thanks to the construction of deep neural
networks designated for this task. A specific discriminant, named
UParT (kc = 0.14) defined as probkc = probb

kcprobc+(1−kc)probudsg is used as
a post-training reweighting of the probabilities by ATLAS [245] and
has been tuned for UParT for comparison purposes. Compared with
ATLAS taggers, illustrated in 5.20, UParT also displays state-of-the-
art performance compared to the latest ATLAS tagger GN2.

Attention can also be given to the first jet energy regression
performance from an inclusive training [147]. The initial results for
the ParticleNet model regression are promising in terms of perfor-
mance achieved. However, these results have also highlighted the
limitations of the proposed training strategies. First, using jets with
a minimum raw pT of 15 GeV for training is a limiting factor, which
required setting a minimum pT value of 50 GeV in the first evaluation
to avoid bin-by-bin migrations due to resolution effects. Reducing the
minimum pT value for training could help mitigate this effect. Also,
at low pT, the closure for our jets is not perfect and is off-trend by
about 2-8% in the barrel and 10-20% in the endcap. Therefore, an
MC truth correction is still necessary at this stage.

UParT is now integrated into the CMS data-taking for 2024. We
should soon have the first results of the algorithm’s post-calibration
performance. These measurements should allow us to conclude the
question of the robustness gain achieved through our adversarial
training.
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5.4.2 Development perspectives and ideas

The prospects for improving UParT are, in some cases, already
known and addressed. Indeed, the issues related to τh tagging and
regression performance could be resolved by introducing the missing
variables and retraining with the corrections to the LostTracks col-
lection. These elements have already been added to our DeepNtuples
sample producer [166] in later corrections to be ready for a future
retraining campaign. We could also expand the range of variables
by extending the hit-related variables in the tracker to distinguish
by layer, to improve the understanding of these. Additionally, we
could extend the pairwise features, for example, by introducing, for
charged particles, the closest approach distance and its resolution,
as well as the distance of this approach from the primary vertex, to
provide lower-level information on secondary vertices similar to the
variables used by vertexing algorithms [61].

The calibration results of UParT will also conclude the robust-
ness’s impact on the data/MC agreement and its impact on calibra-
tion. The first results of the Robust Particle Transformer, which
used NGM training with a previous sub-optimal setup, compared to
the nominal training of the inclusive ParticleNet have shown no sig-
nificant improvement of the SF derived [190], indicating the gain of
robustness reached could be insufficient concerning the magnitude of
changes brought by the simulation mismodeling. However, the re-
sults for the Run 3 2022 eµ + jets region indicate a promising gain in
the data/MC agreement. Figure 5.21 illustrates the b vs all discrim-
inant of the inclusive ParticleNet, UParT with nominal training and
UParT with the R-NGM training. These domains are pre-calibrated
to compare the taggers’ distribution and their robustness. We ob-
serve some differences, first in the low-probability region, where the
UParT model with R-NGM training shows an improved data/MC
agreement compared to the nominal training and to ParticleNet in-
clusive, albeit to a lesser extent. Similarly, Figure 5.22 shows the
same distributions but with the discriminant having transformed un-
der tanh−1 (prob) to expand the high-probability distribution and
observe the behaviour at closure. We also notice the benefit of the
R-NGM method, which outperforms both inclusive ParticleNet and
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nominal UParT in this context. Thus, the preliminary results of UP-
arT demonstrate improved robustness compared to the performance
that would have been achieved with nominal training and the previ-
ous state-of-the-art available.

If the adversarial attack method fails to improve the data/MC
agreement, several avenues can be considered. First, we could con-
tinue to focus on techniques aimed at robustness and generalization
capacity by investing more resources, for example, in more advanced
attacks such as CW attacks [208], or by exploring second-order at-
tacks [221, 222]. Another approach would be to explore methods
like Sharpness-Aware Minimization [193] or to develop a data-driven
method based on control regions containing jets with a high purity in
a specific flavour. Methods of this kind have already been explored
[247], and creating such a domain adaptation method could allow
the model to immediately learn the crucial differences between our
simulated jets and our data, enabling better capture and mitigation
of these differences.
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Figure 5.21: Distribution of the b vs all discriminant of ParticleNet (upper), the UParT
nominal (lower left) and adversarial (lower right) for the e µ + jets domain region in the

Run 3 2022EE era F+G.
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in the Run 3 2022EE era F+G.
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Chapter 6

Conclusion and future work

6.1 General conclusions

This thesis explored Deep Learning for jet algorithms at the CMS
experiment, focusing on applying artificial neural network architec-
tures towards a unified and robust jet algorithm approach. We be-
gan by discussing artificial neural network architectures in Chapter
3 in the context of heavy-flavour identification. We started and in-
troduced the key elements of jet structure that we aim to preserve,
namely the Particle Cloud representation and the previous models up
to the state-of-the-art at the beginning of this research, ParticleNet
[129]. We developed a new class of architecture: the Transformer-
based models DeepJet Transformer [138] and Particle Transformer
[139]. We demonstrated that these structures offer an alternative
solution to the limitations posed by the ParticleNet model, and we
established similarities with the properties we want to preserve up to
demonstrating the permutation invariance of the new models. These
models outperformed the previous state-of-the-art in both classifi-
cation performance and computational efficiency, with the Particle
Transformer model showing superior results due to its pairwise bias,
better capturing constituent interrelations. Further studies demon-
strated the scalability of Transformer models, maintaining robustness
and performance and the benefit of permutation invariance for the
model’s safety.
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In Chapter 4, we addressed the issue of the performance of our
algorithms when applied to the data collected by the CMS exper-
iment. We briefly explained the mismodelling affecting our Monte
Carlo simulations, necessitating calibration to correct these effects
in physics analyses. As mismodelling results in a performance loss,
we approached the problem from the perspective of Deep Learning.
We aimed to modify our model training to improve its robustness
to variable changes without introducing information from the data
distribution. We introduced the concept of adversarial attacks, de-
signed to fool neural networks with subtle distortions to the input
variables. We developed adversarial attacks tailored for jet flavour
tagging, the NGM and R-NGM attacks, and a training method bal-
ancing robustness and performance. Models trained with these tech-
niques, particularly R-NGM, improved robustness without sacrificing
performance on non-distorted inputs. Transfer attacks further vali-
dated this, confirming the link between reduced gradient norms and
enhanced robustness.

In Chapter 5, we continued the effort towards a unified jet tag-
ging algorithm. We included elements previously developed for the
extended version of ParticleNet, such as hadronic tau tagging and jet
energy regression. As part of this doctoral research, we also expanded
the classification capabilities of the tagger by introducing strange jet
tagging, a first for the CMS experiment. We employed these elements
alongside the state-of-the-art architecture, Particle Transformer, and
the adversarial training method, R-NGM, discussed and developed
in the previous chapters. We combined all these efforts into a model
that can be used by the CMS Collaboration for the 2024 data-taking
period. After the training, we evaluated the obtained performance
and concluded that our new model, UParT, sets a new state-of-the-
art in terms of performance for heavy-flavour tagging, surpassing
previous models in b-jet identification efficiency by 3% to 20% or
more, depending on the considered working point and rejection. We
also improved the jet regression performance while performing sim-
ilarly to the previous state-of-the-art in hadronic taus tagging and,
for the first time, provided an s-tagger with low efficiency for sep-
arating jets originating from s quarks from those originating from
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light quarks, u and d. Robustness studies confirmed that adversarial
training behaved as expected and improved the model’s resilience to
changes in the input features.

Thus, we can conclude that the results obtained in this doctoral
work demonstrate the utility of various aspects of Deep Learning
in the context of jet algorithms. Using neural network structures
that are well-suited to the physical objects under study improves the
tasks required from the algorithms, such as classification. We have
also shown that the choice of architecture can reduce computational
complexity without compromising performance, as demonstrated by
the development of Transformer models. The training of models is
another crucial aspect, where we studied the impact of adversarial
training methods to reduce the model’s sensitivity. Furthermore, we
demonstrated that it is possible to extend the task of heavy-flavour
tagging to unified classification across different quark flavours, as well
as hadronic taus and jet energy correction regression and resolution.
Jets play an essential role in physics at hadron colliders like the LHC,
and developing the methods presented here is, therefore, crucial for
improving the results of future physics analyses.

6.2 Future work

The continuation of this doctoral work can be divided between the
improvement and further development of the algorithms, and their
practical application. For the first element, the ongoing development
can follow the Better, Faster, Stronger vision. The Better component
would focus on performance improvement, where new variables could
enhance the current state-of-the-art, particularly with new low-level
variables that are underutilised or, currently, only partially exploited.
Work on the architecture could also lead to performance improve-
ments. Recent advancements such as state-space models [148–150]
or models based on the Kolmogorov-Arnold representation theorem
[248] to construct learnable activation functions are two of the many
paths that have emerged over the past year in the active field of
Deep Learning research. However, the most significant impact of
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these structures will be on the Faster aspect, as the quadratic com-
plexity of Transformer models makes their use for highly complex
objects more costly. Improving computational complexity towards
linear models is a crucial challenge that may not seem as impor-
tant in the case of small-radius jets, such as AK4 jets. However,
for applications on jets with larger radii, such as AK8 jets, or in the
context of an event-based model that considers all Particle-Flow can-
didates, moving towards linear complexity will be crucial to reducing
the algorithms’ computational footprint in the future. Finally, the
Stronger component, which represents the robustness of our model,
will likely depend heavily on the conclusions drawn from the upcom-
ing calibration campaign. This will confirm whether the achieved
robustness reduces the impact of mismodelling and will guide us in
refining adversarial training methods. Additionally, training meth-
ods involving unlabelled data could improve the tagger’s response to
mismodelling. Methods such as domain adaptation [247] or unsuper-
vised pre-training on data could help better control our algorithms’
dependence on the distributions of variables from simulations. An
area of development beyond this vision could be the extension of the
tasks currently performed by our algorithm to the identification of
the charge of the parton/hadron initiating the jet [249].

A particular attention is also given to improving training meth-
ods to reduce both the training time and the carbon footprint of
models within the CMS experiment. In this context, a new exper-
imental development phase of b-hive [167] is underway, and initial
trials have achieved a training speed of ∼135 iterations per second
for ParT, representing an ∼145% increase in training speed compared
to the previous state-of-the-art [167]. Compared to the training capa-
bilities two years ago [170,171], this translates to a factor 8.4 increase
in speed, reducing training durations from one week to less than one
day. Current evaluations were conducted with a single GPU, while
the experimental developments were primarily targeted for multi-
GPU training. As a result, further acceleration is expected, making
it possible to train on datasets and models that are an order of mag-
nitude larger than the current sizes in an acceptable time scale and
resource consumption.
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Another area of future development will be the calibration of
the s-tagger. As we have seen in the results, we successfully developed
a tagger capable of identifying s-jets with low efficiency. However,
the necessary calibration for it has not yet been developed. The main
challenge in this calibration will be to devise a method for construct-
ing a control region enriched with s-jets to correct the mismodelling
effects. An initial intuition would be to exploit phase spaces already
known from calibration processes. From this perspective, the use of
the decay channel W → cs seems promising, as it can be exploited
like current methods targeting semileptonic tt̄ events or W + c re-
gions [61, 188]. However, this method, based on the W boson decay,
is sensitive to the CKM matrix [237,238] and the values we have set
for generating our MC simulations. Thus, while this method could
be employed for specific channels such as H → ss̄, it would introduce
a bias in the context of measurements involving the CKM matrix
itself, such as the measurement of Vts [239], which we want to avoid.
Therefore, using another channel, such as Z → ss̄, could be a po-
tential approach for this analysis. This method would likely depend
on a tag-and-probe technique [61,188], which must be adapted. The
selection of the process, triggers, and selection criteria will require
thorough analysis.
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Appendix A

Permutation equivariance of
Transformer models

In this appendix, we develop and demonstrate that any Trans-
former block avoiding positional encoding and causal masking
is permutation-equivariant. By adding a permutation-invariant
pooling layer, we can create a permutation-invariant model capable
of fulfilling the requirements of the Particle Cloud representation.
Specifically, we demonstrate the permutation invariance of the
predictions of the DeepJet Transformer and Particle Transformer
models.

To demonstrate invariance, we will rely on an essential property
of permutation matrices: they are orthogonal (PP T = PP−1 = 1).
Beyond this property, we will ensure the permutation invariance of
our algorithms through the permutation invariance and equivariance
properties. We begin by demonstrating that the composition of
two permutation-equivariant functions retains equivariance and the
composition of a permutation invariant and permutation equivariant
functions is permutation equivariant:

Lemma A.0.1 Given two functions, f : RN,d → RN,m and
g : RN,m → RN,k, if f and g are permutation-equivariants, then f ◦ g
is permutation-equivariant.
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Proof A.0.1

∀X ∈ RN,d,∀P ∈ PN : g ◦ f(PX) = g(f(PX))

= g(Pf(X))

= Pg(f(X))

= Pg ◦ f(X)

Lemma A.0.2 Given two functions, f : RN,d → RN,m and g : RN,m →
Rk, if f is permutation-invariant and g is permutation-equivariant,
then f ◦ g is permutation-invariant.

Proof A.0.2

∀X ∈ RN,d,∀P ∈ PN : g ◦ f(PX) = g(f(PX))

= g(Pf(X))

= g(f(X))

= g ◦ f(X)

By utilising these properties and ensuring that every function
used in the chain of functions defining our Transformer blocks main-
tains permutation equivariance, we ensure that our algorithms pro-
duce a representation of the jet constituents that respects the proper-
ties of the Particle Cloud. Applying a permutation-invariant pooling
function followed by linear layers for classification guarantees that the
predictions of our algorithms remain invariant under permutation of
the jet constituents. Thus, we demonstrate the permutation invari-
ance of the DeepJet Transformer and Particle Transformer models.

Permutation equivariance of the activation func-
tions, linear and normalization layers

Activation Functions

All activation functions used in our models are permutation-
equivariant. Most are element-wise activation functions acting
independently on each variable. For those the equivariance is
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trivial and does not require any demonstration. The only non-trivial
function employed is the softmax function, which is also permutation-
equivariant. It can be decomposed into an element-wise function
acting independently on each variable, exi, and normalization by a
denominator

∑
k e

xk . The denominator, being the sum of elements,
is invariant under permutation due to the commutativity of the sum
and is shared among all elements along the chosen axis k. Thus, the
softmax function retains equivariance by ensuring that the ordering
of inputs does not affect the normalization step.

Linear Layers

The equivariance of any MLP or linear layer is trivial. This result
follows that linear transformations preserve the relationships between
input elements, and matrix multiplication is associative:

Lin(PX,W ) = (PX)W = P (XW ) = PLin(X,W )

∀X ∈ RN,d, ∀P ∈ PN ,∀W ∈ Rd,d
′ (A.1)

where W is the weight matrix and X the input tensor.

Normalization Layers

Similarly, both batch normalization and layer normalization are
permutation-equivariant. This property is trivial and follows from
the construction of the normalization functions, for which we recall
the following initial equation:

y =
x− E(x)√
V ar(x) + ϵ

· γ + β (A.2)

where the mean E(x) and variance V ar(x) are permutation-
equivariant quantities by construction, regardless of the axis on which
they are measured. ϵ is a scalar variable applied element-wise. Sim-
ilarly to the linear layer, the affine transformation affects only the
variables axis and, therefore, does not impact the permutation, thus
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preserving the permutation equivariance of the normalization meth-
ods used here.

Permutation equivariance of the embedding and feedfor-
ward layer

The feedforward layer, composed of linear transformations and acti-
vation functions, retains permutation equivariance due to the previ-
ously discussed properties of these components.

Similarly, the embedding layers used by our algorithms are com-
posed of MLP layers, defined as a series of normalization, linear and
activation layers, applied to each partition of our input variables be-
fore all of the partitions are concatenated to create a single tensor
representing all of the constituents of the jet. However, one can note
that at this stage, equivariance applies to permutations between ele-
ments within each partition. After concatenating the entire set into
a single tensor, we can construct a unique object representing all
the constituent elements of our jet and thus apply global permuta-
tions. By employing only MLP layers at this stage, we ensure that
our model is permutation-equivariant of any partition permutation,
allowing us to create a global representation of the set of each jet.

Permutation Equivariance of Scaled-Dot-Product
Attention
To ensure the permutation equivariance of the scaled-dot-product
self-attention [111], we can begin by unfolding the elements defined
by the equation:

MHA(X) = Concat(h1, ..., hn)WO,

hi = Attention(XWQ,i, XWK,i, XW V,i)
(A.3)

The linear layers XWQ,i, XWK,i, XW V,i, and WO are
permutation-equivariant as previously demonstrated. Since the con-
catenation occurs along the variables axis, it is trivially equivariant.
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It remains to demonstrate that the attention mechanism itself is
equivariant.

To demonstrate equivariance, let us inject the permutation ma-
trix P ∈ PN into the scaled-dot-product formula:

Attention(PQ,PK,PV ) = SoftMax
(
PQKTP T√

dk

)
PV

= P SoftMax
(
QKT

√
dk

)
P TPV

= P SoftMax
(
QKT

√
dk

)
V

= P Attention(Q,K, V )

(A.4)

We have demonstrated this by using the softmax function’s per-
mutation equivariance and the orthogonality of the permutation ma-
trix P . Since permutation matrices are orthogonal, they maintain
the inner product structure between queries and keys, preserving
equivariance.

For the case of Particle Transformer, we also include the adjoint
interaction tensor A, which, by its construction from edge features,
changes under permutation as PAP T [143]. Therefore, when adding
the interaction tensor A of dimension (h,N,N) for each jet to the
scaled-dot-product attention each interaction ‘mask’ Uh of dimension
(N,N), simplified as U in equation A.5, contributes to a single head
as follows:
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Attention(PQ,PK,PV, PUP T ) = SoftMax
(
PQKTP T√

dk
+ PUP T

)
PV

= SoftMax
(
P (
QKT

√
dk

+ U)P T
)
PV

= P SoftMax
(
QKT

√
dk

+ U

)
P TPV

= P SoftMax
(
QKT

√
dk

+ U

)
V

= P Attention(Q,K, V, U)
(A.5)

Thus, we have demonstrated that all operations of our em-
bedding layers and Transformer blocks are permutation-equivariant.
This ensures that the hidden variables produced by our Transformer
model create a representation of our jet that respects the Particle
Cloud principle as desired.

On Positional encoding and Causality

Positional encodings introduce a notion of order, while causal masks
enforce a directional structure on sequences. These operations inher-
ently depend on the input order and thus break permutation equiv-
ariance. Hence, positional encoding and causal masks introduce a de-
pendency on the order of inputs, breaking permutation equivariance.
By avoiding these components, we maintain the desired permutation
properties in our models.

Permutation of the Pooling Mechanisms

Pooling mechanisms such as the class token attention used by Particle
Transformer is a permutation-invariant operation. We can ensure
this by developing the attention mentioned, using the class token
vector as the query and the jet constituents as the query and value
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Attention(QCLS , PK, PV ) = SoftMax
(
QCLSK

TP T√
dk

)
PV

= SoftMax
(
QCLSK

T

√
dk

)
P TPV

= SoftMax
(
QCLSK

T

√
dk

)
V

= Attention (QCLS , K, V )

(A.6)

where QCLS is the query vector obtained by a linear layer, and
K and V are the key and value tensors of the usual jet constituents.
We have used the permutation equivariance properties of the softmax
function and the orthogonality of P .

For DeepJet Transformer, we similarly develop the attention
pooling function and use the same properties of softmax equivariance
and the orthogonality of P :

Attention Pooling(PZ, PX) = SoftMax
(
ZTP T

)
PX

= SoftMax
(
ZT

)
P TPX

= SoftMax
(
ZT

)
X

= Attention Pooling(Z,X)

(A.7)

Thus, we have demonstrated that our pooling operations are
permutation-invariant, allowing us to construct, for both of our algo-
rithms, a vector encoding the information from the jet constituents
tensor while preserving the properties of the Particle Cloud represen-
tation. By adding linear layers for predictions on the vector obtained
through pooling, we ensure the total permutation invariance of our
models. We have thus demonstrated the permutation invariance of
DeepJet Transformer and Particle Transformer, and we can conclude
this development.
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Appendix B

Training variables

npf feature Training 2023 Training 2024
Fraction of the jet momentum carried by the
npf

✓ ✓

∆R between the jet axis and the npf ✓ ✓
Boolean value identifying the npf as a photon
or not

✓ ✓

Fraction of energy deposit of the npf in the
hadronic calorimeter

✓ ✓

∆R between the npf and the closest sec-
ondary vertex

✓ ✓

The PUPPI weight of the npf ✓ ✓
npf η relative to the jet axis × ✓
npf ϕ relative to the jet axis × ✓

Table B.1: List of neutral PF candidates (npf) features
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cpf feature Training 2023 Training 2024
cpf η relative to the jet axis ✓ ✓
cpf pT relative to the jet axis ✓ ✓
Dot product of the jet and cpf momentum ✓ ✓
Dot product of the jet and cpf momentum
divided by the jet momentum norm

✓ ✓

∆R between the jet axis and the cpf ✓ ✓
The cpf 2D impact parameter value ✓ ✓
The cpf 2D impact parameter significance ✓ ✓
The cpf 3D impact parameter value ✓ ✓
The cpf 3D impact parameter significance ✓ ✓
The cpf distance to the jet axis ✓ ✓
Fraction of the jet momentum carried by the
cpf

✓ ✓

∆R between the cpf and the closest sec-
ondary vertex

✓ ✓

Integer indicating if the cpf was used for the
primary vertex fit

✓ ✓

The PUPPI weight of the cpf ✓ ✓
χ2 of the charged track fit ✓ ✓
Integer indicating the fitting quality of the cpf ✓ ✓
The electric charge of the cpf × ✓
The longitudinal displacement of the cpf × ✓
The decay length of the cpf × ✓
The fraction of the energy deposit in the
hadronic calorimeter of the cpf

× ✓

The fraction of the energy deposit in the elec-
tronic calorimeter of the cpf

× ✓

The particle-flow pdg id of the cpf × ✓
The number of lost inner hits of the cpf × ✓
The number of pixel hits of the cpf × ✓
The number of strip hits of the cpf × ✓

Table B.2: List of charged PF candidates (cpf) features
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lt feature Training 2023 Training 2024
lt η relative to the jet axis × ✓
lt pT relative to the jet axis × ✓
Dot product of the jet and lt momentum × ✓
Dot product of the jet and lt momentum di-
vided by the jet momentum norm

× ✓

∆R between the jet axis and the lt × ✓
The lt 2D impact parameter value × ✓
The lt 2D impact parameter significance × ✓
The lt 3D impact parameter value × ✓
The lt 3D impact parameter significance × ✓
The lt distance to the jet axis × ✓
∆R between the lt and the closest secondary
vertex

× ✓

The PUPPI weight of the lt × ✓
χ2 of the charged track fit × ✓
Integer indicating the fitting quality of the lt × ✓
The electric charge of the lt × ✓
The number of lost inner hits of the lt × ✓
The number of pixel hits of the lt × ✓
The number of strip hits of the lt × ✓

Table B.3: List of Lost Tracks (lt) features

sv feature Training 2023 Training 2024
The sv transverse momentum ✓ ✓
∆R between the jet axis and the sv ✓ ✓
The sv mass ✓ ✓
Number of tracks associated with the sv ✓ ✓
χ2 value of the sv fit ✓ ✓
Reduced χ2 value of the sv fit ✓ ✓
The sv 2D impact parameter value ✓ ✓
The sv 2D impact parameter significance ✓ ✓
The sv 3D impact parameter value ✓ ✓
The sv 3D impact parameter significance ✓ ✓
Cosine of the angle between the sv vertex
flight direction and sv momentum

✓ ✓

Ratio between the sv energy and the jet en-
ergy

✓ ✓

sv η relative to the jet axis × ✓
sv ϕ relative to the jet axis × ✓

Table B.4: List of secondary vertices (sv) features
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Appendix C

Training samples

Training 2023

Requested events T T̄ samples Samples name

20.000.000
/TTTo2J1L1Nu_CP5_13p6TeV_powheg-pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM ttbar semileptonic

Requested events QCD samples Samples name

5.000.000
/QCD_Pt_50to80_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 50 to 80 GeV

5.000.000
/QCD_Pt_80to120_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 80 to 120 GeV

5.000.000
/QCD_Pt_120to170_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 120 to 170 GeV

5.000.000
/QCD_Pt_170to300_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 170 to 300 GeV

5.000.000
/QCD_Pt_300to470_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 300 to 470 GeV

5.000.000
/QCD_Pt_470to600_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 470 to 600 GeV

5.000.000
/QCD_Pt_600to800_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 600 to 800 GeV

5.000.000
/QCD_Pt_800to1000_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 800 to 1000 GeV

5.000.000
/QCD_Pt_1000to1400_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 1000 to 1400 GeV

5.000.000
/QCD_Pt_1400to1800_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 1400 to 1800 GeV

5.000.000
/QCD_Pt_1800to2400_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 1800 to 2400 GeV

5.000.000
/QCD_Pt_2400to3200_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 2400 to 3200 GeV

5.000.000
/QCD_Pt_3200toInf_TuneCP5_13p6TeV_pythia8/Run3Winter22MiniAOD-
122X_mcRun3_2021_realistic_v9-v2/MINIAODSIM QCD pT 3200 to Inf GeV
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2024 samples

Requested events T T̄ samples Samples name

20.000.000
/TTto4Q-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-TTto4Q

20.000.000
/TTto2L2Nu-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-TTto2L2Nu

20.000.000
/TTtoLNu2Q-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-TTtoLNu2Q

Requested events HtoTauTau samples Samples name

5.000.000
/GluGluHto2Tau-M-125-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-125-
2HDM

5.000.000
/GluGluHto2Tau-M-180-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-180-
2HDM

5.000.000
/GluGluHto2Tau-M-250-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-250-
2HDM

5.000.000
/GluGluHto2Tau-M-400-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-400-
2HDM

5.000.000
/GluGluHto2Tau-M-600-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-600-
2HDM

5.000.000
/GluGluHto2Tau-M-800-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-800-
2HDM

5.000.000
/GluGluHto2Tau-M-1000-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-1000-
2HDM

5.000.000
/GluGluHto2Tau-M-1200-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-1200-
2HDM

5.000.000
/GluGluHto2Tau-M-1400-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-1400-
2HDM

5.000.000
/GluGluHto2Tau-M-1600-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-1600-
2HDM

5.000.000
/GluGluHto2Tau-M-1800-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-1800-
2HDM

5.000.000
/GluGluHto2Tau-M-2000-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-2000-
2HDM

5.000.000
/GluGluHto2Tau-M-2300-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-2300-
2HDM

5.000.000
/GluGluHto2Tau-M-2600-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-2600-
2HDM

5.000.000
/GluGluHto2Tau-M-2900-2HDM-II-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-GluGluHto2Tau-M-2900-
2HDM

208



Requested events DY samples Samples name

5.000.000
/DYto2L-2Jets-MLL-50-0J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM

ntuple-DYJetsToLL-0J

5.000.000
/DYto2L-2Jets-MLL-50-1J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM

ntuple-DYJetsToLL-1J

5.000.000
/DYto2L-2Jets-MLL-50-2J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM

ntuple-DYJetsToLL-2J

5.000.000
/DYto2L-2Jets-MLL-50-PTLL-100to200-2J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v1/MINIAODSIM

ntuple-DYJetsToLL-100to200

5.000.000
/DYto2L-2Jets-MLL-50-PTLL-200to400-2J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v1/MINIAODSIM

ntuple-DYJetsToLL-200to400

5.000.000
/DYto2L-2Jets-MLL-50-PTLL-400to600-2J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v1/MINIAODSIM

ntuple-DYJetsToLL-400to600

5.000.000
/DYto2L-2Jets-MLL-50-PTLL-600-2J-TuneCP5-13p6TeV-amcatnloFXFX-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v1/MINIAODSIM

ntuple-DYJetsToLL-600

5.000.000
/DYto2TautoMuTauh-M-50-TuneCP5-13p6TeV-madgraphMLM-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v1/MINIAODSIM

ntuple-DYto2TautoMuTauh

Requested events W+jets samples Samples name

5.000.000
/WtoLNu-4Jets-TuneCP5-13p6TeV-madgraphMLM-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-WJetsToLNu-0J

5.000.000
/WtoLNu-4Jets-1J-TuneCP5-13p6TeV-madgraphMLM-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-WJetsToLNu-1J

5.000.000
/WtoLNu-4Jets-2J-TuneCP5-13p6TeV-madgraphMLM-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-WJetsToLNu-2J

5.000.000
/WtoLNu-4Jets-3J-TuneCP5-13p6TeV-madgraphMLM-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-WJetsToLNu-3J

5.000.000
/WtoLNu-4Jets-4J-TuneCP5-13p6TeV-madgraphMLM-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-WJetsToLNu-4J

5.000.000
/Wto2Q-3Jets-HT-200to400-TuneCP5-13p6TeV-madgraphMLM-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-Wto2Q-3Jets-HT-200to400

5.000.000
/Wto2Q-3Jets-HT-400to600-TuneCP5-13p6TeV-madgraphMLM-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-Wto2Q-3Jets-HT-400to600

5.000.000
/Wto2Q-3Jets-HT-600to800-TuneCP5-13p6TeV-madgraphMLM-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-Wto2Q-3Jets-HT-600to800

5.000.000
/Wto2Q-3Jets-HT-800-TuneCP5-13p6TeV-madgraphMLM-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-Wto2Q-3Jets-HT-800

Requested events QCD samples Samples name

5.000.000
/QCD-PT-15to30-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-15to30

5.000.000
/QCD-PT-30to50-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-30to50

5.000.000
/QCD-PT-50to80-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-50to80

5.000.000
/QCD-PT-80to120-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-80to120

5.000.000
/QCD-PT-120to170-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-120to170

5.000.000
/QCD-PT-170to300-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-170to300

5.000.000
/QCD-PT-300to470-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-300to470

5.000.000
/QCD-PT-470to600-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-470to600

5.000.000
/QCD-PT-600to800-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-600to800

5.000.000
/QCD-PT-800to1000-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-800to1000

5.000.000
/QCD-PT-1000to1400-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-1000to1400

5.000.000
/QCD-PT-1400to1800-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-1400to1800

5.000.000
/QCD-PT-1800to2400-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-1800to2400

5.000.000
/QCD-PT-2400to3200-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-2400to3200

5.000.000
/QCD-PT-3200-TuneCP5-13p6TeV-pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-QCD-3200
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Requested events H samples Samples name

5.000.000
/GluGluHToBB-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-GluGluHToBB-M-125

5.000.000
/GluGluHToTauTau-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-GluGluHToTauTau-M-125

5.000.000
/VBFHto2B-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-VBFHToBB-M-125

5.000.000
/VBFHToTauTau-M125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-VBFHToTauTau-M125

5.000.000
/VBFHToCC-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM ntuple-VBFHToCC-M-125

5.000.000
/WminusH-Hto2C-WtoLNu-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23
BPixMiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-WminusH-HTo2C-

WToLNu-M-125

5.000.000
/WminusH-Hto2B-WtoLNu-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23
BPixMiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-WminusH-HTo2B-

WToLNu-M-125

5.000.000
/WplusH-Hto2C-WtoLNu-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-WplusH-HTo2C-WToLNu-

M-125

5.000.000
/WplusH-Hto2B-Wto2Q-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM ntuple-WplusH-HTo2B-WTo2Q-

M-125

5.000.000
/ggZH-Hto2C-Zto2L-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-ggZH-HTo2C-ZTo2L-M-

125

5.000.000
/ggZH-Hto2B-Zto2L-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-ggZH-HTo2B-ZTo2L-M-

125

5.000.000
/ggZH-Hto2C-Zto2Q-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-ggZH-HTo2C-ZTo2Q-M-

125

5.000.000
/ggZH-Hto2B-Zto2Q-M-125-TuneCP5-13p6TeV-powheg-pythia8/Run3Summer23BPix
MiniAODv4-130X-mcRun3-2023-realistic-postBPix-v2-v3/MINIAODSIM ntuple-ggZH-HTo2B-ZTo2Q-M-

125

5.000.000
/GluGlutoHHto2B2Tau-kl-0p00-kt-1p00-c2-0p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-1

5.000.000
/GluGlutoHHto2B2Tau-kl-0p00-kt-1p00-c2-1p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-2

5.000.000
/GluGlutoHHto2B2Tau-kl-1p00-kt-1p00-c2-0p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-3

5.000.000
/GluGlutoHHto2B2Tau-kl-1p00-kt-1p00-c2-0p10-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-4

5.000.000
/GluGlutoHHto2B2Tau-kl-1p00-kt-1p00-c2-0p35-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-5

5.000.000
/GluGlutoHHto2B2Tau-kl-1p00-kt-1p00-c2-3p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-6

5.000.000
/GluGlutoHHto2B2Tau-kl-1p00-kt-1p00-c2-m2p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-7

5.000.000
/GluGlutoHHto2B2Tau-kl-2p45-kt-1p00-c2-0p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-8

5.000.000
/GluGlutoHHto2B2Tau-kl-5p00-kt-1p00-c2-0p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v6-v2/MINIAODSIM

ntuple-GluGlutoHHto2B2Tau-9

5.000.000
/GluGlutoHHto2B2WtoLNu2Q-kl-1p00-kt-1p00-c2-0p00-TuneCP5-13p6TeV-powheg-
pythia8/Run3Summer23BPixMiniAODv4-130X-
mcRun3-2023-realistic-postBPix-v2-v2/MINIAODSIM

ntuple-
GluGlutoHHto2B2WtoLNu2Q
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13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on nominal
ParT NGM on nominal
ParT R-NGM on nominal
c vs b
c vs udsg

Figure D.1: ROC curves performance on nominal samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

three models perform similarly when evaluated on nominal samples.
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13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on NGM
ParT NGM on NGM
ParT R-NGM on NGM
c vs b
c vs udsg

Figure D.2: ROC curves performance on NGM samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

two adversarially trained models perform better than the nominal one. The R-NGM
training achieves similar robustness against NGM attacks than the NGM training, even

slightly better for the b vs udsg rejection.
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13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on R-NGM
ParT NGM on R-NGM
ParT R-NGM on R-NGM
c vs b
c vs udsg

Figure D.3: ROC curves performance on R-NGM samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

two adversarially trained models perform better than the nominal one. The R-NGM
training achieves better robustness than the NGM training.
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13.6 TeVCMSSimulation Work in progress

 pT > 30 GeV, | | < 2.5
ParT nominal on FGSM
ParT NGM on FGSM
ParT R-NGM on FGSM
c vs b
c vs udsg

Figure D.4: ROC curves performance on FGSM samples of the b vs udsg (dashed lines)
and b vs c (solid lines) rejection of the Particle Transformer algorithm trained in nominal
mode (red) or with NGM training (orange) and R-NGM (blue). We can observe that the

two adversarially trained models perform better than the nominal one. The R-NGM
training achieves better robustness than the NGM training.
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Author contributions

This appendix aims to highlight the author’s contribution to the
research discussed in this thesis and additional research that has not
been mentioned.

The DeepJet Transformer algorithm introduced in Chapter 3
is initially developed for flavour tagging at the CMS experiment, of
which I am the author. An adapted version of this algorithm was
also employed in flavour tagging research for the FCC-ee, published
in Ref. [138]. In this research, I contributed by creating and im-
plementing DeepJet Transformer, assisting with model training and
writing the publication. I also contributed to the introduction of the
Particle Transformer algorithm to CMS in collaboration with its au-
thors Huilin Qu, Congqiao Li, and Sitian Qian, along with Denise
Müller.

Among the adversarial training methods in Chapter 4, the de-
velopment of the NGM adversarial training method was done in col-
laboration with Annika Stein. At the same time, I am the sole author
of the R-NGM method development at CMS.

Among the current CMS jet algorithms mentioned in Chapter
5, I co-developed the Run 3 version of DeepJet with Denise Müller.
In collaboration with Annika Stein, I developed and trained Robust-
ParticleTransformerAK4. Together with Stephane Cooperstein and
Raffaele Gerosa, we developed and trained the UnifiedParticleTrans-
formerAK4 model. For this last model, I contributed by adapting the
ntupler, creating a version of the current b-hive framework adapted
for inclusive training, and developing the extension for s-tagging. I
was also responsible for the model training and its implementation
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in CMSSW.
In parallel to this research work, I also had the opportunity to

take on responsibilities within the b-tagging and vertexing (BTV)
group at CMS. I served as the L3 Software & Algorithm convener
from 2021 to 2023. I have also been an offline validator for flavour
tagging algorithms since 2021. Since 2023, I have also served as
the machine learning contact person for the BTV group and the jet
and missing ET group (JME). I also contributed to organising the
2023 BTV workshop, ‘To b or not to b,’ at the Vrije Universiteit
Brussel as a member of the local committee. Since 2021, I have
been the principal contributor and maintainer of the ntupler used for
training jet algorithms by BTV, DeepNTuples. I also contributed to
the development of the DeepJet/DeepJetCore training framework,
notably introducing the PyTorch training pipeline and replacing the
KERAS version. I am also one of the main authors of the new deep
learning framework, b-hive.

I have also undertaken and completed several deep learning
projects not mentioned in my thesis. Primarily, I contributed to
improving the performance of heavy-flavour tagging algorithms by in-
troducing new geometric variables as attention bias and high-energy
jet tagging through new variables related to tracker hits. I also stud-
ied the impact that different reweighting methods can have on per-
formance, as well as potential training biases that some reweighting
approximations might introduce. Additionally, I contributed to im-
plementing new optimisers for training and introducing the knowl-
edge transfer method known as ‘knowledge distillation’ to reduce the
size of the final models.

Finally, I have also fulfilled teaching responsibilities by serving
as an assistant for the ‘Statistical Treatment of Experimental Data’
course at the Bachelor’s level since the 2021-2022 academic year. I
also co-supervised Claire Dooms’s bachelor’s thesis, ‘Feature Evalu-
ation for Jet Tagging Using Machine Learning.’
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